EP3446579B1 - Inhaler and method for controlling an inhaler - Google Patents

Inhaler and method for controlling an inhaler Download PDF

Info

Publication number
EP3446579B1
EP3446579B1 EP18190453.3A EP18190453A EP3446579B1 EP 3446579 B1 EP3446579 B1 EP 3446579B1 EP 18190453 A EP18190453 A EP 18190453A EP 3446579 B1 EP3446579 B1 EP 3446579B1
Authority
EP
European Patent Office
Prior art keywords
heating element
inhaler
control
heating
electronic control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18190453.3A
Other languages
German (de)
French (fr)
Other versions
EP3446579A1 (en
EP3446579B8 (en
Inventor
Marc Kessler
Gunnar Niebuhr
Rene Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koerber Technologies GmbH
Original Assignee
Hauni Maschinenbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63371560&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3446579(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hauni Maschinenbau GmbH filed Critical Hauni Maschinenbau GmbH
Publication of EP3446579A1 publication Critical patent/EP3446579A1/en
Application granted granted Critical
Publication of EP3446579B1 publication Critical patent/EP3446579B1/en
Publication of EP3446579B8 publication Critical patent/EP3446579B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/80Testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0297Heating of fluids for non specified applications

Definitions

  • the present invention relates to an inhaler with an electronic control device and an evaporator unit with at least one heating element, the evaporator unit being set up for evaporating liquid supplied from a liquid reservoir and the evaporated liquid being taken up by an air stream flowing through the evaporator unit.
  • a wick eg made of glass fiber
  • a wick is partially wrapped with a heating coil and is connected to a liquid reservoir.
  • the heating coil is heated, the liquid in the wick evaporates in the area of the heating coil.
  • the liquid is typically a mixture of different substances that have different boiling temperatures and different physiological effects.
  • the droplet size is regulated, since droplets of different sizes are absorbed by the body at different rates.
  • the use of a suitable electronic control device allows the droplet size of the droplets in the resulting aerosol to be set in a targeted manner by setting the heating temperature of the heating element designed as a heating coil.
  • Such an electronic cigarette is exemplified in US 2016/0021930 A1 (RJ Reynolds Tobacco Company ) described.
  • a substance with a low boiling point can be completely used up after a corresponding period of use without the liquid reservoir being empty.
  • the physiological or taste effect of the resulting aerosol changes. For example, if nicotine has been used up, the smoking experience can be inhibited.
  • the uncontrollable temperature development can lead to unwanted partial heating and overheating of the liquid, or one of the substances contained therein, and thus to undesirable pollutant emissions.
  • US2013/0340750A1 and U.S. 2016/0021934 A1 each disclose an inhaler having the features of the preamble of claim 1.
  • U.S. 2016/021934 A1 discloses an evaporator for an electronic cigarette.
  • the object of the invention is to provide an inhaler with a safe, high-quality and energy-efficient evaporator unit in which the active substance is administered reliably and a potential risk of overheating and the associated pollutant emissions can be avoided.
  • the electronic control device be set up so that the at least one heating element is heated with a variable control frequency.
  • the control frequency with which the at least one heating element is heated has a decisive influence on the size of the droplets in the aerosol, in addition to the geometry and the advantageously set up liquid supply.
  • the amount of vapor produced when pulsing or otherwise heating at different frequencies is different and therefore specifically adjustable and the droplet size of the aerosol changes significantly with the amount of steam, depending on the geometry of the heating element used.
  • a high driving frequency favors the creation of smaller droplets, while a low driving frequency favors the creation of larger droplets.
  • the absorption and effect of the substances in the liquid are adjusted by the droplet size with the control frequency.
  • the heating temperature can be adjusted according to the substances contained in the liquid and overheating can be avoided.
  • the energy requirement of the evaporator is improved by adjusting the droplet size over the frequency compared to adjusting the temperature.
  • variable control frequency is to be understood as meaning the temporal and/or local variation of the control frequency.
  • the administration of physiological active substances can be controlled by a time-variable control and, for example, the nicotine supply during smoking can be adjusted in such a way that the smoking pleasure is improved.
  • the electronic control device is set up to heat the at least one heating element with a plurality of different control frequencies in order to achieve a multimodal droplet size distribution.
  • the heating of the at least one heating element with the plurality of different control frequencies means that a plurality of control frequencies can be superimposed and thus the at least one heating element with a plurality of frequencies at the same time can be heated.
  • Several control frequencies can be applied globally or at defined locations of the at least one heating element, so that the at least one heating element is divided into different areas with different control frequencies.
  • the evaporator unit preferably has a plurality of heating elements and the electronic control device is set up to heat different heating elements with different control frequencies. By driving different heating elements with different control frequencies, different droplet sizes can be realized simultaneously. Each heating element can produce, for example, one or more droplet sizes, which together are picked up by the air flow flowing through the evaporator unit and delivered to the user.
  • the electronic control device is advantageously set up to control the control frequency of the plurality of heating elements in such a way that a multimodal droplet size distribution of the vaporized liquid results.
  • a multimodal, adjustable droplet size distribution can be achieved.
  • the heating elements can be controlled in such a way that at least one of the heating elements produces large droplets and at least one of the heating elements produces small droplets.
  • the at least one heating element for the small droplets is preferably heated with a high control frequency and the at least one heating element for large droplets is heated with a low control frequency. Further heating elements can also be added be used to create droplets of specific sizes.
  • the resulting droplet size distribution is multimodal and has maxima at the desired droplet sizes. This is conducive to a positive smoking sensation, for example, since small droplets penetrate far into the respiratory tract, where nicotine, but also other substances, have an effective effect, while large droplets can be tasted well.
  • the targeted setting of the multimodal distribution corresponds to a targeted setting of the physiological and taste effect. A 1:1 ratio of small and large droplets would be conceivable in order to make the effect quick (small droplets) but also long-lasting (large droplets).
  • the electronic control device is set up to change the control frequency of the at least one heating element over the emptying period of the liquid reservoir.
  • concentrations of the substances in the liquid can change over the duration of the emptying of the liquid reservoir due to their different boiling temperatures and/or volatility.
  • the liquid contained in the liquid reservoir separates as a result of the differential distillation that takes place during evaporation. Ie higher-boiling components accumulate, which leads to an inhomogeneous release of active substance. For example, there is significantly less nicotine from about a half-used liquid reservoir.
  • a desired physiological effect of the active ingredients of the individual substances can preferably be achieved by changing the control frequency over the duration of the emptying of the liquid reservoir.
  • the electronic control device is set up to increase the activation frequency of the at least one heating element as the liquid reservoir is progressively emptied.
  • Nicotine for example, vaporizes at a comparatively low temperature. Therefore, the dose of nicotine absorbed per puff decreases over the duration of the emptying of the liquid reservoir at the same temperature and droplet size.
  • the droplets e.g. by large droplets at the beginning (delayed effect in the body) and small droplets at the end (rapid effect) of the emptying time of the liquid reservoir, the subjective perception of the effect can be homogenized and changes in concentration are compensated.
  • it is suggested to increase the control frequency over the duration of the liquid reservoir depletion and to produce more smaller droplets to keep the smoking experience constant.
  • control frequency of the at least one heating element it is advantageous to change the control frequency of the at least one heating element over the duration of a puff.
  • the physiological and taste effects can be positively influenced over the duration of a puff if the control frequency and thus the droplet size are adjusted.
  • the control frequency of the at least one heating element can preferably be adjusted in a targeted manner such that a desired droplet size of the evaporated liquid of, for example, ⁇ 5 ⁇ m results.
  • Droplets with a diameter or an aerodynamic diameter (mass median aerodynamic diameter - MMAD) of less than 5 ⁇ m do not remain in the upper airways but penetrate the bronchi a, which promotes the absorption of nicotine or other active ingredients, for example for drug treatment.
  • the aerodynamic diameter is the diameter at which the total of those particles with a smaller or larger diameter each contribute half of the total mass of all particles.
  • the droplet size is less than or equal to 0.2 ⁇ m.
  • an activation frequency of at least one heating element of at least 10 Hz and preferably at most 20 kHz is set.
  • the variable control frequencies according to the invention are in the range from 10 Hz to 20 kHz, particularly preferably between 500 Hz and 2 kHz. The frequencies can be set individually for each heating element per heater. A preferred distribution of the droplet sizes and energy-efficient heating can thus be promoted.
  • the control and measuring device is a data processing unit or is connected to one.
  • the control and measuring device advantageously has a reference resistor connected in series with the heating element.
  • each heating element is connected in series with a separate reference resistor. This enables a precise resistance measurement of the heating element or heating elements.
  • the control and measuring device preferably has at least one operational amplifier.
  • An operational amplifier can amplify the current flowing through the heating element and allow easy evaluation by the data processing unit.
  • control and measuring device has a switching device.
  • the switching device can turn on the control and measuring device when no heating voltage is present at the heating element (follow-up phase) and off when a heating voltage is present at the heating element (heating or evaporation phase). However, it can also be measured during a heating pulse in the evaporation phase.
  • the measurement results of the switching device are preferably processed in the preferably shared data processing unit.
  • the electronic control unit can be set up to carry out the aforementioned measures such as monitoring, regulation, control or further measurement on the basis of the measured values.
  • the at least one heating element is preferably designed as a microsystem-technical unit.
  • a microsystem technology unit preferably has a very low thermal capacity and/or a high thermal conductivity.
  • the heating element has a low thermal inertia and can change its temperature quickly and cause particularly rapid evaporation.
  • a rapid temperature change is particularly preferred at high driving frequencies and enables the production of particularly small droplets.
  • FIG 1 shows the schematic structure of an inhaler 10, for example an electronic cigarette product.
  • the inhaler comprises a substantially rod-shaped or cylindrical housing 11 with a mouth end 15 and one or more air inlet openings 16.
  • the mouth end 15 denotes the end on which the user pulls for the purpose of inhalation.
  • An air channel is provided between the mouth end 15 and the air inlet openings 16 , through which an air flow 17 can pass. If the user pulls on the end 15 of the mouth, the inhaler 10 is subjected to a negative pressure, as a result of which an air flow 17 is established in the air duct between the air inlet openings 16 and the end 15 of the mouth.
  • the air inlet openings 16 can be arranged on the shell side of the housing 11 . Additionally or alternatively, at least one air inlet opening 16 can be provided at the end of the inhaler 10 which is opposite the mouth end 15 .
  • the air flow 17 passes through an evaporator unit 20 arranged in the housing 11.
  • the evaporator unit 20 is supplied with liquid from a liquid reservoir 12 and has at least one heating element 36.
  • the inhaler 10 comprises the liquid reservoir 12, which accommodates the liquid to be vaporized.
  • An advantageous volume of the liquid reservoir 12 is in the range of 0.1-5 ml, preferably between 0.5-3 ml, more preferably between 0.7-2 ml or 1.5 ml.
  • the liquid reservoir 12 preferably has a closed surface and is preferably a flexible bag. The supply of liquid results advantageously from the amount of liquid evaporated.
  • the evaporator unit 20 is supplied with liquid from the liquid reservoir 12 and is electrically controlled in order to vaporize the liquid and add it to the air flow 17 in the form of gas and/or aerosol.
  • the evaporator unit 20 is arranged in an axial heating section in the housing 11 .
  • the amount of aerosol generated in the evaporator unit 20 can be changed both by changing the applied electrical voltage and by the number of heating elements 36 used in parallel.
  • An electrical voltage can be applied to the heating elements 36, for example, in a pulsed, oscillating manner or by means of pulse width modulation.
  • the characteristics of the voltage, such as amplitude and/or frequency spectrum, may be advantageously adjusted over time or by adjustment of the inhaler 10 user.
  • the inhaler 10 comprises an electronic unit 14 which is connected to a power source 27 and can carry out measurement, control, regulation, data processing and/or data transfer.
  • the electronic unit 14 advantageously comprises an electronic control device 21, in particular a microprocessor or microcontroller.
  • the electronic unit 14 can preferably include an interface which is set up to have data output to the user of the inhaler 10 and/or to have data input by the user of the inhaler 10 .
  • a smoker can select their preferred settings via their smartphone and Bluetooth connectivity and share them via social networks, make recommendations and statistically evaluate their data and user behavior.
  • the data preferably includes data about the at least one heating element 36, the control frequencies, and the fill level of the liquid reservoir 12, the power source 27 and/or diagnostic and error data. It is also possible to control the control frequencies on a control element arranged on the housing 11, such as a switch or setting wheel.
  • the power source 27 may be a disposable electrochemical battery or a rechargeable electrochemical battery such as a lithium ion battery or a Li battery.
  • a step-up converter starting with a lithium battery with 2.7-4.1 V, for example, variable voltages adapted to the heating elements 36 up to, for example, 43 V, preferably 5-15 V, particularly preferably 2.7-15 V , more particularly preferably 3.6-6V.
  • the power source 27 is used to supply all active electrical components in the inhaler 10 with electricity.
  • the inhaler 10 preferably has a modular structure and is divided into at least one consumable unit and at least one reusable unit.
  • the evaporator unit 20 can be a replaceable cartridge or part of such a cartridge.
  • the main body of the inhaler 10 can be reusable.
  • the electronic unit 14 and/or the power source 27 are preferably connected to the evaporator unit 20 via an interface.
  • the power source 27 and/or the liquid reservoir 12 can be arranged in a consumable unit and intended for disposable use or arranged in a reusable unit in the housing 11 for reusable consumption.
  • the evaporator unit 20 can be used in electronic cigarette products as well as medical inhalers. In addition to using in stick-shaped electronic cigarette products, the evaporator unit 20 can be used in electronic pipes, shishas or other products in which a liquid from a liquid reservoir 12 is to be evaporated.
  • FIG 2 shows a circuit diagram for a preferred embodiment of the inhaler 10 with, for example, three heating elements 36. In other embodiments not shown, the number of heating elements 36 is more or less than three.
  • the inhaler 10 comprises a control and measuring device 22 which is advantageously supplied with electrical power by the electronic unit 14 through the power source 27 .
  • the control and measuring device 22 is controlled by the electronic control device 21 .
  • the control and measuring device 22 comprises an operational amplifier 23, a switching device 24, at least one reference resistor 25 and at least one transistor 26.
  • the electronic unit 14 comprises the operational amplifier 23, the switching device 24, the reference resistor or resistors 25 and/or the transistor or transistors 26.
  • the electronic control device 21 is set up to detect a puff by the consumer by means of a suitable sensor, for example by means of a pressure sensor, and consequently to activate the heating elements 36 in the evaporator unit 20 in order to heat the liquid to a suitable temperature.
  • the electronic control unit 21 is connected to the transistors 26 and can control them independently to control the heating elements 36 corresponding to the transistors 26 independently of each other.
  • the electronic control device 21 is connected to the switching device 24 and the operational amplifier 23 as in FIG figure 2 shown connected to realize resistance measurements of the heating elements 36. Additional sensors for measuring temperatures, pressures and other variables for describing the operating state can be contained in the control and measurement device 22 and coupled to the electronic control device 21 .
  • the operational amplifier 23 (current shunt monitor) is connected to the control unit 21, a ground, a positive pole, the reference resistor 25 and the switching device 24 and is used, for example, to measure the voltage drop between one of the reference resistors 25 and the voltage source 27. An amplified measurement result the operational amplifier 23 passes this on to the control unit 21, where the data processing takes place in order to determine the measured resistance of the corresponding heating element 36.
  • the switching device 24 is controlled by the control unit 21 and preferably defines one of the reference resistors 25 as the reference resistor 25 to be measured. An electrical connection is preferably established with the switching device 24 between the heating element 36 and the associated reference resistor 25 .
  • the switching device 24 preferably has a switch for each reference resistor 25 to be measured, in order to enable targeted measurement.
  • the reference resistors 25 are preferably ohmic resistors.
  • Each heating element 36 has a reference resistor 25 for current measurement.
  • the transistors 26 are preferably designed as field effect transistors (FET) and are used to control and regulate the heating elements 36. Each heating element 36 can be controlled via an associated transistor 26.
  • FET field effect transistors
  • control mechanisms can also be integrated in addition to the individual activation of the heating elements 36 .
  • the evaporator unit 20 can be monitored and controlled. Measurements can be taken when switching on, off and/or during a puff, but with the heating voltage switched off, for example every 10-1000 ms per channel, preferably 20-500 ms, particularly preferably 250 -400ms.
  • the amount of data can be reduced by multiplexing and modulating the signals onto a carrier signal.
  • the current data obtained from the individual heating elements 36 correlate with their resistance.
  • the resistance clearly correlates with the temperature of the respective heating element 36 via the known NTC or PTC behavior.
  • resistance and temperature information can be used to control and regulate the heating elements 36 .
  • a detailed error detection allows the detection of, for example, wrong, too little or too much liquid or a defective heating element 36; an exact state detection is possible, taking into account the thermodynamic state known during the heating process and the composition of the liquid.
  • thermometers preferably thermometers, humidity and/or pressure sensors, to accurately characterize the operational status of the vaporizer 20 and/or the heating elements 36.
  • the heating elements 36 are preferably designed as ohmic resistors and as a microsystem-technical unit (e.g. MEMS).
  • the design as a microsystem-technical unit is particularly advantageous because of its very fine structures in the ⁇ m range and the associated thermal properties.
  • the microsystem-technical heating elements 36 preferably consist of a semiconductor material, for example doped silicon. This is inert and has no catalytic effect, and the heating element 36 can thus be produced in a particularly small, reproducible and stable manner.
  • a temperature-variable resistance of, for example, 0.1-20 ohms, preferably 0.5-1.5 ohms, can be set via the doping.
  • a temperature-dependent NTC or PTC behavior of the resistance of the heating elements 36 can be achieved, i.e. the resistance decreases or increases with increasing temperature.
  • the heating elements 36 are connected to the liquid reservoir 12 .
  • the liquid is conveyed capillary into a pore structure of the heating elements 36 .
  • the heating elements 36 are heated to a temperature above a boiling point of a component of the liquid, evaporation takes place on the surface of the heating elements 36 .
  • the structure and surface of the heating elements 36 can, for example, also be based on bionic structures, for example tracheae.
  • a cross-linked heater structure of the heating elements 36 can form a capillary barrier for air on one side and liquid on the other side.
  • the Heater structures are arranged along the air/liquid interface and upon reaching a boiling temperature the vaporized liquid can pass through the heater structure and be introduced into the air flow 17 .
  • the heating elements 36 preferably each have a layer structure, with each heating element 36 having an area of preferably 0.25-6 mm 2 , particularly preferably 0.5-3 mm 2 .
  • the area of all heating elements 36 is preferably 0.2-1 cm 2 , particularly preferably 0.3-0.8 cm 2 , and a preferred layer thickness is in the range of 3-400 ⁇ m in order to achieve an optimal ratio to the liquid volume to be evaporated depending on the heating area .
  • the pores of the heater structure have, for example, a diameter of between 10-100 ⁇ m, preferably between 15-50 ⁇ m.
  • the design of the heating elements 36 as a microsystem-technical unit offers the possibility of influencing the amount of steam with the same average (evaporation) power applied by changing the control frequency. This enables a particularly efficient and energy-saving generation of steam by the heating elements 36. If the heating element 36 is actuated, ie heated, at a specific frequency, the proportion of the heat output brought into the evaporation increases with the same average heat output with increasing frequency up to an optimum. Thus, larger amounts of steam are to be expected at higher frequencies, since the resulting evaporation capacity increases. The optimization of the energy input also leads to reduced power consumption.
  • a change in the aerosol quality with the activation frequency of the heating elements 36 can also be observed.
  • a finer droplet size distribution can be determined with increasing control frequency, i.e. the distribution of the droplet size shifts in favor of a smaller droplet size. This is due to an improved input of heat into the liquid to be vaporized with increasing frequency.
  • a suitable pulse is used or a sufficient frequency is selected so that the heat from the heating element 36 can go into the liquid and without losses due to rapid energy input at too high a frequency (short pulse duration) or excessive cooling at too low a frequency (long pulse duration) occur.
  • the heating elements 36 are designed as a microsystem-technical unit and are able to follow the rapid changes in the energy input with their heating surface temperature, i.e. only have a low thermal inertia. In contrast to a helical or lattice structure, the heating elements 36 have a significantly higher limit frequency.
  • figure 3 shows a circuit diagram for a preferred embodiment of the inhaler 10 with, for example, a heating element 36.
  • the inhaler 10 includes a control and measuring device 22 which is advantageously included in the electronic unit 14 and is supplied with electrical power by the power source 27 .
  • the control and measuring device 22 is controlled by the electronic control device 21 .
  • the control and measuring device 22 comprises an operational amplifier 23, a switching device 24, a reference resistor 25 and a transistor 26.
  • the switching device 24 can be omitted when only one heating element 36 is used, in order to enable a simpler and more cost-effective construction.
  • the heating element 36 can be acted upon with different and changeable drive frequencies. Both a superposition of different control signals and a change and/or modulation over time are conceivable in order to achieve a desired droplet size distribution.
  • FIG 4 shows an example of the time course of the heating voltage U H applied to the heating element 36 .
  • the heating element 36 is heated with pulses 32 as a function of the time t.
  • a period 33 is divided into an evaporation phase 30 and a subsequent phase 31.
  • a heating voltage U H is applied to the heating element 36 and enables the liquid on and/or on the heating element 36 to evaporate.
  • the subsequent phase 31 there is preferably no heating voltage on the heating element 36 .
  • an evaporation phase 30 takes place, the length of which is defined by the duty cycle.
  • different heating elements 36 can be measured sequentially during a period 33 and/or a shorter fraction of a period 33 .
  • several measurements, regulations, controls and/or checks can also be carried out on different heating elements 36.
  • the heat output in the form of other alternating currents, periodic and aperiodic curves is conceivable.
  • the superimposition of periodic signals with different frequencies or periods 33, which makes it possible to produce droplets of different sizes, is advantageous.
  • the period 33 changes over the duration of operation and/or is preferably adjustable.
  • Each heating element 36 can be heated in the same way or differently.
  • control frequency f increases over the course of time t and, over the course of time t, enables ever smaller droplets to be generated in order, for example, to homogenize the smoking experience and the nicotine administration.
  • other frequency profiles over time are conceivable.

Landscapes

  • Catching Or Destruction (AREA)
  • Medicinal Preparation (AREA)
  • Special Spraying Apparatus (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

Die vorliegende Erfindung betrifft einen Inhalator mit einer elektronischen Steuereinrichtung und einer Verdampfereinheit mit mindestens einem Heizelement, wobei die Verdampfereinheit zum Verdampfen von aus einem Flüssigkeitsspeicher zugeführter Flüssigkeit eingerichtet ist, und die verdampfte Flüssigkeit von einem durch die Verdampfereinheit strömenden Luftstrom aufgenommen wird.The present invention relates to an inhaler with an electronic control device and an evaporator unit with at least one heating element, the evaporator unit being set up for evaporating liquid supplied from a liquid reservoir and the evaporated liquid being taken up by an air stream flowing through the evaporator unit.

Der überwiegende Teil der aktuell auf dem Markt befindlichen Verdampfereinheiten ist in einem elektronischen Zigarettenprodukt realisiert und basiert auf dem sogenannten Docht-Wendel-Prinzip. Ein Docht, z.B. aus Glasfaser, ist partiell mit einer Heizwendel umwickelt und steht mit einem Flüssigkeitsspeicher in Verbindung. Bei Erwärmung der Heizwendel verdampft die in dem Docht befindliche Flüssigkeit im Bereich der Heizwendel. Die Flüssigkeit ist typischerweise ein Gemisch aus verschiedenen Substanzen, welche verschiedene Siedetemperaturen sowie verschiedene physiologische Wirkungen aufweisen. Um die Wirkung zu steuern wird die Tröpfchengröße reguliert, da verschieden große Tröpfchen verschieden schnell vom Körper resorbiert werden. Der Einsatz einer geeigneten elektronischen Steuereinrichtung erlaubt das gezielte Einstellen der Tröpfchengröße der im resultierenden Aerosol befindlichen Tröpfchen mittels der Einstellung der Heiztemperatur des als Heizwendel ausgeführten Heizelements. Eine solche elektronische Zigarette ist beispielhaft in der US 2016/0021930 A1 (R.J. Reynolds Tobacco Company ) beschrieben.Most of the evaporator units currently on the market are implemented in an electronic cigarette product and are based on the so-called wick-coil principle. A wick, eg made of glass fiber, is partially wrapped with a heating coil and is connected to a liquid reservoir. When the heating coil is heated, the liquid in the wick evaporates in the area of the heating coil. The liquid is typically a mixture of different substances that have different boiling temperatures and different physiological effects. In order to control the effect, the droplet size is regulated, since droplets of different sizes are absorbed by the body at different rates. The use of a suitable electronic control device allows the droplet size of the droplets in the resulting aerosol to be set in a targeted manner by setting the heating temperature of the heating element designed as a heating coil. Such an electronic cigarette is exemplified in US 2016/0021930 A1 (RJ Reynolds Tobacco Company ) described.

Infolge der verschiedenen Siedetemperaturen der in der Flüssigkeit vorhandenen Substanzen kann beispielsweise eine Substanz mit einer niedrigen Siedetemperatur nach entsprechender Nutzungsdauer gänzlich aufgebraucht sein, ohne dass der Flüssigkeitsspeicher entleert ist. Somit ändert sich im Laufe des Konsums die physiologische oder geschmackliche Wirkung des resultierenden Aerosols. Ist beispielsweise Nikotin aufgebraucht, kann das Raucherlebnis gehemmt sein.As a result of the different boiling temperatures of the substances present in the liquid, for example, a substance with a low boiling point can be completely used up after a corresponding period of use without the liquid reservoir being empty. Thus, in the course of consumption, the physiological or taste effect of the resulting aerosol changes. For example, if nicotine has been used up, the smoking experience can be inhibited.

Ferner kann es durch die unkontrollierbare Temperaturentwicklung zu einer ungewollten partiellen Erhitzung und Überhitzung der Flüssigkeit, oder einer der darin befindlichen Substanz und somit zu unerwünschter Schadstoffemission kommen.Furthermore, the uncontrollable temperature development can lead to unwanted partial heating and overheating of the liquid, or one of the substances contained therein, and thus to undesirable pollutant emissions.

US 2013/0340750 A1 und US 2016/0021934 A1 offenbaren jeweils einen Inhalator mit den Merkmalen des Oberbegriffs von Anspruch 1. US 2016/021934 A1 offenbart einen Verdampfer für eine elektronische Zigarette. US2013/0340750A1 and U.S. 2016/0021934 A1 each disclose an inhaler having the features of the preamble of claim 1. U.S. 2016/021934 A1 discloses an evaporator for an electronic cigarette.

Die Aufgabe der Erfindung besteht darin, einen Inhalator mit einer sicheren, hochqualitativen und energieeffizienten Verdampfereinheit bereitzustellen, bei der eine zuverlässige Wirkstoffverabreichung gegeben ist und eine potentielle Überhitzungsgefahr und die damit verbundenen Schadstoffemissionen vermieden werden kann.The object of the invention is to provide an inhaler with a safe, high-quality and energy-efficient evaporator unit in which the active substance is administered reliably and a potential risk of overheating and the associated pollutant emissions can be avoided.

Die Erfindung löst diese Aufgabe mit den Merkmalen der unabhängigen Ansprüche. Es wird vorgeschlagen, dass die elektronische Steuereinrichtung dazu eingerichtet ist, dass das mindestens eine Heizelement mit variabler Steuerfrequenz beheizt wird.The invention solves this problem with the features of the independent claims. It is proposed that the electronic control device be set up so that the at least one heating element is heated with a variable control frequency.

Es hat sich gezeigt, dass die Steuerfrequenz, mit welcher das mindestens eine Heizelement beheizt wird, neben der Geometrie und der vorteilhaft eingerichteten Liquidversorgung einen entscheidenden Einfluss auf die Größe der im Aerosol befindlichen Tröpfchen hat. Die beim Pulsen oder anderweitigen Heizen mit verschiedenen Frequenzen entstehende Dampfmenge ist unterschiedlich und daher gezielt einstellbar und zudem ändert sich mit der Dampfmenge die Tröpfchengröße des Aerosols wesentlich, abhängig von der Geometrie des verwendeten Heizelements. Eine hohe Steuerfrequenz begünstigt die Erzeugung kleinerer Tröpfchen, während eine niedrige Steuerfrequenz die Erzeugung größerer Tröpfchen bedingt. Erfindungsgemäß wird die Aufnahme und Wirkung der in der Flüssigkeit befindlichen Substanzen durch die Tröpfchengröße mit der Steuerfrequenz eingestellt. Weiterhin kann die Heiztemperatur entsprechend der in der Flüssigkeit befindlichen Substanzen eingestellt und eine Überhitzung vermieden werden. Ferner hat sich gezeigt, dass der Energiebedarf des Verdampfers durch das Einstellen der Tröpfchengröße über die Frequenz gegenüber dem Einstellen der Temperatur verbessert wird.It has been shown that the control frequency with which the at least one heating element is heated has a decisive influence on the size of the droplets in the aerosol, in addition to the geometry and the advantageously set up liquid supply. The amount of vapor produced when pulsing or otherwise heating at different frequencies is different and therefore specifically adjustable and the droplet size of the aerosol changes significantly with the amount of steam, depending on the geometry of the heating element used. A high driving frequency favors the creation of smaller droplets, while a low driving frequency favors the creation of larger droplets. According to the invention, the absorption and effect of the substances in the liquid are adjusted by the droplet size with the control frequency. Furthermore, the heating temperature can be adjusted according to the substances contained in the liquid and overheating can be avoided. Furthermore, it has been shown that the energy requirement of the evaporator is improved by adjusting the droplet size over the frequency compared to adjusting the temperature.

Das erfindungsgemäße Beheizen mit einer variablen Steuerfrequenz erlaubt die Bildung von Tröpfchen mit variabler Größe und somit eine variable Wirkung. Unter dem Begriff der variablen Steuerfrequenz ist die zeitliche und/oder örtliche Variation der Steuerfrequenz zu verstehen. Durch eine beispielsweise zeitlich variable Steuerung kann die Gabe von physiologischen Wirkstoffen gesteuert werden und beispielsweise die Nikotinzufuhr beim Rauchen derart eingestellt werden, dass der Rauchgenuss verbessert wird.The heating with a variable control frequency according to the invention allows the formation of droplets with variable size and thus a variable effect. The term variable control frequency is to be understood as meaning the temporal and/or local variation of the control frequency. For example, the administration of physiological active substances can be controlled by a time-variable control and, for example, the nicotine supply during smoking can be adjusted in such a way that the smoking pleasure is improved.

In einer bevorzugten Ausführungsform ist die elektronische Steuereinrichtung dazu eingerichtet, das mindestens eine Heizelement mit einer Mehrzahl von unterschiedlichen Steuerfrequenzen zu beheizen, um so eine multimodale Tröpfchengrößenverteilung zu erzielen. Das Beheizen des mindestens einen Heizelements mit der Mehrzahl von unterschiedlichen Steuerfrequenzen heißt, dass mehrere Steuerfrequenzen überlagert werden können und damit das mindestens eine Heizelement gleichzeitig mit einer Mehrzahl von Frequenzen beheizt werden kann. Mehrere Steuerfrequenzen können global oder an definierten Orten des mindestens einen Heizelementes anliegen, sodass das mindestens eine Heizelement in verschiedene Bereiche mit unterschiedlichen Steuerfrequenzen aufgeteilt ist.In a preferred embodiment, the electronic control device is set up to heat the at least one heating element with a plurality of different control frequencies in order to achieve a multimodal droplet size distribution. The heating of the at least one heating element with the plurality of different control frequencies means that a plurality of control frequencies can be superimposed and thus the at least one heating element with a plurality of frequencies at the same time can be heated. Several control frequencies can be applied globally or at defined locations of the at least one heating element, so that the at least one heating element is divided into different areas with different control frequencies.

Vorzugsweise weist die Verdampfereinheit eine Mehrzahl von Heizelementen auf und die elektronische Steuereinrichtung ist dazu eingerichtet, verschiedene Heizelemente mit verschiedenen Steuerfrequenzen zu beheizen. Durch das Ansteuern verschiedener Heizelemente mit verschiedenen Steuerfrequenzen können verschiedene Tröpfchengrößen gleichzeitig realisiert werden. Jedes Heizelement kann beispielsweise eine oder mehrere Tröpfchengrößen hervorbringen, welche gemeinsam von dem durch die Verdampfereinheit strömenden Luftstrom aufgenommen und dem Anwender zugeführt werden.The evaporator unit preferably has a plurality of heating elements and the electronic control device is set up to heat different heating elements with different control frequencies. By driving different heating elements with different control frequencies, different droplet sizes can be realized simultaneously. Each heating element can produce, for example, one or more droplet sizes, which together are picked up by the air flow flowing through the evaporator unit and delivered to the user.

Vorteilhaft ist die elektronische Steuereinrichtung dazu eingerichtet, die Ansteuerfrequenz der Mehrzahl von Heizelementen so anzusteuern, dass sich eine multimodale Tröpfchengrößenverteilung der verdampften Flüssigkeit ergibt. Werden mehrere Heizelemente parallel mit unterschiedlichen Frequenzen angesteuert, lässt sich eine multimodale, einstellbare Tröpfchengrößenverteilung erzielen. Ist es beispielsweise erwünscht, Tröpfchen großer Größe, beispielsweise >5µm, und Tröpfchen kleiner Größe, beispielsweise <1µm, zu erzeugen, können die Heizelemente derart angesteuert werden, dass mindestens eines der Heizelemente große Tröpfchen und mindestens eines der Heizelemente kleine Tröpfchen erzeugt. Vorzugsweise wird dafür das mindestens eine Heizelement für die kleinen Tröpfchen mit einer hohen Steuerfrequenz beheizt und das mindestens eine Heizelement für große Tröpfchen mit einer niedrigen Steuerfrequenz beheizt. Ebenso können weitere Heizelemente hinzugenommen werden, um Tröpfchen bestimmter Größen zu erzeugen.The electronic control device is advantageously set up to control the control frequency of the plurality of heating elements in such a way that a multimodal droplet size distribution of the vaporized liquid results. If several heating elements are controlled in parallel with different frequencies, a multimodal, adjustable droplet size distribution can be achieved. For example, if it is desired to produce droplets of large size, e.g. >5 µm, and droplets of small size, e.g. <1 µm, the heating elements can be controlled in such a way that at least one of the heating elements produces large droplets and at least one of the heating elements produces small droplets. For this purpose, the at least one heating element for the small droplets is preferably heated with a high control frequency and the at least one heating element for large droplets is heated with a low control frequency. Further heating elements can also be added be used to create droplets of specific sizes.

Die resultierende Tröpfchengrößenverteilung ist multimodal und weist bei den gewünschten Tröpfchengrößen Maxima auf. Dies ist beispielsweise einem positiven Rauchempfinden zuträglich, da kleine Tröpfchen weit in die Atemwege vordringen, wo Nikotin, aber auch andere Substanzen effektiv wirken, während große Tröpfchen geschmacklich gut wahrgenommen werden können. Die gezielte Einstellung der multimodalen Verteilung entspricht einer gezielten Einstellung der physiologischen und geschmacklichen Wirkung. Denkbar wäre ein 1:1 Verhältnis von kleinen und großen Tröpfchen, um die Wirkung schnell (kleine Tröpfchen), aber auch langanhaltend (große Tröpfchen) zu gestalten.The resulting droplet size distribution is multimodal and has maxima at the desired droplet sizes. This is conducive to a positive smoking sensation, for example, since small droplets penetrate far into the respiratory tract, where nicotine, but also other substances, have an effective effect, while large droplets can be tasted well. The targeted setting of the multimodal distribution corresponds to a targeted setting of the physiological and taste effect. A 1:1 ratio of small and large droplets would be conceivable in order to make the effect quick (small droplets) but also long-lasting (large droplets).

Erfindungsgemäß ist die elektronische Steuereinrichtung dazu eingerichtet, die Ansteuerfrequenz des mindestens einen Heizelements über die Entleerungsdauer des Flüssigkeitsspeichers zu ändern. Über die Dauer der Entleerung des Flüssigkeitsspeichers können sich die Konzentrationen der in der Flüssigkeit befindlichen Substanzen aufgrund ihrer unterschiedlichen Siedetemperatur und/oder Flüchtigkeit ändern. Die im Flüssigkeitsspeicher enthaltene Flüssigkeit entmischt sich durch die während der Verdampfung ablaufende differentielle Destillation. D.h. höhersiedende Komponenten reichern sich an, was zu einer inhomogenen Wirkstoffabgabe führt. Beispielsweise ist etwa ab einem halbverbrauchten Flüssigkeitsspeicher signifikant weniger Nikotin vorhanden. Eine gewünschte physiologische Wirkung der Wirkstoffe der einzelnen Substanzen kann vorzugsweise über Änderung der Steuerfrequenz über die Dauer der Entleerung des Flüssigkeitsspeichers erzielt werden.According to the invention, the electronic control device is set up to change the control frequency of the at least one heating element over the emptying period of the liquid reservoir. The concentrations of the substances in the liquid can change over the duration of the emptying of the liquid reservoir due to their different boiling temperatures and/or volatility. The liquid contained in the liquid reservoir separates as a result of the differential distillation that takes place during evaporation. Ie higher-boiling components accumulate, which leads to an inhomogeneous release of active substance. For example, there is significantly less nicotine from about a half-used liquid reservoir. A desired physiological effect of the active ingredients of the individual substances can preferably be achieved by changing the control frequency over the duration of the emptying of the liquid reservoir.

Erfindungsgemäß ist die elektronische Steuereinrichtung dazu eingerichtet, die Ansteuerfrequenz des mindestens einen Heizelements bei fortschreitender Entleerung des Flüssigkeitsspeichers zu erhöhen. Nikotin beispielsweise verdampft bei einer vergleichsweise niedrigen Temperatur. Daher sinkt über die Dauer der Entleerung des Flüssigkeitsspeichers die pro Zug aufgenommene Dosis an Nikotin bei gleichbleibender Temperatur und Tröpfchengröße. Durch eine Anpassung der Tröpfchen, z.B. durch große Tröpfchen am Anfang (verzögerte Wirkung im Körper) und kleine Tröpfchen am Ende (schnelle Wirkung) der Entleerungsdauer des Flüssigkeitsspeichers lässt sich das subjektive Wirkungsempfinden homogenisieren und Konzentrationsveränderungen werden ausgeglichen. Um ein positives Raucherlebnis zu fördern, wird vorgeschlagen, die Steuerfrequenz über die Dauer der Entleerung des Flüssigkeitsspeichers anzuheben und mehr kleinere Tröpfchen zu produzieren, um das Raucherlebnis konstant zu halten.According to the invention, the electronic control device is set up to increase the activation frequency of the at least one heating element as the liquid reservoir is progressively emptied. Nicotine, for example, vaporizes at a comparatively low temperature. Therefore, the dose of nicotine absorbed per puff decreases over the duration of the emptying of the liquid reservoir at the same temperature and droplet size. By adjusting the droplets, e.g. by large droplets at the beginning (delayed effect in the body) and small droplets at the end (rapid effect) of the emptying time of the liquid reservoir, the subjective perception of the effect can be homogenized and changes in concentration are compensated. In order to promote a positive smoking experience, it is suggested to increase the control frequency over the duration of the liquid reservoir depletion and to produce more smaller droplets to keep the smoking experience constant.

Es ist von Vorteil, die Ansteuerfrequenz des mindestens einen Heizelements über die Dauer eines Zuges zu verändern. Über die Dauer eines Zuges kann die physiologische und geschmackliche Wirkung positiv beeinflusst werden, wenn die Steuerfrequenz und somit die Tröpfchengröße eingestellt wird.It is advantageous to change the control frequency of the at least one heating element over the duration of a puff. The physiological and taste effects can be positively influenced over the duration of a puff if the control frequency and thus the droplet size are adjusted.

Vorzugsweise kann die Ansteuerfrequenz des mindestens einen Heizelements gezielt so eingestellt werden, dass sich eine gewünschte Tröpfchengröße der verdampften Flüssigkeit von beispielsweise ≤ 5 µm ergibt. Tröpfchen mit einem Durchmesser beziehungsweise einem aerodynamischen Durchmesser (Mass Median Aerodynamic Diameter - MMAD) von weniger als 5µm verbleiben nicht in den oberen Atemwegen, sondern dringen in die Bronchien ein, was eine Resorption von Nikotin oder anderen Wirkstoffen beispielsweise zur medikamentösen Behandlung begünstigt. Der aerodynamische Durchmesser ist der Durchmesser, bei denen die Gesamtheit jener Partikel mit einem kleineren oder größeren Durchmesser jeweils zur Hälfte der Gesamtmasse aller Partikel beitragen. In besonders bevorzugten Ausführungsformen ist die Tröpfchengröße kleiner gleich 0.2µm. Diese sehr kleinen Tröpfchen mit einem MMAD oder Durchmesser von weniger als 1µm dringen bis in die Alveolen vor und passieren dort besonders schnell die Blut-Hirn-Schranke. Eine Wirkung kann so entsprechend der Tröpfchengröße früh oder spät eintreten. Durch die Einstellung der Tröpfchengröße lässt sich somit die Wirkzeit beeinflussen.The control frequency of the at least one heating element can preferably be adjusted in a targeted manner such that a desired droplet size of the evaporated liquid of, for example, ≦5 μm results. Droplets with a diameter or an aerodynamic diameter (mass median aerodynamic diameter - MMAD) of less than 5 µm do not remain in the upper airways but penetrate the bronchi a, which promotes the absorption of nicotine or other active ingredients, for example for drug treatment. The aerodynamic diameter is the diameter at which the total of those particles with a smaller or larger diameter each contribute half of the total mass of all particles. In particularly preferred embodiments, the droplet size is less than or equal to 0.2 μm. These very small droplets with an MMAD or diameter of less than 1 µm penetrate into the alveoli and cross the blood-brain barrier particularly quickly. An effect can thus occur early or late, depending on the droplet size. The action time can be influenced by adjusting the droplet size.

In einer bevorzugten Ausführungsform wird eine Ansteuerfrequenz des mindestens einen Heizelements von mindestens 10 Hz und vorzugsweise höchsten 20 kHz eingestellt. Die erfindungsgemäß variablen Steuerfrequenzen liegen in einer bevorzugten Ausführungsform im Bereich von 10 Hz bis 20 kHz, besonders bevorzugt zwischen 500 Hz und 2 kHz. Die Frequenzen lassen sich für jedes Heizelement individuell pro Heizer einstellen. Somit kann eine bevorzugte Verteilung der Tröpfchengrößen sowie ein energieeffizientes Heizen begünstigt werden.In a preferred embodiment, an activation frequency of at least one heating element of at least 10 Hz and preferably at most 20 kHz is set. In a preferred embodiment, the variable control frequencies according to the invention are in the range from 10 Hz to 20 kHz, particularly preferably between 500 Hz and 2 kHz. The frequencies can be set individually for each heating element per heater. A preferred distribution of the droplet sizes and energy-efficient heating can thus be promoted.

Es ist von Vorteil, den Widerstand des mindestens einen Heizelements zu messen. Ist das Heizelement als Thermistor realisiert, kann über die Widerstandsmessung die Temperatur ermittelt werden. Vorzugsweise kann eine Diagnose des Betriebszustandes, des Zustands des mit Flüssigkeit benetzten Heizelements (mit falschem Liquid, kein Liquid, zu wenig Liquid, richtiger Liquidmenge und/oder zu viel Liquid) und/oder möglicher Fehlfunktionen durchgeführt werden. In einer bevorzugten Ausführungsform umfasst die Ansteuerungs- und Messeinrichtung eine Datenverarbeitungseinheit oder ist mit einer solchen verbunden.It is advantageous to measure the resistance of the at least one heating element. If the heating element is implemented as a thermistor, the temperature can be determined by measuring the resistance. A diagnosis of the operating state, the state of the heating element wetted with liquid (with the wrong liquid, no liquid, too little liquid, the correct amount of liquid and/or too much liquid) and/or possible malfunctions can preferably be carried out. In a preferred embodiment, the control and measuring device is a data processing unit or is connected to one.

Vorteilhaft weist die Ansteuerungs- und Messeinrichtung einen mit dem Heizelement in Serie geschalteten Referenzwiderstand auf. Vorzugsweise ist jedes Heizelement mit einem separaten Referenzwiderstand in Serie geschaltet. Dies ermöglicht eine präzise Widerstandsmessung des Heizelements bzw. der Heizelemente.The control and measuring device advantageously has a reference resistor connected in series with the heating element. Preferably, each heating element is connected in series with a separate reference resistor. This enables a precise resistance measurement of the heating element or heating elements.

Vorzugsweise weist die Ansteuerungs- und Messeinrichtung mindestens einen Operationsverstärker auf. Ein Operationsverstärker kann den durch das Heizelement fließenden Strom verstärken und eine einfache Auswertung durch die Datenverarbeitungseinheit ermöglichen.The control and measuring device preferably has at least one operational amplifier. An operational amplifier can amplify the current flowing through the heating element and allow easy evaluation by the data processing unit.

In einer bevorzugten Ausführungsform weist die Ansteuerungs- und Messeinrichtung eine Schalteinrichtung auf. Die Schalteinrichtung kann die Ansteuerungs- und Messeinrichtung einschalten, wenn keine Heizspannung an dem Heizelement anliegt (Folgephase) und ausschalten, wenn eine Heizspannung an dem Heizelement anliegt (Heiz- oder Verdampfungsphase). Es kann aber auch während eines Heizpulses in der Verdampfungsphase gemessen werden. Die Messergebnisse der Schalteinrichtung werden bevorzugt in der vorzugsweise gemeinsamen Datenverarbeitungseinheit verarbeitet.In a preferred embodiment, the control and measuring device has a switching device. The switching device can turn on the control and measuring device when no heating voltage is present at the heating element (follow-up phase) and off when a heating voltage is present at the heating element (heating or evaporation phase). However, it can also be measured during a heating pulse in the evaporation phase. The measurement results of the switching device are preferably processed in the preferably shared data processing unit.

Bevorzugt wird oder werden auf der Grundlage der Messwerte eine oder mehrere der folgenden Maßnahmen durchgeführt:

  • Zustandskontrolle, Überwachung und/oder Fehlerdetektion der Verdampfereinheit;
  • Steuerung oder Regelung der Verdampfereinheit mit entsprechender Zeitskala;
  • Ermittlung der Temperatur des mindestens einen Heizelements.
One or more of the following measures is or are preferably carried out on the basis of the measured values:
  • condition control, monitoring and/or error detection of the evaporator unit;
  • Control or regulation of the evaporator unit with appropriate time scale;
  • Determining the temperature of the at least one heating element.

Die elektronische Steuereinheit kann dazu eingerichtet sein, auf Grundlage der Messwerte die zuvor genannten Maßnahmen wie Kontrolle, Regelung, Steuerung oder weitere Messung vorzunehmen.The electronic control unit can be set up to carry out the aforementioned measures such as monitoring, regulation, control or further measurement on the basis of the measured values.

Vorzugsweise ist das mindestens eine Heizelement als mikrosystemtechnische Einheit ausgeführt. Eine mikrosystemtechnische Einheit (MEMS) weist vorzugsweise eine sehr geringe Wärmekapazität und/oder eine hohe Wärmeleitfähigkeit auf. Dadurch weist das Heizelement eine niedrige thermische Trägheit auf und kann zügig seine Temperatur ändern und ein besonders schnelles Verdampfen bewirken. Eine zügige Temperaturänderung ist besonders bei hohen Steuerfrequenzen bevorzugt und ermöglicht die Produktion besonders kleiner Tröpfchen.The at least one heating element is preferably designed as a microsystem-technical unit. A microsystem technology unit (MEMS) preferably has a very low thermal capacity and/or a high thermal conductivity. As a result, the heating element has a low thermal inertia and can change its temperature quickly and cause particularly rapid evaporation. A rapid temperature change is particularly preferred at high driving frequencies and enables the production of particularly small droplets.

Die Erfindung wird im Folgenden anhand bevorzugter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren erläutert. Dabei zeigt

Fig. 1
einen schematischen Aufbau eines Inhalators;
Fign. 2,3
einen Schaltplan für eine bevorzugte Ausführungsform eines Inhalators;
Fig. 4
ein Beispiel für den zeitlichen Verlauf der Heizspannung; und
Fig. 5
ein Beispiel für den zeitlichen Verlauf der Ansteuerfrequenz.
The invention is explained below on the basis of preferred embodiments with reference to the accompanying figures. while showing
1
a schematic structure of an inhaler;
Figs. 2.3
a circuit diagram for a preferred embodiment of an inhaler;
4
an example of the time profile of the heating voltage; and
figure 5
an example of the timing of the control frequency.

Figur 1 zeigt den schematischen Aufbau eines Inhalators 10, beispielsweise eines elektronischen Zigarettenproduktes. Der Inhalator umfasst ein im Wesentlichen stabförmiges oder zylindrisches Gehäuse 11 mit einem Mundende 15 und einer oder mehrerer Lufteinlassöffnungen 16. Das Mundende 15 bezeichnet dabei das Ende, an dem der Anwender zwecks Inhalation zieht. Zwischen dem Mundende 15 und den Lufteinlassöffnungen 16 ist ein Luftkanal vorgesehen, welcher durch einen Luftstrom 17 passierbar ist. Zieht der Anwender am Mundende 15 wird der Inhalator 10 mit einem Unterdruck beaufschlagt, aufgrund dessen sich ein Luftstrom 17 im Luftkanal zwischen den Lufteinlassöffnungen 16 und dem Mundende 15 einstellt. Die Lufteinlassöffnungen 16 können an der Mantelseite des Gehäuses 11 angeordnet sein. Zusätzlich oder alternativ kann an dem Ende des Inhalators 10, welches dem Mundende 15 entgegengesetzt ist, mindestens eine Lufteinlassöffnung 16 vorgesehen sein. figure 1 shows the schematic structure of an inhaler 10, for example an electronic cigarette product. The inhaler comprises a substantially rod-shaped or cylindrical housing 11 with a mouth end 15 and one or more air inlet openings 16. The mouth end 15 denotes the end on which the user pulls for the purpose of inhalation. An air channel is provided between the mouth end 15 and the air inlet openings 16 , through which an air flow 17 can pass. If the user pulls on the end 15 of the mouth, the inhaler 10 is subjected to a negative pressure, as a result of which an air flow 17 is established in the air duct between the air inlet openings 16 and the end 15 of the mouth. The air inlet openings 16 can be arranged on the shell side of the housing 11 . Additionally or alternatively, at least one air inlet opening 16 can be provided at the end of the inhaler 10 which is opposite the mouth end 15 .

Der Luftstrom 17 passiert eine in dem Gehäuse 11 angeordnete Verdampfereinheit 20. Die Verdampfereinheit 20 wird mit Flüssigkeit aus einem Flüssigkeitsspeicher 12 vorsorgt und verfügt über mindestens ein Heizelement 36. Der Inhalator 10 umfasst den Flüssigkeitsspeicher 12, welcher die zu verdampfende Flüssigkeit beherbergt. Ein vorteilhaftes Volumen des Flüssigkeitsspeichers 12 liegt im Bereich von 0.1-5 ml, vorzugsweise zwischen 0.5-3 ml, weiter vorzugsweise zwischen 0.7-2 ml oder 1.5 ml. Der Flüssigkeitsspeicher 12 weist vorzugsweise eine geschlossene Oberfläche auf und ist vorzugsweise ein flexibler Beutel. Die Flüssigkeitszufuhr ergibt sich vorteilhaft aus der verdampften Flüssigkeitsmenge.The air flow 17 passes through an evaporator unit 20 arranged in the housing 11. The evaporator unit 20 is supplied with liquid from a liquid reservoir 12 and has at least one heating element 36. The inhaler 10 comprises the liquid reservoir 12, which accommodates the liquid to be vaporized. An advantageous volume of the liquid reservoir 12 is in the range of 0.1-5 ml, preferably between 0.5-3 ml, more preferably between 0.7-2 ml or 1.5 ml. The liquid reservoir 12 preferably has a closed surface and is preferably a flexible bag. The supply of liquid results advantageously from the amount of liquid evaporated.

Die Verdampfereinheit 20 wird mit Flüssigkeit aus dem Flüssigkeitsspeicher 12 versorgt und elektrisch angesteuert, um die Flüssigkeit zu verdampfen und in Form von Gas und/oder Aerosol dem Luftstrom 17 zuzugeben. Die Verdampfereinheit 20 ist in einem axialen Heizabschnitt in dem Gehäuse 11 angeordnet.The evaporator unit 20 is supplied with liquid from the liquid reservoir 12 and is electrically controlled in order to vaporize the liquid and add it to the air flow 17 in the form of gas and/or aerosol. The evaporator unit 20 is arranged in an axial heating section in the housing 11 .

Die Menge des in der Verdampfereinheit 20 erzeugten Aerosols lässt sich sowohl durch Ändern der anliegenden elektrischen Spannung als auch durch die Anzahl der parallel eingesetzten Heizelemente 36 ändern. Eine elektrische Spannung kann beispielsweise gepulst, oszillierend oder mittels Pulsweitenmodulierung an den Heizelementen 36 anliegen. Die Charakteristik der Spannung, beispielsweise die Amplitude und/oder das Frequenzspektrum, kann im Laufe der Zeit oder durch Einstellung des Anwenders des Inhalators 10 vorteilhaft eingestellt werden.The amount of aerosol generated in the evaporator unit 20 can be changed both by changing the applied electrical voltage and by the number of heating elements 36 used in parallel. An electrical voltage can be applied to the heating elements 36, for example, in a pulsed, oscillating manner or by means of pulse width modulation. The characteristics of the voltage, such as amplitude and/or frequency spectrum, may be advantageously adjusted over time or by adjustment of the inhaler 10 user.

Der Inhalator 10 umfasst eine elektronische Einheit 14, welche mit einer Stromquelle 27 in Verbindung steht und Messung, Steuerung, Regelung, Datenverarbeitung und/oder Datentransfer vornehmen kann. Die elektronische Einheit 14 umfasst zu diesem Zweck vorteilhaft eine elektronische Steuereinrichtung 21, insbesondere einen Mikroprozessor oder Mikrocontroller. Die elektronische Einheit 14 kann vorzugsweise eine Schnittstelle umfassen, die dazu eingerichtet ist, Daten an den Anwender des Inhalators 10 ausgeben zu lassen und/oder Daten durch den Anwender des Inhalators 10 eingeben zu lassen. Beispielsweise kann ein Raucher seine favorisierte Einstellung über sein Smartphone und Bluetooth-Konnektivität wählen und diese über soziale Netzwerke teilen, Empfehlungen aussprechen und seine Daten und sein Nutzerverhalten statistisch auswerten. Die Daten umfassen dabei vorzugsweise Daten über das mindestens eine Heizelement 36, die Steuerfrequenzen, den Füllstand des Flüssigkeitsspeichers 12, die Stromquelle 27 und/oder Diagnose- und Fehlerdaten. Ein Regeln der Ansteuerfrequenzen an einem am Gehäuse 11 angeordneten Regelungselement, wie beispielsweise einem Schalter oder Stellrad, ist ebenfalls möglich.The inhaler 10 comprises an electronic unit 14 which is connected to a power source 27 and can carry out measurement, control, regulation, data processing and/or data transfer. For this purpose, the electronic unit 14 advantageously comprises an electronic control device 21, in particular a microprocessor or microcontroller. The electronic unit 14 can preferably include an interface which is set up to have data output to the user of the inhaler 10 and/or to have data input by the user of the inhaler 10 . For example, a smoker can select their preferred settings via their smartphone and Bluetooth connectivity and share them via social networks, make recommendations and statistically evaluate their data and user behavior. The data preferably includes data about the at least one heating element 36, the control frequencies, and the fill level of the liquid reservoir 12, the power source 27 and/or diagnostic and error data. It is also possible to control the control frequencies on a control element arranged on the housing 11, such as a switch or setting wheel.

Die Stromquelle 27 kann eine elektrochemische Einweg-Batterie oder ein wieder aufladbarer elektrochemischer Akku, z.B. ein Lilonen-Akku oder eine Li-Batterie, sein. Unter Nutzung eines Step-Up-Konverters lassen sich, ausgehend von beispielsweise einer Lithium-Batterie mit 2.7-4.1 V, variable, auf die Heizelemente 36 angepasste Spannungen bis zu beispielsweise 43 V, vorzugsweise 5-15 V, besonders bevorzugt 2.7-15 V, weiter besonders bevorzugt 3.6-6V, erzeugen. Die Stromquelle 27 dient zur elektrischen Versorgung sämtlicher aktiver elektrischen Komponenten in dem Inhalator 10.The power source 27 may be a disposable electrochemical battery or a rechargeable electrochemical battery such as a lithium ion battery or a Li battery. Using a step-up converter, starting with a lithium battery with 2.7-4.1 V, for example, variable voltages adapted to the heating elements 36 up to, for example, 43 V, preferably 5-15 V, particularly preferably 2.7-15 V , more particularly preferably 3.6-6V. The power source 27 is used to supply all active electrical components in the inhaler 10 with electricity.

Der Inhalator 10 ist vorzugsweise modular aufgebaut und gegliedert in mindestens eine Verbrauchseinheit und mindestens eine wiederverwendbare Einheit. Die Verdampfereinheit 20 kann eine auswechselbare Kartusche, oder Teil einer solchen Kartusche sein. Der Grundkörper des Inhalators 10 kann wiederverwendbar sein. Die elektronische Einheit 14 und/oder die Stromquelle 27 sind vorzugsweise über eine Schnittstelle mit der Verdampfereinheit 20 verbunden. Die Stromquelle 27 und/oder der Flüssigkeitsspeicher 12 können in einer Verbrauchseinheit angeordnet und für den Einweggebrauch bestimmt sein oder für den Mehrwegverbrauch in einer wiederverwendbaren Einheit in dem Gehäuse 11 angeordnet sein.The inhaler 10 preferably has a modular structure and is divided into at least one consumable unit and at least one reusable unit. The evaporator unit 20 can be a replaceable cartridge or part of such a cartridge. The main body of the inhaler 10 can be reusable. The electronic unit 14 and/or the power source 27 are preferably connected to the evaporator unit 20 via an interface. The power source 27 and/or the liquid reservoir 12 can be arranged in a consumable unit and intended for disposable use or arranged in a reusable unit in the housing 11 for reusable consumption.

Die Verdampfereinheit 20 lässt sich in elektronischen Zigarettenprodukten sowie in medizinischen Inhalatoren verwenden. Neben der Verwendung in stabförmigen elektronischen Zigarettenprodukten kann die Verdampfereinheit 20 beispielsweise in elektronischen Pfeifen, Shishas oder anderen Produkten eingesetzt werden, in denen eine Flüssigkeit aus einem Flüssigkeitsspeicher 12 verdampft werden soll.The evaporator unit 20 can be used in electronic cigarette products as well as medical inhalers. In addition to using in stick-shaped electronic cigarette products For example, the evaporator unit 20 can be used in electronic pipes, shishas or other products in which a liquid from a liquid reservoir 12 is to be evaporated.

Figur 2 zeigt einen Schaltplan für eine bevorzugte Ausführungsform des Inhalators 10 mit beispielsweise drei Heizelementen 36. In anderen nicht gezeigten Ausführungsformen ist die Anzahl der Heizelemente 36 mehr oder weniger als drei. figure 2 Figure 1 shows a circuit diagram for a preferred embodiment of the inhaler 10 with, for example, three heating elements 36. In other embodiments not shown, the number of heating elements 36 is more or less than three.

Der Inhalator 10 umfasst eine Ansteuerungs- und Messeinrichtung 22, die vorteilhaft von der elektronischen Einheit 14 durch die Stromquelle 27 mit elektrischem Strom versorgt wird. Die Ansteuerungs- und Messeinrichtung 22 wird von der elektronischen Steuereinrichtung 21 gesteuert. Die Ansteuerungs- und Messeinrichtung 22 umfasst einen Operationsverstärker 23, eine Schalteinrichtung 24, mindestens einen Referenzwiderstand 25 und mindestens einen Transistor 26. Vorzugsweise ist für jedes Heizelement 36 ein in Serie dazu geschalteter Referenzwiderstand 25 (Shunt) und ein ebenfalls in Serie dazu geschalteter Transistor 26 vorgesehen. In einer bevorzugten Ausführungsform umfasst die elektronische Einheit 14 den Operationsverstärker 23, die Schalteinrichtung 24, den oder die Referenzwiderstände 25 und/oder den oder die Transistoren 26.The inhaler 10 comprises a control and measuring device 22 which is advantageously supplied with electrical power by the electronic unit 14 through the power source 27 . The control and measuring device 22 is controlled by the electronic control device 21 . The control and measuring device 22 comprises an operational amplifier 23, a switching device 24, at least one reference resistor 25 and at least one transistor 26. Preferably, for each heating element 36 there is a reference resistor 25 (shunt) connected in series with it and a transistor 26 also connected in series with it intended. In a preferred embodiment, the electronic unit 14 comprises the operational amplifier 23, the switching device 24, the reference resistor or resistors 25 and/or the transistor or transistors 26.

Die elektronische Steuereinrichtung 21 ist dazu eingerichtet, einen Zug durch den Konsumenten mittels eines geeigneten Sensors, beispielsweise mittels eines Drucksensors, zu detektieren, und infolgedessen die Heizelemente 36 in der Verdampfereinheit 20 anzusteuern, um die Flüssigkeit auf eine geeignete Temperatur zu erwärmen.The electronic control device 21 is set up to detect a puff by the consumer by means of a suitable sensor, for example by means of a pressure sensor, and consequently to activate the heating elements 36 in the evaporator unit 20 in order to heat the liquid to a suitable temperature.

Die elektronische Steuereinheit 21 ist mit den Transistoren 26 verbunden und kann diese unabhängig voneinander steuern, um die den Transistoren 26 entsprechenden Heizelemente 36 unabhängig voneinander zu steuern. Die elektronische Steuereinrichtung 21 ist mit der Schalteinrichtung 24 und dem Operationsverstärker 23 wie in Figur 2 gezeigt verbunden, um Widerstandsmessungen der Heizelemente 36 zu realisieren. Weitere Sensoren für die Messung von Temperaturen, Drücken, und anderen Größen zur Beschreibung des Betriebszustandes können in der Ansteuerungs- und Messeinrichtung 22 enthalten und mit der elektronischen Steuereinrichtung 21 gekoppelt sein.The electronic control unit 21 is connected to the transistors 26 and can control them independently to control the heating elements 36 corresponding to the transistors 26 independently of each other. The electronic control device 21 is connected to the switching device 24 and the operational amplifier 23 as in FIG figure 2 shown connected to realize resistance measurements of the heating elements 36. Additional sensors for measuring temperatures, pressures and other variables for describing the operating state can be contained in the control and measurement device 22 and coupled to the electronic control device 21 .

Der Operationsverstärker 23 (current shunt monitor) ist mit der Steuereinheit 21, einer Erdung, einem Plus-Pol, den Referenzwiderstand 25 und der Schalteinrichtung 24 verbunden und dient beispielsweise der Messung des Spannungsabfalls zwischen einem der Referenzwiderstände 25 und der Spannungsquelle 27. Ein verstärktes Messresultat gibt der Operationsverstärker 23 an die Steuereinheit 21 weiter, wo die Datenverarbeitung geschieht, um den gemessenen Widerstand des entsprechenden Heizelements 36 zu ermitteln.The operational amplifier 23 (current shunt monitor) is connected to the control unit 21, a ground, a positive pole, the reference resistor 25 and the switching device 24 and is used, for example, to measure the voltage drop between one of the reference resistors 25 and the voltage source 27. An amplified measurement result the operational amplifier 23 passes this on to the control unit 21, where the data processing takes place in order to determine the measured resistance of the corresponding heating element 36.

Die Schalteinrichtung 24 wird durch die Steuereinheit 21 gesteuert und legt vorzugsweise einen der Referenzwiderstände 25 als zu messenden Referenzwiderstand 25 fest. Vorzugsweise wird eine elektrische Verbindung mit der Schalteinrichtung 24 zwischen dem Heizelement 36 und dem dazugehörigen Referenzwiderstand 25 hergestellt. Vorzugsweise weist die Schalteinrichtung 24 für jeden zu messenden Referenzwiderstand 25 einen Schalter auf, um gezielte Messung zu ermöglichen.The switching device 24 is controlled by the control unit 21 and preferably defines one of the reference resistors 25 as the reference resistor 25 to be measured. An electrical connection is preferably established with the switching device 24 between the heating element 36 and the associated reference resistor 25 . The switching device 24 preferably has a switch for each reference resistor 25 to be measured, in order to enable targeted measurement.

Die Referenzwiderstände 25 (Shunts) sind vorzugsweise ohmsche Widerstände. Jedes Heizelement 36 verfügt über einen Referenzwiderstand 25 zur Strommessung.The reference resistors 25 (shunts) are preferably ohmic resistors. Each heating element 36 has a reference resistor 25 for current measurement.

Die Transistoren 26 sind vorzugsweise als Feldeffekttransistoren (FET) ausgeführt und dienen der Steuerung und Regelung der Heizelemente 36. Jedes Heizelement 36 kann über einen zugeordneten Transistor 26 angesteuert werden.The transistors 26 are preferably designed as field effect transistors (FET) and are used to control and regulate the heating elements 36. Each heating element 36 can be controlled via an associated transistor 26.

Durch den Einsatz einer geeigneten Schaltung lassen sich neben der Einzelansteuerung der Heizelemente 36 auch Kontrollmechanismen integrieren. Auf diesem Wege gelingt eine Überwachung und Kontrolle der Verdampfereinheit 20. Messungen können beim Einschalten, Ausschalten und/oder während eines Zuges, jedoch bei ausgeschalteter Heizspannung, geschehen, beispielsweise alle 10-1000 ms pro Kanal, vorzugsweise 20-500 ms, besonders bevorzugt 250-400 ms. Durch Multiplexing und Modulierung der Signale auf ein Trägersignal lässt sich die Datenmenge reduzieren.By using a suitable circuit, control mechanisms can also be integrated in addition to the individual activation of the heating elements 36 . In this way, the evaporator unit 20 can be monitored and controlled. Measurements can be taken when switching on, off and/or during a puff, but with the heating voltage switched off, for example every 10-1000 ms per channel, preferably 20-500 ms, particularly preferably 250 -400ms. The amount of data can be reduced by multiplexing and modulating the signals onto a carrier signal.

Die gewonnenen Stromdaten der einzelnen Heizelemente 36 korrelieren mit ihrem Widerstand. Über das bekannte NTC- oder PTC-Verhalten korreliert der Widerstand eindeutig mit der Temperatur des jeweiligen Heizelements 36. Neben der Überwachung der Strukturen lassen sich Widerstands- und Temperaturinformation zur Steuerung und Regelung der Heizelemente 36 nutzen. Eine detaillierte Fehlerdetektion erlaubt die Erkennung von beispielsweise falscher, zu wenig oder zu viel Flüssigkeit oder eines defekten Heizelements 36; eine exakte Zustandsdetektion unter Berücksichtigung des während des Heizvorgangs bekannten thermodynamischen Zustands und der Zusammensetzung der Flüssigkeit ist möglich.The current data obtained from the individual heating elements 36 correlate with their resistance. The resistance clearly correlates with the temperature of the respective heating element 36 via the known NTC or PTC behavior. In addition to monitoring the structures, resistance and temperature information can be used to control and regulate the heating elements 36 . A detailed error detection allows the detection of, for example, wrong, too little or too much liquid or a defective heating element 36; an exact state detection is possible, taking into account the thermodynamic state known during the heating process and the composition of the liquid.

Zusätzlich können in dem Inhalator 10 andere Sensoren umfasst sein, vorzugsweise Thermometer, Feuchtigkeits- und/oder Drucksensoren, um den Betriebszustand des Verdampfers 20 und/oder der Heizelemente 36 genau zu charakterisieren.Additionally, other sensors may be included in the inhaler 10, preferably thermometers, humidity and/or pressure sensors, to accurately characterize the operational status of the vaporizer 20 and/or the heating elements 36.

Die Heizelemente 36 sind vorzugsweise als ohmsche Widerstände und als mikrosystemtechnische Einheit (z.B. MEMS) ausgeführt. Die Ausführung als mikrosystemtechnische Einheit ist wegen ihrer sehr feinen Strukturen im µm-Bereich und der damit verbundenen thermischen Eigenschaften besonders vorteilhaft. Die mikrosystemtechnischen Heizelemente 36 bestehen vorzugsweise aus einem Halbleitermaterial, beispielsweise dotiertem Silizium. Dies ist inert und hat keine katalytische Wirkung und das Heizelement 36 lässt sich damit besonders klein, reproduzierbar und stabil herstellen. Über die Dotierung lässt sich ein temperaturveränderlicher Widerstand von beispielsweise 0.1-20 Ohm, vorzugsweise 0.5-1.5 Ohm, einstellen. Abhängig von der Dotierung kann ein temperaturabhängiges NTC- oder PTC-Verhalten des Widerstandes der Heizelemente 36 erreicht werden, d.h. der Widerstand sinkt beziehungsweise steigt bei steigender Temperatur.The heating elements 36 are preferably designed as ohmic resistors and as a microsystem-technical unit (e.g. MEMS). The design as a microsystem-technical unit is particularly advantageous because of its very fine structures in the µm range and the associated thermal properties. The microsystem-technical heating elements 36 preferably consist of a semiconductor material, for example doped silicon. This is inert and has no catalytic effect, and the heating element 36 can thus be produced in a particularly small, reproducible and stable manner. A temperature-variable resistance of, for example, 0.1-20 ohms, preferably 0.5-1.5 ohms, can be set via the doping. Depending on the doping, a temperature-dependent NTC or PTC behavior of the resistance of the heating elements 36 can be achieved, i.e. the resistance decreases or increases with increasing temperature.

Die Heizelemente 36 sind mit dem Flüssigkeitsspeicher 12 verbunden. Beispielsweise wird die Flüssigkeit kapillar in eine Porenstruktur der Heizelemente 36 gefördert. Werden die Heizelemente 36 auf eine Temperatur oberhalb einer Siedetemperatur eines Bestandteils der Flüssigkeit erhitzt, findet Verdampfung auf der Oberfläche der Heizelemente 36 statt. Die Struktur und Oberfläche der Heizelemente 36 kann beispielsweise auch an bionische Strukturen, beispielsweise Tracheen, angelehnt sein. Durch eine vernetzte Heizerstruktur der Heizelemente 36 kann eine Kapillarbarriere für Luft von der einen und Flüssigkeit von der anderen Seite gebildet werden. Die Heizerstrukturen sind entlang der Grenzfläche von Luft zu Flüssigkeit angeordnet und beim Erreichen einer Siedetemperatur kann die verdampfte Flüssigkeit durch die Heizerstruktur durchtreten und dem Luftstrom 17 zugeführt werden.The heating elements 36 are connected to the liquid reservoir 12 . For example, the liquid is conveyed capillary into a pore structure of the heating elements 36 . When the heating elements 36 are heated to a temperature above a boiling point of a component of the liquid, evaporation takes place on the surface of the heating elements 36 . The structure and surface of the heating elements 36 can, for example, also be based on bionic structures, for example tracheae. A cross-linked heater structure of the heating elements 36 can form a capillary barrier for air on one side and liquid on the other side. the Heater structures are arranged along the air/liquid interface and upon reaching a boiling temperature the vaporized liquid can pass through the heater structure and be introduced into the air flow 17 .

Die Heizelemente 36 weisen vorzugsweise je einen Schichtaufbau auf, wobei jeweils ein Heizelement 36 eine Fläche von vorzugsweise 0.25-6 mm2, besonders bevorzugt von 0.5-3 mm2, aufweist. Die Fläche aller Heizelemente 36 ist insgesamt vorzugsweise 0.2-1 cm2, besonders bevorzugt 0.3-0.8 cm2 groß, und eine bevorzugte Schichtdicke liegt im Bereich von 3-400 µm, um in Abhängigkeit der Heizfläche ein optimales Verhältnis zum zu verdampfenden Flüssigkeitsvolumen zu erreichen. Die Poren der Heizerstruktur haben beispielsweise einen Durchmesser zwischen 10-100 µm, vorzugsweise zwischen 15-50 µm.The heating elements 36 preferably each have a layer structure, with each heating element 36 having an area of preferably 0.25-6 mm 2 , particularly preferably 0.5-3 mm 2 . The area of all heating elements 36 is preferably 0.2-1 cm 2 , particularly preferably 0.3-0.8 cm 2 , and a preferred layer thickness is in the range of 3-400 μm in order to achieve an optimal ratio to the liquid volume to be evaporated depending on the heating area . The pores of the heater structure have, for example, a diameter of between 10-100 μm, preferably between 15-50 μm.

Die Ausführung der Heizelemente 36 als mikrosystemtechnische Einheit bietet die Möglichkeit die Dampfmenge bei gleicher anliegender mittlerer (Verdampfungs-)Leistung durch Ändern der Ansteuerfrequenz zu beeinflussen. Dies ermöglicht eine besonders effiziente und energiesparende Dampferzeugung durch die Heizelemente 36. Wird das Heizelement 36 mit einer bestimmten Frequenz angesteuert, d.h. beheizt, steigt der Anteil der in die Verdampfung gebrachten Heizleistung bei gleicher mittlerer Heizleistung mit zunehmender Frequenz bis zu einem Optimum an. Somit sind bei höheren Frequenzen größere Dampfmengen zu erwarten, da sich die resultierende Verdampfungsleistung erhöht. Die Optimierung des Energieeintrags führt nebenbei zu einem reduzierten Stromverbrauch.The design of the heating elements 36 as a microsystem-technical unit offers the possibility of influencing the amount of steam with the same average (evaporation) power applied by changing the control frequency. This enables a particularly efficient and energy-saving generation of steam by the heating elements 36. If the heating element 36 is actuated, ie heated, at a specific frequency, the proportion of the heat output brought into the evaporation increases with the same average heat output with increasing frequency up to an optimum. Thus, larger amounts of steam are to be expected at higher frequencies, since the resulting evaporation capacity increases. The optimization of the energy input also leads to reduced power consumption.

Neben der frequenzabhängigen Beeinflussung der Dampfmenge ist des Weiteren eine Änderung der Aerosolqualität mit der Ansteuerfrequenz der Heizelemente 36 zu beobachten. Mit zunehmender Ansteuerfrequenz lässt sich eine feinere Tröpfchengrößenverteilung feststellen, d.h. die Verteilung der Tröpfchengröße verschiebt sich zugunsten einer kleineren Tröpfchengröße. Dies ist in einem, mit zunehmender Frequenz verbesserten Eintrag der Wärme in das zu verdampfende Liquid begründet. Es wird geeignet gepulst oder eine ausreichende Frequenz gewählt, dass die Wärme des Heizelements 36 in die Flüssigkeit gehen kann und ohne, dass Verluste durch zu schnellen Energieeintrag bei zu hoher Frequenz (kurzer Pulsdauer) oder durch ein zu starkes Abkühlen bei zu niedriger Frequenz (lange Pulsdauer) entstehen. Besonders vorteilhaft ist diese Beeinflussung des Dampfes, wenn die Heizelemente 36 als mikrosystemtechnische Einheit ausgeführt sind und in der Lage sind, den schnellen Wechseln des Energieeintrags mit ihrer Heizflächentemperatur zu folgen, d.h. nur eine geringe thermische Trägheit aufweisen. Im Gegensatz zu einer Wendel- oder Gitterstruktur weisen die Heizelemente 36 eine wesentlich höhere Grenzfrequenz auf.In addition to the frequency-dependent influencing of the vapor quantity, a change in the aerosol quality with the activation frequency of the heating elements 36 can also be observed. A finer droplet size distribution can be determined with increasing control frequency, i.e. the distribution of the droplet size shifts in favor of a smaller droplet size. This is due to an improved input of heat into the liquid to be vaporized with increasing frequency. A suitable pulse is used or a sufficient frequency is selected so that the heat from the heating element 36 can go into the liquid and without losses due to rapid energy input at too high a frequency (short pulse duration) or excessive cooling at too low a frequency (long pulse duration) occur. This influencing of the steam is particularly advantageous if the heating elements 36 are designed as a microsystem-technical unit and are able to follow the rapid changes in the energy input with their heating surface temperature, i.e. only have a low thermal inertia. In contrast to a helical or lattice structure, the heating elements 36 have a significantly higher limit frequency.

Figur 3 zeigt einen Schaltplan für eine bevorzugte Ausführungsform des Inhalators 10 mit beispielsweise einem Heizelement 36. figure 3 shows a circuit diagram for a preferred embodiment of the inhaler 10 with, for example, a heating element 36.

Der Inhalator 10 umfasst eine Ansteuerungs- und Messeinrichtung 22, die vorteilhaft von der elektronischen Einheit 14 umfasst ist und durch die Stromquelle 27 mit elektrischem Strom versorgt wird. Die Ansteuerungs- und Messeinrichtung 22 wird von der elektronischen Steuereinrichtung 21 gesteuert. Die Ansteuerungs- und Messeinrichtung 22 umfasst einen Operationsverstärker 23, eine Schalteinrichtung 24, einen Referenzwiderstand 25 und einen Transistor 26. Vorzugsweise ist für das Heizelement 36 ein in Serie dazu geschalteter Referenzwiderstand 25 und ein ebenfalls in Serie dazu geschalteter Transistor 26 vorgesehen. In einer nicht gezeigten Ausführungsform kann die Schalteinrichtung 24 bei der Verwendung von nur einem Heizelement 36 ausgespart sein, um einen einfacheren und kostengünstigeren Aufbau zu ermöglichen.The inhaler 10 includes a control and measuring device 22 which is advantageously included in the electronic unit 14 and is supplied with electrical power by the power source 27 . The control and measuring device 22 is controlled by the electronic control device 21 . The control and measuring device 22 comprises an operational amplifier 23, a switching device 24, a reference resistor 25 and a transistor 26. Preferably, for the heating element 36, there is one connected in series with it Reference resistor 25 and a transistor 26 also connected in series with it are provided. In an embodiment that is not shown, the switching device 24 can be omitted when only one heating element 36 is used, in order to enable a simpler and more cost-effective construction.

In dieser Ausführungsform mit nur einem Heizelement 36 kann das Heizelement 36 mit verschiedenen und änderbaren Ansteuerfrequenzen beaufschlagt werden. Sowohl eine Superposition verschiedener Ansteuersignale als auch eine zeitliche Änderung und/oder Modulation sind denkbar, um eine gewünschte Tröpfchengrößenverteilung zu erzielen.In this embodiment with only one heating element 36, the heating element 36 can be acted upon with different and changeable drive frequencies. Both a superposition of different control signals and a change and/or modulation over time are conceivable in order to achieve a desired droplet size distribution.

Figur 4 zeigt ein Beispiel für den zeitlichen Verlauf der Heizspannung UH, die an dem Heizelement 36 anliegt. Das Heizelement 36 wird in dieser Ausführungsform abhängig von der Zeit t mit Pulsen 32 beheizt. Eine Periode 33 gliedert sich in eine Verdampfungsphase 30 und eine Folgephase 31. In den Verdampfungsphasen 30 liegt eine Heizspannung UH an dem Heizelement 36 an und ermöglicht Verdampfung der auf und/oder am Heizelement 36 befindlichen Flüssigkeit. Während der Folgephase 31 liegt vorzugsweise keine Heizspannung am Heizelement 36 an. Während einer Periode 33 findet eine Verdampfungsphase 30 statt, deren Länge über den Tastgrad definiert ist. Beispielsweise können während einer Periodendauer 33 und/oder einem kürzeren Bruchteil einer Periodendauer 33 verschiedene Heizelemente 36 sequentiell gemessen werden. Bei einer geeigneten Periodendauer 33 können auch mehrere Messungen, Regelungen, Steuerungen und/oder Kontrollen an verschiedenen Heizelementen 36 vorgenommen werden. In einer bevorzugten Ausführungsform wird in regelmäßigen Abständen, um die Steuerung, Regelung, Kontrolle und/oder Datenverarbeitung zu vereinfachen, gemessen. figure 4 shows an example of the time course of the heating voltage U H applied to the heating element 36 . In this embodiment, the heating element 36 is heated with pulses 32 as a function of the time t. A period 33 is divided into an evaporation phase 30 and a subsequent phase 31. In the evaporation phases 30, a heating voltage U H is applied to the heating element 36 and enables the liquid on and/or on the heating element 36 to evaporate. During the subsequent phase 31 there is preferably no heating voltage on the heating element 36 . During a period 33, an evaporation phase 30 takes place, the length of which is defined by the duty cycle. For example, different heating elements 36 can be measured sequentially during a period 33 and/or a shorter fraction of a period 33 . With a suitable period 33, several measurements, regulations, controls and/or checks can also be carried out on different heating elements 36. In a preferred embodiment, in order to control the Simplify regulation, control and/or data processing.

Die Heizleistung in Form anderer Wechselströme, periodischer und aperiodischer Verläufe ist denkbar. Von Vorteil ist die Überlagerung von periodischen Signalen mit verschiedenen Frequenzen beziehungsweise Perioden 33, welche die Erzeugung unterschiedlich großer Tröpfchen ermöglicht. Die Periode 33 ändert sich in einer bevorzugten Ausführungsform über die Dauer des Betriebs und/oder ist bevorzugt einstellbar. Jedes Heizelement 36 kann gleichartig oder verschieden beheizt werden.The heat output in the form of other alternating currents, periodic and aperiodic curves is conceivable. The superimposition of periodic signals with different frequencies or periods 33, which makes it possible to produce droplets of different sizes, is advantageous. In a preferred embodiment, the period 33 changes over the duration of operation and/or is preferably adjustable. Each heating element 36 can be heated in the same way or differently.

Figur 5 zeigt ein Beispiel für den zeitlichen Verlauf der Ansteuerfrequenz f, die an dem Heizelement 36 anliegt. Die Ansteuerfrequenz f steigt im Laufe der Zeit t über die Dauer 42. Die Dauer 42 kann beispielsweise durch die Entleerungsdauer des Flüssigkeitsspeichers 12 gegeben sein. Die gebrochene Zeitachse verdeutlicht, dass die Entleerungsdauer in diesem Beispiel nicht auf die dargestellte Anzahl von fünf Zügen beschränkt sein soll. In diesem Beispiel ist die Ansteuerfrequenz f über einen Zug 40 konstant. Die Heizleistung an dem Heizelement 36 folgt beispielsweise während eines Zuges dem in Figur 4 dargestellten Verlauf. Die einzelnen Züge 40 werden durch Pausen 41 unterbrochen, in denen Messung, Steuerung, Regelung und/oder Kontrolle des Betriebszustandes stattfinden kann. Von Zug 40 zu Zug 40 steigt im Laufe der Zeit t die Ansteuerfrequenz f an und ermöglicht im Laufe der Zeit t die Erzeugung immer kleinerer Tröpfchen, um beispielsweise das Raucherlebnis und die Nikotinverabreichung zu homogenisieren. Je nach Anwendungszweck sind andere zeitliche Verläufe der Frequenz denkbar. figure 5 FIG. 12 shows an example of the timing of the drive frequency f applied to the heating element 36. FIG. The control frequency f increases over the period of time t over the period 42. The period 42 can be given, for example, by the emptying period of the liquid reservoir 12. The broken timeline makes it clear that the emptying duration in this example should not be limited to the illustrated number of five puffs. In this example, the driving frequency f is constant over a train 40 . The heat output at the heating element 36 follows, for example, during a puff in figure 4 shown course. The individual trains 40 are interrupted by pauses 41, during which measurement, control, regulation and/or monitoring of the operating state can take place. From puff 40 to puff 40, the control frequency f increases over the course of time t and, over the course of time t, enables ever smaller droplets to be generated in order, for example, to homogenize the smoking experience and the nicotine administration. Depending on the application, other frequency profiles over time are conceivable.

Claims (13)

  1. Inhaler (10), comprising an electronic control device (21) and a vaporizer unit (20) with at least one heating element (36), wherein the vaporizer unit (20) is adapted for vaporizing a liquid fed from a liquid reservoir (12) and the vaporized liquid is received by an air stream flowing through the vaporizer unit (20), wherein the electronic control device (21) is adapted for heating the at least one heating element (36) with a variable control frequency, wherein the electronic control device (21) is adapted for varying the control frequency of the at least one heating element (36) over the emptying duration of the liquid reservoir (12), characterized in that the electronic control device (21) is adapted for increasing the control frequency of the at least one heating element (36) while the liquid reservoir (12) is progressively emptied.
  2. Inhaler (10)) according to claim 1, characterized in that the electronic control device (21) is adapted for heating the at least one heating element (36) with a plurality of different control frequencies.
  3. Inhaler (10) according to any one of the preceding claims, characterized in that the vaporizer unit (20) has a plurality of heating elements (36), and the electronic control device (21) is adapted for heating various heating elements (36) with different control frequencies.
  4. Inhaler (10) according to any one of the preceding claims, characterized in that the electronic control device (21) is adapted for varying the control frequency of the at least one heating element (36) over the course of one breath.
  5. Inhaler (10) according to any one of the preceding claims, characterized in that the electronic control device (21) is adapted for setting the control frequency of the at least one heating element (36).
  6. Inhaler (10) according to any one of the preceding claims, characterized in that the electronic control device (21) is adapted for setting the control frequency of the at least one heating element (36) at at least 10 Hz and preferably at most at 20 kHz.
  7. Inhaler (10) according to any one of the preceding claims, characterized in that a control and measurement device (22) is provided, which is adapted for measuring the resistance of the at least one heating element (36).
  8. Inhaler (10) according to claim 7, characterized in that the control and measurement device (22) is provided with at least one reference resistor (25), which is series-connected with the at least one heating element (36).
  9. Inhaler (10) according to claim 7 or 8, characterized in that the control and measurement device (22) is provided with at least one operational amplifier (23).
  10. Inhaler (10) according to any one of claims 7 to 9, characterized in that the control and measurement device (22) is provided with at least one switching device (24).
  11. Inhaler (10) according to any one of the preceding claims, characterized in that the at least one heating element (36) is a microsystem technology unit.
  12. A method for controlling an inhaler (10) having an electronic control device (21) and a vaporizer unit (20) with at least one heating element (36), wherein the vaporizer unit (20) is adapted for vaporizing a liquid fed from a liquid reservoir (12), and wherein the vaporized liquid is received by an air stream flowing through the vaporizer unit (20), wherein the electronic control device (21) heats the at least one heating element (36) with a variable control frequency, wherein the electronic control device (21) varies the control frequency of the at least one heating element (36) over the emptying duration of the liquid reservoir (12), characterized in that the electronic control device (21) increases the control frequency of the at least one heating element (36) while the liquid reservoir (12) is progressively emptied.
  13. Method of claim 12, wherein a control and measurement device (22) is provided, which is adapted for measuring the resistance of the at least one heating element (36), characterized in that, based on the measured values of the control and measurement device (22), one or more of the following measures are implemented:
    - status check, monitoring and/or fault detection of the vaporizer unit (20);
    - control or regulation of the vaporizer unit (20);
    - determination of the temperature of the at least one heating element.
EP18190453.3A 2017-08-25 2018-08-23 Inhaler and method for controlling an inhaler Active EP3446579B8 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017119521.1A DE102017119521A1 (en) 2017-08-25 2017-08-25 An evaporator unit for an inhaler and method for controlling an evaporator unit

Publications (3)

Publication Number Publication Date
EP3446579A1 EP3446579A1 (en) 2019-02-27
EP3446579B1 true EP3446579B1 (en) 2022-10-05
EP3446579B8 EP3446579B8 (en) 2023-01-04

Family

ID=63371560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18190453.3A Active EP3446579B8 (en) 2017-08-25 2018-08-23 Inhaler and method for controlling an inhaler

Country Status (6)

Country Link
US (1) US20190059446A1 (en)
EP (1) EP3446579B8 (en)
JP (1) JP7252722B2 (en)
KR (1) KR20190022360A (en)
CN (1) CN109419045B (en)
DE (1) DE102017119521A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020092245A1 (en) * 2018-10-29 2020-05-07 Zorday IP, LLC Network-enabled electronic cigarette
DE102019114473A1 (en) 2019-05-29 2020-12-03 Hauni Maschinenbau Gmbh Vaporizer device for an electric inhaler
WO2021002698A1 (en) * 2019-07-02 2021-01-07 주식회사 이엠텍 Portable aerosol generator and operation method thereof
KR102477075B1 (en) * 2019-07-02 2022-12-13 주식회사 이엠텍 Portable aerosol generator and its operation method
JP6667708B1 (en) * 2019-10-24 2020-03-18 日本たばこ産業株式会社 Power supply unit for aerosol inhaler
JP6667709B1 (en) * 2019-10-24 2020-03-18 日本たばこ産業株式会社 Power supply unit for aerosol inhaler
DE102021114281A1 (en) * 2021-06-02 2022-12-08 Körber Technologies Gmbh Vaporization device for an inhaler
KR102625768B1 (en) * 2021-06-14 2024-01-16 주식회사 케이티앤지 Aerosol generating device and control method of the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003480A1 (en) 2008-07-08 2010-01-14 Philip Morris Products S.A. A flow sensor system
US20140020693A1 (en) 2010-12-24 2014-01-23 Philip Morris Products S.A Aerosol generating system having means for determining depletion of a liquid substrate
WO2014037794A2 (en) 2012-09-04 2014-03-13 R. J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
WO2014102091A1 (en) 2012-12-28 2014-07-03 Philip Morris Products S.A. Heated aerosol-generating device and method for generating aerosol with consistent properties
US20140270727A1 (en) 2013-03-15 2014-09-18 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
WO2016014652A1 (en) 2014-07-24 2016-01-28 Altria Client Services Inc. Electronic vaping device and components thereof
US20160206003A1 (en) 2013-09-30 2016-07-21 Japan Tobacco Inc. Non-burning type flavor inhaler
WO2016175320A1 (en) 2015-04-30 2016-11-03 日本たばこ産業株式会社 Non-combustion flavor suction apparatus
US9532600B2 (en) 2010-12-03 2017-01-03 Philip Morris Products S.A. Electrically heated aerosol generating system having improved heater control
US20170042241A1 (en) 2014-02-28 2017-02-16 Beyond Twenty Ltd. Electronic vaporiser system
EP3207811A1 (en) 2014-11-10 2017-08-23 Japan Tobacco, Inc. Non-combusting flavor inhaler and package

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040560A (en) * 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system
US9999250B2 (en) 2010-05-15 2018-06-19 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
GB2491358A (en) * 2011-05-31 2012-12-05 British American Tobacco Co Smoking device for generating an aerosol
CN105848503A (en) * 2013-05-23 2016-08-10 Sis资源有限公司 Digital marketing application for electronic cigarette users
CN203467678U (en) * 2013-09-27 2014-03-12 向智勇 Smoking signal generating device and electronic cigarette
EP3076806B1 (en) * 2013-11-21 2021-08-25 Avanzato Technology Corp. Improved vaporization and dosage control for electronic vaporizing inhaler
CN105916395B (en) * 2013-12-11 2020-07-24 Jt国际股份公司 Heating system and heating method for inhaler device
GB201410171D0 (en) * 2014-06-09 2014-07-23 Nicoventures Holdings Ltd Electronic vapour provision system
US9801415B2 (en) * 2014-07-11 2017-10-31 POSIFA Microsytems, Inc. MEMS vaporizer
WO2016029225A1 (en) * 2014-08-22 2016-02-25 Fontem Holdings 2 B.V. Method, system and device for controlling a heating element
EP3066940B1 (en) * 2015-03-13 2020-05-06 Fontem Holdings 1 B.V. Aerosol generating component for an electronic smoking device and electronic smoking device
WO2017085242A1 (en) * 2015-11-19 2017-05-26 Philip Morris Products S.A. Inductive heating device for heating an aerosol-forming substrate
PL3170413T3 (en) * 2015-11-19 2023-12-04 Fontem Ventures B.V. Electronic smoking device with non-simultaneously operated heating elements
CN106343617B (en) * 2016-11-30 2019-04-30 广州周立功单片机科技有限公司 Electronic cigarette control method, device and electronic cigarette

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003480A1 (en) 2008-07-08 2010-01-14 Philip Morris Products S.A. A flow sensor system
US9532600B2 (en) 2010-12-03 2017-01-03 Philip Morris Products S.A. Electrically heated aerosol generating system having improved heater control
US20140020693A1 (en) 2010-12-24 2014-01-23 Philip Morris Products S.A Aerosol generating system having means for determining depletion of a liquid substrate
WO2014037794A2 (en) 2012-09-04 2014-03-13 R. J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
WO2014102091A1 (en) 2012-12-28 2014-07-03 Philip Morris Products S.A. Heated aerosol-generating device and method for generating aerosol with consistent properties
US20140270727A1 (en) 2013-03-15 2014-09-18 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US20160206003A1 (en) 2013-09-30 2016-07-21 Japan Tobacco Inc. Non-burning type flavor inhaler
US20170042241A1 (en) 2014-02-28 2017-02-16 Beyond Twenty Ltd. Electronic vaporiser system
WO2016014652A1 (en) 2014-07-24 2016-01-28 Altria Client Services Inc. Electronic vaping device and components thereof
EP3207811A1 (en) 2014-11-10 2017-08-23 Japan Tobacco, Inc. Non-combusting flavor inhaler and package
WO2016175320A1 (en) 2015-04-30 2016-11-03 日本たばこ産業株式会社 Non-combustion flavor suction apparatus
EP3272382A1 (en) 2015-04-30 2018-01-24 Japan Tobacco, Inc. Non-combustion flavor suction apparatus

Also Published As

Publication number Publication date
JP7252722B2 (en) 2023-04-05
DE102017119521A1 (en) 2019-02-28
EP3446579A1 (en) 2019-02-27
US20190059446A1 (en) 2019-02-28
CN109419045A (en) 2019-03-05
EP3446579B8 (en) 2023-01-04
CN109419045B (en) 2024-05-07
KR20190022360A (en) 2019-03-06
JP2019037226A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
EP3446579B1 (en) Inhaler and method for controlling an inhaler
EP3407677B1 (en) Evaporator unit for an inhaler and method for controlling an evaporator unit
EP2574247B1 (en) Permeable electric heat resistant foil for evaporating liquids out of disposable mouthpieces with evaporator nozzles
DE102017111119B4 (en) Vaporizer unit for an inhaler
EP2358223B1 (en) Inhaler
EP3534734A1 (en) Vaporiser unit for an inhaler, and method for controlling a vaporiser unit
EP3694349B1 (en) Inhaler, particularly electronic cigarette product
WO2020109253A1 (en) Method and apparatus for controlling the temperature of an evaporator for an inhaler, in particular an electronic cigarette product
EP3372096B1 (en) Evaporator unit for an inhaler
EP3496792A1 (en) Inhaler and fluid reservoir for an inhaler
WO2018115109A1 (en) Vaporiser unit for an inhaler, and method for controlling a vaporiser unit
DE10042396B4 (en) Hot air generation of hot air extraction inhalers
EP3972435A1 (en) Method for regulating the vaporisation of a vaporiser in an inhaler
WO2023213735A1 (en) Device for transferring an active substance to a gas phase
DE102020110258A1 (en) Inhaler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190731

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018010761

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A24F0047000000

Ipc: A24F0040460000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: A24F 40/53 20200101ALI20220214BHEP

Ipc: A24F 40/46 20200101AFI20220214BHEP

INTG Intention to grant announced

Effective date: 20220321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1522192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018010761

Country of ref document: DE

Owner name: KOERBER TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: HAUNI MASCHINENBAU GMBH, 21033 HAMBURG, DE

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018010761

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KOERBER TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502018010761

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

26 Opposition filed

Opponent name: G.D S.P.A.

Effective date: 20230704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230824

Year of fee payment: 6

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 6

Ref country code: DE

Payment date: 20230831

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230823

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221005