EP3510203B1 - Verfahren zur herstellung eines wasserspeichers - Google Patents

Verfahren zur herstellung eines wasserspeichers Download PDF

Info

Publication number
EP3510203B1
EP3510203B1 EP17764374.9A EP17764374A EP3510203B1 EP 3510203 B1 EP3510203 B1 EP 3510203B1 EP 17764374 A EP17764374 A EP 17764374A EP 3510203 B1 EP3510203 B1 EP 3510203B1
Authority
EP
European Patent Office
Prior art keywords
stratum
water
solvent
layer
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17764374.9A
Other languages
English (en)
French (fr)
Other versions
EP3510203A1 (de
Inventor
Olaf GEORGI
Oswald Blumenstein
Norbert Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mlw-Intermed Handels- und Consultinggesellschaft fur Erzeugnisse und Ausruestungen Des Gesundheits- und Bildungswesens Mbh
Original Assignee
Mlw-Intermed Handels- und Consultinggesellschaft fur Erzeugnisse und Ausruestungen Des Gesundheits- und Bildungswesens Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mlw-Intermed Handels- und Consultinggesellschaft fur Erzeugnisse und Ausruestungen Des Gesundheits- und Bildungswesens Mbh filed Critical Mlw-Intermed Handels- und Consultinggesellschaft fur Erzeugnisse und Ausruestungen Des Gesundheits- und Bildungswesens Mbh
Publication of EP3510203A1 publication Critical patent/EP3510203A1/de
Application granted granted Critical
Publication of EP3510203B1 publication Critical patent/EP3510203B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B3/00Methods or installations for obtaining or collecting drinking water or tap water
    • E03B3/06Methods or installations for obtaining or collecting drinking water or tap water from underground
    • E03B3/08Obtaining and confining water by means of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G5/00Storing fluids in natural or artificial cavities or chambers in the earth
    • B65G5/005Storing fluids in natural or artificial cavities or chambers in the earth in porous layers

Definitions

  • the subject matter of the present invention is a method for producing water storage tanks in areas with drinking water shortages quickly and inexpensively.
  • Water reservoirs that are embedded in the ground have been known to civilization for thousands of years. These are often cisterns that are hewn out of the rock or bedrock or that are laid out as brickwork pits. These cisterns are used to collect and store rainwater. It is characteristic that these water reservoirs, in contrast to wells, have no direct connection to the aquifer.
  • Cisterns have also been used in recent times. This is often done to compensate for seasonal fluctuations in the water supply or to provide process water. In the industrialized countries, tanks sunk into the ground are often used for this purpose (e.g. DE 20 2013 004 054 U1 ).
  • a characteristic of the structures that have artificially erected walls or tanks for water storage is that very large amounts of earth have to be moved during the erection and that heavy equipment and high technology must often be used.
  • the constructions and the procedures for their establishment are therefore not suitable for developing countries or other areas with extremely weak infrastructure.
  • the task is therefore to propose a method that makes it possible to build cisterns for the indigenous population in developing countries and other poorly developed areas with little rainfall with little use of technology and using available resources.
  • the process requires a suitable structure of the subsoil. This must consist of several layers of soil material that have suitable properties. Each layer can consist of different layers, these different layers having to be at least similar in terms of the properties characteristic of the respective layer.
  • the first layer is the top layer and is superficial or at least close to the surface. It should consist of layers of porous, water-permeable material. This material is also preferably already loose. Layers of sand or rubble, for example, are suitable.
  • a second layer is to be located under the first layer, which consists of layers which can be dissolved by means of a suitable non-toxic solvent or a mixture of such solvents and brought into a pumpable state.
  • a suitable non-toxic solvent for example, it can be limestone or sand-lime brick.
  • the most suitable combination of solvents and additives for the respective location depends on the local conditions at the location of the water storage tank. It is preferably determined in simple preliminary tests or selected on the basis of the general state of the art or empirical values.
  • a third layer should be located vertically below the second layer, which consists of layers that are not or only slightly water-permeable.
  • the second layer consists of layers that are not or only slightly water-permeable.
  • loam or clay layers or adjacent rock are suitable.
  • the impermeability to water can be regarded as sufficiently small if less than 50% of the water content of the water reservoir is lost during the expected maximum intervals between the water run-off events.
  • the bore extends into the second layer, preferably into an area between the end of the upper third of the second layer and the lower end of the second layer, very particularly preferably up to the beginning of the lower third of the second layer.
  • a pipeline is inserted into the borehole of the well.
  • the drill is used as a pipeline after the drill core has been removed.
  • This pipeline preferably has one or more openings at the lower end. Solvent filled or pumped into the pipeline can be introduced into the bore through these openings. In the course of a chemical or physical reaction, the solvent converts the material of the layers of the second layer into a liquid, pumpable state.
  • the liquefied material is preferably pumped out through the pipeline in the bore through which the solvent has already been introduced.
  • the exposure time depends on the properties of the materials of the layers of the second layer. It must therefore be determined in the laboratory using state-of-the-art methods by determining the rate of dissolution or etching.
  • Another preferred embodiment of the method provides for the pumping out through additional bores with suitable pipelines. This procedure makes it possible to monitor and control the progress of the resolution in the second layer.
  • the suspension pumped out from the depths is led to the surface of the earth in a sedimentation basin, in which the ingredients settle due to their gravity and / or precipitation processes.
  • a sedimentation basin in which the ingredients settle due to their gravity and / or precipitation processes.
  • the material of the sedimentation basin can also be recycled, e.g. as fertilizer.
  • this is desirable in order to prevent the cavity from collapsing before it has reached its desired expansion.
  • the cavity formed is rinsed with water.
  • the rinsing is preferably carried out several times, and it has proven advantageous to carry out the first rinsing cycles with an addition of an agent that neutralizes the solvent or terminates the solvent's ability to dissolve in another way. This prevents further material of the second layer from being slowly removed.
  • the cavity can collapse due to its natural weight or it can be brought to collapse technically. In the simplest case, blasting is suitable for this. Placing additional rubble or sand on the cavity can also promote its collapse. In addition, it is possible to promote the collapse by making additional bores, which preferably extend into the cavity or into its vicinity.
  • a hole is lowered at least at the apex of the collapse funnel and a water extraction pipe is inserted into the hole.
  • Further water extraction holes are optionally possible.
  • the water extraction hole can extract water by means of a pump.
  • a well-like configuration is also possible in which the water extraction hole is lined with a pipe of sufficient diameter, at the lower end of which the water can enter the pipe. This preferably has additional inlet openings for this purpose.
  • a manual scoop construction for example, can then be set up at the upper open end.
  • the rainwater now collects in the collapse funnel and penetrates the cavities of the coarse-grained material of the collapsed first layer after the collapse. In these cavities, the water is largely withdrawn from natural evaporation and can be taken from the lowest point, the apex. If there are other water extraction holes and if the water level is sufficient, extraction is of course also possible there.
  • additional sand or other coarse-grained material is introduced into the collapse funnel so that it is at least partially filled. On In this way, the filling level can be increased without reaching the bottom surface (evaporation) of the water reservoir.
  • the lateral runoff of the collected water is completely or partially prevented by erecting suitable barriers. This is preferably done by injecting material that reduces the water passage in the edge area of the collapse funnel.
  • suitable barriers for example, liquid cement or clay suspensions, preferably bentonite suspensions, can be used via bores.
  • the collapse funnel extends into the area of the aquifer or if an aquifer is present, this is easily accessible by the method according to the invention.
  • an area of 3.0 mx 3.0 m and a depth of the cavity of 2 m are sufficient to store 6000 l of water. This corresponds exactly to the amount that z. B. in South Africa one household consumes water a month.
  • a geological preliminary exploration has found a potential construction site for a water reservoir using the method according to the invention.
  • a layer of sand approx. 20 m thick is followed by a descending layer of limestone with a thickness of approx. 25 m, which rests on a granite layer.
  • a borehole will be drilled to a depth of 38 m at this potential construction site.
  • a pipe is inserted into the borehole which has a spray head on the lower end face, that is to say has openings which are arranged in a cylindrical shape.
  • a solution of 1.7 to 4.3 molar acetic acid or 2.7 to 6.8 molar formic acid is fed into this tube, mixed with an NaCl salt solution (35 g per liter).
  • the molarity of the acid in the fluid depends on the quality of the limestone material, which is determined by its chemical composition and dispersivity. As the process of dissolving the limestone continues, solvent is added when the solvent level in the pipe drops. The amount to be used depends on the size of the spray head and the drill hole diameter. The height of the liquid level in the borehole is measured electrometrically by a sensor. A supply of gaseous carbon dioxide (CO 2 ) serves to avoid crystal formation and accelerates the dissolution process, as does the mixed salt solution. The length of the contact time depends on the chemical composition of the rock. It ends when the pH value in the introduced solution rises sharply. At a pH value of 5.0, the intensity of the process sequence is no longer justifiable in terms of time.
  • the cavity Since the solution process is mainly effective downwards or laterally due to the weight of the solution, the cavity does not collapse due to its own weight. It is now supported by the remaining limestone remains. After the pipe has been removed, further cavities are created in a radial arrangement around the first borehole. Depending on the geostructural stability of the overlying cover layers, this radial cavity system can collapse independently or can be caused to collapse through geotechnical manipulations (e.g. limited blasting). Now the cavity is with chunky residual limestone and sand from the overlying sand layer. A considerable amount of water can collect between the limestone lumps or the grains of sand after a typical heavy rainfall.
  • the water that occurs during rainfall or flooding is transported by the funnel effect of the collapse funnel into the cavities between the limestone lumps or the grains of sand.
  • the granite layer prevents the water from seeping away.
  • a collapse funnel is created on the surface. The collected water in the depth is prevented from evaporation by the loose material in it.
  • a new hole is drilled and a water extraction pipe is drilled into the resulting borehole. The water can now be pumped out via the water extraction pipe if necessary.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

  • Gegenstand der vorliegenden Erfindung ist ein Verfahren, um Wasserspeicher in Gegenden mit Trinkwassermangel schnell und kostengünstig herzustellen.
  • Wasserspeicher, die in den Boden eingelassen sind, kennt die Menschheit seit vielen Jahrtausenden. Dabei handelt es sich häufig um Zisternen, die aus dem Fels oder dem Grundgestein herausgehauen oder die als ausgemauerte Gruben angelegt sind. Diese Zisternen dienen der Sammlung und Aufbewahrung von Niederschlagswasser. Kennzeichnend ist, dass diese Wasserspeicher, im Gegensatz zu Brunnen, keine direkte Verbindung zum Grundwasserleiter aufweisen.
  • Auch in neuerer Zeit werden Zisternen genutzt. Dies erfolgt häufig, um jahreszeitliche Schwankungen des Wasserangebots zu kompensieren oder um Brauchwasser bereit zu stellen. In den Industrienationen kommen dazu häufig in die Erde versenkte Tanks zum Einsatz (bspw. DE 20 2013 004 054 U1 ).
  • Bekannte Konstruktionen sehen dabei häufig vor, auf einer wasserundurchlässigen Grundschicht Sperrvorrichtungen zu errichten, die den horizontalen Wassertransport unterbinden oder weitgehend reduzieren sollen. Beispiele für derartige Anordnungen finden sich in der US 4,326,818 B1 oder der US 8,449,219 B2 .
  • Kennzeichnend für die Konstruktionen, die künstlich errichtete Wände oder Tanks zur Wasserspeicherung aufweisen ist, dass bei der Errichtung sehr große Erdmengen bewegt werden müssen und dass häufig schweres Gerät und Hochtechnologie zum Einsatz kommen müssen. Die Konstruktionen und die Verfahrensweisen zu deren Errichtung sind somit nicht für Entwicklungsländer oder sonstige Gegenden mit ausgesprochen schwacher Infrastruktur geeignet. Es stellt sich somit die Aufgabe, ein Verfahren vorzuschlagen, dass es ermöglicht, mit geringem Technikeinsatz und unter Nutzung vorhandener Ressourcen Zisternen für die einheimische Bevölkerung in Entwicklungsländern und anderen schwach entwickelten Gebieten mit geringem Niederschlag zu errichten.
  • Erfindungsgemäß wird die Aufgabe mit dem Verfahren nach Anspruch 1 gelöst. Vorteilhafte Verfahrensweisen sind in den rückbezogenen Unteransprüchen offenbart.
  • Das Verfahren bedarf einer geeigneten Struktur des Untergrundes. Dieser muss aus mehreren Lagen von Bodenmaterial bestehen, die geeignete Eigenschaften aufweisen. Dabei kann jede Lage aus unterschiedlichen Schichten bestehen, wobei diese unterschiedlichen Schichten sich in den für die jeweilige Lage kennzeichnenden Eigenschaften zumindest ähneln müssen.
  • Die erste Lage ist die Decklage und steht oberflächig oder zumindest oberflächennah an. Sie soll aus Schichten von porösem, wassergängigem Material bestehen. Vorzugsweise ist dieses Material auch bereits lose. Geeignet sind bspw. Schichten aus Sand oder Geröll.
  • Vertikal absteigend soll sich unter der ersten Lage eine zweite Lage befinden, die aus Schichten besteht, die mittels eines geeigneten ungiftigen Lösungsmittels bzw. eines Gemischs derartiger Lösungsmittel aufgelöst und in einen pumpfähigen Zustand versetzt werden können. Beispielsweise kann es sich dabei um Kalkstein oder Kalksandstein handeln.
  • Bei den ungiftigen Lösungsmitteln handelt es sich vorzugsweise um bereits in der Natur vorkommende Stoffe. So sind bspw. Säuren geeignet, die beim Auflösen des Materials der zweiten Lage neutralisiert werden. Wesentlich ist, dass das Lösungsmittel das Material der Schichten der dritten Lage nicht oder nur geringfügig angreift und dass seine Verwendung dem Ansatzes einer nachhaltigen Technologie genügt. Es sind demzufolge vorzugsweise Lösungsmittel zu nutzen, die
    • in der Natur vorkommen,
    • biologisch schnell abbaubar sind und
    • keine Schädigungen von Organsimen bzw. der menschlichen Gesundheit nach sich ziehen können.
    Zu verwenden sind bevorzugt Essigsäure, Ameisensäure oder Kohlensäure.
    Bei Verwendung von Kohlensäure kann diese optional zusätzlich mit Kohlenstoffdioxid angereichert werden. Die Nutzung dieser freien überschüssigen Kohlensäure hat den Vorteil, dass diese nach dem Auspumpen ohne technologischen Aufwand wieder verwendet und der ausgefällte Kalk weiter verwertet werden können. Möglich ist auch der Einsatz von Salzsäure, wobei jedoch die Entsorgung so erfolgen sollte, dass keine Säure unkontrolliert freigesetzt wird. Weiterhin bevorzugt ist ein Zusatz von geeigneten Stoffen, die in Kombination mit dem eingesetzten Lösungsmittel positive Wirkungen entfalten. Dies betrifft insbesondere das Verhindern unerwünschter Kristallisation im gelösten Material oder die Beschleunigung des Abbauprozesses. Als geeignet haben sich bspw. NaCI und Kohlendioxid in Verbindung mit Ameisensäure als Lösungsmittel erwiesen.
  • Die für den jeweiligen Standort am besten geeignete Kombination von Lösungsmittel und Zusatzstoffen hängt von den lokalen Gegebenheiten des Errichtungsortes des Wasserspeichers ab. Sie wird vorzugsweise in einfachen Vorversuchen bestimmt oder aufgrund des allgemeinen Standes der Technik oder von Erfahrungswerten gewählt.
  • Vertikal unterhalb der zweiten Lage soll sich eine dritte Lage befinden, die aus Schichten besteht, die nicht oder nur gering wasserdurchlässig sind. Hier sind bspw. Lehm oder Tonschichten oder auch anstehendes Felsgestein geeignet. Die Wasserundurchlässigkeit kann als ausreichend gering angesehen werden, wenn während der zu erwartenden maximalen Abstände zwischen den Wassernachlaufereignissen weniger als 50% des Wasserinhaltes des Wasserspeichers verloren gehen.
  • Wenn ein Gebiet mit geeignetem Untergrund aufgefunden wurde, wird mindestens eine Bohrung niedergebracht (vorhergehende Erkundungsbohrungen sind sicher meist notwendig, werden hier jedoch als nicht unmittelbar zum Verfahren gehörend vorausgesetzt, aber nicht näher angeführt). Die Bohrung reicht bis in die zweite Lage, bevorzugt bis in einen Bereich zwischen dem Ende des oberen Drittels der zweiten Lage und dem unteren Ende der zweiten Lage, ganz besonders bevorzugt bis zum Beginn des unteren Drittels der zweiten Lage.
  • In das Bohrloch der Bohrung wird eine Rohrleitung eingeführt. In einer bevorzugten Ausführungsform wird der Bohrer nach Entfernung des Bohrkernes als Rohrleitung genutzt. Diese Rohrleitung weist am unteren Ende vorzugsweise eine oder mehrere Öffnungen auf, Durch diese Öffnungen kann über Tage in die Rohrleitung eingefülltes bzw. eingepumptes Lösungsmittel in die Bohrung eingebracht werden. Das Lösungsmittel versetzt im Zuge einer chemischen oder physikalischen Reaktion das Material der Schichten der zweiten Lage in einen flüssigen, pumpfähigen Zustand.
  • Nach einer Einwirkungszeit, die für das hinreichende Verflüssigen des Materials der Schichten der zweiten Lage notwendig ist, wird das verflüssigte Material vorzugsweise durch die Rohrleitung in der Bohrung, durch die bereits das Lösungsmittel eingebracht wurde, abgepumpt. Die Einwirkungszeit ist von den Eigenschaften der Materialien der Schichten der zweiten Lage abhängig. Sie ist daher im Labor mit Verfahren nach dem Stand der Technik zu ermitteln, indem die Löse- bzw. Ätzgeschwindigkeit bestimmt wird.
  • Eine weitere bevorzugte Ausführungsform des Verfahrens sieht das Abpumpen durch zusätzliche Bohrungen mit geeigneten Rohrleitungen vor. Diese Vorgehensweise ermöglicht es, den Auflösungsfortschritt in der zweiten Lage zu überwachen und zu steuern.
  • Die aus der Tiefe abgepumpte Suspension wird an die Erdoberfläche in ein Absetzbecken geleitet, in welchem sich die Inhaltsstoffe infolge Ihrer Schwerkraft und/oder Ausfällungsprozessen absetzen. Somit kann das das bereits genutzte Wasser bzw. Lösungsmittel vorteilhaft wieder verwendet werden. Auch das Material des Absetzbeckens kann einer Weiterverwertung zugeführt werden, so z.B. als Dünger.
  • Durch das Auflösen und Abpumpen des Materials der Schichten der zweiten Lage entsteht ein Hohlraum unterhalb der ersten Lage und oberhalb der dritten Lage. Dieser Hohlraum kann selbstverständlich noch Reste der zweiten Lage enthalten.
  • In einer ersten bevorzugten Verfahrensweise ist dies wünschenswert, um ein Einstürzen des Hohlraumes vor dem Erreichen von dessen angestrebter Ausdehnung zu vermeiden.
  • In einer zweiten bevorzugten Verfahrensweise, die zum Einsatz kommen kann, wenn die Schichten der ersten Lage aus besonders gut wasserwegsamem Material bestehen, kann ein fortlaufender Einsturz des Hohlraumes, der mit dem Aushöhlen der zweiten Lage stetig voranschreitet, geduldet werden.
  • In einer bevorzugten Verfahrensweise wird nach dem Abpumpen des herausgelösten Materials der zweiten Schicht der entstandene Hohlraum mit Wasser gespült. Bevorzugt erfolgt die Spülung mehrfach, wobei es sich als vorteilhaft erwiesen hat, die ersten Spülgänge mit einem Zusatz eines Mittels durchzuführen, dass das Lösungsmittel neutralisiert bzw. die Lösungsfähigkeit des Lösungsmittels auf andere Weise beendet. Dies verhindert ein schleichendes Herauslösen weiteren Materials der zweiten Lage.
  • Wenn der Hohlraum in der angestrebten Ausdehnung vorliegt, kann dieser aufgrund seines natürlichen Gewichts einstürzen oder technisch zum Einsturz gebracht werden. Dazu ist im einfachsten Fall eine Sprengung geeignet. Auch das Auflegen von zusätzlichem Geröll oder Sand auf den Hohlraum kann dessen Einsturz befördern. Darüber hinaus ist es möglich, den Einsturz durch das Einbringen zusätzlicher Bohrungen, die vorzugsweise bis in den Hohlraum oder bis in dessen Nähe reichen, zu befördern.
  • Abschließend wird mindestens im Scheitelpunkt des Einsturztrichters eine Bohrung abgesenkt und eine Wasserentnahme-Rohrleitung in die Bohrung eingesetzt. Weitere Wasserentnahmebohrungen sind optional möglich. Die Wasserentnahmebohrung kann mittels einer Pumpe Wasser entnehmen. Möglich ist jedoch auch eine brunnenartige Ausgestaltung, bei der die Wasserentnahmebohrung mit einem Rohr hinreichenden Durchmessers ausgekleidet wird, an dessen unterem Ende das Wasser in das Rohr eintreten kann. Vorzugsweise weist dieses dazu zusätzliche Zulauföffnungen auf. Am oberen offenen Ende kann dann bspw. eine manuelle Schöpfkonstruktion errichtet werden.
  • Nunmehr sammelt sich das Niederschlagswasser im Einsturztrichter und dringt in die Hohlräume des nach dem Einsturz grobkörnigen Materials der eingestürzten ersten Schicht ein. In diesen Hohlräumen ist das Wasser weitgehend der natürlichen Verdunstung entzogen und kann am tiefsten Punkt, dem Scheitelpunkt, entnommen werden. Beim Vorhandensein weiterer Wasserentnahmebohrungen und bei ausreichendem Wasserstand ist natürlich auch dort eine Entnahme möglich.
  • In einer bevorzugten Ausführungsform wird zusätzlicher Sand oder anderes grobkörniges Material in den Einsturztrichter eingebracht, so dass zumindest teilweise aufgefüllt ist. Auf diese Weise kann die Füllhöhe ohne Erreichen der Bodenoberfläche (Verdunstung) des Wasserspeichers vergrößert werden.
  • In einer bevorzugten Verfahrensweise wird, falls kein natürlicher Grundwasserleiter vorhanden ist, der seitliche Abfluss des gesammelten Wassers vollständig oder teilweise verhindert, indem geeignete Barrieren errichtet werden. Dies erfolgt bevorzugt durch die Injektion von Material, das die Wasserwegsamkeit im Randbereich des Einsturztrichters verringert. Dazu können über Bohrungen bspw. flüssiger Zement oder Tonsuspensionen, bevorzugt Bentonitsuspensionen, genutzt werden.
  • Wenn der Einsturztrichter bis in den Bereich des Grundwasserleiters reicht bzw. wenn ein Grundwasserleiter vorhanden ist, ist dieser durch das erfindungsgemäße Verfahren leicht zugänglich.
  • Legt man das durchschnittliche Porenvolumen von Mittelsand zugrunde und dass mindestens ein Drittel dieses Volumens der Wasserspeicherung zur Verfügung steht, reichen eine Fläche von 3,0 m x 3,0 m und eine Tiefe des Hohlraums von 2 m aus, um 6000 l Wasser zu speichern. Dies entspricht genau der Menge, die z. B. in Südafrika ein Haushalt im Monat an Wasser verbraucht.
  • Da die meisten Farmer in Trockengebieten über immense Nutzflächen verfügen, kann durch die Anwendung dieses Verfahrens an verschiedenen Standorten der Verbrauch nicht erneuerbarer Wasserressourcen deutlich reduziert werden.
  • Figuren
    • Fig. 1 zeigt ein Beispiel für die Schichtungsverhältnisse eines geeigneten Errichtungsortes für einen Wasserspeicher mit dem erfindungsgemäßen Verfahren.
    • Fig. 2 zeigt schematisch, wie ein Rohr zum Einspeisen bzw. Abpumpen des Lösungsmittels in einer Bohrung, die bis in die zweite Lage hinabreicht, angeordnet ist.
    • Fig. 3 zeigt schematisch die Verhältnisse, die sich im Ergebnis der Durchführung des erfindungsgemäßen Verfahrens einstellen.
    • Fig. 4 erläutert die wesentlichsten Schritte eines Lösungsmittelkreislaufes, wie er vorzugsweise in dem erfindungsgemäßen Verfahren zum Einsatz kommt.
    Ausführungsbeispiel
  • Eine geologische Vorerkundung hat einen potentiellen Errichtungsort für einen Wasserspeicher nach dem erfindungsgemäßen Verfahren aufgefunden. Einer ca. 20 m dicken Sandschicht folgt absteigend eine Kalksteinschicht mit einer Mächtigkeit von ca. 25 m, die auf einer Granitschicht aufliegt. An diesem potentiellen Errichtungsort wird eine Bohrung bis in eine Tiefe von 38 m niedergebracht. In das Bohrloch wird ein Rohr eingeführt, dass an der unteren Stirnseite einen Sprühkopf besitzt, d.h. Öffnungen aufweist, die zylinderförmig angeordnet sind. In dieses Rohr wird eine Lösung von 1,7 bis 4,3 molarer Essigsäure oder 2,7 bis 6,8 molare Ameisensäure zugeführt, in Mischung mit einer NaCI-Salzlösung (35 g pro Liter). Die Molarität der Säure in dem Fluid richtet sich nach der Qualität des Kalksteinmaterials, die von seiner chemischen Zusammensetzung und Dispersivität bestimmt wird. Da der Lösungsprozess des Kalksteins fortschreitet, wird beim Absinken des Lösungsmittelspiegels im Rohr Lösungsmittel nachgespeist. Die zu verwendete Menge richtet sich nach der Größe des Sprühkopfes und des Bohrlochdurchmessers. Die Messung der Höhe des Flüssigkeitspegels im Bohrloch wird elektrometrisch durch einen Sensor vorgenommen. Eine Zuführung von gasförmigem Kohlenstoffdioxid (CO2) dient der Vermeidung einer Kristallbildung und beschleunigt den Lösungsvorgang, ebenso die zugemischte Salzlösung. Die Länge der Kontaktzeit ist von der chemischen Zusammensetzung des Gesteins abhängig. Sie endet, wenn der pH-Wert in der eingebrachten Lösung stark ansteigt. Bei einem pH-Wert von 5,0 ist die Intensität des Prozessablaufes zeitökonomisch nicht mehr vertretbar. Der Nachweis hierfür ist durch ein pH-Meter zu erbringen. Nach ca. 10 Minuten kann das Fluid abgepumpt werden. Nunmehr wird das Lösungsmittel mit dem gelösten und partikulären Kalkstein als Suspension abgepumpt und in ein Absetzbecken eingeleitet. Hier werden die gelösten Stoffe von dem Liquid getrennt, so dass das Lösungsmittel wieder verwendet werden kann. Durch diese zyklische Prozessführung werden Säure und Wasser eingespart, was besonders in den Trockengebieten von Bedeutung ist. Da der Prozess der Phasentrennung länger als die Hohlraumerweiterung dauern kann, ist ein zweites Absetzbecken zu installieren, in welches die zweite Charge der eingebrachten Lösung hineingepumpt werden kann. Das Fassungsvermögen der Becken richtet sich nach der Menge der eingebrachten Lösungsmittel.
  • Da der Lösungsprozess aufgrund des Gewichtes der Lösung überwiegend nach unten bzw. seitlich wirksam wird, stürzt der Hohlraum nicht aufgrund seines Eigengewichts ein. Er wird nun noch von den verbliebenen Kalksteinresten getragen. Nach dem Entfernen des Rohres werden weitere Hohlraume in radialer Anordnung um das erste Bohrloch erzeugt. Je nach geostruktureller Stabilität der drüber liegenden Deckschichten kann dieses radiale Hohlraumsystem selbständig einstürzen bzw. kann durch geotechnische Manipulationen (z. B. durch begrenzte Sprengung) zum Einsturz gebracht werden. Nunmehr ist der Hohlraum mit grobstückigen Restmaterial des Kalksteins und Sand aus der darüber liegenden Sandschicht gefüllt. Zwischen den Kalksteinbrocken bzw. den Sandkörnern kann sich nach einem typischen Starkniederschlag eine erhebliche Wassermenge sammeln. Das bei Niederschlägen oder Überschwemmungsereignissen anfallende Wasser gelangt, befördert durch die Trichterwirkung des Einsturztrichters, in die in die Hohlräume zwischen den Kalksteinbrocken bzw. den Sandkörnern. Ein weiteres Versickern des Wassers wird durch die Granitschicht verhindert. An der Oberfläche entsteht ein Einsturztrichter. Das gesammelte Wasser in der Tiefe wird durch das darin befindliche Lockermaterial an der Verdunstung gehindert. Am tiefsten Punkt des Einsturztrichters werden eine erneute Bohrung und in das entstehende Bohrloch ein Wasserentnahmerohr eingebracht. Das Wasser kann nunmehr über das Wasserentnahmerohr bei Bedarf abgepumpt werden.
  • Bezugszeichenliste
  • 10
    Bohrung
    11
    Rohrleitung zum Einspeisen und Abpumpen des Lösungsmittels
    111
    unteres Ende der Rohrleitung zum Einspeisen und Abpumpen des Lösungsmittels
    112
    Austritts- bzw. Eintrittsöffnungen für das Lösungsmittel
    12
    Rohrleitung zur Wasserentnahme
    121
    unteres Ende der Rohrleitung zur Wasserentnahme
    122
    Eintrittsöffnungen für Wasser
    20
    Lösungsmittelzuführung
    30
    Lösungsmittelabführung
    40
    Wasserabführung
    A
    Sandschicht
    A1
    Einsturztrichter in der Sandschicht
    B
    Kalksteinschicht
    B1
    eingestürzter, wasserwegsamer Hohlraum in der Kalksteinschicht
    B2
    Wasser, dass sich in der losen Schüttung des Hohlraumes gesammelt hat
    C
    Gesteinsschicht

Claims (10)

  1. Verfahren zur Schaffung eines mit losem, porösem wassergängigem Material aufgefüllten Wasserspeichers, aufweisend mindestens die folgenden Schritte:
    a) Auffinden eines geeigneten Errichtungsortes, der eine Gesteinsschichtung mit:
    ∘ einer ersten Lage aus mindestens einer Schicht porösen Materials,
    ∘ einer zweiten Lage, unterhalb der ersten Lage, aus mindestens einer durch ungiftige Lösungsmittel lösbaren Materialschicht,
    ∘ einer dritten Lage, unterhalb der zweiten Lage, aus mindestens einer Schicht wasserundurchlässigen oder nahezu wasserundurchlässigen Materials,
    b) Absenken mindestens einer Bohrung bis in die zweite Lage,
    c) Einführen einer Rohrleitung mit einem oder mehreren Austrittsöffnungen am unteren Ende der Rohrleitung in die Bohrung,
    d) Injizieren eines ungiftigen Lösungsmittels, das geeignet ist, das Material der zweiten Lage zu lösen oder auf sonstige Weise in einen flüssigen, pumpfähigen Zustand zu versetzen,
    e) Abpumpen der in flüssigem, pumpfähigen Zustand befindlichen Teile der zweiten Lage und dadurch Schaffung eines Hohlraums,
    f) Natürliches oder induziertes Einstürzen des Hohlraumes und Ausbildung eines Einsturztrichters an der Erdoberfläche,
    g) Absenken einer Bohrung im Scheitelpunkt des Einsturztrichters und Einsetzen einer Wasserentnahme-Rohrleitung in die Bohrung.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bohrung in Schritt b) bis in eine Tiefe zwischen dem Ende des oberen Drittels der zweiten Lage und dem unteren Ende der zweiten Lage niedergebracht wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Schritt c) der Bohrer nach Entfernung des Bohrkernes als Rohrleitung genutzt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schritte d) und e) so oft wiederholt werden, bis der entstehende Hohlraum die angestrebte Größe erreicht hat.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Lösungsmittel Salzsäure, Essigsäure, Ameisensäure oder Kohlensäure zum Einsatz kommt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die abgepumpte Suspension aus Lösungsmittel und Material der zweiten Lage an der Erdoberfläche in ein Absetzbecken geleitet wird, in welchem sich die Inhaltsstoffe infolge Ihrer Schwerkraft und/oder von Ausfällungsprozessen absetzen.
  7. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Wasser bzw. Lösungsmittel nach dem Absetzen erneut in das Bohrloch eingeleitet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass nach dem Abpumpen des herausgelösten Materials der zweiten Schicht der entstandene Hohlraum einmal oder mehrfach mit Wasser, bei Bedarf mit einem Zusatz eines Mittels, welches das Lösungsmittel neutralisiert bzw. die Lösungsfähigkeit des Lösungsmittels auf andere Weise beendet, gespült wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in Schritt f) das Einstürzen des Hohlraumes durch
    ∘ Sprengung, oder
    ∘ durch Belastung der Deckschicht mit Geröll, Sand oder sonstigem porösem Material, oder
    ∘ durch das Einbringen zusätzlicher Bohrungen erfolgt.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der nach Schritt f) ausgebildete Einsturztrichter zumindest teilweise mit Geröll, Sand oder sonstigem porösem Material aufgefüllt wird.
EP17764374.9A 2016-09-12 2017-09-06 Verfahren zur herstellung eines wasserspeichers Active EP3510203B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16188381.4A EP3293314A1 (de) 2016-09-12 2016-09-12 Verfahren zur herstellung eines wasserspeichers
PCT/EP2017/072299 WO2018046517A1 (de) 2016-09-12 2017-09-06 Verfahren zur herstellung eines wasserspeichers

Publications (2)

Publication Number Publication Date
EP3510203A1 EP3510203A1 (de) 2019-07-17
EP3510203B1 true EP3510203B1 (de) 2020-10-28

Family

ID=56958747

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16188381.4A Withdrawn EP3293314A1 (de) 2016-09-12 2016-09-12 Verfahren zur herstellung eines wasserspeichers
EP17764374.9A Active EP3510203B1 (de) 2016-09-12 2017-09-06 Verfahren zur herstellung eines wasserspeichers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16188381.4A Withdrawn EP3293314A1 (de) 2016-09-12 2016-09-12 Verfahren zur herstellung eines wasserspeichers

Country Status (6)

Country Link
EP (2) EP3293314A1 (de)
BR (1) BR112019004552B1 (de)
MA (1) MA46184B1 (de)
TN (1) TN2019000095A1 (de)
WO (1) WO2018046517A1 (de)
ZA (1) ZA201901423B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL437833A1 (pl) * 2021-05-12 2021-12-13 Jan Gizicki Sposób pozyskiwania wód gruntowych

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704593A (en) * 1970-06-16 1972-12-05 John C St Clair Constructing broken rock supports for roofs of cavities storing liquified hydrocarbon gases
US4326818A (en) 1978-10-16 1982-04-27 Willis Dudley L Techniques for the storage of water
US5431482A (en) * 1993-10-13 1995-07-11 Sandia Corporation Horizontal natural gas storage caverns and methods for producing same
FR2751374B1 (fr) * 1996-07-19 1998-10-16 Gaz De France Procede pour creuser une cavite dans une mine de sel de faible epaisseur
EP2058441B1 (de) 2007-11-09 2012-10-10 luxin (green planet) ag Wasserspeicherndes und wasserreinigendes System
DE202013004054U1 (de) 2013-04-29 2013-06-14 3P Technik Filtersysteme Gmbh Regenwasserspeichereinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
MA46184B1 (fr) 2021-02-26
BR112019004552B1 (pt) 2024-01-30
ZA201901423B (en) 2020-12-23
EP3510203A1 (de) 2019-07-17
WO2018046517A1 (de) 2018-03-15
EP3293314A1 (de) 2018-03-14
TN2019000095A1 (en) 2020-07-15
BR112019004552A2 (pt) 2019-05-28

Similar Documents

Publication Publication Date Title
EP2602425A1 (de) Verfahren zur in-situ-laugung durch flüssigkeitseinspritzung
DE3708081A1 (de) Verfahren zum bauen von sickeranlagen
DE102008056262B4 (de) Vorrichtung und Verfahren zum Absaugen von Bohrgut und Bohrschlamm
DE202023102149U1 (de) Entwässerungsbrunnenstruktur zur Baugrubenentwässerung
EP3510203B1 (de) Verfahren zur herstellung eines wasserspeichers
EP2650446B1 (de) Verfahren zur Herstellung einer Gründung für eine Offshore-Anlage
DE19622159A1 (de) Vorrichtung zur Boden- und Grundwassersanierung und Verfahren zum Erstellen und Betreiben einer solchen Vorrichtung
CN106087998B (zh) 一种组合复合管桩地基的施工方法
CN107700508A (zh) 一种型钢搅喷水泥土帷幕支护桩的施工方法
DE2610450A1 (de) Verfahren zur durchfuehrung von erdarbeiten
CN103015430A (zh) 长螺旋压灌水泥土型钢桩基坑止水支护方法
EP0629769A2 (de) Verfahren und Vorrichtung zum Aussolen von Kavernen in Salzformationen
DE3108331A1 (de) "verfahren und vorrichtung fuer die herstellung von grundwasserbrunnen und fuer die grundwasserabsenkung"
DE102006039141A1 (de) Verfahren und Düsen-Saug-Infiltrations-System "Werner Wils" zur Entnahme und/oder Verbringung flüssiger Medien in einem Grundwasserleiter
CN103774645A (zh) 一种水泥土和混凝土组合材料桩及其施工方法
AT225629B (de) Verfahren und Einrichtung zur Herstellung von Gräben und zur Bildung von Dichtungsschürzen
DE3512709A1 (de) Verfahren zum herstellen und abdichten eines brunnens sowie vorrichtung zur durchfuehrung des verfahrens und brunnen
DE102010022816A1 (de) Verfahren zur Entwässerung mehrerer übereinander abgelagerter Grundwasserleiter
DE329896C (de) Verfahren und Vorrichtung zum Abteufen von Schaechten, insbesondere durch wasserfuehrende Schichten
DE3531547A1 (de) Verfahren zur wassergewinnung aus grundwasserleitenden erdschichten und brunnenausbildung zur durchfuehrung dieses verfahrens
DE3703534A1 (de) Verfahren zur herstellung eines brunnens
EP1342852B1 (de) Verfahren zum Abstützen und Abdichten von Erdreich
DE3537816C2 (de)
DE2052184A1 (de) Verfahren zum Herstellen eines Tiefgründungskörpers
DE102020121528A1 (de) Verfahren zum Herstellen einer geologischen Bohrung in einem Boden

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20190315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200320

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1328364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007963

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 46184

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007963

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170906

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1328364

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230906

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028