EP3479175B1 - Mouvement d'horlogerie mecanique - Google Patents

Mouvement d'horlogerie mecanique Download PDF

Info

Publication number
EP3479175B1
EP3479175B1 EP17733911.6A EP17733911A EP3479175B1 EP 3479175 B1 EP3479175 B1 EP 3479175B1 EP 17733911 A EP17733911 A EP 17733911A EP 3479175 B1 EP3479175 B1 EP 3479175B1
Authority
EP
European Patent Office
Prior art keywords
striker
oscillator
preferably greater
energy
impulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17733911.6A
Other languages
German (de)
English (en)
Other versions
EP3479175A1 (fr
Inventor
Nicolas Dehon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Publication of EP3479175A1 publication Critical patent/EP3479175A1/fr
Application granted granted Critical
Publication of EP3479175B1 publication Critical patent/EP3479175B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/22Compensation of changes in the motive power of the mainspring
    • G04B1/225Compensation of changes in the motive power of the mainspring with the aid of an interposed power-accumulator (secondary spring) which is always tensioned
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/10Escapements with constant impulses for the regulating mechanism
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel

Definitions

  • the present invention relates to a mechanical clock movement.
  • a traditional mechanical watch movement comprises a source of energy, such as a barrel, a going train driven by the energy source, an escapement driven by the going train and an oscillator whose oscillations are maintained by the 'exhaust.
  • the oscillator (or regulating organ) is generally of the balance-spring type.
  • the escapement generally comprises an escape wheel (coaxial and integral wheel and pinion) and an anchor. The pinion of the escapement wheel meshes with the last wheel of the going train while the wheel of the escapement wheel cooperates with the lever, which communicates mechanical energy pulses to the oscillator.
  • Some movements also include, in the going train between the energy source and the escapement, a so-called “constant-force” device, that is to say a device comprising an intermediate spring periodically charged by the same amount by the source of energy and supplying its energy to the exhaust.
  • a constant-force device makes it possible to make the oscillations of the oscillator independent of the winding state of the energy source.
  • the efficiency of a mechanical clock movement is low. Indeed, the escapement transmits to the oscillator only a small part of the energy which it receives.
  • One of the causes of the observed energy losses is friction between the different parts.
  • the striker accompanies (remains in contact with) the oscillator over a pulse angle which is generally between 12° and 20°.
  • a pulse angle which is generally between 12° and 20°.
  • Such a chaotic transmission of energy between the striker and the oscillator is an additional obstacle to obtaining good efficiency.
  • the present invention aims to provide a clock movement with improved performance.
  • the striker transmits all its kinetic energy to the oscillator in a single shock and its speed becomes zero immediately after the shock, so that the accompanying phenomenon between the striker and the oscillator and the energy losses that it causes do not exist in the present invention.
  • the present invention proposes a clock movement according to independent claim 2.
  • the present invention also proposes a method of making a clock movement according to independent claim 9.
  • the present invention proposes a method for producing a clock movement according to independent claim 10.
  • a mechanical timepiece movement comprises an energy source 1, typically consisting of one or more barrels, a going train 2, an escapement 3 and an oscillator 4.
  • the energy source 1 and the train finishing 2 are conventional, so they will not be described.
  • Oscillator 4 is also of conventional type. It comprises, mounted on a balance shaft 6 of axis A, a balance-spring (not shown) and a double plateau.
  • the double chainring includes a large chainring 7, which carries a chainring peg 8, and a small chainring 9.
  • the escapement 3 is of the type described in the patent applications WO 99/64936 , WO 2009/118310 and CH 705674 . It thus comprises two escapement wheels (not shown), a bistable leaf spring 10, a winding rocker 11 and a striker or trigger rocker 12.
  • the two escapement mobiles each comprise a pinion which meshes with the last wheel of the going train 2 and an escapement wheel provided not with teeth but with winding cams each terminated by a locking abutment.
  • the two escape wheels cooperate respectively and alternately with escape pins 13 carried by the winding rocker 11.
  • the winding rocker 11 and the striker 12 pivot around the same axis B which corresponds to the midpoint of the leaf spring 10.
  • the axis B is for example the axis of a rod driven into the rocker winding 11, pivoting in the bearings of the movement frame and around which the striker 12 pivots.
  • the leaf spring 10 is integral with the striker 12 and with an outer frame (not shown) which surrounds the leaf spring 10, and consists of two elastic blades 10a, 10b each having one end joined to the striker 12 and another end joined to the external frame, fixed to the frame of the movement.
  • the leaf spring 10 has two convexities of opposite directions on either side of its midpoint and can pass from a first stable state to a second stable state by reversing the direction of each of the two convexities.
  • the leaf spring 10 is either prestressed so as to work in buckling or preformed so as to, in the rest state, already present two convexities as described in the international patent application WO 2017/032528 of the present plaintiff.
  • the outer frame is deformable to allow buckling of the leaf spring 10.
  • the outer frame is rigid.
  • the winding rocker 11 comprises two arms 14 carrying at their ends two pins 14a, 14b engaged in eyelets (not shown) of the two elastic blades 10a, 10b respectively.
  • An inverse configuration is of course possible where the pins 14a, 14b would be carried by the elastic blades 10a, 10b, respectively, to engage in eyelets of the winding rocker 11.
  • other modes of connection between the winding rocker 11 and the elastic blades 10a, 10b can be envisaged, for example two pins at the end of each arm 14 of the winding rocker 11 pinching the corresponding elastic blade.
  • the firing pin 12 comprises a body 15 surrounding the axis B and extended on one side by a fork 16-17 and on the other side by a shank 18.
  • the fork 16-17 performs the function of an anchor fork traditional, namely cooperating with the plate pin 8 to communicate mechanical energy pulses to the oscillator 4, and comprises for this purpose a first horn 16 and a second horn 17.
  • a stinger 19 secured to the striker 12 is capable of cooperate with the small plate 9 of the oscillator 4 to prevent the overturning of the striker 12 in the event of an impact.
  • the tail 18 is itself arranged to cooperate with first and second limit stops 20, 21 fixed relative to the frame of the movement, for example in one piece with the aforementioned outer frame, to limit the angular displacement of the striker 12.
  • the winding rocker 11 actuated by a winding cam of one of the escape wheels and acting symmetrically in the zone of the two convexities of the leaf spring 10, deforms the leaf spring 10 from a first from its stable states to a metastable state close to an unstable state corresponding to fourth mode buckling, to wind the leaf spring 10.
  • This winding phase ends when the winding rocker 11 is blocked by a Escape wheel locking abutment with which it cooperates, which maintains the leaf spring 10 in its metastable state and immobilizes the two escapement wheels, the going train 2 and the winding rocker 11.
  • the striker 12 located in the zone of the midpoint of the leaf spring 10 acts on the leaf spring 10 to cause it to exceed its unstable state and thus cause it to switch into its second stable state by releasing its energy.
  • the energy allowing striker 12 to deform leaf spring 10 beyond its unstable state from its metastable state is provided by oscillator 4, when chainring pin 8 strikes horn 16 of the fork.
  • This phase which requires only a small input of energy, can be compared to the release phase of a lever escapement.
  • the relaxation of the leaf spring 10, that is to say its passage from its unstable state to its second stable state abruptly changes the inclination of the midpoint zone, which causes the striker 12 to pivot, which then communicates an impulse to the plate pin 8 by its horn 17.
  • the figures 2 to 10 represent the different operating phases of the escapement and the oscillator.
  • the oscillator 4 is in the acceleration phase and traverses the descending sinister angle, the striker 12 is resting against the limiting abutment 20 and the leaf spring 10 is at the end of winding (metastable state).
  • the oscillator 4 is close to its maximum speed and begins to traverse the left angle of lift, the horn 16 of the firing pin 12 is struck by the plate pin 8 (release, by a single shock) and the leaf spring 10 is unlocked (between the metastable state and the unstable state).
  • the oscillator 4 is at its maximum speed and traverses the left angle of lift, the striker 12 strikes by its horn 17 the pin of the plate 8 to give it an impulse (by a single shock as will be explained later) then that the leaf spring 10 has just switched from the unstable state to the second stable state.
  • oscillator 4 decelerates and traverses the ascending left angle, the striker 12 bears against the limit stop 21 and the leaf spring 10 is at the start of winding (it leaves the second stable state).
  • the rotation of the oscillator 4 is reversed (maximum left elongation), the striker 12 is resting against the limiting abutment 21 and the leaf spring 10 is being wound (between the second stable state and the metastable state).
  • the oscillator 4 is close to its maximum speed and begins to travel through the dexter lift angle, the horn 17 of the firing pin 12 is struck by the plate pin 8 (release, by a single shock) and the leaf spring 10 is unlocked (between the metastable state and the unstable state).
  • the oscillator 4 is at its maximum speed and travels through the dexter lift angle, the striker 12 strikes by its horn 16 the plate pin 8 to give it an impulse (by a single shock as will be explained later) then that the leaf spring 10 has just switched from the unstable state to the first stable state.
  • the oscillator 4 decelerates and traverses the dexter ascending angle, the striker 12 bears against the limiting abutment 20 and the leaf spring 10 is at the start of winding (it leaves the first stable state).
  • escapement 3 finds itself in the phase illustrated in figure 2 and the sequence of figures 2 to 10 repeating itself.
  • the angle of impulse ie the angle traveled by the striker between the start of the impulse and the end of the impulse, is between 12° and 20°.
  • this pulse angle is very small, typically less than 1.5° or even 1°.
  • the various parameters of the movement in particular the quantity of mechanical energy stored in the leaf spring 10 at each of its windings, the geometry of the striker 12 and the moments of inertia of the striker 12 and of the oscillator 4, are chosen in such a way that the striker 12 transfers all its kinetic energy to the oscillator 4 in a single shock ( figure 4 and 8 ), the firing pin 12 having zero speed just after the impact, the residual energy in the leaf spring 10 then bringing the striker 12 to rest against one of the limiting stops 20, 21 ( figure 5 and 9 ).
  • the speed of the striker 12 will be zero just after the impact. , which implies that all of its kinetic energy will have been communicated to oscillator 4 and that striker 12 will not accompany oscillator 4. This results in a significant improvement in the efficiency of the escapement and in the chronometry of the movement.
  • the spacing E of the horns 16, 17 is greater than 1.5 times, preferably 1.6 times, preferably 1.7 times, preferably 1.8 times, preferably 1.9 times, more preferably 2 times, the diameter D of the plate pin 8.
  • diameter of the chainring peg we mean its diameter strictly speaking, in particular when the chainring peg is of semi-circular shape. as shown, or more generally its largest dimension perpendicular to the plane which contains the axis of rotation A of the oscillator 4 and which constitutes a plane of symmetry for the platter pin 8.
  • the platter pin 8 may have other shapes than that shown, for example the shape of a finger or part of a finger extending radially from an annular part mounted on the balance shaft 6.
  • the wide spacing E of the lugs 16, 17 promotes the exit of the pin 8 from the fork 16-17 after the impulse by allowing it, given the zero speed of the striker 12, to leave said fork without touching the other horn than that having communicated the impulse to it. Thanks to this feature too, the efficiency of the escapement and the chronometry of the movement are improved.
  • the impulse communicated by the striker 12 to the oscillator 4 occurs while the plate pin 8 is on the center line, that is to say while the plate pin 8 is crossed symmetrically by the plane containing the axis of rotation A of the oscillator 4 and the axis of rotation B of the striker 12.
  • This position of the plate pin 8 corresponds to the equilibrium position of the oscillator 4.
  • Communicate the impulse on the line of centers makes it possible not to affect the isochronism of the oscillator.
  • a pulse after the line of the centers gives a delay to the movement but, thanks to the unique shock that the pulse produces in the present invention, this delay will remain constant so that it can be corrected by a simple adjustment of the inertia. of the balance wheel and/or the active length of the hairspring.
  • the striker 12 (or at least the fork 16-17) and the pin 8 are each made of one of the following materials: steel, preferably tempered; aluminum oxide, preferably ruby, more preferably ruby obtained by the Verneuil process; silicon, preferably monocrystalline, preferably also coated with silicon oxide; metallic glass. All combinations of these materials are possible to form the couple of materials of the striker 12 and the pin 8.
  • the firing pin 12 illustrated in figures 2 to 11 is balanced, in other words its geometry is chosen so that its center of gravity is located on its axis of rotation B. Such a striker shape makes the latter insensitive to the linear shocks received by the clockwork movement.
  • the figure 12 shows a variant of the firing pin used in the present invention. According to this variant, the striker, designated by 12 ', is not balanced but on the contrary has an unbalance which confers on it in particular two arms 22, 23 which extend the lugs 16, 17. These two arms 22, 23, located on the 'other side of the axis of rotation B relative to the tail 18, replace said tail. They thus cooperate respectively with limiting stops 20', 21' to limit the angular movement of the striker 12'.
  • the unbalance of the striker 12' is chosen so that during the shocks (impulses) communicated by the striker 12' to the plate pin 8 the reaction forces at the level of the axis of rotation B are minimal, thus making it possible to optimize the transmission of energy between striker 12' and oscillator 4 and therefore the efficiency of the escapement.
  • the present invention is not limited to a rotary striker.
  • the striker can in fact be mobile in translation rather than in rotation, like the 12" striker illustrated in figure 13 .
  • Such a movable striker in translation can be actuated for example by a movable frame of the type described in the patent application WO 2013/144236 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Springs (AREA)

Description

  • La présente invention concerne un mouvement d'horlogerie mécanique.
  • Un mouvement d'horlogerie mécanique traditionnel comprend une source d'énergie, telle qu'un barillet, un rouage de finissage entraîné par la source d'énergie, un échappement entraîné par le rouage de finissage et un oscillateur dont les oscillations sont entretenues par l'échappement. L'oscillateur (ou organe régulateur) est généralement de type balancier-spiral. L'échappement comprend généralement un mobile d'échappement (roue et pignon coaxiaux et solidaires) et une ancre. Le pignon du mobile d'échappement engrène avec la dernière roue du rouage de finissage tandis que la roue du mobile d'échappement coopère avec l'ancre, laquelle communique des impulsions d'énergie mécanique à l'oscillateur.
  • Certains mouvements comprennent aussi, dans le rouage de finissage entre la source d'énergie et l'échappement, un dispositif dit « à force constante », c'est-à-dire un dispositif comprenant un ressort intermédiaire armé périodiquement de la même quantité par la source d'énergie et fournissant son énergie à l'échappement. Un tel dispositif à force constante permet de rendre les oscillations de l'oscillateur indépendantes de l'état d'armage de la source d'énergie.
  • On connaît également par les demandes de brevet WO 99/64936 , WO 2009/118310 et CH 705674 un échappement comprenant une lame bistable armée par une bascule d'armage actionnée alternativement par deux mobiles d'échappement. Une bascule de détente solidaire de la zone du point milieu de la lame bistable communique des impulsions d'énergie mécanique à l'oscillateur lors des changements d'état de la lame bistable. La lame bistable est un dispositif « à force constante » qui fournit périodiquement la même quantité d'énergie à l'oscillateur via la bascule de détente. Dans la présente invention, l'organe qui communique les impulsions d'énergie mécanique à l'oscillateur, qu'il soit sous la forme d'une bascule de détente, d'une ancre ou autre, est appelé « percuteur ».
  • Le rendement d'un mouvement d'horlogerie mécanique est faible. En effet, l'échappement ne transmet à l'oscillateur qu'une petite partie de l'énergie qu'il reçoit. L'une des causes des pertes énergétiques constatées sont les frottements entre les différentes pièces. En particulier, à chaque impulsion communiquée par le percuteur à l'oscillateur, le percuteur accompagne (reste en contact avec) l'oscillateur sur un angle d'impulsion qui est généralement compris entre 12° et 20°. En pratique, on peut même observer une succession de petits chocs pendant l'impulsion, surtout lorsque la fréquence de l'oscillateur est élevée. Une telle transmission chaotique de l'énergie entre le percuteur et l'oscillateur est un obstacle supplémentaire à l'obtention d'un bon rendement.
  • La présente invention vise à proposer un mouvement d'horlogerie à rendement amélioré.
  • A cette fin, il est prévu un mouvement d'horlogerie selon la revendication indépendante 1.
  • Grâce à la relation entre les vitesses, le percuteur transmet toute son énergie cinétique à l'oscillateur en un seul choc et sa vitesse devient nulle immédiatement après le choc, de sorte que le phénomène d'accompagnement entre le percuteur et l'oscillateur et les pertes énergétiques qu'il occasionne n'existent pas dans la présente invention.
  • Selon un autre mode de réalisation, la présente invention propose un mouvement d'horlogerie selon la revendication indépendante 2.
  • La présente invention propose également un procédé de réalisation d'un mouvement d'horlogerie selon la revendication indépendante 9.
  • Enfin, selon un autre mode de réalisation, la présente invention propose un procédé de réalisation d'un mouvement d'horlogerie selon la revendication indépendante 10.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :
    • la figure 1 est un bloc-diagramme d'un mouvement d'horlogerie,
    • les figures 2 à 10 montrent en vue de dessus différentes phases de fonctionnement d'un échappement à force constante et d'un oscillateur utilisés dans la présente invention ;
    • la figure 11 montre en vue de dessus un percuteur d'échappement et un double plateau d'oscillateur utilisés dans la présente invention ;
    • la figure 12 montre en vue de dessus une variante du percuteur utilisé dans la présente invention ;
    • la figure 13 montre en vue de dessus une autre variante du percuteur utilisé dans la présente invention.
  • En référence aux figures 1 et 2, un mouvement d'horlogerie mécanique selon l'invention comprend une source d'énergie 1, constituée typiquement par un ou plusieurs barillets, un rouage de finissage 2, un échappement 3 et un oscillateur 4. La source d'énergie 1 et le rouage de finissage 2 sont classiques, ils ne seront donc pas décrits. L'oscillateur 4 est lui aussi de type classique. Il comprend, montés sur un arbre de balancier 6 d'axe A, un balancier-spiral (non représenté) et un double plateau. Le double plateau comprend un grand plateau 7, qui porte une cheville de plateau 8, et un petit plateau 9.
  • L'échappement 3 est du type décrit dans les demandes de brevet WO 99/64936 , WO 2009/118310 et CH 705674 . Il comprend ainsi deux mobiles d'échappement (non représentés), un ressort-lame bistable 10, une bascule d'armage 11 et un percuteur ou bascule de détente 12.
  • Les deux mobiles d'échappement comprennent chacun un pignon qui engrène avec la dernière roue du rouage de finissage 2 et une roue d'échappement munie non pas de dents mais de cames d'armage terminées chacune par une butée de verrouillage. Les deux roues d'échappement coopèrent respectivement et alternativement avec des chevilles d'échappement 13 portées par la bascule d'armage 11.
  • La bascule d'armage 11 et le percuteur 12 pivotent autour d'un même axe B qui correspond au point milieu du ressort-lame 10. En pratique, l'axe B est par exemple l'axe d'une tige chassée dans la bascule d'armage 11, pivotant dans des paliers du bâti du mouvement et autour de laquelle pivote le percuteur 12.
  • De préférence, le ressort-lame 10 est monobloc avec le percuteur 12 et avec un cadre extérieur (non représenté) qui entoure le ressort-lame 10, et est constitué de deux lames élastiques 10a, 10b ayant chacune une extrémité jointe au percuteur 12 et une autre extrémité jointe au cadre extérieur, fixé au bâti du mouvement. Le ressort-lame 10 présente deux convexités de sens opposés de part et d'autre de son point milieu et peut passer d'un premier état stable à un deuxième état stable en inversant le sens de chacune des deux convexités. A cet effet, le ressort-lame 10 est soit précontraint de manière à travailler en flambage soit préformé pour, à l'état de repos, présenter déjà deux convexités comme décrit dans la demande de brevet internationale WO 2017/032528 de la présente demanderesse. Dans le premier cas, le cadre extérieur est déformable pour permettre le flambage du ressort-lame 10. Dans le deuxième cas, le cadre extérieur est rigide.
  • La bascule d'armage 11 comprend deux bras 14 portant à leurs extrémités deux goupilles 14a, 14b engagées dans des œillets (non représentés) des deux lames élastiques 10a, 10b respectivement. Une configuration inverse est bien entendu possible où les goupilles 14a, 14b seraient portées par les lames élastiques 10a, 10b, respectivement, pour s'engager dans des œillets de la bascule d'armage 11. En outre, d'autres modes de liaison entre la bascule d'armage 11 et les lames élastiques 10a, 10b sont envisageables, par exemple deux goupilles à l'extrémité de chaque bras 14 de la bascule d'armage 11 pinçant la lame élastique correspondante.
  • Le percuteur 12 comprend un corps 15 entourant l'axe B et prolongé d'un côté par une fourchette 16-17 et de l'autre côté par une queue 18. La fourchette 16-17 remplit la fonction d'une fourchette d'ancre traditionnelle, à savoir coopérer avec la cheville de plateau 8 pour communiquer des impulsions d'énergie mécanique à l'oscillateur 4, et comprend à cet effet une première corne 16 et une deuxième corne 17. Un dard 19 solidaire du percuteur 12 est susceptible de coopérer avec le petit plateau 9 de l'oscillateur 4 pour empêcher le renversement du percuteur 12 en cas de choc. La queue 18 est, elle, agencée pour coopérer avec des première et deuxième butées de limitation 20, 21 fixes par rapport au bâti du mouvement, par exemple monobloc avec le cadre extérieur précité, pour limiter le déplacement angulaire du percuteur 12.
  • En fonctionnement, la bascule d'armage 11, actionnée par une came d'armage de l'une des roues d'échappement et agissant symétriquement dans la zone des deux convexités du ressort-lame 10, déforme le ressort-lame 10 depuis un premier de ses états stables jusqu'à un état métastable proche d'un état instable correspondant à un flambage de quatrième mode, pour armer le ressort-lame 10. Cette phase d'armage se termine lorsque la bascule d'armage 11 est bloquée par une butée de verrouillage de la roue d'échappement avec laquelle elle coopère, ce qui maintient le ressort-lame 10 dans son état métastable et immobilise les deux mobiles d'échappement, le rouage de finissage 2 et la bascule d'armage 11. Puis le percuteur 12 situé dans la zone du point milieu du ressort-lame 10 agit sur le ressort-lame 10 pour lui faire dépasser son état instable et le faire ainsi basculer dans son deuxième état stable en libérant son énergie. L'énergie permettant au percuteur 12 de déformer le ressort-lame 10 au-delà de son état instable depuis son état métastable est fournie par l'oscillateur 4, lorsque la cheville de plateau 8 percute la corne 16 de la fourchette. Cette phase, qui nécessite seulement un petit apport d'énergie, peut être comparée à la phase de dégagement d'un échappement à ancre. La détente du ressort-lame 10, c'est-à-dire son passage de son état instable à son deuxième état stable, change brusquement l'inclinaison de la zone du point milieu, ce qui fait pivoter le percuteur 12, lequel communique alors une impulsion à la cheville de plateau 8 par sa corne 17. La déformation du ressort-lame 10 de son état métastable à son deuxième état stable sous l'action de la cheville de plateau 8 puis de sa détente cause une rotation de la bascule d'armage 11 qui déverrouille les roues d'échappement et amène la bascule d'armage 11 au contact de l'autre roue d'échappement pour commencer un cycle symétrique du précédent, après l'impulsion donnée à la cheville de plateau 8.
  • Les figures 2 à 10 représentent les différentes phases de fonctionnement de l'échappement et de l'oscillateur. A la figure 2, l'oscillateur 4 est en phase d'accélération et parcourt l'angle descendant sénestre, le percuteur 12 est en appui contre la butée de limitation 20 et le ressort-lame 10 est en fin d'armage (état métastable). A la figure 3, l'oscillateur 4 est proche de sa vitesse maximale et commence à parcourir l'angle de levée sénestre, la corne 16 du percuteur 12 est percutée par la cheville de plateau 8 (dégagement, par un seul choc) et le ressort-lame 10 est déverrouillé (entre l'état métastable et l'état instable). A la figure 4, l'oscillateur 4 est à sa vitesse maximale et parcourt l'angle de levée sénestre, le percuteur 12 percute par sa corne 17 la cheville de plateau 8 pour lui communiquer une impulsion (par un seul choc comme cela sera expliqué plus loin) alors que le ressort-lame 10 vient de basculer de l'état instable au deuxième état stable. A la figure 5, l'oscillateur 4 décélère et parcourt l'angle ascendant sénestre, le percuteur 12 est en appui contre la butée de limitation 21 et le ressort-lame 10 est en début d'armage (il quitte le deuxième état stable). A la figure 6, la rotation de l'oscillateur 4 s'inverse (élongation maximale sénestre), le percuteur 12 est en appui contre la butée de limitation 21 et le ressort-lame 10 est en cours d'armage (entre le deuxième état stable et l'état métastable). A la figure 7, l'oscillateur 4 est proche de sa vitesse maximale et commence à parcourir l'angle de levée dextre, la corne 17 du percuteur 12 est percutée par la cheville de plateau 8 (dégagement, par un seul choc) et le ressort-lame 10 est déverrouillé (entre l'état métastable et l'état instable). A la figure 8, l'oscillateur 4 est à sa vitesse maximale et parcourt l'angle de levée dextre, le percuteur 12 percute par sa corne 16 la cheville de plateau 8 pour lui communiquer une impulsion (par un seul choc comme cela sera expliqué plus loin) alors que le ressort-lame 10 vient de basculer de l'état instable au premier état stable. A la figure 9, l'oscillateur 4 décélère et parcourt l'angle ascendant dextre, le percuteur 12 est en appui contre la butée de limitation 20 et le ressort-lame 10 est en début d'armage (il quitte le premier état stable). Enfin, à la figure 10 la rotation de l'oscillateur 4 s'inverse (élongation maximale dextre), le percuteur 12 est en appui contre la butée de limitation 20 et le ressort-lame 10 est en cours d'armage (entre le premier état stable et l'état métastable). Puis, l'échappement 3 se retrouve dans la phase illustrée à la figure 2 et la séquence des figures 2 à 10 se répète.
  • Dans un échappement traditionnel, l'angle d'impulsion, c'est-à-dire l'angle parcouru par le percuteur entre le début de l'impulsion et la fin de l'impulsion, est compris entre 12° et 20°. Dans la présente invention, en revanche, cet angle d'impulsion est très petit, typiquement inférieur à 1,5° voire à 1°. En effet, lors de la conception du mouvement selon l'invention, les différents paramètres du mouvement, en particulier la quantité d'énergie mécanique emmagasinée dans le ressort-lame 10 à chacun de ses armages, la géométrie du percuteur 12 et les moments d'inertie du percuteur 12 et de l'oscillateur 4, sont choisis de telle manière que le percuteur 12 transfère toute son énergie cinétique à l'oscillateur 4 en un seul choc (figures 4 et 8), le percuteur 12 ayant une vitesse nulle juste après le choc, l'énergie résiduelle dans le ressort-lame 10 amenant ensuite le percuteur 12 en appui contre l'une des butées de limitation 20, 21 (figures 5 et 9).
  • Selon la théorie des chocs élastiques, l'équation de conservation du moment cinétique et l'équation de conservation de l'énergie cinétique peuvent s'écrire de la manière suivante :
    • pour la conservation du moment cinétique : I 1 ω 1 i I 1 ω 1 f d 1 = I 2 ω 2 f I 2 ω 2 i d 2
      Figure imgb0001
    • pour la conservation de l'énergie cinétique : I 1 ω 1 i 2 2 I 1 ω 1 f 2 2 = I 2 ω 2 f 2 2 I 2 ω 2 i 2 2
      Figure imgb0002
    • I1 est le moment d'inertie du percuteur 12 (incluant tous les éléments qui tournent avec lui, comme le dard 19) par rapport à son axe de rotation B,
    • I2 est le moment d'inertie de l'oscillateur 4 (incluant tous les éléments qui tournent avec lui, comme l'arbre de balancier 6) par rapport à son axe de rotation A,
    • ω1i est la vitesse angulaire du percuteur 12 juste avant l'impulsion qu'il donne à l'oscillateur 4,
    • ω1f est la vitesse angulaire du percuteur 12 juste après ladite impulsion,
    • ω2i est la vitesse angulaire de l'oscillateur 4 juste avant ladite impulsion,
    • ω2f est la vitesse angulaire de l'oscillateur 4 juste après ladite impulsion,
    • d1 est le bras de levier du percuteur 12 (cf. figure 11), c'est-à-dire la distance entre l'axe de rotation B et la droite d'action des forces d'action-réaction F2 et F1 exercées par le percuteur 12 et la cheville de plateau 8 l'un sur l'autre au moment du choc (impulsion), et
    • d2 est le bras de levier de l'oscillateur 4 (cf. figure 11), c'est-à-dire la distance entre l'axe de rotation A et la droite d'action des forces d'action-réaction F2 et F1 exercées par le percuteur 12 et la cheville de plateau 8 l'un sur l'autre au moment du choc (impulsion).
  • Le système d'équations (1)-(2) peut être réécrit de la manière suivante : ω 1 i = I 1 d 2 2 I 2 d 1 2 I 1 d 2 2 + I 2 d 1 2 ω 1 f + 2 I 2 d 1 d 2 I 1 d 2 2 + I 2 d 1 2 ω 2 f
    Figure imgb0003
    ω 2 i = 2 I 2 d 1 d 2 I 1 d 2 2 + I 2 d 1 2 ω 1 f + I 2 d 1 2 I 1 d 2 2 I 1 d 2 2 + I 2 d 1 2 ω 2 f
    Figure imgb0004
  • En imposant une énergie cinétique nulle, donc une vitesse angulaire nulle, du percuteur 12 après l'impulsion (ω1f = 0), la solution de ce système d'équation est la suivante : ω 1 i = 2 I 2 d 1 d 2 I 2 d 1 2 I 1 d 2 2 ω 2 i
    Figure imgb0005
  • En pratique, le moment d'inertie I1 du percuteur 12 sera le plus souvent très inférieur au moment d'inertie I2 de l'oscillateur 4, le rapport I2/I1 étant typiquement supérieur à 10, voire à 50, voire à 100, voire à 500, voire encore à 1000. La solution du système d'équations (1)-(2) pourra donc être exprimée comme suit : ω 1 i 2 d 2 d 1 ω 2 i
    Figure imgb0006
  • Ainsi, en faisant en sorte qu'au moment du choc la vitesse angulaire du percuteur 12 soit environ égale à 2·d2/d1 fois la vitesse angulaire de l'oscillateur 4, la vitesse du percuteur 12 sera nulle juste après le choc, ce qui implique que toute son énergie cinétique aura été communiquée à l'oscillateur 4 et que le percuteur 12 n'accompagnera pas l'oscillateur 4. Il en découle une amélioration sensible du rendement de l'échappement et de la chronométrie du mouvement.
  • Pour obtenir la relation (5) ou (6) ci-dessus, il est possible de jouer sur le rapport des bras de levier d2/d1 et/ou sur les vitesses ω1i et ω2i. A rapport d2/d1 constant, le percuteur 12 doit être accéléré par rapport aux percuteurs de l'état de la technique afin d'atteindre la vitesse de 2·(d2/d1)·ω2i au moment de l'impulsion. Une telle accélération peut être obtenue par exemple :
    • en augmentant la quantité d'énergie mécanique emmagasinée par le ressort-lame 10 à chaque armage (par exemple en augmentant le flambage ou l'épaisseur du ressort-lame 10),
    • et/ou en augmentant l'écartement des cornes 16, 17 du percuteur 12,
    • et/ou en diminuant le moment d'inertie I1 du percuteur 12.
  • Tous ces paramètres peuvent être ajustés lors de la conception du mouvement à l'aide d'un logiciel de simulation.
  • Ainsi, par exemple, l'écartement E des cornes 16, 17 (mesuré entre les points respectifs des cornes 16, 17 qui percutent la cheville de plateau 8 lors des impulsions, cf. figure 11) est supérieur à 1,5 fois, de préférence à 1,6 fois, de préférence à 1,7 fois, de préférence à 1,8 fois, de préférence à 1,9 fois, de préférence encore à 2 fois, le diamètre D de la cheville de plateau 8. Un tel écartement est ainsi supérieur à l'écartement de 1,06 (=0,35/0,33) fois le diamètre de la cheville que l'on observe classiquement dans les échappements.
  • Par « diamètre de la cheville de plateau », on entend son diamètre à proprement parler, en particulier lorsque la cheville de plateau est de forme semi-circulaire comme représenté, ou plus généralement sa plus grande dimension perpendiculairement au plan qui contient l'axe de rotation A de l'oscillateur 4 et qui constitue un plan de symétrie pour la cheville de plateau 8. La cheville de plateau 8 peut avoir d'autres formes que celle représentée, par exemple la forme d'un doigt ou d'une partie d'un doigt s'étendant radialement depuis une partie annulaire montée sur l'arbre de balancier 6.
  • Outre l'accélération du percuteur 12 qu'il permet, le grand écartement E des cornes 16, 17 selon l'invention favorise la sortie de la cheville 8 de la fourchette 16-17 après l'impulsion en lui permettant, compte tenu de la vitesse nulle du percuteur 12, de sortir de ladite fourchette sans toucher l'autre corne que celle lui ayant communiqué l'impulsion. Grâce à cette caractéristique aussi, le rendement de l'échappement et la chronométrie du mouvement sont améliorés.
  • Selon une autre caractéristique avantageuse de l'invention, visible sur les figures 4, 8 et 11, l'impulsion communiquée par le percuteur 12 à l'oscillateur 4 se produit alors que la cheville de plateau 8 est sur la ligne des centres, c'est-à-dire alors que la cheville de plateau 8 est traversée symétriquement par le plan contenant l'axe de rotation A de l'oscillateur 4 et l'axe de rotation B du percuteur 12. Cette position de la cheville de plateau 8 correspond à la position d'équilibre de l'oscillateur 4. Communiquer l'impulsion sur la ligne des centres permet de ne pas affecter l'isochronisme de l'oscillateur.
  • On peut néanmoins, en variante, choisir d'effectuer l'impulsion alors que la cheville de plateau 8 est située après la ligne des centres, ceci afin de favoriser la sortie de la cheville 8 de la fourchette 16-17 après l'impulsion en lui permettant de sortir de ladite fourchette sans toucher l'autre corne que celle lui ayant communiqué l'impulsion. Une impulsion après la ligne des centres donne du retard au mouvement mais, grâce à l'unique choc que produit l'impulsion dans la présente invention, ce retard restera constant de sorte qu'on peut le corriger par un simple réglage de l'inertie du balancier et/ou de la longueur active du spiral.
  • Les couples de matériaux couramment utilisés dans les échappements pour le percuteur et la cheville de plateau, tels qu'acier-rubis, silicium-rubis et silicium-silicium, ont des coefficients de restitution ε d'environ 1. Ces matériaux permettent donc l'obtention de chocs élastiques, c'est-à-dire de chocs répondant aux équations (1) et (2) ci-dessus. On constate néanmoins dans la présente invention que la relation (5) constitue un optimum en termes de rendement de l'échappement pour un coefficient de restitution ε donné, même si ce dernier est inférieur à 1.
  • Le percuteur 12 (ou au moins la fourchette 16-17) et la cheville 8 sont chacun faits dans l'un des matériaux suivants : acier, de préférence trempé ; oxyde d'aluminium, de préférence rubis, de préférence encore rubis obtenu par le procédé Verneuil ; silicium, de préférence monocristallin, de préférence aussi recouvert d'oxyde de silicium ; verre métallique. Toutes les combinaisons de ces matériaux sont possibles pour former le couple de matériaux du percuteur 12 et de la cheville 8.
  • Le percuteur 12 illustré aux figures 2 à 11 est équilibré, en d'autres termes sa géométrie est choisie pour que son centre de gravité soit situé sur son axe de rotation B. Une telle forme de percuteur rend ce dernier insensible aux chocs linéaires reçus par le mouvement d'horlogerie. La figure 12 montre une variante du percuteur utilisé dans la présente invention. Selon cette variante, le percuteur, désigné par 12', n'est pas équilibré mais présente au contraire un balourd que lui confèrent notamment deux bras 22, 23 qui prolongent les cornes 16, 17. Ces deux bras 22, 23, situés de l'autre côté de l'axe de rotation B par rapport à la queue 18, remplacent ladite queue. Ils coopèrent ainsi respectivement avec des butées de limitation 20', 21' pour limiter le débattement angulaire du percuteur 12'.
  • Le balourd du percuteur 12' est choisi pour que lors des chocs (impulsions) communiqués par le percuteur 12' à la cheville de plateau 8 les forces de réaction au niveau de l'axe de rotation B soient minimales, permettant ainsi d'optimiser la transmission d'énergie entre le percuteur 12' et l'oscillateur 4 et donc le rendement de l'échappement.
  • Plus précisément, le balourd du percuteur 12' est choisi pour que la relation suivante soit satisfaite : d 1 = I 1 m 1 L G
    Figure imgb0007
    • m1 est la masse du percuteur 12',
    • d1 est le bras de levier du percuteur 12' c'est-à-dire la distance entre l'axe de rotation B et la droite d'action des forces d'action-réaction F2 et F1 exercées par le percuteur 12' et la cheville de plateau 8 l'un sur l'autre au moment du choc (impulsion),
    • I1 est le moment d'inertie du percuteur 12' par rapport à son axe de rotation B, et
    • LG est la distance entre l'axe de rotation B du percuteur 12' et la droite parallèle à la droite d'action des forces F2, F1 et passant par le centre de gravité G du percuteur 12'.
    En choisissant le balourd du percuteur 12' pour que la relation (7) ci-dessus soit satisfaite, la composante parallèle aux forces F2, F1 de la force de réaction exercée au niveau de l'axe de rotation B lors d'une impulsion est nulle.
  • La présente invention a été décrite ci-dessus à titre d'exemple uniquement. Il va de soi que de nombreuses modifications pourraient être faites sans sortir du cadre de l'invention revendiquée. Par exemple :
    • un autre type de dispositif à force constante qu'un ressort-lame bistable pourrait être utilisé ;
    • les cornes 16, 17 pourraient faire partie de l'oscillateur 4 et la cheville de plateau 8 pourrait faire partie du percuteur 12 ;
    • au lieu d'être monté sur un axe physique 6, l'oscillateur 4 pourrait être du type à pivot flexible ;
    • au lieu d'être monté sur un axe physique, le percuteur 12 pourrait lui aussi être du type à pivot flexible.
  • De plus, la présente invention n'est pas limitée à un percuteur rotatif. Le percuteur peut en effet être mobile en translation plutôt qu'en rotation, comme le percuteur 12" illustré à la figure 13. Un tel percuteur mobile en translation peut être actionné par exemple par un cadre mobile du type décrit dans la demande de brevet WO 2013/144236 .
  • Dans le cas d'un percuteur mobile en translation, le système d'équation (1)-(2) est remplacé par les deux équations suivantes : m 1 v 1 i m 1 v 1 f = I 2 ω 2 f I 2 ω 2 i d 2
    Figure imgb0008
    m 1 v 1 i 2 2 m 1 v 1 f 2 2 = I 2 ω 2 f 2 2 I 2 ω 2 i 2 2
    Figure imgb0009
    • m1 est la masse du percuteur 12" (incluant tous les éléments qui se déplacent avec lui, comme le dard 19),
    • I2 est le moment d'inertie de l'oscillateur 4 (incluant tous les éléments qui tournent avec lui, comme l'arbre de balancier 6) par rapport à son axe de rotation A,
    • v1i est la vitesse linéaire du percuteur 12" juste avant l'impulsion qu'il donne à l'oscillateur 4,
    • v1f est la vitesse linéaire du percuteur 12" juste après ladite impulsion,
    • ω2i est la vitesse angulaire de l'oscillateur 4 juste avant ladite impulsion,
    • ω2f est la vitesse angulaire de l'oscillateur 4 juste après ladite impulsion, et
    • d2 est le bras de levier de l'oscillateur 4, mesuré comme indiqué précédemment.
  • Ce système d'équations peut être réécrit de la manière suivante : v 1 i = m 1 d 2 2 I 2 m 1 d 2 2 + I 2 v 1 f + 2 I 2 d 2 m 1 d 2 2 + I 2 ω 2 f
    Figure imgb0010
    ω 2 i = 2 m 1 d 2 m 1 d 2 2 + I 2 v 1 f + I 2 m 1 d 2 2 m 1 d 2 2 + I 2 ω 2 f
    Figure imgb0011
  • En imposant une énergie cinétique nulle, donc une vitesse linéaire nulle, du percuteur 12" après l'impulsion (vif = 0), la solution de ce système d'équation est la suivante : v 1 i = 2 I 2 d 2 I 2 m 1 d 2 2 ω 2 i
    Figure imgb0012
  • En pratique, le moment d'inertie orbital m1.d2 2 du percuteur 12" sera le plus souvent très inférieur au moment d'inertie I2 de l'oscillateur 4, le rapport I2/(m1·d2 2) étant typiquement supérieur à 10, voire à 50, voire à 100, voire à 500, voire encore à 1000. La solution du système d'équations (1')-(2') pourra donc être exprimée comme suit : v 1 i 2 d 2 ω 2 i
    Figure imgb0013

Claims (16)

  1. Mouvement d'horlogerie comprenant un oscillateur (4) rotatif autour d'un premier axe (A), un percuteur (12) rotatif autour d'un deuxième axe (B) pour communiquer des impulsions d'énergie mécanique à l'oscillateur (4), une source d'énergie (1) et un dispositif de transmission (1-3) reliant la source d'énergie (1) au percuteur (12), le dispositif de transmission (1-3) comprenant un dispositif à force constante (10) pour emmagasiner périodiquement une quantité d'énergie à fournir au percuteur (12), le dispositif à force constante (10) comprenant un organe élastique bistable, le percuteur (12) ou l'oscillateur (4) comprenant une fourchette (16, 17) agencée pour coopérer avec une cheville (8) de l'oscillateur (4) ou du percuteur (12) respectivement, la fourchette comprenant des première et deuxième cornes (16, 17), la fourchette (16-17) et la cheville (8) étant chacune faites dans l'un des matériaux suivants : acier, oxyde d'aluminium, silicium, verre métallique, caractérisé en ce que ladite quantité d'énergie, la géométrie du percuteur (12) et les moments d'inertie du percuteur (12) et de l'oscillateur (4) sont choisis pour qu'à chaque impulsion communiquée à l'oscillateur (4) par le percuteur (12) la relation suivante soit sensiblement satisfaite : ω 1 i = 2 I 2 d 1 d 2 I 2 d 1 2 I 1 d 2 2 ω 2 i
    Figure imgb0014
    où I1 est le moment d'inertie du percuteur (12) par rapport au deuxième axe (B), I2 est le moment d'inertie de l'oscillateur (4) par rapport au premier axe (A), ω1i est la vitesse angulaire du percuteur (12) juste avant l'impulsion qu'il donne à l'oscillateur (4), ω2i est la vitesse angulaire de l'oscillateur (4) juste avant ladite impulsion, d1 est le bras de levier du percuteur (12) et d2 est le bras de levier de l'oscillateur (4), et en ce que l'écartement (E) des première et deuxième cornes (16, 17), mesuré entre les points respectifs des première et deuxième cornes (16, 17) qui percutent ou sont percutés par la cheville (8) lors desdites impulsions, est supérieur à 1,5 fois, de préférence supérieur à 1,6 fois, de préférence supérieur à 1,7 fois, de préférence supérieur à 1,8 fois, de préférence supérieur à 1,9 fois, de préférence encore supérieur à 2 fois, le diamètre (D) de la cheville (8).
  2. Mouvement d'horlogerie comprenant un oscillateur (4) rotatif autour d'un axe (A), un percuteur (12") à déplacement linéaire pour communiquer des impulsions d'énergie mécanique à l'oscillateur (4), une source d'énergie (1) et un dispositif de transmission (1-3) reliant la source d'énergie (1) au percuteur (12"), le dispositif de transmission (1-3) comprenant un dispositif à force constante pour emmagasiner périodiquement une quantité d'énergie à fournir au percuteur (12"), le dispositif à force constante (10) comprenant un organe élastique bistable, le percuteur (12") ou l'oscillateur (4) comprenant une fourchette (16, 17) agencée pour coopérer avec une cheville (8) de l'oscillateur (4) ou du percuteur (12") respectivement, la fourchette comprenant des première et deuxième cornes (16, 17), la fourchette (16-17) et la cheville (8) étant chacune faites dans l'un des matériaux suivants : acier, oxyde d'aluminium, silicium, verre métallique, caractérisé en ce que ladite quantité d'énergie, la géométrie et la masse du percuteur (12") et le moment d'inertie de l'oscillateur (4) sont choisis pour qu'à chaque impulsion communiquée à l'oscillateur (4) par le percuteur (12") la relation suivante soit sensiblement satisfaite : v 1 i = 2 I 2 d 2 I 2 m 1 d 2 2 ω 2 i
    Figure imgb0015
    où m1 est la masse du percuteur (12"), I2 est le moment d'inertie de l'oscillateur (4) par rapport audit axe (A), v1i est la vitesse linéaire du percuteur (12") juste avant l'impulsion qu'il donne à l'oscillateur (4), ω2i est la vitesse angulaire de l'oscillateur (4) juste avant ladite impulsion et d2 est le bras de levier de l'oscillateur (4), et en ce que l'écartement (E) des première et deuxième cornes (16, 17), mesuré entre les points respectifs des première et deuxième cornes (16, 17) qui percutent ou sont percutés par la cheville (8) lors desdites impulsions, est supérieur à 1,5 fois, de préférence supérieur à 1,6 fois, de préférence supérieur à 1,7 fois, de préférence supérieur à 1,8 fois, de préférence supérieur à 1,9 fois, de préférence encore supérieur à 2 fois, le diamètre (D) de la cheville (8).
  3. Mouvement d'horlogerie selon la revendication 1, caractérisé en ce que le rapport I2/I1 est supérieur à 10, de préférence supérieur à 50, de préférence supérieur à 100, de préférence supérieur à 500, de préférence encore supérieur à 1000.
  4. Mouvement d'horlogerie selon la revendication 2, caractérisé en ce que le rapport I2/(m1·d2 2) est supérieur à 10, de préférence supérieur à 50, de préférence supérieur à 100, de préférence supérieur à 500, de préférence encore supérieur à 1000.
  5. Mouvement d'horlogerie selon la revendication 1 ou 3, caractérisé en ce que le percuteur (12') présente un balourd choisi pour que la relation suivante soit sensiblement satisfaite : d 1 = I 1 m 1 L G
    Figure imgb0016
    où d1, I1 et m1 sont respectivement le bras de levier, le moment d'inertie par rapport au deuxième axe (B) et la masse du percuteur (12') et LG est la distance entre le deuxième axe (B) et la droite passant par le centre de gravité (G) du percuteur (12') et parallèle à la force (F2) exercée par le percuteur (12') sur l'oscillateur (4) au moment de l'impulsion.
  6. Mouvement d'horlogerie selon la revendication 1, 3 ou 5, caractérisé en ce que ladite quantité d'énergie, la géométrie du percuteur (12) et les moments d'inertie du percuteur (12) et de l'oscillateur (4) sont choisis pour que l'angle d'impulsion que parcourt le percuteur (12) à chaque impulsion communiquée à l'oscillateur (4) soit inférieur à 1,5°, de préférence inférieur à 1°.
  7. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le percuteur (12) et l'oscillateur (4) sont agencés pour que chacune desdites impulsions soit communiquée à l'oscillateur (4) alors qu'il se trouve sensiblement dans sa position angulaire d'équilibre.
  8. Mouvement d'horlogerie selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le percuteur (12) et l'oscillateur (4) sont agencés pour que chacune desdites impulsions soit communiquée à l'oscillateur (4) alors qu'il se trouve après sa position angulaire d'équilibre.
  9. Procédé de réalisation d'un mouvement d'horlogerie comprenant un oscillateur (4) rotatif autour d'un premier axe (A), un percuteur (12) rotatif autour d'un deuxième axe (B) pour communiquer des impulsions d'énergie mécanique à l'oscillateur (4), une source d'énergie (1) et un dispositif de transmission (1-3) reliant la source d'énergie (1) au percuteur (12), le dispositif de transmission (1-3) comprenant un dispositif à force constante (10) pour emmagasiner périodiquement une quantité d'énergie à fournir au percuteur (12), le dispositif à force constante (10) comprenant un organe élastique bistable, le percuteur (12) ou l'oscillateur (4) comprenant une fourchette (16, 17) agencée pour coopérer avec une cheville (8) de l'oscillateur (4) ou du percuteur (12) respectivement, la fourchette comprenant des première et deuxième cornes (16, 17), la fourchette (16-17) et la cheville (8) étant chacune faites dans l'un des matériaux suivants : acier, oxyde d'aluminium, silicium, verre métallique, le procédé comprenant une étape de conception du mouvement suivie d'une étape de fabrication du mouvement, le procédé étant caractérisé en ce que lors de la conception du mouvement, ladite quantité d'énergie, la géométrie du percuteur (12) et les moments d'inertie du percuteur (12) et de l'oscillateur (4) sont choisis pour qu'à chaque impulsion communiquée à l'oscillateur (4) par le percuteur (12) la relation suivante soit sensiblement satisfaite : ω 1 i = 2 I 2 d 1 d 2 I 2 d 1 2 I 1 d 2 2 ω 2 i
    Figure imgb0017
    où I1 est le moment d'inertie du percuteur (12) par rapport au deuxième axe (B), I2 est le moment d'inertie de l'oscillateur (4) par rapport au premier axe (A), ω1i est la vitesse angulaire du percuteur (12) juste avant l'impulsion qu'il donne à l'oscillateur (4), ω2i est la vitesse angulaire de l'oscillateur (4) juste avant ladite impulsion, d1 est le bras de levier du percuteur (12) et d2 est le bras de levier de l'oscillateur (4), et en ce que l'écartement (E) des première et deuxième cornes (16, 17), mesuré entre les points respectifs des première et deuxième cornes (16, 17) qui percutent ou sont percutés par la cheville (8) lors desdites impulsions, est choisi supérieur à 1,5 fois, de préférence supérieur à 1,6 fois, de préférence supérieur à 1,7 fois, de préférence supérieur à 1,8 fois, de préférence supérieur à 1,9 fois, de préférence encore supérieur à 2 fois, le diamètre (D) de la cheville (8).
  10. Procédé de réalisation d'un mouvement d'horlogerie comprenant un oscillateur (4) rotatif autour d'un axe (A), un percuteur (12") à déplacement linéaire pour communiquer des impulsions d'énergie mécanique à l'oscillateur (4), une source d'énergie (1) et un dispositif de transmission (1-3) reliant la source d'énergie (1) au percuteur (12"), le dispositif de transmission (1-3) comprenant un dispositif à force constante pour emmagasiner périodiquement une quantité d'énergie à fournir au percuteur (12"), le dispositif à force constante (10) comprenant un organe élastique bistable, le percuteur (12") ou l'oscillateur (4) comprenant une fourchette (16, 17) agencée pour coopérer avec une cheville (8) de l'oscillateur (4) ou du percuteur (12") respectivement, la fourchette comprenant des première et deuxième cornes (16, 17), la fourchette (16-17) et la cheville (8) étant chacune faites dans l'un des matériaux suivants : acier, oxyde d'aluminium, silicium, verre métallique, le procédé comprenant une étape de conception du mouvement suivie d'une étape de fabrication du mouvement, le procédé étant caractérisé en ce que lors de la conception du mouvement, ladite quantité d'énergie, la géométrie et la masse du percuteur (12") et le moment d'inertie de l'oscillateur (4) sont choisis pour qu'à chaque impulsion communiquée à l'oscillateur (4) par le percuteur (12") la relation suivante soit sensiblement satisfaite : v 1 i = 2 I 2 d 2 I 2 m 1 d 2 2 ω 2 i
    Figure imgb0018
    où m1 est la masse du percuteur (12"), I2 est le moment d'inertie de l'oscillateur (4) par rapport audit axe (A), v1i est la vitesse linéaire du percuteur (12") juste avant l'impulsion qu'il donne à l'oscillateur (4), ω2i est la vitesse angulaire de l'oscillateur (4) juste avant ladite impulsion et d2 est le bras de levier de l'oscillateur (4), et en ce que l'écartement (E) des première et deuxième cornes (16, 17), mesuré entre les points respectifs des première et deuxième cornes (16, 17) qui percutent ou sont percutés par la cheville (8) lors desdites impulsions, est choisi supérieur à 1,5 fois, de préférence supérieur à 1,6 fois, de préférence supérieur à 1,7 fois, de préférence supérieur à 1,8 fois, de préférence supérieur à 1,9 fois, de préférence encore supérieur à 2 fois, le diamètre (D) de la cheville (8).
  11. Procédé selon la revendication 9, caractérisé en ce que le rapport I2/I1 est supérieur à 10, de préférence supérieur à 50, de préférence supérieur à 100, de préférence supérieur à 500, de préférence encore supérieur à 1000.
  12. Procédé selon la revendication 10, caractérisé en ce que le rapport I2/(m1·d2 2) est supérieur à 10, de préférence supérieur à 50, de préférence supérieur à 100, de préférence, supérieur à 500, de préférence encore supérieur à 1000.
  13. Procédé selon la revendication 9 ou 11, caractérisé en ce que lors de la conception du mouvement on choisit pour le percuteur (12') un balourd pour que la relation suivante soit sensiblement satisfaite : d 1 = I 1 m 1 L G
    Figure imgb0019
    où d1, I1 et m1 sont respectivement le bras de levier, le moment d'inertie par rapport au deuxième axe (B) et la masse du percuteur (12') et LG est la distance entre le deuxième axe (B) et la droite passant par le centre de gravité (G) du percuteur (12') et parallèle à la force (F2) exercée par le percuteur (12') sur l'oscillateur (4) au moment de l'impulsion.
  14. Procédé selon la revendication 9, 11 ou 13, caractérisé en ce que lors de la conception du mouvement ladite quantité d'énergie, la géométrie du percuteur (12) et les moments d'inertie du percuteur (12) et de l'oscillateur (4) sont choisis pour que l'angle d'impulsion que parcourt le percuteur (12) à chaque impulsion communiquée à l'oscillateur (4) soit inférieur à 1,5°, de préférence inférieur à 1°.
  15. Procédé selon l'une quelconque des revendications 9 à 14, caractérisé en ce que le percuteur (12) et l'oscillateur (4) sont agencés pour que chacune desdites impulsions soit communiquée à l'oscillateur (4) alors qu'il se trouve sensiblement dans sa position angulaire d'équilibre.
  16. Procédé selon l'une quelconque des revendications 9 à 14, caractérisé en ce que le percuteur (12) et l'oscillateur (4) sont agencés pour que chacune desdites impulsions soit communiquée à l'oscillateur (4) alors qu'il se trouve après sa position angulaire d'équilibre.
EP17733911.6A 2016-06-29 2017-06-21 Mouvement d'horlogerie mecanique Active EP3479175B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16176831 2016-06-29
PCT/IB2017/053706 WO2018002778A1 (fr) 2016-06-29 2017-06-21 Mouvement d'horlogerie mecanique

Publications (2)

Publication Number Publication Date
EP3479175A1 EP3479175A1 (fr) 2019-05-08
EP3479175B1 true EP3479175B1 (fr) 2022-11-09

Family

ID=56289417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17733911.6A Active EP3479175B1 (fr) 2016-06-29 2017-06-21 Mouvement d'horlogerie mecanique

Country Status (2)

Country Link
EP (1) EP3479175B1 (fr)
WO (1) WO2018002778A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487546A1 (fr) * 2011-02-11 2012-08-15 Montres Journe S.A. Echappement Bi-axial à haute performance, soit EBHP
EP2863272A1 (fr) * 2013-10-16 2015-04-22 Montres Breguet SA Mécanisme d'échappement pour mouvement de montre

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1084459A1 (fr) 1998-06-08 2001-03-21 Manufacture des Montres Rolex S.A. Procede pour transmettre des impulsions d'energie mecanique d'une source motrice a un regulateur oscillant
CH708113B1 (de) * 2007-09-13 2014-12-15 Stéphane Von Gunten Anker für eine Uhrenhemmung.
EP2105806B1 (fr) 2008-03-27 2013-11-13 Sowind S.A. Mécanisme d'échappement
CH703464B1 (fr) * 2010-07-19 2013-11-29 Nivarox Sa Mécanisme oscillant à pivot élastique.
CH705674B1 (fr) 2011-10-27 2016-11-30 Sowind S A Mécanisme d'échappement.
EP2831677B1 (fr) 2012-03-29 2016-05-25 Nivarox-FAR S.A. Mécanisme d'échappement flexible à cadre mobile
WO2017032528A1 (fr) 2015-08-21 2017-03-02 Patek Philippe Sa Geneve Dispositif mécanique bistable, notamment pour l'horlogerie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2487546A1 (fr) * 2011-02-11 2012-08-15 Montres Journe S.A. Echappement Bi-axial à haute performance, soit EBHP
EP2863272A1 (fr) * 2013-10-16 2015-04-22 Montres Breguet SA Mécanisme d'échappement pour mouvement de montre

Also Published As

Publication number Publication date
EP3479175A1 (fr) 2019-05-08
WO2018002778A1 (fr) 2018-01-04

Similar Documents

Publication Publication Date Title
EP3182213B1 (fr) Mécanisme de réglage d'une vitesse moyenne dans un mouvement d'horlogerie et mouvement d'horlogerie
EP2706416B1 (fr) Ancre flexible à force constante
EP2730980B1 (fr) Mécanisme horloger de limitation ou transmission
EP2645189B1 (fr) Mécanisme d'échappement flexible
EP2105806B1 (fr) Mécanisme d'échappement
EP3029530B1 (fr) Mécanisme de tourbillon
EP2224292B1 (fr) Echappement à impulsion directe, notamment à détente, pour mouvement d'horlogerie
EP2790067A1 (fr) Système d'échappement pour un résonateur balancier-spiral
WO2017068538A9 (fr) Oscillateur pour un mouvement horloger mécanique
CH709328B1 (fr) Echappement, mouvement de pièce d'horlogerie et pièce d'horlogerie.
EP3037894B1 (fr) Mécanisme et procédé de réglage d une vitesse dans un mouvement horloger
CH712631A1 (fr) Echappement pour mouvement d'horlogerie.
EP3153935B1 (fr) Mecanisme d'echappement a detente d'horlogerie a force constante
EP3185083B1 (fr) Mecanisme horloger mecanique avec un echappement a ancre
EP3479175B1 (fr) Mouvement d'horlogerie mecanique
WO2017102917A1 (fr) Oscillateur mécanique pour pièce d'horlogerie, mécanisme de réglage comportant cet oscillateur mécanique, et mouvement d'horlogerie
WO1999064936A1 (fr) Procede pour transmettre des impulsions d'energie mecanique d'unesource motrice a un regulateur oscillant
FR2928015A1 (fr) Echappement perfectionne a ancre articulee a impulsion tangentielle, montre mecanique
EP3561603B1 (fr) Mecanisme regulateur d'horlogerie a resonateurs articules
EP3475765B1 (fr) Echappement d'horlogerie
EP3492996B1 (fr) Echappement d'horlogerie a lame bistable
EP3599514A1 (fr) Mécanisme d échappement à ressorts bistable et monostable
CH711559B1 (fr) Dispositif réglant pour pièce d'horlogerie, sous-ensemble d'horlogerie et mouvement d'horlogerie.
WO2017013611A1 (fr) Mécanisme d'échappement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200424

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017063525

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1530771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017063525

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017063525

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230621

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230621

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630