EP3449128B1 - Eccentric screw pump - Google Patents

Eccentric screw pump Download PDF

Info

Publication number
EP3449128B1
EP3449128B1 EP17717685.6A EP17717685A EP3449128B1 EP 3449128 B1 EP3449128 B1 EP 3449128B1 EP 17717685 A EP17717685 A EP 17717685A EP 3449128 B1 EP3449128 B1 EP 3449128B1
Authority
EP
European Patent Office
Prior art keywords
pump
eccentric screw
drive wheel
screw pump
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17717685.6A
Other languages
German (de)
French (fr)
Other versions
EP3449128A1 (en
Inventor
Hans Eglmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Priority to PL17717685T priority Critical patent/PL3449128T3/en
Publication of EP3449128A1 publication Critical patent/EP3449128A1/en
Application granted granted Critical
Publication of EP3449128B1 publication Critical patent/EP3449128B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C15/0065Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement

Definitions

  • the present invention relates to an eccentric screw pump, in particular an eccentric screw pump for a metering system for a domestic appliance, for example a washing machine.
  • metering pumps for fluids, in particular for liquid detergents, are of interest in order to be used as part of a metering system in domestic appliances.
  • metering systems with metering pumps in different variants are known, such as volume pumps in the form of gear pumps, hose pumps, or piston pumps.
  • the disclosure document GB 2 120 729 A describes a screw pump.
  • EP 0 003 676 A1 shows an inner-axis machine with a helical profile on the rotor and in the stator.
  • eccentric screw pumps are also known. From the pamphlet DE 10212184A1 it is known, for example, to use an eccentric screw pump in a commercial washing machine in order to supply a paste-like detergent concentrate from a container of the commercial washing machine.
  • an eccentric screw pump in principle only has a single moving part, it is relatively inexpensive and robust and should therefore in principle be well suited for use in household appliances, in particular as a metering pump.
  • the simplicity of an eccentric screw pump requires a relatively complicated drive, since a two-dimensional movement of the rotor of the eccentric screw pump must be implemented, which consists of a superimposition of a self-rotation of the rotor and a counter-rotation of the rotor axis on a cylinder jacket with the same frequency.
  • Drives of known eccentric screw pumps are hardly suitable for being used as part of a metering pump in a household appliance, in particular a washing machine, because of their complexity and the associated costs.
  • the present invention is based on the object of providing an eccentric screw pump with a simply constructed and inexpensive drive system,
  • the eccentric screw pump - apart from the drive system - has only a single moving part for conveying a fluid and the drive system is suitable for realizing the two-dimensional movement of a rotor of the eccentric screw pump.
  • the object is achieved by means of an eccentric screw pump according to claim 1.
  • the eccentric screw pump is designed as a 2: 1 hypocycloid eccentric screw pump, the 2: 1 hypocycloid being defined by a first circle with a radius R, which rolls off slip-free on the inside of a second circle with a radius 2R.
  • the pump rotor is attached eccentrically to the drive wheel in such a way that the longitudinal axis of the pump rotor runs at a distance R from the center point of the drive wheel.
  • the drive wheel is a gear and the eccentric screw pump further comprises a drive screw which is designed to drive the drive wheel.
  • the drive wheel has a circular circumference.
  • the drive wheel is a crown wheel with teeth or cylindrical pins.
  • the drive wheel is a bevel gear.
  • the drive wheel comprises a groove-like toothing.
  • the drive wheel has a kidney-shaped circumference and the eccentric screw pump further comprises a motor-side drive wheel which is designed to drive the drive wheel.
  • the pump rotor and the pump stator have a respective shape which defines a periodicity along the longitudinal axis of the pump rotor, the length of the pump rotor and the pump stator corresponding to at least one period along the longitudinal axis of the pump stator.
  • a domestic appliance in particular a washing machine, with an eccentric screw pump according to the first aspect of the invention is provided.
  • Figure 1 illustrates the kinematics of a rotor 107 relative to a stator 109, as it is in an eccentric screw pump 100 according to a detailed below, in particular in connection with the Figures 6 to 9 described embodiment of the invention is realized, which is a 2: 1 hypocycloid eccentric screw pump 100.
  • the movement of the rotor 107 can be described by means of a first circle 10 with a radius R, which is in a second circle 20, which is twice as large as the first circle 10 (i.e. with a radius 2R; hence the Ratio 2: 1), unrolls without slippage.
  • the eccentricity of the movement of the rotor 107 corresponds to the radius R of the first rolling circle 10.
  • the center of the rolling first circle 10, ie the center of the rotor 107 (or in the plan view of FIG Figures 1 to 3 the point of penetration of the longitudinal axis of the rotor 107) describes a further circle during its movement, which is concentric with the second circle 20 and from which in Figure 1 a section is indicated by the curved arrow.
  • the diameter of the further circle described by the first circle 10 corresponds, as it were, to the "piston stroke" of the eccentric screw pump 100, as will be seen below in connection with FIG Figure 5 continues.
  • the illustrated kinematics of the eccentric screw pump 100 can be implemented by means of a kinematic model that is shown in Figure 2 is shown.
  • This kinematic model consists of a coupling 101 which has a fixed length 2R and at the two ends of which a sliding element 102a, 102b is articulated to the coupling 101.
  • the first sliding element 102a is guided along the y-axis and the second sliding element 102b is guided along the orthogonal x-axis of a Cartesian coordinate system.
  • the coupling 101 corresponds to the diameter of the first circle 10 of Figure 1 , so has a length of 2R.
  • the center of the coupling 101 executes a circular movement with the radius R around the origin of the coordinate system which coincides with the center of the second circle 20.
  • the first and the second sliding element 102a, 102b each perform a linear oscillation with the amplitude 2R along the y-axis and the x-axis, the oscillation of the first sliding element 102a being 90 ° out of phase the oscillation of the second slide member 102b takes place.
  • the eccentric screw pump 100 is designed such that the center point of the coupling 101 of the kinematic model of Figure 2 coincides with the longitudinal axis of the rotor 107 (more precisely with the point of penetration of the longitudinal axis) of the eccentric screw pump 100.
  • Figure 5 which shows a cross-sectional view of the pump stator 109 and the pump rotor 107 of the eccentric screw pump 100 according to such an embodiment, there is a circular rotor cross-section in a slot-shaped stator cross-section in each cross-section perpendicular to the longitudinal axis of the pump rotor 107.
  • Figure 5 a cross-sectional view at a height along the longitudinal axis of the rotor 107, which corresponds to a guidance of the rotor 107 by the stator 109 in the x-direction analogous to the guidance of the second sliding element 102b of FIG Figure 2 is equivalent to.
  • a guide of the rotor 107 is defined by the stator 109 in a respective direction which, for example, is orthogonal to the guide of Figure 5 runs, ie a guide in the y-direction analogous to the guide of the first sliding element 102a of FIG Figure 1 , or at a different angle to it.
  • the point P1 is the center point of the pump stator 109.
  • Each cross section of the stator 109 has the point P1 as the center of symmetry.
  • the point P3 is located at a distance 2R from the center point of the stator 109, that is to say from the point P1, in the illustrated phase, that is to say at the illustrated height, on the x-axis.
  • this point P3 on the rotor 107 performs an oscillation along the x-axis with the amplitude 2R, ie a "piston stroke" totaling 4R for the cross section shown here by way of example.
  • the point P3 corresponds to the center of the circle of the rotor cross-section.
  • the center of the circle of the drive wheel 103 ie the center of the circle, is located at this point P3 Drive wheel axle runs through this point.
  • the drive wheel 103 executes a movement oscillating in the x direction in the reference system of the stator 109.
  • the rotor axis runs through the point P2, which is at a distance R from the stator center point P1.
  • this point P2 moves in the reference system of the stator 109 on a circle with radius R around the stator center point P1.
  • the point P2 moves on a circle with radius R around the center of the circle of the rotor cross-section, that is to say around the point P3.
  • the pin described may be attached to the drive wheel 103, which serves to generate an axial force on the rotor 107. With such an attachment, the pin executes a circular movement in the reference system of the stator 109 (in Figure 7 the circle of movement of the pivot center point is shown).
  • points P1, P2 and P3 correspond to in Figure 2 , which, however, corresponds to a different orientation of the rotor 107 (namely an orientation with an angle ⁇ of approximately 60 °), the center of the large circle 20 (P1), ie the stator center, the center of the coupling 101 (P2), ie the im Reference system of the stator 109 on a circle with radius R around the stator center point revolving rotor axis, and the articulation point of the second sliding element 102b (P3), ie the center point of the rotor cross section oscillating along the x-axis.
  • embodiments of the invention according to the invention include a drive mechanism which is the same as that shown in FIG Figure 1 and the kinematic model of Figure 2
  • the illustrated movement of the rotor 107 is generated or transmitted to the rotor 107 by means of a centric rotation.
  • Figure 3 illustrates an implementation of the kinematic model of FIG Figure 2 as part of a drive mechanism of the eccentric screw pump 100 according to one embodiment.
  • the drive mechanism comprises a round drive wheel in the form of a gear 103 and a cylindrical drive worm 105 which is designed to interact in a known manner with the teeth of the gear 103 (including the exemplary tooth 103a) in such a way that a Drive motor The rotational movement of the drive worm 105 caused results in a rotation of the gear 103.
  • a centric attachment of the round gear 103 leads to the point in the kinematic model of Figure 2 corresponds to the position of the first sliding element 102a (ie the center of the gear wheel 103 is located at the pivot point of the first sliding element 102a), in addition to the fact that the gear wheel 103 simultaneously executes an oscillation in the y-direction with an amplitude of 2R when it rotates about its center, there is no movement of the gear wheel 103 in the x direction.
  • the person skilled in the art will recognize that the length of the coupling 101 in relation to the radius of the drive wheel 103 in embodiments of the invention can be significantly smaller than in FIG Figure 3 shown.
  • Figure 3 also shows a distance m between the longitudinal axis of the drive worm 105, which has a half diameter d / 2.
  • the drive wheel 103 is thus fixed centrally at the point that is shown in the kinematic model of FIG Figure 2 corresponds to the position of the first sliding element 102a, and the pump rotor 107 is connected to the drive wheel 103 in such a way that the coupling 101 coincides with the diameter of the pump rotor 107 or the center point of the coupling 101 coincides with the longitudinal axis of the pump rotor 107.
  • the pump rotor is eccentrically attached to the drive wheel 103 at a distance R from the center thereof.
  • the cylindrical drive worm 105 which is arranged parallel to the y-axis at a suitable distance m, can, as in a conventional worm drive, achieve a self-rotation of the gear 103 by rotating around its axis, while at the same time the gear 103 moves along the drive worm 105 moved back and forth in an oscillation with amplitude 2R.
  • Figure 4 4 shows the relative positions of the drive wheel 103 to the drive screw 105 of the eccentric screw pump 100 according to one embodiment with a full revolution of the drive wheel 103.
  • the coupling and the sliding elements in the views of Figure 4 are not actually present in the eccentric screw pump 100, but merely serve to illustrate that the kinematic model of Figure 2 is realized.
  • the movement of the pump rotor 107 of the eccentric screw pump 100 can be thought of as the movement of the circle, the diameter of which is defined by the coupling, as already described above.
  • the different views of Figure 4 illustrate once again that with a full revolution of the drive wheel 103 its center moves back and forth with an oscillating only in the y-direction, i.e. the vertical direction, but no movement in the x-direction, that is, the horizontal direction, i.e. in particular the distance between the center of the drive wheel 103 and the longitudinal axis of the drive worm 105 does not change.
  • the Figures 6 to 9 show different views of an embodiment of the eccentric pump worm 100, namely a perspective view, a top view, a longitudinal section and a perspective sectional view.
  • the drive wheel 103 is designed as a spur gear 103 with helical teeth, for example the tooth 103a, which can be driven by the drive screw 105 designed as a cylindrical screw.
  • the eccentric attachment of the pump rotor 107 to the drive wheel 103 can be seen, for example, from the top view of FIG Figure 7 remove. It should be noted here that the center point of the pin protruding upwards on the gearwheel 103 is not the fulcrum around which the gearwheel 103 rotates (eccentrically), since, as already described above in connection with Figure 5 described, the pin executes a circular motion while the gear 103 rotates about its geometric center.
  • the pin can serve to press the pump rotor 107 axially into the pump stator 109 by means of a pressure plate. The pin slides with the aforementioned movement on the pressure plate.
  • the illustrated longitudinal section through the eccentric screw pump 100 shows the pump rotor 107 in one Orientation in which the maximum eccentricity of the drive wheel 103 lies straight in the plane of the drawing.
  • the pump rotor 107 is formed in one piece with the drive wheel 103. Furthermore, a portion of the pump stator 109 (in Figure 8 the upper section of the pump stator 109) is designed as part of a housing that serves as a bearing for the drive wheel 103 and / or the pump rotor 107, and that enables the above-described oscillating movement of the drive wheel 103.
  • the pump stator 109 further comprises an outlet 113 for discharging a pumped fluid and a leakage outlet 111.
  • the leakage outlet 111 serves to be able to discharge fluid delivered by the eccentric screw pump 100 that emerges from the sealing shoulder below the drive wheel 103.
  • Both the shape of the pump rotor 107 and the corresponding shape of the pump stator 109 have a periodicity along the longitudinal axis of the pump rotor 107, the rotor period generally being half the stator period.
  • the length of the pump rotor 107 and the pump stator 109 corresponds to that in FIG Figures 6 to 9
  • the illustrated embodiment of the eccentric screw pump 100 has approximately 3.8 rotor periods along the longitudinal axis of the pump rotor 107, which corresponds to 1.9 stator periods.
  • the length of the pump rotor 107 and the pump stator 109 should correspond to at least one period along the longitudinal axis of the pump stator 109, ie one stator period.
  • Eccentricity of the eccentric screw pump 100 i.e. distance of the longitudinal axis of the rotor 107 from the center of the drive wheel 103
  • R 2 mm
  • these values result in an overall movement in which the fluctuations caused by the oscillation of the gearwheel 103, for example in the torque or in the rotor speed, are comparatively small and can be accepted without practical restrictions in relation to, for example, smooth running.
  • the drive wheel 103 can also be designed as a crown gear with teeth or cylindrical pins, as a bevel gear, in particular in a globoid version, or as a globoid gear.
  • the toothing of the drive wheel 103 for example designed as a spur wheel, can be shaped like a flute.
  • the globoid variant can also be used on the other gear wheel shapes.
  • a spur gear for example, can also be used for the drive on the motor side.
  • Figure 10 shows a schematic top view of a circular motor-side drive wheel 205 and a drive wheel 203 of the pump rotor 107 of the eccentric screw pump 100.
  • the circumference of the drive wheel 203 of the pump rotor 107 is essentially kidney-shaped.
  • the eccentric screw pump 100 has, inter alia, the following advantages.
  • the eccentric screw pump 100 according to the invention has (apart from the drive screw 105 or the drive wheel 205) only a single moving part, namely the pump rotor 107 together with the drive wheel 103, which, as described above, can also be formed in one piece. No additional component is required in the eccentric screw pump 100 according to the invention to compensate for the eccentric movement. So this is a technically simple one Solution to be realized, especially since the only moving part, ie the pump rotor 107 in connection with the drive wheel 103 of the eccentric screw pump 100, can be made rigid (not elastic).
  • the eccentric screw pump 100 according to the invention can be made very compact, since the eccentric compensation required in conventional pumps, for example in the form of a cardan shaft, can be omitted, which as a rule requires a great length. With a given installation space, the overall length saved in the eccentric screw pump 100 according to the invention can be converted into additional length of a pump cell.
  • the eccentric screw pump 100 can be designed in a correspondingly fluid-tight manner and thus dose more precisely, ie the The actual volume flow corresponds better to the nominal volume flow (in practice, a minimum slip is usually unavoidable).
  • a greater gap size between the rotor 107 and the stator 109 of the eccentric screw pump 100 according to the invention can be used, which leads to a reduction in the required accuracy of the components and thus ultimately to a Reduction in the cost of the eccentric screw pump 100 leads to a given metering accuracy.
  • eccentric screw pump 100 in contrast to eccentric screw pumps with elastic couplings, e.g. a spring bar coupling or a cardan shaft with elastic joints, only a slight additional bearing load occurs, since no transverse forces are generated.
  • the components of the eccentric screw pump 100 according to the invention are therefore not subject to any component fatigue due to strong alternating bending stress.
  • the combination of rotor 107 and stator 109 of the eccentric screw pump 100 according to the invention enables exactly the above based on the kinematic model of FIG Figure 2 described movement. Since the drive wheel 103 performs this movement, no additional bearing is required in the eccentric screw pump 100 according to the invention. at In embodiments of the eccentric screw pump 100, this area can only serve as a seal with a correspondingly selected fluid guide.
  • the drive wheel 103 in the form of a gear can be connected to the drive worm 105 in any phase, ie in any angular orientation.
  • the gear wheel 103 it is therefore not necessary to observe a special angular orientation of the gear wheel 103 relative to the drive worm 105, which significantly simplifies assembly and reduces assembly costs compared to pump designs in which the drive wheel must be assembled in the correct phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Reciprocating Pumps (AREA)

Description

Die vorliegende Erfindung betrifft eine Exzenterschneckenpumpe, insbesondere eine Exzenterschneckenpumpe für ein Dosiersystem für ein Hausgerät, beispielsweise eine Waschmaschine.The present invention relates to an eccentric screw pump, in particular an eccentric screw pump for a metering system for a domestic appliance, for example a washing machine.

Bei Hausgeräten, insbesondere Waschmaschinen, sind einfach aufgebaute und kostengünstige Dosierpumpen für Fluide, insbesondere für flüssiges Waschmittel, von Interesse, um als Teil eines Dosiersystems in den Hausgeräten eingesetzt zu werden. Bekannt sind hierbei Dosiersysteme mit Dosierpumpen in unterschiedlichen Varianten, wie beispielsweise Volumenpumpen in Form von Zahnradpumpen, Schlauchpumpen, oder Kolbenpumpen.In the case of domestic appliances, in particular washing machines, simply constructed and inexpensive metering pumps for fluids, in particular for liquid detergents, are of interest in order to be used as part of a metering system in domestic appliances. In this context, metering systems with metering pumps in different variants are known, such as volume pumps in the form of gear pumps, hose pumps, or piston pumps.

Die Offenlegungsschrift GB 2 120 729 A beschreibt eine Schraubenradpumpe.The disclosure document GB 2 120 729 A describes a screw pump.

Die Patentschrift US 2 483 370 A beschreibt eine Schraubenradpumpe.The patent specification U.S. 2,483,370 A describes a screw pump.

Die Offenlegungsschrift EP 0 003 676 A1 zeigt eine innenachsige Maschine mit schraubenförmigem Profil am Rotor und im Stator.The disclosure document EP 0 003 676 A1 shows an inner-axis machine with a helical profile on the rotor and in the stator.

Die Offenlegungsschrift US 2011/129375 A1 beschreibt eine Schraubenradpumpe.The disclosure document US 2011/129375 A1 describes a screw pump.

Die Offenlegungsschrift US 2005/100468 A1 beschreibt eine Schraubenradpumpe.The disclosure document US 2005/100468 A1 describes a screw pump.

Ebenfalls bekannt sind sogenannte Exzenterschneckenpumpen. Aus der Druckschrift DE 10212184A1 ist es beispielsweise bekannt, eine Exzenterschneckenpumpe in einer gewerblichen Waschmaschine einzusetzen, um ein pastöses Waschmittelkonzentrat aus einem Behältnis der gewerblichen Waschmaschine zuzuführen.So-called eccentric screw pumps are also known. From the pamphlet DE 10212184A1 it is known, for example, to use an eccentric screw pump in a commercial washing machine in order to supply a paste-like detergent concentrate from a container of the commercial washing machine.

Da eine Exzenterschneckenpumpe im Prinzip nur ein einziges bewegtes Teil aufweist, ist diese verhältnismäßig kostengünstig und robust und sollte daher prinzipiell für den Einsatz in Hausgeräten, insbesondere als Dosierpumpe, gut geeignet sein. Die Einfachheit einer Exzenterschneckenpumpe bedingt jedoch einen verhältnismäßig komplizierten Antrieb, da eine zweidimensionale Bewegung des Rotors der Exzenterschneckenpumpe realisiert werden muss, die aus einer Überlagerung einer Eigenrotation des Rotors und eines gegenläufigen Umlaufs der Rotorachse auf einem Zylindermantel mit gleicher Frequenz besteht. Antriebe von bekannten Exzenterschneckenpumpen sind aufgrund ihrer Komplexität und der damit verbundenen Kosten kaum dafür geeignet, als Teil einer Dosierpumpe in einem Hausgerät, insbesondere einer Waschmaschine, eingesetzt zu werden.Since an eccentric screw pump in principle only has a single moving part, it is relatively inexpensive and robust and should therefore in principle be well suited for use in household appliances, in particular as a metering pump. the However, the simplicity of an eccentric screw pump requires a relatively complicated drive, since a two-dimensional movement of the rotor of the eccentric screw pump must be implemented, which consists of a superimposition of a self-rotation of the rotor and a counter-rotation of the rotor axis on a cylinder jacket with the same frequency. Drives of known eccentric screw pumps are hardly suitable for being used as part of a metering pump in a household appliance, in particular a washing machine, because of their complexity and the associated costs.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Exzenterschneckenpumpe mit einem einfach aufgebauten und kostengünstigen Antriebssystem bereitzustellen, wobei die Exzenterschneckenpumpe - abgesehen von dem Antriebssystem - zum Fördern eines Fluids über lediglich ein einziges bewegtes Teil verfügt und das Antriebssystem zum Realisieren der zweidimensionalen Bewegung eines Rotors der Exzenterschneckenpumpe geeignet ist.The present invention is based on the object of providing an eccentric screw pump with a simply constructed and inexpensive drive system, The eccentric screw pump - apart from the drive system - has only a single moving part for conveying a fluid and the drive system is suitable for realizing the two-dimensional movement of a rotor of the eccentric screw pump.

Diese Aufgabe wird durch den Gegenstand mit den Merkmalen nach den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Figuren, der Beschreibung und der abhängigen Ansprüche.This object is achieved by the subject matter with the features according to the independent claims. Advantageous embodiments of the invention are the subject matter of the figures, the description and the dependent claims.

Gemäß einem ersten Aspekt der Erfindung wird die Aufgabe mittels einer Exzenterschneckenpumpe nach Anspruch 1 gelöst.According to a first aspect of the invention, the object is achieved by means of an eccentric screw pump according to claim 1.

Gemäß einer bevorzugten Ausführungsform ist die Exzenterschneckenpumpe als 2:1 Hypozykloide-Exzenterschneckenpumpe ausgebildet, wobei die 2:1 Hypozykloide definiert ist, durch einen ersten Kreis mit einem Radius R, der schlupffrei auf der Innenseite eines zweiten Kreises mit einem Radius 2R abrollt.According to a preferred embodiment, the eccentric screw pump is designed as a 2: 1 hypocycloid eccentric screw pump, the 2: 1 hypocycloid being defined by a first circle with a radius R, which rolls off slip-free on the inside of a second circle with a radius 2R.

Gemäß einer weiteren bevorzugten Ausführungsform ist der Pumpenrotor derart exzentrisch an dem Antriebsrad angebracht, dass die Längsachse des Pumpenrotors in einem Abstand R von dem Mittelpunkt des Antriebsrads verläuft.According to a further preferred embodiment, the pump rotor is attached eccentrically to the drive wheel in such a way that the longitudinal axis of the pump rotor runs at a distance R from the center point of the drive wheel.

Gemäß einer weiteren bevorzugten Ausführungsform ist das Antriebsrad ein Zahnrad und die Exzenterschneckenpumpe umfasst ferner eine Antriebsschnecke, welche ausgebildet ist, das Antriebsrad anzutreiben.According to a further preferred embodiment, the drive wheel is a gear and the eccentric screw pump further comprises a drive screw which is designed to drive the drive wheel.

Gemäß einer weiteren bevorzugten Ausführungsform weist das Antriebsrad einen kreisförmigen Umfang auf.According to a further preferred embodiment, the drive wheel has a circular circumference.

Gemäß einer weiteren bevorzugten Ausführungsform ist das Antriebsrad ein Kronenrad mit Zähnen oder zylindrischen Zapfen.According to a further preferred embodiment, the drive wheel is a crown wheel with teeth or cylindrical pins.

Gemäß einer weiteren bevorzugten Ausführungsform ist das Antriebsrad ein Kegelrad.According to a further preferred embodiment, the drive wheel is a bevel gear.

Gemäß einer weiteren bevorzugten Ausführungsform umfasst das Antriebsrad eine hohlkehlartige Verzahnung.According to a further preferred embodiment, the drive wheel comprises a groove-like toothing.

Gemäß einer weiteren bevorzugten Ausführungsform weist das Antriebsrad einen nierenförmigen Umfang auf und die Exzenterschneckenpumpe umfasst ferner ein motorseitiges Antriebsrad, welches ausgebildet ist, das Antriebsrad anzutreiben.According to a further preferred embodiment, the drive wheel has a kidney-shaped circumference and the eccentric screw pump further comprises a motor-side drive wheel which is designed to drive the drive wheel.

Gemäß einer weiten bevorzugten Ausführungsform weisen der Pumpenrotor und der Pumpenstator eine jeweilige Form auf, die eine Periodizität entlang der Längsachse des Pumpenrotors definiert, wobei die Länge des Pumpenrotors und des Pumpenstators mindestens einer Periode entlang der Längsachse des Pumpenstators entsprechen.According to a further preferred embodiment, the pump rotor and the pump stator have a respective shape which defines a periodicity along the longitudinal axis of the pump rotor, the length of the pump rotor and the pump stator corresponding to at least one period along the longitudinal axis of the pump stator.

Gemäß einem zweiten Aspekt der Erfindung wird ein Hausgerät, insbesondere eine Waschmaschine, mit einer Exzenterschneckenpumpe nach dem ersten Aspekt der Erfindung bereitgestellt.According to a second aspect of the invention, a domestic appliance, in particular a washing machine, with an eccentric screw pump according to the first aspect of the invention is provided.

Es zeigen:

Fig. 1
eine schematische Darstellung zur Veranschaulichung der Kinematik einer Exzenterschneckenpumpe gemäß einer Ausführungsform,
Fig. 2
eine schematische Darstellung eines kinematischen Modells zur Veranschaulichung der Bewegung eines Pumpenrotors einer Exzenterschneckenpumpe gemäß einer Ausführungsform,
Fig. 3
eine schematische Darstellung eines Antriebs einer Exzenterschneckenpumpe gemäß einer Ausführungsform, der auf dem kinematischen Modell von Figur 2 basiert,
Fig. 4
eine schematische Darstellung zur Veranschaulichung des Bewegungsablaufs beim Antrieb von Figur 3,
Fig. 5
eine Querschnittsansicht eines Pumpenstators und eines Pumpenrotors einer Exzenterschneckenpumpe gemäß einer Ausführungsform,
Fig. 6
eine perspektivische Darstellung einer Exzenterschneckenpumpe gemäß einer Ausführungsform,
Fig. 7
eine Draufsicht der Exzenterschneckenpumpe von Figur 6,
Fig. 8
einen Längsschnitt der Exzenterschneckenpumpe von Figur 6,
Fig. 9
eine perspektivische Schnittansicht des Rotors der Exzenterschneckenpumpe von Figur 6, und
Fig. 10
eine schematische Darstellung eines Antriebs einer Exzenterschneckenpumpe gemäß einer weiteren Ausführungsform.
Show it:
Fig. 1
a schematic representation to illustrate the kinematics of an eccentric screw pump according to an embodiment,
Fig. 2
a schematic representation of a kinematic model to illustrate the movement of a pump rotor of an eccentric screw pump according to one embodiment,
Fig. 3
a schematic representation of a drive of an eccentric screw pump according to an embodiment based on the kinematic model of Figure 2 based,
Fig. 4
a schematic representation to illustrate the sequence of movements when driving Figure 3 ,
Fig. 5
a cross-sectional view of a pump stator and a pump rotor of an eccentric screw pump according to an embodiment,
Fig. 6
a perspective view of an eccentric screw pump according to an embodiment,
Fig. 7
a top view of the progressing cavity pump of Figure 6 ,
Fig. 8
a longitudinal section of the progressing cavity pump from Figure 6 ,
Fig. 9
a perspective sectional view of the rotor of the progressing cavity pump from FIG Figure 6 , and
Fig. 10
a schematic representation of a drive of an eccentric screw pump according to a further embodiment.

Figur 1 veranschaulicht die Kinematik eines Rotors 107 relativ zu einem Stator 109, wie sie bei einer Exzenterschneckenpumpe 100 gemäß einer nachstehend im Detail, insbesondere im Zusammenhang mit den Figuren 6 bis 9 beschriebenen Ausführungsform der Erfindung verwirklicht ist, bei der es sich um eine 2:1 Hypozykloid-Exzenterschneckenpumpe 100 handelt. Bei der so ausgebildeten Exzenterschneckenpumpe 100 lässt sich die Bewegung des Rotors 107 mittels eines ersten Kreises 10 mit einem Radius R beschreiben, welcher in einem zweiten Kreis 20, der doppelt so groß wie der erste Kreis 10 ist (also mit einem Radius 2R; daher das Verhältnis 2:1), schlupffrei abrollt. Dabei entspricht die Exzentrizität der Bewegung des Rotors 107 dem Radius R des ersten abrollenden Kreises 10. Figure 1 illustrates the kinematics of a rotor 107 relative to a stator 109, as it is in an eccentric screw pump 100 according to a detailed below, in particular in connection with the Figures 6 to 9 described embodiment of the invention is realized, which is a 2: 1 hypocycloid eccentric screw pump 100. In the eccentric screw pump 100 designed in this way, the movement of the rotor 107 can be described by means of a first circle 10 with a radius R, which is in a second circle 20, which is twice as large as the first circle 10 (i.e. with a radius 2R; hence the Ratio 2: 1), unrolls without slippage. The eccentricity of the movement of the rotor 107 corresponds to the radius R of the first rolling circle 10.

Der Mittelpunkt des abrollenden ersten Kreises 10, d.h. der Mittelpunkt des Rotors 107 (bzw. in der Draufsicht der Figuren 1 bis 3 der Durchstoßpunkt der Längsachse des Rotors 107), beschreibt bei seiner Bewegung einen weiteren Kreis, der konzentrisch mit dem zweiten Kreis 20 ist und von dem in Figur 1 durch den gebogenen Pfeil ein Abschnitt angedeutet ist. Der Durchmesser des vom ersten Kreis 10 beschriebenen weiteren Kreises entspricht quasi dem "Kolbenhub" der Exzenterschneckenpumpe 100, wie nachstehend im Zusammenhang insbesondere mit Figur 5 weiter ausgeführt wird.The center of the rolling first circle 10, ie the center of the rotor 107 (or in the plan view of FIG Figures 1 to 3 the point of penetration of the longitudinal axis of the rotor 107) describes a further circle during its movement, which is concentric with the second circle 20 and from which in Figure 1 a section is indicated by the curved arrow. The diameter of the further circle described by the first circle 10 corresponds, as it were, to the "piston stroke" of the eccentric screw pump 100, as will be seen below in connection with FIG Figure 5 continues.

Die in Figur 1 veranschaulichte Kinematik der Exzenterschneckenpumpe 100 lässt sich mittels eines kinematischen Modells verwirklichen, das in Figur 2 dargestellt ist. Dieses kinematische Modell besteht aus einer Koppel 101, die eine feste Länge 2R aufweist und an deren zwei Enden jeweils ein Gleitelement 102a, 102b gelenkig mit der Koppel 101 verbunden ist. Dabei ist das erste Gleitelement 102a entlang der y-Achse und das zweite Gleitelement 102b entlang der dazu orthogonalen x-Achse eines kartesischen Koordinatensystems geführt. Bei dem in Figur 2 dargestellten kinematischen Modell entspricht die Koppel 101 dem Durchmesser des ersten Kreises 10 von Figur 1, weist also eine Länge von 2R auf. Analog zum ersten Kreis 10 von Figur 1 führt der Mittelpunkt der Koppel 101 eine Kreisbewegung mit dem Radius R um den Ursprung des Koordinatensystem aus, der mit dem Mittelpunkt des zweiten Kreises 20 zusammenfällt. Während dieser Kreisbewegung des Mittelpunkts der Koppel 101 führen das erste und das zweite Gleitelement 102a, 102b jeweils eine lineare Oszillation mit der Amplitude 2R entlang der y-Achse bzw. der x-Achse aus, wobei die Oszillation des ersten Gleitelements 102a 90° phasenversetzt zu der Oszillation des zweiten Gleitelements 102b erfolgt. Dies bedeutet beispielsweise, dass bei dem kinematischen Modell von Figur 2 sich das erste Gleitelement 102a im Ursprung des Koordinatensystems befindet, wenn sich das zweite Gleitelement 102b in seiner maximalen Auslenkung befindet, und umgekehrt.In the Figure 1 The illustrated kinematics of the eccentric screw pump 100 can be implemented by means of a kinematic model that is shown in Figure 2 is shown. This kinematic model consists of a coupling 101 which has a fixed length 2R and at the two ends of which a sliding element 102a, 102b is articulated to the coupling 101. The first sliding element 102a is guided along the y-axis and the second sliding element 102b is guided along the orthogonal x-axis of a Cartesian coordinate system. The in Figure 2 In the kinematic model shown, the coupling 101 corresponds to the diameter of the first circle 10 of Figure 1 , so has a length of 2R. Analogous to the first circle 10 of Figure 1 the center of the coupling 101 executes a circular movement with the radius R around the origin of the coordinate system which coincides with the center of the second circle 20. During this circular movement of the center of the coupling 101, the first and the second sliding element 102a, 102b each perform a linear oscillation with the amplitude 2R along the y-axis and the x-axis, the oscillation of the first sliding element 102a being 90 ° out of phase the oscillation of the second slide member 102b takes place. this means, for example, that in the kinematic model of Figure 2 the first sliding element 102a is at the origin of the coordinate system when the second sliding element 102b is in its maximum deflection, and vice versa.

Gemäß einer Ausführungsform ist die Exzenterschneckenpumpe 100 derart ausgebildet, dass der Mittelpunkt der Koppel 101 des kinematischen Modells von Figur 2 mit der Längsachse des Rotors 107 (genauer mit dem Durchstoßpunkt der Längsachse) der Exzenterschneckenpumpe 100 zusammenfällt. Wie sich der Figur 5 entnehmen lässt, die eine Querschnittsansicht des Pumpenstators 109 und des Pumpenrotors 107 der Exzenterschneckenpumpe 100 gemäß einer solchen Ausführungsform zeigt, ist in jedem senkrecht zur Längsachse des Pumpenrotors 107 liegenden Querschnitt ein kreisförmiger Rotorquerschnitt in einem langlochförmigen Statorquerschnitt gegeben. Dabei zeigt Figur 5 eine Querschnittsansicht bei einer Höhe entlang der Längsachse des Rotors 107, die einer Führung des Rotors 107 durch den Stator 109 in x-Richtung analog zu der Führung des zweiten Gleitelements 102b von Figur 2 entspricht. Entsprechend wird bei anderen Höhen entlang der Längsachse des Rotors 107 jeweils eine Führung des Rotors 107 durch den Stator 109 in eine jeweilige Richtung definiert, die beispielsweise orthogonal zur der Führung von Figur 5 verläuft, d.h. eine Führung in y-Richtung analog zu der Führung des ersten Gleitelements 102a von Figur 1, oder in einem anderen Winkel hierzu steht.According to one embodiment, the eccentric screw pump 100 is designed such that the center point of the coupling 101 of the kinematic model of Figure 2 coincides with the longitudinal axis of the rotor 107 (more precisely with the point of penetration of the longitudinal axis) of the eccentric screw pump 100. How the Figure 5 which shows a cross-sectional view of the pump stator 109 and the pump rotor 107 of the eccentric screw pump 100 according to such an embodiment, there is a circular rotor cross-section in a slot-shaped stator cross-section in each cross-section perpendicular to the longitudinal axis of the pump rotor 107. It shows Figure 5 a cross-sectional view at a height along the longitudinal axis of the rotor 107, which corresponds to a guidance of the rotor 107 by the stator 109 in the x-direction analogous to the guidance of the second sliding element 102b of FIG Figure 2 is equivalent to. Correspondingly, at other heights along the longitudinal axis of the rotor 107, a guide of the rotor 107 is defined by the stator 109 in a respective direction which, for example, is orthogonal to the guide of Figure 5 runs, ie a guide in the y-direction analogous to the guide of the first sliding element 102a of FIG Figure 1 , or at a different angle to it.

In Figur 5 sind drei ausgezeichnete Punkte P1, P2 und P3 der Exzenterschneckenpumpe 100 gemäß einer Ausführungsform dargestellt.In Figure 5 three marked points P1, P2 and P3 of the eccentric screw pump 100 according to an embodiment are shown.

Der Punkt P1 ist der Mittelpunkt des Pumpenstators 109. Jeder Querschnitt des Stators 109 hat den Punkt P1 als Symmetriezentrum.The point P1 is the center point of the pump stator 109. Each cross section of the stator 109 has the point P1 as the center of symmetry.

Der Punkt P3 befindet sich in einem Abstand 2R vom Mittelpunkt des Stators 109, d.h. vom Punkt P1, und zwar in der dargestellten Phase, d.h. bei der dargestellten Höhe, auf der x-Achse. Dieser Punkt P3 auf dem Rotor 107 führt im Bezugssystem des Stators 109 für den hier exemplarisch dargestellten Querschnitt eine Oszillation entlang der x-Achse mit der Amplitude 2R, d.h. einen "Kolbenhub" von insgesamt 4R aus. Der Punkt P3 entspricht der Kreismitte des Rotorquerschnitts. Gemäß einer Ausführungsform befindet sich in diesem Punkt P3, der Kreismittelpunkt des Antriebsrades 103, d.h. die Antriebsradachse verläuft durch diesen Punkt. Dadurch führt das Antriebsrad 103 im Bezugssystem des Stators 109 eine in x-Richtung oszillierende Bewegung aus.The point P3 is located at a distance 2R from the center point of the stator 109, that is to say from the point P1, in the illustrated phase, that is to say at the illustrated height, on the x-axis. In the reference system of the stator 109, this point P3 on the rotor 107 performs an oscillation along the x-axis with the amplitude 2R, ie a "piston stroke" totaling 4R for the cross section shown here by way of example. The point P3 corresponds to the center of the circle of the rotor cross-section. According to one embodiment, the center of the circle of the drive wheel 103, ie the center of the circle, is located at this point P3 Drive wheel axle runs through this point. As a result, the drive wheel 103 executes a movement oscillating in the x direction in the reference system of the stator 109.

In der beispielhaften Orientierung von Figur 5 verläuft die Rotorachse durch den Punkt P2, der sich in einem Abstand R vom Statormittelpunkt P1 befindet. Bei der Drehung des Rotors 107 bewegt sich dieser Punkt P2 im Bezugssystem des Stators 109 auf einem Kreis mit Radius R um den Statormittelpunkt P1. Im Bezugssystem des Rotors 107 bewegt sich der Punkt P2 auf einem Kreis mit Radius R um den Kreismittelpunkt des Rotorquerschnitts, also um den Punkt P3. In einer Ausführungsform der Exzenterschneckenpumpe 100 kann in diesem Punkt P2 ein nachstehend im Zusammenhang mit Figur 7 beschriebener Zapfen an dem Antriebsrad 103 angebracht sein, der zur Erzeugung einer Axialkraft auf den Rotor 107 dient. Bei einer solchen Anbringung führt der Zapfen im Bezugssystem des Stators 109 eine kreisende Bewegung aus (in Figur 7 ist der Bewegungskreis des Zapfenmittelpunkts eingezeichnet).In the exemplary orientation of Figure 5 the rotor axis runs through the point P2, which is at a distance R from the stator center point P1. When the rotor 107 rotates, this point P2 moves in the reference system of the stator 109 on a circle with radius R around the stator center point P1. In the reference system of the rotor 107, the point P2 moves on a circle with radius R around the center of the circle of the rotor cross-section, that is to say around the point P3. In one embodiment of the eccentric screw pump 100, a following in connection with Figure 7 The pin described may be attached to the drive wheel 103, which serves to generate an axial force on the rotor 107. With such an attachment, the pin executes a circular movement in the reference system of the stator 109 (in Figure 7 the circle of movement of the pivot center point is shown).

Die in Figur 5 gekennzeichneten Punkte P1, P2 und P3 entsprechen in Figur 2, die jedoch einer anderen Ausrichtung des Rotors 107 entspricht (nämlich einer Ausrichtung mit einem Winkel α von ungefähr 60°), dem Mittelpunkt des großen Kreises 20 (P1), d.h. dem Statormittelpunkt, dem Mittelpunkt der Koppel 101 (P2), d.h. der im Bezugssystem des Stators 109 auf einem Kreis mit Radius R um den Statormittelpunkt umlaufenden Rotorachse, und dem Gelenkpunkt des zweiten Gleitelements 102b (P3), d.h. dem entlang der x-Achse oszillierenden Mittelpunkt des Rotorquerschnitts.In the Figure 5 marked points P1, P2 and P3 correspond to in Figure 2 , which, however, corresponds to a different orientation of the rotor 107 (namely an orientation with an angle α of approximately 60 °), the center of the large circle 20 (P1), ie the stator center, the center of the coupling 101 (P2), ie the im Reference system of the stator 109 on a circle with radius R around the stator center point revolving rotor axis, and the articulation point of the second sliding element 102b (P3), ie the center point of the rotor cross section oscillating along the x-axis.

Wie nachstehend beschrieben, weisen erfindungsgemäße Ausführungsformen der Erfindung einen Antriebsmechanismus auf, der die in Figur 1 und dem kinematischen Modell von Figur 2 veranschaulichte Bewegung des Rotors 107 mittels einer zentrischen Rotation erzeugt bzw. auf den Rotor 107 überträgt. Figur 3 veranschaulicht eine Verwirklichung des kinematischen Modells von Figur 2 im Rahmen eines Antriebsmechanismus der Exzenterschneckenpumpe 100 gemäß einer Ausführungsform. Der Antriebsmechanismus umfasst ein rundes Antriebsrad in Form eines Zahnrads 103 sowie eine zylindrische Antriebsschnecke 105, die ausgebildet ist, auf bekannte Art und Weise mit den Zähnen des Zahnrades 103 (unter anderem dem beispielhaften Zahn 103a), derart zu interagieren, dass eine beispielsweise durch einen Antriebsmotor bewirkte Drehbewegung der Antriebsschnecke 105 in einer Drehung des Zahnrads 103 resultiert.As described below, embodiments of the invention according to the invention include a drive mechanism which is the same as that shown in FIG Figure 1 and the kinematic model of Figure 2 The illustrated movement of the rotor 107 is generated or transmitted to the rotor 107 by means of a centric rotation. Figure 3 illustrates an implementation of the kinematic model of FIG Figure 2 as part of a drive mechanism of the eccentric screw pump 100 according to one embodiment. The drive mechanism comprises a round drive wheel in the form of a gear 103 and a cylindrical drive worm 105 which is designed to interact in a known manner with the teeth of the gear 103 (including the exemplary tooth 103a) in such a way that a Drive motor The rotational movement of the drive worm 105 caused results in a rotation of the gear 103.

Wie sich anhand von Figur 3 erkennen lässt, führt eine zentrische Anbringung des runden Zahnrads 103 an dem Punkt, der im kinematischen Modell von Figur 2 der Position des ersten Gleitelements 102a entspricht (d.h. das Zentrum des Zahnrads 103 befindet sich im Gelenkpunkt des erstens Gleitelements 102a), dazu, dass das Zahnrad 103 bei einer Drehung um dessen Zentrum gleichzeitig eine Oszillation in y-Richtung mit einer Amplitude von 2R ausführt, wobei in x-Richtung keine Bewegung des Zahnrads 103 erfolgt. Der Fachmann wird erkennen, dass die Länge der Koppel 101 im Verhältnis zum Radius des Antriebsrads 103 bei Ausführungsformen der Erfindung bedeutend kleiner sein kann, als in Figur 3 dargestellt. Figur 3 zeigt ferner einen Abstand m zwischen der Längsachse der Antriebsschnecke 105, die einen Halbdurchmesser d/2 aufweist. In einer Ausführungsform kann die Exzenterschneckenpumpe 100 die folgenden Abmessungen aufweisen: Antriebsschnecke 105 Teilkreisdurchmesser d 8,8 mm, Zahnrad 103 Teilkreisdurchmesser 27,2 mm, Radius R 1 mm, was einem "Kolbenhub" von 4 mm entspricht, Achsabstand m = (27,2 mm + 8,8 mm)/2 = 18 mm.How to use Figure 3 can be seen, a centric attachment of the round gear 103 leads to the point in the kinematic model of Figure 2 corresponds to the position of the first sliding element 102a (ie the center of the gear wheel 103 is located at the pivot point of the first sliding element 102a), in addition to the fact that the gear wheel 103 simultaneously executes an oscillation in the y-direction with an amplitude of 2R when it rotates about its center, there is no movement of the gear wheel 103 in the x direction. The person skilled in the art will recognize that the length of the coupling 101 in relation to the radius of the drive wheel 103 in embodiments of the invention can be significantly smaller than in FIG Figure 3 shown. Figure 3 also shows a distance m between the longitudinal axis of the drive worm 105, which has a half diameter d / 2. In one embodiment, the eccentric screw pump 100 can have the following dimensions: drive worm 105 pitch circle diameter d 8.8 mm, gear 103 pitch circle diameter 27.2 mm, radius R 1 mm, which corresponds to a "piston stroke" of 4 mm, center distance m = (27, 2 mm + 8.8 mm) / 2 = 18 mm.

Bei Ausführungsformen der Exzenterschneckenpumpe 100 ist somit das Antriebsrad 103 zentrisch an dem Punkt fixiert, der im kinematischen Modell von Figur 2 der Position des ersten Gleitelements 102a entspricht, und der Pumpenrotor 107 ist derart mit dem Antriebsrad 103 verbunden, dass die Koppel 101 mit dem Durchmesser des Pumpenrotors 107 bzw. der Mittelpunt der Koppel 101 mit der Längsachse des Pumpenrotors 107 zusammenfällt. Mit anderen Worten: der Pumpenrotor ist in einem Abstand R vom Zentrum des Antriebsrads 103 exzentrisch an diesem angebracht. Bei einer solchen Ausgestaltung überträgt sich eine Drehung des Zahnrads 103 um dessen Zentrum direkt auf den mit dem Zahnrad 103 verbundenen Pumpenrotor 107, während das Zahnrad 103, dessen Zentrum mit dem ersten Gleitelement 102a zusammenfällt, eine Oszillation in y-Richtung ausführt.In embodiments of the eccentric screw pump 100, the drive wheel 103 is thus fixed centrally at the point that is shown in the kinematic model of FIG Figure 2 corresponds to the position of the first sliding element 102a, and the pump rotor 107 is connected to the drive wheel 103 in such a way that the coupling 101 coincides with the diameter of the pump rotor 107 or the center point of the coupling 101 coincides with the longitudinal axis of the pump rotor 107. In other words: the pump rotor is eccentrically attached to the drive wheel 103 at a distance R from the center thereof. In such a configuration, a rotation of the gear 103 about its center is transmitted directly to the pump rotor 107 connected to the gear 103, while the gear 103, the center of which coincides with the first sliding element 102a, oscillates in the y-direction.

Wie bereits vorstehend beschrieben, kann die parallel zur y-Achse in einem geeigneten Abstand m angeordnete zylindrische Antriebsschnecke 105 wie bei einem herkömmlichen Schneckenantrieb durch eine Drehung um deren Achse eine Eigendrehung des Zahnrads 103 erzielen, während sich gleichzeitig das Zahnrad 103 längs der Antriebsschnecke 105 in einer Oszillation mit Amplitude 2R hin und her bewegt. Dies wird in Figur 4 veranschaulicht, welche die relativen Positionen des Antriebsrads 103 zu der Antriebsschnecke 105 der Exzenterschneckenpumpe 100 gemäß einer Ausführungsform bei einer vollen Umdrehung des Antriebsrads 103 zeigt. Die Koppel und die Gleitelemente in den Ansichten von Figur 4 sind nicht tatsächlich in der Exzenterschneckenpumpe 100 vorhanden, sondern dienen lediglich zur Verdeutlichung, dass das kinematische Modell von Figur 2 verwirklicht ist. Beispielsweise kann sich die Bewegung des Pumpenrotors 107 der Exzenterschneckenpumpe 100 als die Bewegung des Kreises gedacht werden, dessen Durchmesser durch die Koppel definiert wird, wie bereits vorstehend beschrieben. Die verschiedenen Ansichten von Figur 4 veranschaulichen nochmals, dass bei einer vollen Umdrehung des Antriebsrads 103 dessen Zentrum sich mit einer oszillierenden lediglich in y-Richtung, d.h.in vertikaler Richtung hin und her bewegt, aber keine Bewegung in x-Richtung, d.h. horizontaler Richtung erfolgt, sich also insbesondere der Abstand zwischen dem Zentrum des Antriebsrads 103 und der Längsachse der Antriebsschnecke 105 nicht ändert.As already described above, the cylindrical drive worm 105, which is arranged parallel to the y-axis at a suitable distance m, can, as in a conventional worm drive, achieve a self-rotation of the gear 103 by rotating around its axis, while at the same time the gear 103 moves along the drive worm 105 moved back and forth in an oscillation with amplitude 2R. This is done in Figure 4 4, which shows the relative positions of the drive wheel 103 to the drive screw 105 of the eccentric screw pump 100 according to one embodiment with a full revolution of the drive wheel 103. The coupling and the sliding elements in the views of Figure 4 are not actually present in the eccentric screw pump 100, but merely serve to illustrate that the kinematic model of Figure 2 is realized. For example, the movement of the pump rotor 107 of the eccentric screw pump 100 can be thought of as the movement of the circle, the diameter of which is defined by the coupling, as already described above. The different views of Figure 4 illustrate once again that with a full revolution of the drive wheel 103 its center moves back and forth with an oscillating only in the y-direction, i.e. the vertical direction, but no movement in the x-direction, that is, the horizontal direction, i.e. in particular the distance between the center of the drive wheel 103 and the longitudinal axis of the drive worm 105 does not change.

Die Figuren 6 bis 9 zeigen unterschiedliche Ansichten einer Ausführungsformen der Exzenterpumpenschnecke 100, nämlich eine perspektivische Ansicht, eine Draufsicht, einen Längsschnitt und eine perspektivische Schnittansicht. Bei der in den Figuren 6 bis 9 dargestellten Ausführungsform der Exzenterschneckenpumpe 100 ist das Antriebsrad 103 als Stirnzahnrad 103 mit Schrägverzahnung, beispielsweise dem Zahn 103a, ausgebildet, das von der als Zylinderschnecke ausgebildeten Antriebsschnecke 105 angetrieben werden kann.the Figures 6 to 9 show different views of an embodiment of the eccentric pump worm 100, namely a perspective view, a top view, a longitudinal section and a perspective sectional view. In the case of the Figures 6 to 9 In the illustrated embodiment of the eccentric screw pump 100, the drive wheel 103 is designed as a spur gear 103 with helical teeth, for example the tooth 103a, which can be driven by the drive screw 105 designed as a cylindrical screw.

Die exzentrische Anbringung des Pumpenrotors 107 an dem Antriebsrad 103 lässt sich beispielsweise der Draufsicht von Figur 7 entnehmen. Hierbei ist zu beachten, dass der Mittelpunkt des nach oben abstehenden Zapfens auf dem Zahnrad 103 nicht der Drehpunkt ist, um den sich das Zahnrad 103 (exzentrisch) dreht, da, wie bereits vorstehend in Verbindung mit Figur 5 beschrieben, der Zapfen eine kreisende Bewegung ausführt, während sich das Zahnrad 103 um dessen geometrische Mitte dreht. In einer Ausführungsform kann der Zapfen dazu dienen, den Pumpenrotor 107 mittels einer Druckplatte axial in den Pumpenstator 109 zu pressen. Dabei gleitet der Zapfen mit der vorstehend erwähnten Bewegung auf der Druckplatte. Der in Figur 8 dargestellte Längsschnitt durch die Exzenterschneckenpumpe 100 zeigt den Pumpenrotor 107 in einer Ausrichtung, bei der die maximale Exzentrizität des Antriebsrads 103 gerade in der Zeichenebene liegt.The eccentric attachment of the pump rotor 107 to the drive wheel 103 can be seen, for example, from the top view of FIG Figure 7 remove. It should be noted here that the center point of the pin protruding upwards on the gearwheel 103 is not the fulcrum around which the gearwheel 103 rotates (eccentrically), since, as already described above in connection with Figure 5 described, the pin executes a circular motion while the gear 103 rotates about its geometric center. In one embodiment, the pin can serve to press the pump rotor 107 axially into the pump stator 109 by means of a pressure plate. The pin slides with the aforementioned movement on the pressure plate. The in Figure 8 The illustrated longitudinal section through the eccentric screw pump 100 shows the pump rotor 107 in one Orientation in which the maximum eccentricity of the drive wheel 103 lies straight in the plane of the drawing.

Wie sich dem in Figur 8 gezeigten Längsschnitt entnehmen lässt, ist der Pumpenrotor 107 einstückig mit dem Antriebsrad 103 ausgebildet. Ferner ist ein Abschnitt des Pumpenstators 109 (in Figur 8 der obere Abschnitt des Pumpenstators 109) als Teil eines Gehäuses dazu ausgebildet, das als Lager für das Antriebsrad 103 und/oder den Pumpenrotor 107 dient, und dass die vorstehend beschriebene oszillierende Bewegung des Antriebsrads 103 ermöglicht. Der Pumpenstator 109 umfasst ferner einen Auslauf 113 zum Abführen eines geförderten Fluids und einen Leckageablauf 111. Der Leckageablauf 111 dient dazu, von der Exzenterschneckenpumpe 100 gefördertes Fluid abführen zu können, dass aus dem Dichtabsatz unterhalb des Antriebsrads 103 austritt.How the in Figure 8 As shown in the longitudinal section, the pump rotor 107 is formed in one piece with the drive wheel 103. Furthermore, a portion of the pump stator 109 (in Figure 8 the upper section of the pump stator 109) is designed as part of a housing that serves as a bearing for the drive wheel 103 and / or the pump rotor 107, and that enables the above-described oscillating movement of the drive wheel 103. The pump stator 109 further comprises an outlet 113 for discharging a pumped fluid and a leakage outlet 111. The leakage outlet 111 serves to be able to discharge fluid delivered by the eccentric screw pump 100 that emerges from the sealing shoulder below the drive wheel 103.

Sowohl die Form des Pumpenrotors 107 als auch die entsprechende Form des Pumpenstators 109 weisen eine Periodizität entlang der Längsachse des Pumpenrotors 107 auf, wobei die Rotorperiode in der Regel halb so groß wie die Statorperiode ist. Beispielsweise entspricht die Länge des Pumpenrotors 107 und des Pumpenstators 109 bei der in den Figuren 6 bis 9 dargestellten Ausführungsform der Exzenterschneckenpumpe 100 ungefähr 3.8 Rotorperioden entlang der Längsachse des Pumpenrotors 107, was 1.9 Statorperioden entspricht. Gemäß Ausführungsformen der Exzenterschneckenpumpe 100 sollte die Länge des Pumpenrotors 107 und des Pumpenstators 109 mindestens einer Periode entlang der Längsachse des Pumpenstators 109, d.h. einer Statorperiode, entsprechen.Both the shape of the pump rotor 107 and the corresponding shape of the pump stator 109 have a periodicity along the longitudinal axis of the pump rotor 107, the rotor period generally being half the stator period. For example, the length of the pump rotor 107 and the pump stator 109 corresponds to that in FIG Figures 6 to 9 The illustrated embodiment of the eccentric screw pump 100 has approximately 3.8 rotor periods along the longitudinal axis of the pump rotor 107, which corresponds to 1.9 stator periods. According to embodiments of the eccentric screw pump 100, the length of the pump rotor 107 and the pump stator 109 should correspond to at least one period along the longitudinal axis of the pump stator 109, ie one stator period.

Typische Spezifikationen für die in den Figuren 6 bis 9 gezeigte Ausführungsform der Exzenterschneckenpumpe 100 zur Verwendung als Dosierpumpe für ein Hausgerät, insbesondere eine Waschmaschine, sind die folgenden, die teilweise schon vorstehend genannt worden sind: Exzentrizität der Exzenterschneckenpumpe 100 (d.h. Abstand der Längsachse des Rotors 107 vom Mittelpunkt des Antriebsrads 103) R = 2 mm, Drehzahl des Pumpenrotors 107 1 Umdrehung/s. Mit diesen Werten ergibt sich in der Praxis eine Gesamtbewegung, bei der die durch die Oszillation des Zahnrads 103 verursachten Schwankungen z.B. im Drehmoment oder in der Rotordrehzahl vergleichsweise gering sind und ohne praktische Einschränkungen in Bezug auf z.B. Laufruhe in Kauf genommen werden können.Typical specifications for those in the Figures 6 to 9 The embodiment shown of the eccentric screw pump 100 for use as a metering pump for a household appliance, in particular a washing machine, are the following, some of which have already been mentioned above: Eccentricity of the eccentric screw pump 100 (i.e. distance of the longitudinal axis of the rotor 107 from the center of the drive wheel 103) R = 2 mm, speed of the pump rotor 107 1 revolution / s. In practice, these values result in an overall movement in which the fluctuations caused by the oscillation of the gearwheel 103, for example in the torque or in the rotor speed, are comparatively small and can be accepted without practical restrictions in relation to, for example, smooth running.

Bei einer als Zylinderschnecke ausgebildeten Antriebsschnecke 105 können gemäß Ausführungsformen der Erfindung andere Formen des Antriebsrads 103 und dessen Verzahnung eingesetzt werden, beispielsweise kann das Antriebsrad 103 auch als Kronenrad mit Zähnen oder zylindrischen Zapfen, als Kegelrad, insbesondere in Globoidversion, oder als Globoidrad ausgebildet sein. Bei einem Antriebsrad 103 in Form eines Globoidrads kann die Verzahnung des beispielsweise als Stirnrad ausgeführten Antriebsrads 103 hohlkehlartig geformt sein. Die Globoid-Variante lässt sich auch auf die anderen Zahnradformen anwenden.In the case of a drive worm 105 designed as a cylindrical worm, other forms of the drive wheel 103 and its toothing can be used according to embodiments of the invention, for example the drive wheel 103 can also be designed as a crown gear with teeth or cylindrical pins, as a bevel gear, in particular in a globoid version, or as a globoid gear. In the case of a drive wheel 103 in the form of a globoid wheel, the toothing of the drive wheel 103, for example designed as a spur wheel, can be shaped like a flute. The globoid variant can also be used on the other gear wheel shapes.

Gemäß Ausführungsformen der Erfindung kann für den motorseitigen Antrieb statt einer zylindrischen Antriebsschnecke beispielsweise auch ein Stirnrad verwendet werden. Eine derartige Ausführungsform ist in Figur 10 dargestellt, die eine schematische Draufsicht eines kreisrunden motorseitigen Antriebsrads 205 und eines Antriebsrads 203 des Pumpenrotors 107 der Exzenterschneckenpumpe 100 zeigt. Um mit dem runden motorseitigen Antriebsrad 205 die vorstehend beschriebene Bewegung des Antriebsrads 203 des Pumpenrotors 107 zu erreichen, d.h. eine Eigendrehung mit gegenläufiger Oszillation, ist der Umfang des Antriebsrads 203 des Pumpenrotors 107 im Wesentlichen nierenförmig ausgebildet. Dies führt dazu, dass sich der Eingriffspunkt der beiden Antriebsräder 203, 205 statt auf einer Geraden (wie bei der vorstehend beschriebenen Ausführungsform mit dem runden Antriebsrad 103 und der Zylinderschnecke 105) entlang eines Kreisbogens um den Mittelpunkt des motorseitigen Antriebsrads 205 bewegt.According to embodiments of the invention, instead of a cylindrical drive worm, a spur gear, for example, can also be used for the drive on the motor side. Such an embodiment is shown in Figure 10 which shows a schematic top view of a circular motor-side drive wheel 205 and a drive wheel 203 of the pump rotor 107 of the eccentric screw pump 100. In order to achieve the above-described movement of the drive wheel 203 of the pump rotor 107 with the round motor-side drive wheel 205, ie a self-rotation with counter-rotating oscillation, the circumference of the drive wheel 203 of the pump rotor 107 is essentially kidney-shaped. This means that the point of engagement of the two drive wheels 203, 205 moves along an arc around the center of the motor-side drive wheel 205 instead of on a straight line (as in the embodiment described above with the round drive wheel 103 and the cylindrical worm 105).

Wie bereits teilweise vorstehend beschrieben, weist die erfindungsgemäße Exzenterschneckenpumpe 100 unter anderem die folgenden Vorteile auf.As already partially described above, the eccentric screw pump 100 according to the invention has, inter alia, the following advantages.

Die erfindungsgemäße Exzenterschneckenpumpe 100 weist (abgesehen von der Antriebsschnecke 105 oder dem Antriebsrad 205) nur ein einziges bewegtes Teil auf, nämlich den Pumpenrotor 107 zusammen mit dem Antriebsrad 103, die, wie vorstehend beschrieben, auch einstückig ausgebildet werden können. Zum Ausgleich der Exzenterbewegung ist bei der erfindungsgemäßen Exzenterschneckenpumpe 100 kein zusätzliches Bauteil erforderlich. Es handelt sich hierbei also um eine technisch einfach zu verwirklichende Lösung, zumal das einzige bewegte Teil, d.h. der Pumpenrotor 107 in Verbindung mit dem Antriebsrad 103 der Exzenterschneckenpumpe 100, starr (nicht elastisch) ausgebildet werden kann.The eccentric screw pump 100 according to the invention has (apart from the drive screw 105 or the drive wheel 205) only a single moving part, namely the pump rotor 107 together with the drive wheel 103, which, as described above, can also be formed in one piece. No additional component is required in the eccentric screw pump 100 according to the invention to compensate for the eccentric movement. So this is a technically simple one Solution to be realized, especially since the only moving part, ie the pump rotor 107 in connection with the drive wheel 103 of the eccentric screw pump 100, can be made rigid (not elastic).

Die erfindungsgemäße Exzenterschneckenpumpe 100 kann sehr kompakt ausgebildet werden, da ein bei herkömmlichen Pumpen erforderlicher Exzenterausgleich, beispielsweise in Form einer Kardanwelle, wegelassen werden kann, der in der Regel eine große Baulänge beansprucht. Bei gegebenem Bauraum kann sich die bei der erfindungsgemäßen Exzenterschneckenpumpe 100 eingesparte Baulänge in zusätzliche Länge einer Pumpzelle umsetzen. Da die Länge der Pumpzelle in der Regel proportional zu der Länge der Berührlinie zwischen dem Rotor 107 und dem Stator 109 der Exzenterschneckenpumpe 100 ist, was auch als Dichtkontur bezeichnet wird, kann die erfindungsgemäße Exzenterschneckenpumpe 100 entsprechend fluiddichter ausgebildet werden und somit genauer dosieren, d.h. der tatsächliche Volumenstrom entspricht besser dem nominellen Volumenstrom (in der Praxis ist ein minimaler Schlupf in der Regel unvermeidlich). Umgekehrt lässt sich bei einer vorgegebenen Dosiergenauigkeit mit einer größeren Länge der Pumpzelle, d.h. einer längerer Dichtkontur, ein größeres Spaltmaß zwischen dem Rotor 107 und dem Stator 109 der erfindungsgemäßen Exzenterschneckenpumpe 100 einsetzen, was zu einer Reduktion der erforderlichen Genauigkeit der Bauteile und damit letztendlich zu einer Reduktion der Kosten der Exzenterschneckenpumpe 100 bei gegebener Dosiergenauigkeit führt.The eccentric screw pump 100 according to the invention can be made very compact, since the eccentric compensation required in conventional pumps, for example in the form of a cardan shaft, can be omitted, which as a rule requires a great length. With a given installation space, the overall length saved in the eccentric screw pump 100 according to the invention can be converted into additional length of a pump cell. Since the length of the pump cell is usually proportional to the length of the line of contact between the rotor 107 and the stator 109 of the eccentric screw pump 100, which is also referred to as the sealing contour, the eccentric screw pump 100 according to the invention can be designed in a correspondingly fluid-tight manner and thus dose more precisely, ie the The actual volume flow corresponds better to the nominal volume flow (in practice, a minimum slip is usually unavoidable). Conversely, with a given metering accuracy with a greater length of the pump cell, ie a longer sealing contour, a greater gap size between the rotor 107 and the stator 109 of the eccentric screw pump 100 according to the invention can be used, which leads to a reduction in the required accuracy of the components and thus ultimately to a Reduction in the cost of the eccentric screw pump 100 leads to a given metering accuracy.

Bei der erfindungsgemäßen Exzenterschneckenpumpe 100 tritt im Gegensatz zu Exzenterschneckenpumpen mit elastischen Kupplungen, z.B. einer Federstegkupplung oder einer Kardanwelle mit Elastikgelenken, nur eine geringe zusätzliche Lagerbelastung auf, da keine Querkräfte erzeugt werden. Daher unterliegen die Bauteile der erfindungsgemäßen Exzenterschneckenpumpe 100 keiner Bauteilermüdung durch starke Biegewechselbeanspruchung.In the eccentric screw pump 100 according to the invention, in contrast to eccentric screw pumps with elastic couplings, e.g. a spring bar coupling or a cardan shaft with elastic joints, only a slight additional bearing load occurs, since no transverse forces are generated. The components of the eccentric screw pump 100 according to the invention are therefore not subject to any component fatigue due to strong alternating bending stress.

Wie vorstehend beschrieben, ermöglicht die Kombination aus Rotor 107 und Stator 109 der erfindungsgemäßen Exzenterschneckenpumpe 100 genau die vorstehend anhand des kinematischen Modells von Figur 2 beschriebene Bewegung. Da hierbei das Antriebsrad 103 diese Bewegung vollführt ist bei der erfindungsgemäßen Exzenterschneckenpumpe 100 kein zusätzliches Lager erforderlich. Bei Ausführungsformen der Exzenterschneckenpumpe 100 kann dieser Bereich bei einer entsprechend gewählten Fluidführung lediglich als Dichtung dienen.As described above, the combination of rotor 107 and stator 109 of the eccentric screw pump 100 according to the invention enables exactly the above based on the kinematic model of FIG Figure 2 described movement. Since the drive wheel 103 performs this movement, no additional bearing is required in the eccentric screw pump 100 according to the invention. at In embodiments of the eccentric screw pump 100, this area can only serve as a seal with a correspondingly selected fluid guide.

Bei der in den Figuren 6 bis 9 dargestellten Ausführungsform lässt sich das Antriebsrad 103 in Form des Zahnrads in beliebiger Phase, d.h. in einer beliebigen winkligen Ausrichtung, mit der Antriebsschnecke 105 verbinden. Bei der Montage ist es somit nicht notwendig, eine spezielle winklige Orientierung des Zahnrads 103 relativ zu der Antriebsschnecke 105 zu beachten, was die Montage bedeutend vereinfacht und gegenüber Pumpenkonstruktionen, bei denen das Antriebsrad phasenrichtig montiert werden muss, die Montagekosten reduziert.In the case of the Figures 6 to 9 In the illustrated embodiment, the drive wheel 103 in the form of a gear can be connected to the drive worm 105 in any phase, ie in any angular orientation. During assembly, it is therefore not necessary to observe a special angular orientation of the gear wheel 103 relative to the drive worm 105, which significantly simplifies assembly and reduces assembly costs compared to pump designs in which the drive wheel must be assembled in the correct phase.

BezugszeichenlisteList of reference symbols

1010
erster Kreisfirst circle
2020th
zweiter Kreissecond circle
100100
ExzenterschneckenpumpeEccentric screw pump
101101
KoppelPaddock
102a102a
erstes Gleitelementfirst sliding element
102b102b
zweites Gleitelementsecond sliding element
103103
PumpenantriebsradPump drive wheel
103a103a
Zahntooth
105105
AntriebsschneckeDrive screw
107107
PumpenrotorPump rotor
109109
PumpenstatorPump stator
203203
PumpenantriebsradPump drive wheel
205205
Antriebsraddrive wheel

Claims (11)

  1. Eccentric screw pump (100) with a pump rotor (107) and a pump stator (109), wherein the pump stator (109) defines a cavity, in which at least one part of the pump rotor (107) is arranged so as to be able to rotate, and the pump rotor (107) is embodied to be rotated by a drive wheel (103, 203), in order to convey a fluid, wherein the pump rotor (107) is attached eccentrically to the drive wheel (103, 203), wherein the pump rotor (107) and the drive wheel (103, 203) are embodied in one piece, characterised in that
    the pump stator (109) comprises a bearing, which is embodied to receive the drive wheel (103, 203) and/or the pump rotor (107) in a supporting manner, wherein the bearing is a section of the pump stator (109), wherein the pump stator (109) defines an outlet (113) for discharging conveyed fluid, wherein the pump stator (109) comprises a leakage outflow (111), which is used to be able to discharge fluid conveyed from the eccentric screw pump (100), which leaks out from a sealing projection below the drive wheel (103).
  2. Eccentric screw pump (100) according to claim 1, characterised in that the eccentric screw pump (100) is embodied as a 2:1 hypocycloid eccentric screw pump (100), wherein the 2:1 hypocycloid is defined by a first circle (10) with a radius R, which rolls in a slip-free manner on the interior of a second circle (20) with a radius 2R.
  3. Eccentric screw pump (100) according to claim 1 or 2, characterised in that the pump rotor (107) is attached eccentrically to the drive wheel (103, 203) so that the longitudinal axis of the pump rotor (107) runs at a distance R from the centre point of the drive wheel (103, 203).
  4. Eccentric screw pump (100) according to one of the preceding claims, characterised in that the drive wheel (103) is a gear wheel and the eccentric screw pump (100) further comprises a worm screw (105) which is embodied to drive the drive wheel (103).
  5. Eccentric screw pump (100) according to claim 4, characterised in that the drive wheel (103) has a circular periphery.
  6. Eccentric screw pump (100) according to one of the preceding claims, characterised in that the drive wheel (103) is a crown wheel with teeth or cylindrical pins.
  7. Eccentric screw pump (100) according to one of the preceding claims, characterised in that the drive wheel (103) is a bevel wheel.
  8. Eccentric screw pump (100) according to claim 7, characterised in that the drive wheel comprises a chamfered toothing.
  9. Eccentric screw pump (100) according to one of claims 1 to 3, characterised in that the drive wheel (203) has a kidney-shaped periphery and the eccentric screw pump (100) further comprises a motor-side drive wheel (205), which is embodied to drive the drive wheel (203).
  10. Eccentric screw pump (100) according to one of the preceding claims, characterised in that the pump rotor (107) and the pump stator (109) have a respective shape, which defines a periodicity along the longitudinal axis of the pump rotor (107), wherein the length of the pump rotor (107) and the pump stator (109) correspond to at least one period along the longitudinal axis of the pump stator (109).
  11. Household appliance, in particular washing machine, having an eccentric screw pump (100) according to one of the preceding claims.
EP17717685.6A 2016-04-28 2017-04-12 Eccentric screw pump Active EP3449128B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17717685T PL3449128T3 (en) 2016-04-28 2017-04-12 Eccentric screw pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016207247.1A DE102016207247A1 (en) 2016-04-28 2016-04-28 Cavity Pump
PCT/EP2017/058807 WO2017186497A1 (en) 2016-04-28 2017-04-12 Eccentric screw pump

Publications (2)

Publication Number Publication Date
EP3449128A1 EP3449128A1 (en) 2019-03-06
EP3449128B1 true EP3449128B1 (en) 2021-11-17

Family

ID=58548694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17717685.6A Active EP3449128B1 (en) 2016-04-28 2017-04-12 Eccentric screw pump

Country Status (5)

Country Link
EP (1) EP3449128B1 (en)
CN (1) CN109072904B (en)
DE (1) DE102016207247A1 (en)
PL (1) PL3449128T3 (en)
WO (1) WO2017186497A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120298B (en) * 2019-12-16 2020-09-25 大庆市华禹石油机械制造有限公司 Pump based on eccentric transmission

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2483370A (en) * 1946-06-18 1949-09-27 Robbins & Myers Helical multiple pump
ZA79440B (en) * 1978-02-10 1980-09-24 Oakes Ltd E T Drive arrangement
GB2120729B (en) * 1982-05-21 1985-07-24 Mono Pumps Ltd Helical gear pump
JPS6196193A (en) * 1984-10-17 1986-05-14 Heishin Sobi Kk Driving gear of single-shaft eccentric screw pump
CN2345736Y (en) * 1998-06-11 1999-10-27 中国科学院大连化学物理研究所 Screw pump
DE10212184A1 (en) 2002-03-20 2003-10-09 Ecolab Gmbh & Co Ohg Dosing solids-containing free-flowing detergent paste concentrates to industrial washing machines uses an eccentric screw pump
DE10243674B3 (en) * 2002-09-20 2004-04-01 Netzsch-Mohnopumpen Gmbh Eccentric screw pump with reserve stator
JP5070515B2 (en) * 2007-03-08 2012-11-14 兵神装備株式会社 Rotor drive mechanism and pump device
GB2454700B (en) * 2007-11-15 2013-05-15 Schlumberger Holdings Work extraction from downhole progressive cavity devices
CN202560176U (en) * 2012-05-14 2012-11-28 大庆永磁电机制造有限公司 Screw pump direct driving device with leaking liquid overflow system
JP6188015B2 (en) * 2013-05-21 2017-08-30 兵神装備株式会社 Uniaxial eccentric screw pump
DE102013111716B3 (en) * 2013-10-24 2015-03-19 Netzsch Pumpen & Systeme Gmbh Eccentric screw pump and use of an eccentric screw pump
CN103711691A (en) * 2014-01-06 2014-04-09 中国石油大学(华东) Single-screw pump capable of balancing axial force and radial force
CN205135988U (en) * 2015-11-23 2016-04-06 重庆高研泵业有限公司 Safe screw pump

Also Published As

Publication number Publication date
PL3449128T3 (en) 2022-03-28
EP3449128A1 (en) 2019-03-06
CN109072904B (en) 2020-01-10
CN109072904A (en) 2018-12-21
DE102016207247A1 (en) 2017-11-02
WO2017186497A1 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
EP2735768B1 (en) Reduction gear unit with high reduction ratio
DE29703656U1 (en) Internal gear pump without filler
WO2011054898A1 (en) Radially adjustable shaft bearing assembly
EP3449128B1 (en) Eccentric screw pump
EP0607497B1 (en) Internal gear pump with sealings incorporated in the teeth
DE2547994A1 (en) GEAR PUMP OR MOTOR
DE10052779A1 (en) Internal gear pump without filler
DE3038587C2 (en) Drivable roller with controllable deflection, in particular for machines for producing and processing webs made of paper or plastic
EP3449127B1 (en) Household appliance
EP3540266B1 (en) Gear wheel and gear element for a gear element transmission and corresponding gear element transmission
WO2017016664A1 (en) Directional force exciter and vibrating machine with directional force exciter
EP2655802B1 (en) Gear machine with a small diameter-to-length ratio
EP3449143B1 (en) Flexible coupling and rotor for a metering pump of a domestic appliance
EP3199227B1 (en) Mixing rotor, drive chuck, mixing unit and mixing device for manufacturing free-flowing building materials
WO2013020546A1 (en) Vibration damper for a drivetrain
EP3575549B1 (en) Rotary displacement pump
DE202010015437U1 (en) Rotary piston pump with hollow piston
DE202016001015U1 (en) reciprocating pump
DE4111897A1 (en) Torque transmission drive shaft - operates between centrally rotating driven shaft and eccentrically rotating drive pin, using sections plugged together
DE102014208418A1 (en) Rolling gear
DE3312310C2 (en)
EP1988289A1 (en) Interface
DE112019003652T5 (en) Hydrostatic drive system for vehicles
DD257052A1 (en) DRIVE FOR FOLDING ROLLERS AND KNIFE WAVES OF A FOLDING WORK
DE102008064727B3 (en) Pump for conveying a fluid, in particular a dosing pump

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210712

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012039

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448270

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012039

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502017012039

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230331

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1448270

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230411

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117