EP3473986B1 - Multiturn-drehgeber und verfahren zum betreiben eines multiturn-drehgebers - Google Patents

Multiturn-drehgeber und verfahren zum betreiben eines multiturn-drehgebers Download PDF

Info

Publication number
EP3473986B1
EP3473986B1 EP18185644.4A EP18185644A EP3473986B1 EP 3473986 B1 EP3473986 B1 EP 3473986B1 EP 18185644 A EP18185644 A EP 18185644A EP 3473986 B1 EP3473986 B1 EP 3473986B1
Authority
EP
European Patent Office
Prior art keywords
clk
clock
clock signal
supplied
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18185644.4A
Other languages
English (en)
French (fr)
Other versions
EP3473986A1 (de
Inventor
Nicolai WANGLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Publication of EP3473986A1 publication Critical patent/EP3473986A1/de
Application granted granted Critical
Publication of EP3473986B1 publication Critical patent/EP3473986B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/007Fail-safe circuits
    • H03K19/0075Fail-safe circuits by using two redundant chains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/64Generators producing trains of pulses, i.e. finite sequences of pulses
    • H03K3/66Generators producing trains of pulses, i.e. finite sequences of pulses by interrupting the output of a generator
    • H03K3/70Generators producing trains of pulses, i.e. finite sequences of pulses by interrupting the output of a generator time intervals between all adjacent pulses of one train being equal

Definitions

  • the invention relates to a safe multiturn encoder according to claim 1, and a method for operating such a multiturn encoder according to claim 8.
  • Multiturn encoders are often used in automation technology to measure the angular positions and the number of revolutions of shafts.
  • Position measuring devices for measuring the angular position of a shaft are known from a large number of publications. Such position measuring devices are referred to as rotary encoders. If a position measuring device is also designed so that in addition to the angular position of the shaft, the number of revolutions made by the shaft can also be measured, this is referred to as a multiturn encoder.
  • the multiturn unit that is, the unit for determining the number of revolutions of the shaft, firstly gear-based multiturn units and secondly counter-based multiturn units.
  • Counter-based multiturn units determine the number of revolutions of a shaft by counting the revolutions of a code carrier that is driven directly by the shaft and thus covers the same number of revolutions as the shaft to be measured.
  • a code which is scanned by a scanning unit, is arranged on the code carrier. From the position signals determined with the scanning unit, counting signals for a counter are generated in a counter electronics, which counts the number of complete revolutions of the code carrier and thus the shaft depending on the direction of rotation.
  • meter-based multiturn units are often equipped with a battery that if the main power supply fails, the energy supply takes over at least the multiturn unit of the encoder.
  • the EP 1 462 771 A2 describes, for example, a multiturn encoder with a counter-based multiturn unit that is operated with a battery when switched off.
  • the DE 10 2008 015 837 A1 describes a position measuring device based on an inductive scanning principle, which has a battery operation. This position measuring device is also well suited to be designed as a multiturn encoder.
  • the JP2009058498 discloses an angle measuring device.
  • the GB2508788 discloses a clock failure detection system.
  • these position measuring devices are operated in pulsed mode, that is to say at least the components which are used to generate the physical measurement principle required (e.g. light in optical position measuring devices, an electromagnetic field in inductive position measuring devices, ...) are only switched on for the duration of the measurement. In this way, the power consumption is reduced and the life of the battery is increased.
  • the measurements are carried out at intervals that ensure that every revolution of the shaft to be measured is reliably recorded.
  • the first part of the task is solved by a multiturn encoder according to claim 1.
  • the second part of the object is achieved by a method for operating a multiturn encoder according to claim 8.
  • Figure 1 shows a block diagram of a multiturn encoder according to the invention. It comprises a graduation carrier 10 with a measuring graduation, at least one scanning device 40, a processing unit 100, and an interface unit 250.
  • the graduation carrier 10 is designed in the form of a ring or as a circular disk and, for the operation of the multiturn rotary encoder, is rotatably mounted about a pivot point D and connected in a rotationally fixed manner to a shaft, the angular position and number of revolutions of which are to be measured with the multiturn rotary encoder.
  • the measuring graduation is arranged radially around the pivot point D and has at least one graduation track 20, the scanning of which allows a position determination (angle determination).
  • the scanning device 40 is designed to scan the measuring graduation on the graduation carrier 10 and to generate position-dependent (angle-dependent) position signals PS as a function of the angle of rotation of the graduation carrier 10.
  • the position signals PS can comprise analog or digitally coded signals.
  • the present invention is not limited to a physical scanning principle. So known inductive, photoelectric, magnetic or capacitive scanning principles can be used.
  • the scanning device 40 comprises, for example, a light source, the light of which is modulated by the measuring graduation as a function of the angular position of the graduation carrier, and a photodetector with which the modulated light is detected.
  • the scanning device comprises a transmission coil that generates an electromagnetic field that is modulated by the measuring graduation on the graduation carrier. Receiver coils are provided for receiving the modulated field.
  • the position signals PS are fed to the processing unit 100, which processes them to a position value POS and outputs them to the interface unit 250.
  • the processing is not discussed further here, processing steps such as signal correction, demodulation, digitization, etc. can be processed.
  • the interface unit 250 is used for communication with subsequent electronics 280 via a data transmission channel 260.
  • the interface unit 250 can be designed as a serial interface, ie the data transmission via the data transmission channel 260 takes place in the form of serial data streams or data packets.
  • the multiturn encoder has at least one operating mode in which the measurement graduation is scanned in a pulsed manner. Pulse operation is often used when energy is to be saved, for example when a main power supply fails or is switched off and the multiturn encoder is powered by a battery. In pulse mode, the scanning of the measuring division and the processing of the position signals PS to position values POS no longer take place continuously, but only at defined time intervals, which are determined by a measuring clock signal M_CLK, which is generated by a first clock generator 400. For this purpose, the measuring clock signal M_CLK is fed to the scanning device 40 and, if appropriate, to the processing unit 100.
  • the physical measured variable, the position-dependent change of which is used for position measurement is only generated for the duration of a measurement.
  • the light source is only switched on for the duration of the measurement
  • the transmitter coil for generating the electromagnetic field is only supplied with current temporarily, etc.
  • other components for the detection of the measured variable and for the processing of detected position signals can also be used in pulse mode Position values are only temporarily supplied with power.
  • the range of functions of the multiturn encoder can be reduced compared to normal operation.
  • the function of the multiturn encoder can be restricted to the determination of one (or more) multiturn code words, which indicates the number of revolutions of the shaft coupled to the multiturn encoder.
  • the components required for this purpose are supplied with energy.
  • This variant is particularly advantageous if, even when a machine (and the multiturn encoder connected to a shaft of the machine) is switched off, it must be ensured that: Detect revolutions of the shaft so that the correct number of revolutions is available when the machine is switched on again.
  • a complete position value POS can then be formed immediately, which includes the multiturn code word (number of revolutions) and a single-turn code word (angular position of the shaft).
  • the multiturn rotary encoder therefore further comprises a clock monitoring unit 410 which monitors the measuring clock signal M_CLK.
  • the clock monitoring unit 410 is supplied directly with the measuring clock signal M_CLK. Instead, the clock monitoring unit 410 can also be supplied with a clock signal derived from the measuring clock signal M_CLK.
  • Derived clock signals result from functional sequences which are controlled by the measuring clock signal M_CLK, for example in the scanning device 40 or in the processing unit 100. They have the same frequency or period duration as the measuring clock signal M_CLK, but can be phase-shifted and / or on to the measuring clock signal M_CLK have a different pulse / pause ratio.
  • a (optional) derived clock signal V_CLK is drawn in, which signals a completed position measurement or a completed counting process in the processing unit 100. Further examples of derived clock signals are described in the description of the embodiment of Figure 4 specified.
  • FIG. 2 shows a block diagram of a clock monitoring unit 410. It comprises a second clock generator 420, a first comparator unit 430, and an error memory 440.
  • the second clock generator 420 generates a test clock signal T_CLK, the frequency of which deviates from the frequency of the measuring clock signal M_CLK.
  • T_CLK test clock signal
  • the clock signals are fed to the first comparator unit 430 which, by comparing signal parameters, determines whether the clock signals function within the required accuracy.
  • the result of the comparison can be stored in the error memory 440 as status information STAT and can be transferred from there to the subsequent electronics 280.
  • a corresponding command can be provided for the transmission, with which the subsequent electronics 280 requests the status information STAT from the multiturn rotary encoder.
  • the status information STAT can also be automatically added to a data transmission, for example as part of a data frame for transmitting a position value POS to the subsequent electronics 280.
  • Status information STAT stored in the error memory 440 which indicates an error in the comparison of the clock signals, can be deleted after the transmission to the subsequent electronics 280, for example by a command from the subsequent electronics 280.
  • the clock monitoring unit 410 can alternatively also be supplied with the derived clock signal V_CLK instead of the measuring clock signal M_CLK.
  • the clock monitoring unit 410 can comprise a second comparator unit 450, to which the test clock signal T_CLK and, again alternatively, either the derived clock signal V_CLK or the measuring clock signal M_CLK is supplied.
  • the function of the second comparator unit 450 corresponds to that of the first comparator unit 430.
  • the second comparator unit 450 serves the derived clock signal V_CLK (again optionally the measuring clock signal M_CLK) as a time base and the Test clock signal T_CLK as a clock signal to be compared.
  • the first comparator unit 430 is supplied with the measurement clock signal M_CLK and the second comparator unit 450 with the derived clock signal V_CLK.
  • Figure 3A shows the clock signals in undisturbed pulse operation, while in Figure 3B the case is shown in which an error in the comparison of the clock signals is forced by a test signal TEST.
  • the signal parameters that uniquely determine the clock signals are, for example, the period and the duration of the high level, which on the one hand indicate the frequency and on the other hand the duty cycle (quotient of the duration of the high level and the period).
  • the measuring clock signal M_CLK is determined by a period T M and a duration of the high level T MH and the test clock signal T_CLK by a period D T and a duration of the high level T TH .
  • the period T T of the test clock signal T_CLK is selected such that it is longer than the period T M of the test clock signal T_CLK and shorter than the sum of the period T M of the test clock signal T_CLK and the duration of the high level T MH .
  • the total number of signal edges (rising and falling) of the measuring clock signal M_CLK must be at least two and at most three within a period T T of the test clock signal T_CLK.
  • Evidence of one or more of these conditions can be used as a comparison criterion to determine whether the The ratio of the clock signals to one another is correct. If the relationship is correct, it can be assumed with sufficient certainty that there is no signal error in the clock signals.
  • comparison of the signal parameters of the clock signals is based on proving whether, in a defined time interval, one of the clock signals to be compared (in the illustrated case, the test clock signal T_CLK) that is determined by a signal property (period duration, duration of the high level, duration of the low level, duration of several periods) is defined, the number of changes of state (rising or / and falling signal edges) of the respective other clock signal (in the illustrated case the measuring clock signal M_CLK) lies in a certain range.
  • a signal property duration, duration of the high level, duration of the low level, duration of several periods
  • One possible implementation for this is to provide an edge-triggered counter in the first comparator unit 430, which counter is reset at the beginning of the time interval, counts rising and / or falling signal edges during the time interval, and its content is compared with the expected range after the end of the time interval. If the result of the comparison lies outside the expected range, this can be stored as an error in the error memory 440.
  • the result range is advantageously selected such that at least one signal edge is counted in each time interval. If, at the beginning of the time interval, it is also checked whether the counter is reset, the function of the counter can be verified in every time interval in this way.
  • An expanded possibility for checking the function of the clock monitoring unit 410 is to use one of the clock generators (in Figure 2 this is the second clock generator 420) to be designed in such a way that its period duration can be changed by a test signal TEST and in such a way that an error is caused within a few signal periods when the test signal TEST is active. In terms of circuitry, this can be achieved particularly simply by doubling or halving the period (corresponding to halving or doubling the clock frequency).
  • the Test signal TEST can be supplied to the second clock generator 420 via the interface unit 250, so that a functional test can be initiated from the subsequent electronics 280, for example via a corresponding command which is transmitted to the interface unit 250 via the data transmission channel 260.
  • the signal diagram in Figure 3B shows the case that the period T T of the test clock signal T_CLK is halved when the test signal TEST is active. This means that an error is detected in the first comparator unit 430 on average in every second signal period of the test clock signal T_CLK.
  • the error caused by the active test signal TEST is stored in the error memory 440 as status information STAT and can be transmitted from there to the subsequent electronics 280.
  • the clock signals V_CLK, T_CLK can be assigned to it in a reversed manner compared to the first comparator unit 430, ie the time interval for the comparison is formed by the derived clock signal V_CLK and the occurrence of the correct number changes in the state of the test clock signal T_CLK per time interval are checked.
  • the derived clock signal is determined by the period Tv and the duration of the high level T VH .
  • the period T M of the measuring clock signal M_CLK can also be adjustable within the scope of the present invention.
  • a higher-level control unit (not shown) in the multiturn rotary encoder can change the period T M via a setting signal CTRL, for example as a function of the speed, so that measurements are less frequent at low shaft speeds than at high speeds.
  • the setting signal CTRL can also be fed to the clock monitoring unit 410, so that either by changing the period duration T M of the measuring clock signal M_CLK analogously to changing the period duration T T of the test clock signal T_CLK, or by adapting the comparison criterion (number of status changes in one Time interval) in the comparator units 430, 450, a comparison of the clock signals M_CLK, T_CLK, V_CLK is still possible.
  • Figure 4 shows a block diagram of a multiturn encoder according to the invention. It is based on an inductive scanning principle, for example in the DE 10 2008 015 837 A1 which is explicitly referred to here. Components that are already in connection with the Figures 1 and 2nd have been described, have the same reference numerals.
  • the multiturn rotary encoder has a graduation carrier 10 with two graduation tracks 20, 30, graduation carrier 10 and graduation tracks 20, 30 only being shown in simplified abstract form.
  • the graduation carrier 10 can be designed, for example, as a code disk which is connected in a rotationally fixed manner to the shaft, whose angular position / number of revolutions is to be measured.
  • the graduation tracks 20, 30 can consist of electrically conductive and non-conductive areas, which are arranged concentrically around the center of rotation of the code disk on different radii.
  • the angular position to be measured is coded analogously in this example, ie analog scanning signals are generated when scanning the graduation tracks 20, 30, the angular position of the input shaft can be determined from their amplitudes and / or phase positions.
  • the angular position can also be digitally coded, for example in that the division tracks have a multi-track digital code, for example a Gray code, or a single-track chain code, a so-called "pseudo random code" (PRC).
  • PRC pseudo-track digital code
  • Digital coding is preferably used for example in the case of photoelectric scanning principles.
  • a first scanning device 40 is now provided for generating first position signals PS1. It comprises an excitation unit 50 which, in conjunction with an excitation coil 60, generates an electromagnetic field, the strength of which is influenced by the graduation tracks 20, 30.
  • an excitation unit 50 which, in conjunction with an excitation coil 60, generates an electromagnetic field, the strength of which is influenced by the graduation tracks 20, 30.
  • two pairs of first receiver coils 70, 80 are provided, each pair of receiver coils 70, 80 generating position signals which are phase-shifted with respect to one another and which enable position-dependent detection of the direction of rotation.
  • the first pair of receiver coils 70 is used to scan the first division track 20 and the second pair of receiver coils 80 is used to scan the second division track 30.
  • the receiver coils 70, 80 induce voltages whose amplitude depends on the angular position of the code disk or the wave to be measured depends.
  • the induced voltages are fed to a first signal processing unit 90, in which they are filtered and amplified, for example, before being output as first position signals PS1 on the one hand to a first singleturn evaluation unit 110 and on the other hand to a first multiturn evaluation unit 120.
  • the first single-turn evaluation unit 110 processes the first position signals PS1 into a first single-turn code word SC1, which indicates the angular position of the shaft to be measured.
  • the first multiturn evaluation unit 120 processes the first position signals PS1 to form a first multiturn code word MC1, which indicates the number of revolutions made by the shaft to be measured.
  • the first multiturn evaluation unit 120 can, for example, do this comprise a counter which counts suitable events of the first position signals PS1 depending on the direction of rotation.
  • the zero point of the measurement can be set manually or, for example, by reaching a limit switch or the like. In order to set the zero point from which the number of revolutions begins, it is usually necessary to carry out a so-called reference run before actually operating the machine.
  • the first single-turn code word SC1 and the first multiturn code word MC1 are finally fed to a first code connection unit 130, which forms a common first position value POS1 from the two values, which contains both the current angular position and the number of revolutions completed.
  • the first single-turn evaluation unit 110, the first multiturn evaluation unit 120 and the first code connection unit 130 are parts of a processing unit 100.
  • a second scanning device 140 is thus provided for forming second position signals PS2.
  • the excitation unit 50 and the excitation coil 60 which together generate the electromagnetic field, are also assigned to this.
  • the first pair of receiver coils 170 is used to scan the first division track 20 and the second pair of receiver coils 180 is used to scan the second Division track 30.
  • a second signal processing unit 190 processes the induced voltages into second position signals PS2.
  • the second scanning device 140 thus comprises the second receiver coils 170, 180 and the second signal processing unit 190.
  • the second position signals PS2 are fed to a second singleturn evaluation unit 200 to form a second singleturn code word SC2 and to a second multiturn evaluation unit 210 to form a second multiturn code word MC2.
  • a second code connection unit 220 forms the second position value POS2 from the second single-turn code word SC2 and the second multiturn code word MC2.
  • the second single-turn evaluation unit 200, the second multiturn evaluation unit 210 and the second code connection unit 220 are also part of the processing unit 100.
  • an interface unit 250 For communication with follow electronics 280 (not shown), an interface unit 250 is provided which receives commands and data from the follow electronics 280 via a data transmission channel 260 or sends data (as a result of received commands) to the follow electronics 280.
  • the interface unit 250 is supplied with the position values POS1, POS2 and can be transmitted to the subsequent electronics 280, for example as a result of a position request command.
  • the multiturn code words MC1, MC2 and the single-turn code words SC1, SC2 can also be fed directly to the interface unit 250 for separate transmission to the subsequent electronics 280.
  • the code connection units 130, 220 may be omitted
  • the components required for this purpose are supplied with energy by a battery 320 in a battery-supported area 330.
  • the switchover from normal operation with supply from the main power supply 300 to battery operation with supply of the battery-supported area 330 from the battery 320 and vice versa advantageously takes place automatically when the output voltage of the main power supply 300 falls below / falls below a minimum value.
  • the battery operation is simultaneously a pulse operation, in which position measurements (determination of the multiturn code words MC1, MC2) are only carried out intermittently at defined time intervals.
  • the time intervals are in turn determined by a measuring clock signal M_CLK, which is generated by the first clock generator 400.
  • M_CLK which is generated by the first clock generator 400.
  • the clock monitoring unit 410 is also arranged in the battery-supported area 330.
  • the measuring clock signal M_CLK is supplied to the excitation unit 50 and the clock monitoring unit 410.
  • the measurement clock signal M_CLK can also be supplied to other battery-operated components if they require it for functional reasons.
  • the interface unit 250 is arranged outside the battery-supported area 330. This means that no communication with the subsequent electronics 280 is possible in pulse mode. However, since switching off the main power supply normally means that the machine (e.g. machine tool) on which the multiturn encoder is operated is also switched off, this function can be dispensed with. On in this way, the current consumption in the pulse mode can be reduced and the life of the battery 320 can be extended.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

    BEZEICHNUNG DER ERFINDUNG
  • Multiturn-Drehgeber und Verfahren zum Betreiben eines Multiturn-Drehgebers
  • GEBIET DER TECHNIK
  • Die Erfindung betrifft einen sicheren Multiturn-Drehgeber gemäß dem Anspruch 1, sowie ein Verfahren zum Betreiben eines derartigen Multiturn-Drehgebers nach Anspruch 8. Multiturn-Drehgeber werden häufig in der Automatisierungstechnik eingesetzt, um die Winkelpositionen und die Anzahl zurückgelegter Umdrehungen von Wellen zu messen.
  • STAND DER TECHNIK
  • Positionsmesseinrichtungen zur Messung der Winkelposition einer Welle sind aus einer Vielzahl von Druckschriften bekannt. Derartige Positionsmesseinrichtungen werden als Drehgeber bezeichnet. Ist eine Positionsmesseinrichtung darüber hinaus so ausgeführt, dass neben der Winkelposition der Welle auch die Anzahl der von der Welle zurückgelegten Umdrehungen messbar ist, spricht man von einem Multiturn-Drehgeber.
  • Für die Ausführung der Multiturn-Einheit, also der Einheit zur Feststellung der Anzahl der zurückgelegten Umdrehungen der Welle sind grundsätzlich zwei Lösungen bekannt, zum einen getriebebasierte Multiturn-Einheiten, zum anderen zählerbasierte Multiturn-Einheiten.
  • Zählerbasierte Multiturn-Einheiten ermitteln die Anzahl zurückgelegter Umdrehungen einer Welle durch Zählen der Umdrehungen eines Codeträgers, der unmittelbar von der Welle angetrieben wird und somit die gleiche Anzahl von Umdrehungen wie die zu messende Welle zurücklegt. Auf dem Codeträger ist ein Code angeordnet, der von einer Abtasteinheit abgetastet wird. Aus den mit der Abtasteinheit ermittelten Positionssignalen werden in einer Zählelektronik Zählsignale für einen Zähler generiert, der die Anzahl vollständiger Umdrehungen des Codeträgers und somit der Welle drehrichtungsabhängig zählt.
  • Um den Zählerstand des Zählers auch bei ausgeschalteter Hauptstromversorgung, also beispielsweise wenn die Maschine, in der der Multiturn-Drehgeber betrieben wird, ausgeschaltet ist, zu speichern und darüber hinaus die Zählfunktion zu erhalten, sind zählerbasierte Multiturn-Einheiten häufig mit einer Batterie ausgestattet, die bei Ausfall der Hauptstromversorgung die Energieversorgung zumindest der Multiturn-Einheit des Drehgebers übernimmt.
  • Die EP 1 462 771 A2 beschreibt beispielsweise einen Multiturn-Drehgeber mit einer zählerbasierten Multiturn-Einheit, die im ausgeschalteten Zustand mit einer Batterie betrieben ist.
  • Die DE 10 2008 015 837 A1 beschreibt ein Positionsmessgerät basierend auf einem induktiven Abtastprinzip, das einen Batteriebetrieb aufweist. Auch dieses Positionsmessgerät ist gut geeignet, als Multiturn-Drehgeber ausgeführt zu werden.
  • Die JP2009058498 offenbart eine Winkelmessvorrichtung. Die GB2508788 offenbart ein System zur Detektion eines Taktgeberfehlers.
  • Im Batteriebetrieb werden diese Positionsmessgeräte gepulst betrieben, d.h. zumindest die Komponenten, die zur Erzeugung der gemäß dem physikalischen Messprinzip benötigten Messgröße (z.B. Licht bei optischen Positionsmessgeräten, ein elektromagnetisches Feld bei induktiven Positionsmessgeräten,...) dienen, werden lediglich für die Dauer der Messung eingeschaltet. Auf diese Weise wird der Stromverbrauch gesenkt und die Lebensdauer der Batterie erhöht. Die Messungen werden in zeitlichen Abständen vorgenommen, die gewährleisten, dass jede Umdrehung der zu messenden Welle sicher erfasst wird.
  • Ein Unsicherheitsfaktor ist es, dass ein zumindest zeitweiser Ausfall der Messpulse dazu führen kann, dass im Batteriebetrieb Umdrehungen der Welle nicht gezählt werden. Nach dem Wiedereinschalten der Hauptstromversorgung besteht somit ein Restrisiko, dass der Zählerstand der Multiturn-Einheit nicht stimmt. Dies ist insbesondere bei sicherheitsrelevanten Anwendungen kritisch, da eine Fehlmessung zu einer Beschädigung der Maschine, an der der Multiturn-Drehgeber betrieben wird, führen kann oder sogar eine Gefahr für das Bedienpersonal der Maschine entstehen kann.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Es ist eine Aufgabe der Erfindung, einen Multiturn-Drehgeber mit verbesserter Betriebssicherheit anzugeben. Weiter ist es Aufgabe der Erfindung, ein Verfahren zum Betreiben eines derartigen Multiturn-Drehgebers anzugeben.
  • Der erste Teil der Aufgabe wird gelöst durch einen Multiturn-Drehgeber nach Anspruch 1.
  • Es wird nun ein Multiturn-Drehgeber vorgeschlagen, mit
    • einem Teilungsträger mit einer Messteilung,
    • einer Abtasteinrichtung mit der die Messteilung zur Erzeugung von Positionssignalen abtastbar ist,
    • einer Verarbeitungseinheit, mit der die Positionssignale zu Positionswerten verarbeitbar sind,
    • einer Schnittstelleneinheit zur Kommunikation mit einer Folgeelektronik über einen Datenübertragungskanal und
    • einem ersten Taktgenerator zur Erzeugung eines Messtaktsignals zur Steuerung der Abtastung der Messteilung in einem Pulsbetrieb,
    wobei eine Taktüberwachungseinheit vorgesehen ist, der das Messtaktsignal und/oder ein aus dem Messtaktsignal resultierendes Taktsignal zur Überwachung zugeführt ist und die einen zweiten Taktgenerator zur Erzeugung eines Testtaktsignals, eine erste Vergleichereinheit, der das Testtaktsignal und eines der zu überwachenden Taktsignale zugeführt ist und in der ein Vergleich der zugeführten Taktsignale durchführbar ist und einen Fehlerspeicher, in dem ein Ergebnis des Vergleichs als Statusinformation speicherbar ist, umfasst.
  • Der zweite Teil der Aufgabe wird gelöst durch ein Verfahren zum Betreiben eines Multiturn-Drehgebers nach Anspruch 8.
  • Hier wird ein Verfahren zum Betreiben eines Multiturn-Drehgebers vorgeschlagen, mit
    • einem Teilungsträger mit Messteilung,
    • einer Abtasteinrichtung mit der die Messteilung zur Erzeugung von Positionssignalen abgetastet wird,
    • einer Verarbeitungseinheit, mit der die Positionssignale zu Positionswerten verarbeitet werden,
    • einer Schnittstelleneinheit zur Kommunikation mit einer Folgeelektronik über einen Datenübertragungskanal und
    • einem ersten Taktgenerator zur Erzeugung eines Messtaktsignals zur Steuerung der Abtastung der Messteilung in einem Pulsbetrieb,
    wobei eine Taktüberwachungseinheit vorgesehen ist, der das Messtaktsignal und/oder ein aus dem Messtaktsignal resultierendes Taktsignal zur Überwachung zugeführt wird und die einen zweiten Taktgenerator zur Erzeugung eines Testtaktsignals, eine erste Vergleichereinheit, der das Testtaktsignal und eines der zu überwachenden Taktsignale zugeführt wird und in der ein Vergleich der zugeführten Taktsignale durchgeführt wird und einen Fehlerspeicher, in dem ein Ergebnis des Vergleichs als Statusinformation gespeichert wird, umfasst.
  • Weitere Vorteile eines erfindungsgemäßen Multiturn-Drehgebers, sowie eines erfindungsgemäßen Verfahrens zum Betreiben eines derartigen Multiturn-Drehgebers, ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachfolgenden Beschreibung der Ausführungsformen.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Es zeigt
  • Figur 1
    ein Blockschaltbild eines erfindungsgemäßen Multiturn-Drehgebers,
    Figur 2
    ein Prinzipschaltbild einer Taktüberwachungseinheit,
    Figur 3A
    ein Signaldiagramm von zu überwachenden Taktsignalen,
    Figur 3B
    ein Signaldiagramm von zu überwachenden Taktsignalen bei aktivem Testsignal und
    Figur 4
    ein Blockschaltbild einer weiteren Ausführungsform eines erfindungsgemäßen Multiturn-Drehgebers.
    BESCHREIBUNG DER AUSFÜHRUNGSFORMEN
  • Figur 1 zeigt ein Blockschaltbild eines erfindungsgemäßen Multiturn-Drehgebers. Er umfasst einen Teilungsträger 10 mit einer Messteilung, wenigstens eine Abtasteinrichtung 40, eine Verarbeitungseinheit 100, sowie eine Schnittstelleneinheit 250.
  • Der Teilungsträger 10 ist ringförmig oder als kreisrunde Scheibe ausgestaltet und für den Betrieb des Multiturn-Drehgebers um einen Drehpunkt D drehbar gelagert und drehfest mit einer Welle verbunden, deren Winkelstellung und Anzahl zurückgelegter Umdrehungen mit dem Multiturn-Drehgeber gemessen werden soll. Die Messteilung ist radial um den Drehpunkt D angeordnet und weist wenigstens eine Teilungsspur 20 auf, deren Abtastung eine Positionsbestimmung (Winkelbestimmung) erlaubt.
  • Die Abtasteinrichtung 40 ist geeignet ausgestaltet, um die Messteilung auf dem Teilungsträger 10 abzutasten und in Abhängigkeit des Drehwinkels des Teilungsträgers 10 positionsabhängige (winkelabhängige) Positionssignale PS zu generieren. Die Positionssignale PS können analoge, oder digital codierte Signale umfassen.
  • Die vorliegende Erfindung ist auf kein physikalisches Abtastprinzip festgelegt. So können an sich bekannte induktive, lichtelektrische, magnetische oder kapazitive Abtastprinzipien zum Einsatz kommen. Bei lichtelektrischer Abtastung umfasst die Abtasteinrichtung 40 beispielsweise eine Lichtquelle, deren Licht abhängig von der Winkelposition des Teilungsträgers von der Messteilung moduliert wird, sowie einen Photodetektor, mit dem das modulierte Licht detektiert wird. Bei einer induktiven Abtastung umfasst die Abtasteinrichtung eine Sendespule, die ein elektromagnetisches Feld erzeugt, das von der Messteilung auf dem Teilungsträger moduliert wird. Für den Empfang des modulierten Feldes sind Empfängerspulen vorgesehen.
  • Die Positionssignale PS sind der Verarbeitungseinheit 100 zugeführt, die diese zu einem Positionswert POS verarbeitet und an die Schnittstelleneinheit 250 ausgibt. Auf die Verarbeitung wird hier nicht weiter eingegangen, es können Verarbeitungsschritte wie Signalkorrektur, Demodulation, Digitalisierung, etc. abgearbeitet werden.
  • Die Schnittstelleneinheit 250 dient zur Kommunikation mit einer Folgeelektronik 280 über einen Datenübertragungskanal 260. Die Schnittstelleneinheit 250 kann als serielle Schnittstelle ausgeführt sein, d.h. die Datenübertragung über den Datenübertragungskanal 260 erfolgt in Form von seriellen Datenströmen, bzw. Datenpaketen.
  • Erfindungsgemäß weist der Multiturn-Drehgeber wenigstens einen Betriebsmodus auf, in dem die Abtastung der Messteilung gepulst erfolgt. Ein Pulsbetrieb kommt häufig dann zum Einsatz, wenn Energie gespart werden soll, beispielsweise wenn eine Hauptstromversorgung ausfällt oder abgeschaltet wird und der Multiturn-Drehgeber von einer Batterie mit Energie versorgt wird. Im Pulsbetrieb erfolgt die Abtastung der Messteilung und die Verarbeitung der Positionssignale PS zu Positionswerten POS nicht mehr kontinuierlich, sondern nur in definierten Zeitabständen, die durch ein Messtaktsignal M_CLK bestimmt werden, das von einem ersten Taktgenerator 400 generiert wird. Das Messtaktsignal M_CLK ist hierzu der Abtasteinrichtung 40 und ggf. der Verarbeitungseinheit 100 zugeführt. In der Abtasteinrichtung 40 erfolgt die Erzeugung der physikalischen Messgröße, deren positionsabhängige Veränderung zur Positionsmessung genutzt wird, nur noch für die Dauer einer Messung. So wird beim lichtelektrischen Abtastprinzip die Lichtquelle nur für die Dauer der Messung eingeschaltet, beim induktiven Abtastprinzip die Sendespule zur Erzeugung des elektromagnetischen Feldes nur zeitweise mit Strom versorgt, etc. Zusätzlich können im Pulsbetrieb auch weitere Komponenten zur Detektion der Messgröße und zur Verarbeitung detektierter Positionssignale zu Positionswerten nur zeitweise mit Strom versorgt werden.
  • Im Pulsbetrieb kann der Funktionsumfang des Multiturn-Drehgebers gegenüber einem Normalbetrieb reduziert sein. Wie unten bei dem anhand von Figur 4 beschriebenen konkreten Ausführungsbeispiels gezeigt werden wird, kann die Funktion des Multiturn-Drehgebers auf die Bestimmung eines (oder mehrerer) Multiturn-Codewörter eingeschränkt sein, die die Anzahl der Umdrehungen der mit dem Multiturn-Drehgeber gekoppelten Welle angibt. Hierzu werden auch nur die für diesen Zweck benötigten Komponenten mit Energie versorgt. Diese Variante ist besonders vorteilhaft, wenn auch im ausgeschalteten Zustand einer Maschine (und des mit einer Welle der Maschine verbundenen Multiturn-Drehgebers) gewährleistet werden muss, Umdrehungen der Welle zu erfassen, so dass nach dem Wiedereinschalten der Maschine die korrekte Umdrehungszahl vorliegt. Im Normalbetrieb, also bei eingeschalteter Hauptstromversorgung kann dann sofort ein vollständiger Positionswert POS gebildet werden, der das Multiturn-Codewort (Anzahl der Umdrehungen), sowie ein Singleturn-Codewort (Winkelstellung der Welle) umfasst.
  • Wie eingangs erwähnt, ist eine mögliche Fehlerquelle bei einem Multiturn-Drehgeber mit Pulsbetrieb, dass durch einen (zumindest zeitweisen) Ausfall des ersten Taktgenerators 400 Umdrehungen der Welle nicht erfasst werden und so nach dem Wiedereinschalten der Hauptstromversorgung ein falsches Multiturn-Codewort vorliegt. Erfindungsgemäß umfasst der Multiturn-Drehgeber deshalb weiter eine Taktüberwachungseinheit 410, die das Messtaktsignal M_CLK überwacht.
  • Im dargestellten Beispiel ist der Taktüberwachungseinheit 410 direkt das Messtaktsignal M_CLK zugeführt. Anstatt dessen kann der Taktüberwachungseinheit 410 aber auch ein vom Messtaktsignal M_CLK abgeleitetes Taktsignal zugeführt sein. Abgeleitete Taktsignale resultieren aus Funktionsabläufen, die vom Messtaktsignal M_CLK gesteuert werden, beispielsweise in der Abtasteinrichtung 40 oder in der Verarbeitungseinheit 100. Sie weisen die gleiche Frequenz, bzw. Periodendauer wie das Messtaktsignal M_CLK auf, können aber zum Messtaktsignal M_CLK phasenverschoben sein und/oder ein abweichendes Puls-/Pausenverhältnis haben. In Figur 1 ist ein (optionales) abgeleitetes Taktsignal V_CLK eingezeichnet, das eine abgeschlossene Positionsmessung, bzw. einen abgeschossenen Zählvorgang in der Verarbeitungseinheit 100 signalisiert. Weitere Beispiele für abgeleitete Taktsignale werden in der Beschreibung des Ausführungsbeispiels von Figur 4 angegeben.
  • Figur 2 zeigt ein Blockdiagramm einer Taktüberwachungseinheit 410. Sie umfasst einen zweiten Taktgenerator 420, eine erste Vergleichereinheit 430, sowie einen Fehlerspeicher 440.
  • Der zweite Taktgenerator 420 erzeugt ein Testtaktsignal T_CLK, dessen Frequenz von der Frequenz des Messtaktsignals M_CLK abweicht. Somit stehen in der Taktüberwachungseinheit 410 zwei Taktsignale mit bekannten Signalparametern zur Verfügung. Die Taktsignale sind der ersten Vergleichereinheit 430 zugeführt, die durch Vergleich von Signalparametern feststellt, ob die Taktsignale im Rahmen einer geforderten Genauigkeit funktionieren. Das Ergebnis des Vergleichs ist im Fehlerspeicher 440 als Statusinformation STAT speicherbar und von dort zur Folgeelektronik 280 übertragbar. Für die Übertragung kann ein entsprechender Befehl vorgesehen sein, mit dem die Folgeelektronik 280 die Statusinformation STAT vom Multiturn-Drehgeber anfordert. Die Statusinformation STAT kann aber auch automatisch einer Datenübertragung hinzugefügt werden, beispielsweise als Teil eines Datenrahmens zur Übertragung eines Positionswertes POS zur Folgeelektronik 280.
  • Eine im Fehlerspeicher 440 gespeicherte Statusinformation STAT, die einen Fehler beim Vergleich der Taktsignale anzeigt, kann nach der Übertragung zur Folgeelektronik 280 gelöscht werden, beispielsweise durch einen Befehl der Folgeelektronik 280.
  • Wie durch die geschweiften Klammern angedeutet, kann der Taktüberwachungseinheit 410 anstelle des Messtaktsignals M_CLK alternativ auch das abgeleitete Taktsignal V_CLK zugeführt sein.
  • In vorteilhafter Weiterbildung kann die Taktüberwachungseinheit 410 eine zweite Vergleichereinheit 450 umfassen, der das Testtaktsignal T_CLK und, wiederum alternativ, entweder das abgeleitete Taktsignal V_CLK oder das Messtaktsignal M_CLK zugeführt ist. Die zweite Vergleichereinheit 450 entspricht in ihrer Funktionsweise der ersten Vergleichereinheit 430. Während die erste Vergleichereinheit 430 jedoch das Testtaktsignal T_CLK als Zeitbasis für den Vergleich und das Messtaktsignal M_CLK (optional das abgeleitete Taktsignal V_CLK) als zu vergleichendes Taktsignal nutzt, dient bei der zweiten Vergleichereinheit 450 das abgeleitete Taktsignal V_CLK (wiederum optional das Messtaktsignal M_CLK) als Zeitbasis und das Testtaktsignal T_CLK als zu vergleichendes Taktsignal. Dies wird im Folgenden anhand der Signaldiagramme, die in den Figuren 3A und 3B dargestellt sind, näher erläutert. In diesem Beispiel wird angenommen, dass der ersten Vergleichereinheit 430 das Messtaktsignal M_CLK und der zweiten Vergleichereinheit 450 das abgeleitete Taktsignal V_CLK zugeführt ist. Figur 3A zeigt die Taktsignale im ungestörten Pulsbetrieb, während in Figur 3B der Fall dargestellt ist, in dem durch ein Testsignal TEST ein Fehler beim Vergleich der Taktsignale erzwungen wird.
  • Anhand des in Figur 3A dargestellten Signaldiagramms soll nun ein Beispiel für einen Vergleich von Signalparametern der Taktsignale gegeben werden. Die Signalparameter, die die Taktsignale eindeutig bestimmen, sind beispielsweise die Periodendauer und die Dauer des Highpegels, die zum einen die Frequenz und zum anderen das Tastverhältnis (Quotient aus der Dauer des Highpegels und der Periodendauer) angeben. Für die zu vergleichenden Taktsignale bedeutet das, dass das Messtaktsignal M_CLK durch eine Periodendauer TM und eine Dauer des Highpegels TMH und das Testtaktsignal T_CLK durch eine Periodendauer TT und eine Dauer des Highpegels TTH bestimmt sind.
  • Im dargestellten Beispiel ist die Periodendauer TT des Testtaktsignals T_CLK so gewählt, dass sie länger als die Periodendauer TM des Testtaktsignals T_CLK und kürzer als die Summe aus der Periodendauer TM des Testtaktsignals T_CLK und der Dauer des Highpegels TMH ist. Das bedeutet, dass je nach Lage des Testtaktsignals T_CLK zum Messtaktsignal M_CLK während einer Periode des Testtaktsignals mindestens eine und höchstens zwei steigende (oder fallende) Signalflanken des Messtaktsignals M_CLK auftreten können. Ebenso kann die Aussage getroffen werden, dass die Gesamtzahl der Signalflanken (steigende und fallende) des Messtaktsignals M_CLK innerhalb einer Periodendauer TT des Testtaktsignals T_CLK mindestens zwei und höchstens drei betragen muss.
  • Der Nachweis einer oder mehrerer dieser Bedingungen kann als Vergleichskriterium herangezogen werden, um festzustellen, ob das Verhältnis der Taktsignale zueinander stimmt. Stimmt das Verhältnis, so kann mit hinreichender Sicherheit davon ausgegangen werden, dass kein Signalfehler der Taktsignale vorliegt.
  • Allgemein betrachtet basiert Vergleich der Signalparameter der Taktsignale darauf, nachzuweisen, ob in einem definierten Zeitintervall, das durch eine Signaleigenschaft (Periodendauer, Dauer des Highpegels, Dauer des Lowpegels, Dauer mehrerer Perioden) eines der zu vergleichenden Taktsignale (im dargestellten Fall des Testtaktsignals T_CLK) definiert ist, die Anzahl von Zustandswechseln (steigenden oder/und fallenden Signalflanken) des jeweils anderen Taktsignals (im dargestellten Fall des Messtaktsignals M_CLK) in einem bestimmten Bereich liegt.
  • Eine mögliche Realisierung hierzu ist es, in der ersten Vergleichereinheit 430 einen flankengetriggerten Zähler vorzusehen, der zu Beginn des Zeitintervalls zurückgesetzt wird, während des Zeitintervalls steigende oder/und fallende Signalflanken zählt und dessen Inhalt nach dem Ende des Zeitintervalls mit dem erwarteten Bereich verglichen wird. Liegt das Ergebnis des Vergleichs außerhalb des erwarteten Bereichs, so kann dies als Fehler im Fehlerspeicher 440 gespeichert werden.
  • Mit Vorteil ist der Ergebnisbereich so gewählt, dass in jedem Zeitintervall wenigstens eine Signalflanke gezählt wird. Wird darüber hinaus zu Beginn des Zeitintervalls geprüft, ob der Zähler zurückgesetzt ist, kann auf diese Weise die Funktion des Zählers in jedem Zeitintervall nachgewiesen werden.
  • Eine erweiterte Möglichkeit zur Funktionsprüfung der Taktüberwachungseinheit 410 ist es, einen der Taktgeneratoren (in Figur 2 ist dies der zweite Taktgenerator 420) so auszugestalten, dass seine Periodendauer durch ein Testsignal TEST veränderbar ist und zwar derart, dass bei aktivem Testsignal TEST innerhalb weniger Signalperioden ein Fehler verursacht wird. Dies kann schaltungstechnisch besonders einfach erreicht werden, in dem die Periodendauer verdoppelt oder halbiert (entsprechend einem Halbieren oder Verdoppeln der Taktfrequenz) wird. Das Testsignal TEST kann dem zweiten Taktgenerator 420 über die Schnittstelleneinheit 250 zugeführt werden, so dass eine Funktionsprüfung von der Folgeelektronik 280 aus initiiert werden kann, beispielsweise über einen entsprechenden Befehl, der über den Datenübertragungskanal 260 zur Schnittstelleneinheit 250 übertragen wird.
  • Das Signaldiagramm in Figur 3B zeigt den Fall, dass die Periodendauer TT des Testtaktsignals T_CLK bei aktivem Testsignal TEST halbiert wird. Dies führt dazu, dass durchschnittlich in jeder zweiten Signalperiode des Testtaktsignals T_CLK ein Fehler in der ersten Vergleichereinheit 430 erkannt wird.
  • Der durch das aktive Testsignal TEST verursachte Fehler wird im Fehlerspeicher 440 als Statusinformation STAT gespeichert und kann von dort aus zur Folgeelektronik 280 übertragen werden.
  • Ist in der Taktüberwachungseinheit 410 die (optionale) zweite Vergleichereinheit 450 vorgesehen, so können ihr die Taktsignale V_CLK, T_CLK gegenüber der ersten Vergleichereinheit 430 umgekehrt zugeordnet sein, d.h. das Zeitintervall für den Vergleich wird durch das abgeleitete Taktsignal V_CLK gebildet und das Auftreten der korrekten Anzahl von Zustandswechseln des Testtaktsignals T_CLK je Zeitintervall wird geprüft. Das abgeleitete Taktsignal ist bestimmt durch die Periodendauer Tv und die Dauer des Highpegels TVH. Wird im dargestellten Beispiel von Figur 3A als Zeitintervall also die Periodendauer TV des abgeleiteten Taktsignals V_CLK angenommen, so können im fehlerfreien Betrieb nur wenigstens ein oder maximal zwei Zustandswechsel des Testtaktsignals T_CLK je Zeitintervall auftreten. Das Ergebnis des Vergleichs kann wiederum als Statusinformation STAT im Fehlerspeicher 440 gespeichert werden.
  • Wie Figur 3B zeigt, wird bei Aktivierung des Testsignals TEST durch die Halbierung der Periodendauer TT des Testtaktsignals T_CLK auch in der zweiten Vergleichereinheit 450 bereits nach kurzer Zeit ein Fehler verursacht, so dass beide Vergleichereinheiten 430, 450 gleichzeitig geprüft werden können.
  • Die Periodendauer TM des Messtaktsignals M_CLK kann im Rahmen der vorliegenden Erfindung auch einstellbar sein. So kann eine (nicht dargestellte) übergeordnete Steuereinheit im Multiturn-Drehgeber die Periodendauer TM über ein Einstellsignal CTRL, beispielsweise drehzahlabhängig, ändern, so dass bei niedriger Drehzahl der Welle weniger häufig gemessen wird, als bei hoher Drehzahl. Das Einstellsignal CTRL kann in diesem Fall auch der Taktüberwachungseinheit 410 zugeführt sein, so dass entweder durch eine der Änderung der Periodendauer TM des Messtaktsignals M_CLK analoge Änderung der Periodendauer TT des Testtaktsignals T_CLK, oder durch eine Anpassung des Vergleichskriteriums (Anzahl der Zustandsänderungen in einem Zeitintervall) in den Vergleichereinheiten 430, 450, weiterhin ein Vergleich der Taktsignale M_CLK, T_CLK, V_CLK möglich ist.
  • Figur 4 zeigt ein Blockschaltbild eines erfindungsgemäßen Multiturn-Drehgebers. Er basiert auf einem induktiven Abtastprinzip, wie es beispielsweise in der DE 10 2008 015 837 A1 beschrieben ist, auf die an dieser Stelle explizit verwiesen wird. Komponenten, die bereits in Verbindung mit den Figuren 1 und 2 beschrieben wurden, tragen das gleiche Bezugszeichen.
  • Der Multiturn-Drehgeber weist einen Teilungsträger 10 mit zwei Teilungsspuren 20, 30, wobei Teilungsträger 10 und Teilungspuren 20, 30 lediglich abstrakt vereinfacht dargestellt sind. In einer tatsächlichen Realisierung kann der Teilungsträger 10 beispielsweise als Codescheibe ausgeführt sein, die drehfest mit der Welle, deren Winkelposition/Umdrehungszahl zu messen ist, verbunden ist. Die Teilungsspuren 20, 30 können aus elektrisch leitfähigen und nicht leitfähigen Bereichen bestehen, die konzentrisch um den Drehmittelpunkt der Codescheibe auf verschiedenen Radien angeordnet sind.
  • Die zu messende Winkelposition ist in diesem Beispiel analog codiert, d.h. bei der Abtastung der Teilungsspuren 20, 30 entstehen analoge Abtastsignale, aus deren Amplituden und/oder Phasenlagen die Winkelposition der Eingangswelle bestimmt werden kann. Alternativ hierzu kann die Winkelposition aber auch digital codiert sein, beispielsweise indem die Teilungsspuren einen mehrspurigen digitalen Code, z.B. einen Gray-Code, oder einen einspurigen Kettencode, einem sog. "Pseudo Random Code" (PRC) aufweisen. Eine digitale Codierung wird beispielsweise bei lichtelektrischen Abtastprinzipien bevorzugt eingesetzt.
  • Zur Erzeugung erster Positionssignale PS1 ist nun eine erste Abtasteinrichtung 40 vorgesehen. Sie umfasst eine Erregereinheit 50, die in Verbindung mit einer Erregerspule 60 ein elektromagnetisches Feld erzeugt, dessen Stärke von den Teilungsspuren 20, 30 beeinflusst wird. Zur Detektion des elektromagnetischen Feldes sind zwei Paare von ersten Empfängerspulen 70, 80 vorgesehen, wobei jedes Paar Empfängerspulen 70, 80 zueinander phasenverschobene Positionssignale generiert, die eine drehrichtungsabhängige Positionserfassung ermöglichen. Dabei dient das erste Empfängerspulenpaar 70 der Abtastung der ersten Teilungsspur 20 und das zweite Empfängerspulenpaar 80 der Abtastung der zweiten Teilungsspur 30. In den Empfängerspulen 70, 80 werden im Betrieb Spannungen induziert, deren Amplitude von der Winkelstellung der Codescheibe, bzw. der zu messenden Welle abhängt. Die induzierten Spannungen sind einer ersten Signalverarbeitungseinheit 90 zugeführt, in der sie beispielsweise gefiltert und verstärkt werden, bevor sie als erste Positionssignale PS1 zum Einen an eine erste Singleturn-Auswerteeinheit 110 und zum Anderen an eine erste Multiturn-Auswerteeinheit 120 ausgegeben werden.
  • Die erste Singleturn-Auswerteeinheit 110 verarbeitet die ersten Positionssignale PS1 zu einem ersten Singleturn-Codewort SC1, das die Winkelposition der zu messenden Welle angibt.
  • Die erste Multiturn-Auswerteeinheit 120 dagegen verarbeitet die ersten Positionssignale PS1 zu einem ersten Multiturn-Codewort MC1, das die Anzahl der von der zu messenden Welle zurückgelegten Umdrehungen angibt. Die erste Multiturn-Auswerteinheit 120 kann hierzu beispielsweise einen Zähler umfassen, der geeignete Ereignisse der ersten Positionssignale PS1 drehrichtungsabhängig zählt.
  • Der Nullpunkt der Messung kann manuell festgelegt werden oder beispielsweise durch Erreichen eines Endschalters o.ä. Zum Einstellen des Nullpunkts, von dem aus die Zählung der Umdrehungen beginnt, ist es meist notwendig, vor dem eigentlichen Betrieb der Maschine eine sog. Referenzfahrt vorzunehmen.
  • Das erste Singleturn-Codewort SC1 und das erste Multiturn-Codewort MC1 sind schließlich einer ersten Codeanschlusseinheit 130 zugeführt, die aus den beiden Werten einen gemeinsamen ersten Positionswert POS1 bildet, der sowohl die aktuelle Winkelposition, als auch die Anzahl der zurückgelegten Umdrehungen beinhaltet.
  • Die erste Singleturn-Auswerteeinheit 110, die erste Multiturn-Auswerteeinheit 120 und die erste Codeanschlusseinheit 130 sind Teile einer Verarbeitungseinheit 100.
  • Zur Bildung eines redundanten zweiten Positionswerts POS2 sind, mit Ausnahme der Erregereinheit 50 mit der Erregerspule 60, alle genannten Einheiten identisch ein zweites Mal vorhanden.
  • Somit ist zur Bildung zweiter Positionssignale PS2 eine zweite Abtasteinrichtung 140 vorgesehen. Dieser sind ebenfalls die Erregereinheit 50 und die Erregerspule 60, die zusammen das elektromagnetische Feld erzeugen, zugeordnet. Zur Detektion des von den Teilungsspuren 20, 30 modulierten elektromagnetischen Feldes sind zwei Paare von zweiten Empfängerspulen 170, 180 vorgesehen, wobei jedes Paar Empfängerspulen 170, 180 zueinander phasenverschobene Positionssignale generiert, die eine drehrichtungsabhängige Positionserfassung ermöglichen. Dabei dient das erste Empfängerspulenpaar 170 der Abtastung der ersten Teilungsspur 20 und das zweite Empfängerspulenpaar 180 der Abtastung der zweiten Teilungsspur 30. Eine zweite Signalverarbeitungseinheit 190 verarbeitet die induzierten Spannungen zu zweiten Positionssignalen PS2.
  • Neben der Erregereinheit 50 und der Erregerspule 60, die sie mit der ersten Abtasteinrichtung 40 teilt, umfasst die zweite Abtasteinrichtung 140 somit die zweiten Empfängerspulen 170, 180 und die zweite Signalverarbeitungseinheit 190.
  • Die zweiten Positionssignale PS2 sind einer zweiten Singleturn-Auswerteeinheit 200 zur Bildung eines zweiten Singleturn-Codeworts SC2 und einer zweiten Multiturn-Auswerteeinheit 210 zur Bildung eines zweiten Multiturn-Codeworts MC2 zugeführt. Eine zweite Codeanschlusseinheit 220 bildet schließlich aus dem zweiten Singleturn-Codewort SC2 und dem zweiten Multiturn-Codewort MC2 den zweiten Positionswert POS2.
  • Die zweite Singleturn-Auswerteeinheit 200, die zweite Multiturn-Auswerteeinheit 210 und die zweite Codeanschlusseinheit 220 sind ebenfalls Teil der Verarbeitungseinheit 100.
  • Zur Kommunikation mit einer (nicht dargestellten) Folgeelektronik 280 ist eine Schnittstelleneinheit 250 vorgesehen, die Befehle und Daten von der Folgeelektronik 280 über einen Datenübertragungskanal 260 empfängt, bzw. Daten (in Folge von empfangenen Befehlen) an die Folgeelektronik 280 sendet.
  • Der Schnittstelleneinheit 250 sind in diesem Beispiel die Positionswerte POS1, POS2 zugeführt und können, beispielsweise in Folge eines Positionsanforderungsbefehls, zur Folgeelektronik 280 übertragen werden. Alternativ können die Multiturn-Codeworte MC1, MC2 und die Singleturn-Codeworte SC1, SC2 zur separaten Übertragung an die Folgeelektronik 280 auch direkt der Schnittstelleneinheit 250 zugeführt sein. In diesem Fall kann ggf. auf die Codeanschlusseinheiten 130, 220 verzichtet werden
  • Im Normalbetrieb werden alle Komponenten des Multiturn-Drehgebers von einer Hauptstromversorgung 300 mit Energie versorgt.
  • Um bei einem Ausfall der Hauptstromversorgung 300 weiterhin die Multiturn-Codewörter MC1, MC2 speichern und eine Zählung zurückgelegter Umdrehungen vornehmen zu können, werden die dazu benötigten Komponenten in einem batteriegestützten Bereich 330 von einer Batterie 320 mit Energie versorgt. Die Umschaltung vom Normalbetrieb mit Versorgung durch die Hauptstromversorgung 300 zum Batteriebetrieb mit Versorgung des batteriegestützten Bereichs 330 durch die Batterie 320 und umgekehrt erfolgt mit Vorteil automatisch bei Unter/-Überschreiten eines Minimalwerts der Ausgangsspannung der Hauptstromversorgung 300.
  • Der Batteriebetrieb ist gleichzeitig ein Pulsbetrieb, in dem Positionsmessungen (Bestimmung der Multiturn-Codewörter MC1, MC2) nur intermittierend in definieren Zeitabständen durchgeführt werden. Die Zeitabstände werden wiederum von einem Messtaktsignal M_CLK bestimmt, das vom ersten Taktgenerator 400 erzeugt wird. Zur Überwachung des Messtaktsignals M_CLK, oder/und einem vom Messtaktsignal abgeleiteten Taktsignal V CLK ist im batteriegestützten Bereich 330 auch die Taktüberwachungseinheit 410 angeordnet.
  • In diesem Beispiel ist das Messtaktsignal M_CLK der Erregereinheit 50 und der Taktüberwachungseinheit 410 zugeführt. Es sei aber darauf hingewiesen, dass das Messtaktsignal M_CLK darüber hinaus auch anderen batteriebetriebenen Komponenten zugeführt sein kann, sofern sie es funktionsbedingt benötigen.
  • Die Schnittstelleneinheit 250 ist außerhalb des batteriegestützten Bereichs 330 angeordnet. Das bedeutet, dass im Pulsbetrieb keine Kommunikation mit der Folgeelektronik 280 möglich ist. Da das Abschalten der Hauptstromversorgung aber im Normalfall bedeutet, dass die Maschine (z.B. Werkzeugmaschine), an der der Multiturn-Drehgeber betrieben wird, ebenfalls abgeschaltet wird, kann auf diese Funktion verzichtet werden. Auf diese Weise kann der Stromverbrauch im Pulsbetrieb gesenkt und die Lebensdauer der Batterie 320 verlängert werden.
  • Das abgeleitete Taktsignal V_CLK kann im vorliegenden Ausführungsbeispiel in folgenden Komponenten generiert werden:
    • in der Erregereinheit 50 aus dem tatsächlichen Stromfluss der vom Messtaktsignal M_CLK ausgelöst wird,
    • in einer Signalverarbeitungseinheit 90, 190 bei der Verarbeitung der in den Empfängerspulen 70, 80, 170, 180 induzierten Spannungen zum Positionssignal PS1, PS2, oder
    • in einer Multiturn-Auswerteeinheit 120, 210 bei der Verarbeitung der Positionssignale PS1, PS2 zu den Multiturn-Codewörtern MC1, MC2.
  • Insbesondere in diesem Ausführungsbeispiel ist es vorteilhaft, unmittelbar nach dem Wiedereinschalten der Hauptstromversorgung 300 zum Einen die Statusinformation STAT vom Fehlerspeicher 440 zur Folgeelektronik 280 zu übertragen, um zu prüfen, ob die überwachten Taktsignale während des Batteriebetriebs fehlerfrei gearbeitet haben, und zum Anderen das Testsignal TEST aktiv zu schalten und zu prüfen, ob die Taktüberwachungseinheit 410 fehlerfrei arbeitet.
  • Selbstverständlich ist die vorliegende Erfindung nicht auf die beschriebenen Ausführungsbeispiele eingeschränkt. Vielmehr ist ein Fachmann dazu in der Lage, im Rahmen der Ansprüche alternative Ausführungsformen zu gestalten.

Claims (15)

  1. Multiturn-Drehgeber mit
    - einem Teilungsträger (10) mit einer Messteilung (20, 30),
    - einer Abtasteinrichtung (40, 140) mit der die Messteilung (20, 30) zur Erzeugung von Positionssignalen (PS, PS1, PS2) abtastbar ist,
    - einer Verarbeitungseinheit (100), mit der die Positionssignale (PS, PS1, PS2) zu Positionswerten (POS, POS1, POS2) verarbeitbar sind,
    - einer Schnittstelleneinheit (250) zur Kommunikation mit einer Folgeelektronik (280) über einen Datenübertragungskanal (260) und
    - einem ersten Taktgenerator (400) zur Erzeugung eines Messtaktsignals (M_CLK) zur Steuerung der Abtastung der Messteilung (20, 30) in einem Pulsbetrieb,
    wobei eine Taktüberwachungseinheit (410) vorhanden ist, der das Messtaktsignal (M_CLK) und/oder ein aus dem Messtaktsignal (M_CLK) resultierendes Taktsignal (V_CLK) zur Überwachung zugeführt ist und die einen zweiten Taktgenerator (420) zur Erzeugung eines Testtaktsignals (T_CLK), eine erste Vergleichereinheit (430), der das Testtaktsignal (T_CLK) und eines der zu überwachenden Taktsignale (M_CLK, V_CLK) zugeführt ist und in der ein Vergleich der zugeführten Taktsignale (T_CLK, M_CLK, V_CLK) durchführbar ist und einen Fehlerspeicher (440), in dem ein Ergebnis des Vergleichs als Statusinformation (STAT) speicherbar ist, umfasst.
  2. Multiturn-Drehgeber nach Anspruch 1, wobei die Taktüberwachungseinheit (410) weiter eine zweite Vergleichereinheit (450) umfasst, der das Testtaktsignal (T_CLK) und ein weiteres der zu überwachenden Taktsignale (M_CLK, V_CLK) zugeführt sind und in der ein Vergleich der zugeführten Taktsignale (T_CLK, M_CLK, V_CLK) durchführbar ist und ein Ergebnis des Vergleichs ebenfalls als Statusinformation (STAT) im Fehlerspeicher (440) speicherbar ist.
  3. Multiturn-Drehgeber nach einem der vorhergehenden Ansprüche, wobei in den Vergleichereinheiten (430, 450) der Vergleich durch Feststellung einer Anzahl von Zustandswechseln eines ersten der zu vergleichenden Taktsignale (T_CLK, M_CLK, V_CLK) innerhalb eines Zeitintervalls, das von einem zweiten der zu vergleichenden Taktsignale (T_CLK, M_CLK, V_CLK) bestimmt wird, durchgeführt wird.
  4. Multiturn-Drehgeber nach Anspruch 3, wobei das Zeitintervall durch die Periodendauer des zweiten zu vergleichenden Taktsignals (T_CLK, M_CLK, V_CLK) bestimmt wird.
  5. Multiturn-Drehgeber nach einem der Ansprüche 3 oder 4, wobei die Feststellung der Anzahl von Zustandswechseln durch Zählung von steigenden oder/und fallenden Signalflanken des ersten der zu vergleichenden Taktsignale (T_CLK, M_CLK, V_CLK) innerhalb des Zeitintervalls erfolgt.
  6. Multiturn-Drehgeber nach einem der vorhergehenden Ansprüche, wobei der Taktüberwachungseinheit (410) ein Testsignal (TEST) zuführbar ist, das eine Änderung der Periodendauer des Testtaktsignals (T_CLK) bewirkt, so dass ein Fehler beim Vergleich der Taktsignale (T_CLK, M_CLK, V_CLK) erzwungen wird.
  7. Multiturn-Drehgeber nach einem der vorhergehenden Ansprüche, wobei im Pulsbetrieb nur Komponenten von einer Batterie (320) mit Strom versorgt werden, die sich in einem batteriegestützten Bereich (330) befinden und die Schnittstelleneinheit (250) außerhalb des batteriebetriebenen Bereichs (330) angeordnet ist.
  8. Verfahren zum Betreiben eines Multiturn-Drehgeber mit
    - einem Teilungsträger (10) mit einer Messteilung (20, 30),
    - einer Abtasteinrichtung (40, 140) mit der die Messteilung (20, 30) zur Erzeugung von Positionssignalen (PS, PS1, PS2) abgetastet wird,
    - einer Verarbeitungseinheit (100), mit der die Positionssignale (PS, PS1, PS2) zu Positionswerten (POS, POS1, POS2) verarbeitet werden,
    - einer Schnittstelleneinheit (250) zur Kommunikation mit einer Folgeelektronik (280) über einen Datenübertragungskanal (260) und
    - einem ersten Taktgenerator (400) zur Erzeugung eines Messtaktsignals (M_CLK) zur Steuerung der Abtastung der Messteilung (20, 30) in einem Pulsbetrieb,
    wobei eine Taktüberwachungseinheit (410) vorhanden ist, der das Messtaktsignal (M_CLK) und/oder ein aus dem Messtaktsignal (M_CLK) resultierendes Taktsignal (V_CLK) zur Überwachung zugeführt wird und die einen zweiten Taktgenerator (420) zur Erzeugung eines Testtaktsignals (T_CLK), eine erste Vergleichereinheit (430), der das Testtaktsignal (T_CLK) und eines der zu überwachenden Taktsignale (M_CLK, V_CLK) zugeführt wird und in der ein Vergleich der zugeführten Taktsignale (T_CLK, M_CLK, V_CLK) durchgeführt wird und einen Fehlerspeicher (440), in dem ein Ergebnis des Vergleichs als Statusinformation (STAT) gespeichert wird, umfasst.
  9. Verfahren nach Anspruch 8, wobei die Taktüberwachungseinheit (410) weiter eine zweite Vergleichereinheit (450) umfasst, der das Testtaktsignal (T_CLK) und ein weiteres der zu überwachenden Taktsignale (T_CLK, M_CLK, V_CLK) zugeführt werden und in der ein Vergleich der zugeführten Taktsignale (T_CLK, M_CLK, V_CLK) durchgeführt wird und ein Ergebnis des Vergleichs ebenfalls als Statusinformation (STAT) im Fehlerspeicher (440) gespeichert wird.
  10. Verfahren nach einem Ansprüche 8 oder 9, wobei in den Vergleichereinheiten (430, 450) der Vergleich durch Feststellung einer Anzahl von Zustandswechseln eines ersten der zu vergleichenden Taktsignale (T_CLK, M_CLK, V_CLK) innerhalb eines Zeitintervalls, das von einem zweiten der zu vergleichenden Taktsignale (T_CLK, M_CLK, V_CLK) bestimmt wird, durchgeführt wird.
  11. Verfahren nach Anspruch 10, wobei das Zeitintervall durch die Periodendauer des zweiten zu vergleichenden Taktsignals (T_CLK, M_CLK, V_CLK) bestimmt wird.
  12. Verfahren nach einem der Ansprüche 9 oder 10, wobei zur Feststellung der Anzahl von Zustandswechseln steigende oder/und fallende Signalflanken des ersten der zu vergleichenden Taktsignale (T_CLK, M_CLK, V_CLK) innerhalb des Zeitintervalls gezählt werden.
  13. Verfahren nach einem der Ansprüche 8 bis 12, wobei der Taktüberwachungseinheit (410) ein Testsignal (TEST) zuführbar ist, das eine Änderung der Periodendauer des Testtaktsignals (T_CLK) bewirkt, so dass ein Fehler beim Vergleich der Taktsignale (T_CLK, M_CLK, V_CLK) erzwungen wird.
  14. Verfahren nach einem der Ansprüche 8 bis 13, wobei im Pulsbetrieb nur Komponenten von einer Batterie (320) mit Strom versorgt werden, die sich in einem batteriegestützten Bereich (330) befinden und die Schnittstelleneinheit (250) außerhalb des batteriebetriebenen Bereichs (330) angeordnet ist.
  15. Verfahren nach einem der Ansprüche 13 oder 14, wobei der Taktüberwachungseinheit (410) das Testsignal (TEST) nach einem Übergang vom Pulsbetrieb in einen Normalbetrieb, in dem auch die Schnittstelleneinheit (250) mit Strom versorgt wird, von der Folgeelektronik (280) zugeführt wird.
EP18185644.4A 2017-10-20 2018-07-26 Multiturn-drehgeber und verfahren zum betreiben eines multiturn-drehgebers Active EP3473986B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017218767.0A DE102017218767A1 (de) 2017-10-20 2017-10-20 Multiturn-Drehgeber und Verfahren zum Betreiben eines Multiturn-Drehgebers

Publications (2)

Publication Number Publication Date
EP3473986A1 EP3473986A1 (de) 2019-04-24
EP3473986B1 true EP3473986B1 (de) 2020-04-22

Family

ID=63077704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18185644.4A Active EP3473986B1 (de) 2017-10-20 2018-07-26 Multiturn-drehgeber und verfahren zum betreiben eines multiturn-drehgebers

Country Status (3)

Country Link
EP (1) EP3473986B1 (de)
JP (1) JP7193298B2 (de)
DE (1) DE102017218767A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114279483B (zh) * 2021-12-30 2024-05-14 南京埃斯顿自动化股份有限公司 一种低功耗多圈编码器圈数纠错方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104689B2 (ja) * 1986-11-07 1995-11-13 フアナツク株式会社 パルスエンコ−ダ
DE10311412B3 (de) 2003-03-13 2004-05-27 Lenord, Bauer & Co. Gmbh Verfahren zur Messung und Bestimmung der absoluten Position einer Geberwelle sowie einer Einrichtung zur Anwendung des Verfahrens
JP4179143B2 (ja) * 2003-11-25 2008-11-12 松下電器産業株式会社 アブソリュートエンコーダ
DE102005006419B4 (de) * 2004-05-27 2013-04-04 Sew-Eurodrive Gmbh & Co. Kg Segmentzähler und Verfahren
JP5063495B2 (ja) * 2007-08-08 2012-10-31 日立オートモティブシステムズ株式会社 角度検出回路
DE102008015837A1 (de) 2008-03-27 2009-10-01 Dr. Johannes Heidenhain Gmbh Positionsmessgerät und Verfahren zu dessen Betrieb
JP5161196B2 (ja) * 2009-12-04 2013-03-13 株式会社日立製作所 クロック異常検知システム
JP5994305B2 (ja) * 2012-03-15 2016-09-21 オムロン株式会社 ロータリーエンコーダおよびロータリーエンコーダの異常検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102017218767A1 (de) 2019-04-25
JP2019078750A (ja) 2019-05-23
EP3473986A1 (de) 2019-04-24
JP7193298B2 (ja) 2022-12-20

Similar Documents

Publication Publication Date Title
EP2295938B1 (de) Multiturn-Drehgeber
EP2105713B1 (de) Positionsmessgerät und Verfahren zu dessen Betrieb
DE19849108C2 (de) Drehgeber
DE69603643T2 (de) Positionsgeber
EP2878926B1 (de) Multiturn-drehgeber
DE102012216854A1 (de) Positionsmessgerät und Verfahren zu dessen Betrieb
DE112017005860T5 (de) Erkennung von fehlern in einem motorpositionsdecodersystem
EP1203932A1 (de) Drehstellungsgeber
WO2001077693A1 (de) Vorrichtung zur positions- und/oder drehzahl - und/oder drehrichtungs-erkennung eines rotierenden teils
EP2379987B1 (de) Umdrehungszähler und verfahren zum feststellen der umdrehungszahl einer welle
EP3473986B1 (de) Multiturn-drehgeber und verfahren zum betreiben eines multiturn-drehgebers
DE69931424T2 (de) Vorrichtung zur Drehwinkelmessung
EP2878929B1 (de) Multiturn-Drehgeber
EP2746732B2 (de) Gebervorrichtung und Verfahren zur Bestimmung einer Position
EP3382348B1 (de) Positionsmesseinrichtung und verfahren zum betreiben einer positionsmesseinrichtung
EP3577422B1 (de) Verfahren und vorrichtung zum überwachen der spursignale eines positionsänderungssensors
EP3035000A1 (de) Vorrichtung und verfahren zur überprüfung eines arbeitstaktsignals einer positionsmesseinrichtung
EP3296184B1 (de) Vorrichtung und verfahren zur stillstandsüberwachung bei fahrzeugen, insbesondere schienenfahrzeugen
DE19730806A1 (de) Einrichtung zur Signalauswertung bei Inkrementalgebern
DE2621179C2 (de) Schaltungsanordnung zur Erfassung der Drehrichtung rotierender Teile
EP2469239A1 (de) Multiturn-Winkelmessvorrichtung
DE102009009788B4 (de) Vorrichtung und Verfahren zum berührungslosen Bestimmen einer Drehwinkelposition und/oder eines Stillstands eines drehbaren Objekts
DE102015209865B4 (de) Verfahren zur Erfassung von Sensorsignalen
EP3770559A1 (de) Bestimmung der relativposition zweier zueinander bewegter objekte
CH714313A1 (de) Vorrichtung mit einem Sensor und einem Betätiger, insbesondere zur Verwendung als Türkontaktschalter, und Verfahren zum Testen der Vorrichtung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191024

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001254

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1260725

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200822

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001254

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 6

Ref country code: GB

Payment date: 20230721

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230717

Year of fee payment: 6

Ref country code: CH

Payment date: 20230801

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 6