EP3426822B1 - Fluorid-freie zirkonium-basierte metallvorbehandlung zur passivierung - Google Patents

Fluorid-freie zirkonium-basierte metallvorbehandlung zur passivierung Download PDF

Info

Publication number
EP3426822B1
EP3426822B1 EP17701835.5A EP17701835A EP3426822B1 EP 3426822 B1 EP3426822 B1 EP 3426822B1 EP 17701835 A EP17701835 A EP 17701835A EP 3426822 B1 EP3426822 B1 EP 3426822B1
Authority
EP
European Patent Office
Prior art keywords
zirconium
less
corrosion agent
particularly preferably
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17701835.5A
Other languages
English (en)
French (fr)
Other versions
EP3426822A1 (de
Inventor
Jörg Riesop
Volker GEICK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP3426822A1 publication Critical patent/EP3426822A1/de
Application granted granted Critical
Publication of EP3426822B1 publication Critical patent/EP3426822B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids

Definitions

  • the present invention relates to a method for the anticorrosive pretreatment of metal substrates using zirconium-based aqueous corrosion protection agents.
  • the anti-corrosive effect of the zirconium-based agent is based on the presence of polycyclic hydrocarbons, which have at least one fused benzene ring with in each case at least two nucleus-substituted hydroxyl groups in the ortho position to one another.
  • the aqueous corrosion protection agent can be essentially free both of passivating chromium-containing compounds and of fluoride-containing compounds that pickle the metal substrate.
  • the pretreatment by drying is particularly advantageous.
  • the method according to the invention is particularly suitable for the pretreatment of metal strip, with excellent corrosion protection results being achieved on surfaces of aluminum or steel.
  • the invention additionally comprises a method for producing coated can ends from aluminum strip using the aforementioned zirconium-based corrosion protection agent.
  • an aqueous concentrate for providing the ready-to-use corrosion protection agents is included.
  • the conversion treatment of metallic surfaces to provide a coating that protects against corrosion and is based on aqueous compositions containing water-soluble compounds of the element zirconium is a technical field that is extensively described in the patent literature.
  • various variants of such a metal pretreatment are known, which either aim at the composition of the agents causing the conversion or use further wet chemical treatment steps in the immediate context of the conversion treatment.
  • the EP 1 455 002 A1 suggests that the proportion of fluorides in the passivating coating caused by wet-chemical conversion using water-soluble fluoro compounds of the element zirconium should not exceed a certain proportion and, at the same time, suggests drying at an elevated temperature and rinsing with an alkaline solution as suitable post-treatments, in order to bring about a considerable reduction in the fluoride content.
  • the suitability of the anti-corrosive agent by drying to provide a good paint adhesion primer on aluminum substrates and thus being suitable for the production of beverage cans is desirable here.
  • the anti-corrosion agent to be applied in such a process is also largely free of compounds that release fluoride which are problematic in terms of environmental hygiene.
  • This range of tasks is achieved by a method for the anticorrosive pretreatment of a metallic substrate, in which the surface of the metallic substrate is brought into contact with an aqueous corrosion protection agent which contains at least one water-soluble compound (A) of the element zirconium, the agent additionally at least one polycyclic Contains hydrocarbon (B) which has at least one fused benzene ring each with at least two nucleus-substituted hydroxyl groups in ortho-position to one another, and wherein the molar ratio of zirconium to the total fluoride content in the homogeneous aqueous phase of the anti-corrosion agent is greater than 1.
  • a compound (A) of the element zirconium is water-soluble in the context of the present invention if it has a solubility of at least 0.1 g of the compound at 20 ° C. in deionized water, which has a specific conductivity of less than 11 ⁇ Scm ⁇ 1 on the element zirconium per kilogram of the aqueous solution thus produced.
  • the method according to the invention ensures that, as a result of a pickling attack on the metallic substrate, passivation of the metallic substrate occurs mediated by a surface covering based on poorly soluble compounds of the element zirconium and the polycyclic hydrocarbon.
  • Metallic substrates pretreated according to the invention which thus have a corresponding surface coverage, are also ideally suited to impart an excellent paint primer to subsequent primers containing film-forming organic resins; for this purpose, the aqueous corrosion protection agent can additionally contain organic polymers without the passivation being adversely affected.
  • the polycyclic hydrocarbon (B) has a low solubility in water, so that it is necessary for adequate surface coverage in the respective application process
  • the necessary dissolved amount of polycyclic hydrocarbon (B) is ideally still just dissolved in the aqueous corrosion protection agent.
  • processes according to the invention are preferred in which the polycyclic hydrocarbon (B) at 20 ° C in deionized water with a specific conductivity of less than 1 ⁇ Scm -1 has a solubility of less than 5 g, particularly preferably less than 1 g per Has kilograms of the aqueous solution produced thereby
  • a low solubility of the polycyclic hydrocarbon (B) is particularly advantageous when applying the anti-corrosion agent in the drying process (so-called "dry-in-place process”), in which even small amounts of the active components of the anti-corrosion agent for a passivating surface covering of the metallic to be protected Substrates can be sufficient.
  • solubility in water is to be understood with respect to the compound (B) so that above the solubility limits mentioned at a shear rate of 100 s -1 result in dispersions or emulsions with an average particle diameter (D50 value) calculated from cumulative particle diameter distribution curves determined by dynamic light scattering methods of more than 50 nm.
  • D50 value average particle diameter
  • the polycyclic hydrocarbon (B) contains at least two fused benzene rings each with at least two nucleus-substituted hydroxyl groups in the ortho position to one another, the benzene rings each being bridged to one another by fusing to an acyclic hydrocarbon system, the acyclic hydrocarbon system preferably at least has an oxo group or hydroxyl group.
  • Such polycyclic hydrocarbons (B) are familiar to the person skilled in the art, for example in the form of hematoxylin and its oxidation product hematein and in the form of alizarin.
  • polycyclic hydrocarbons (B) which build on the anthraquinone basic structure.
  • those polycyclic hydrocarbons (B) are preferred in the process according to the invention which are selected from the group of anthraquinones with at least two hydroxyl groups in the ortho-position to one another, particularly preferably selected from the group consisting of 1,2-dihydroxyanthraquinone, 3 , 4-dihydroxyanthraquinone, 1,2,3-trihydroxyanthraquinone, 1,2,4-trihydroxyanthraquinone, 1,2,3-trihydroxyanthraquinone, 1,2,5-trihydroxyanthraquinone, 1,2,6-trihydroxyanthraquinone, 1,2,7 Trihydroxyanthraquinone, 1,2,8-trihydroxyanthraquinone, 1,2,3-tri
  • the ratio of water-soluble compounds (A) of the element zirconium to polycyclic hydrocarbons (B) should be in a certain range for optimal passivation of the surfaces of the metallic substrates pretreated in the process according to the invention.
  • the weight ratio of water-soluble compounds (A) of the zirconium element based on the zirconium element to polycyclic hydrocarbons (B) in the corrosion protection agent of the process according to the invention is preferably less than 0.2, particularly preferably less than 0.1, but preferably greater than 0.02 is.
  • Preferred amounts of the polycyclic hydrocarbons (B) in the anti-corrosion agent of the process according to the invention are in the range from 5-250 mg / kg.
  • the anti-corrosive agent which is used in the process according to the invention is preferably adjusted to be acidic for an increased solubility of the water-soluble compounds (A) of the element zirconium and an acidic effect on the metal substrate.
  • the pH of the corrosion protection agent is less than 2.0, particularly preferably less than 1.6, but preferably greater than 0.5, particularly preferably greater than 1.0.
  • the method according to the invention is characterized in that a high rate of pickling removal, ie a high rate of metal dissolution during the bringing into contact with the corrosion protection agent, is not necessary for adequate surface passivation. Consequently, in particularly advantageous embodiments of the invention, the corrosion protection agent can be formulated largely free of environmentally harmful fluorides or fluoride-releasing compounds which are usually used to increase the pickling rate, in particular on aluminum substrates.
  • the molar ratio of zirconium to the total fluoride content in the homogeneous aqueous phase of the anti-corrosion agent is greater than 1, preferably greater than 2, particularly preferably greater than 4.
  • the total fluoride content is in a TISAB buffered aliquot of the anti-corrosion agent determined with a fluoride-sensitive electrode at 20 ° C (TISAB: "Total lonic Strength Adjustment Buffer"), the volume-based mixing ratio of buffer to the aliquot of the corrosion protection agent being 1: 1.
  • the TISAB buffer is prepared by dissolving 58 g of NaCl, 1 g of sodium citrate and 50 ml of glacial acetic acid in 500 ml of deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ) and setting a pH value of 5.3 using 5 N NaOH and making up to a total volume of 1000 ml again with deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ).
  • the source of the water-soluble compound (A) of the element zirconium is not also a source of fluoride ions and is preferably selected from zirconyl nitrate, zirconium acetate and / or ammonium zirconium carbonate, particularly preferably from zirconyl nitrate.
  • the preferred amount of the water-soluble compound (A) in the corrosion protection agent of the process according to the invention is at least 40 mg / kg, particularly preferably at least 200 mg / kg, in particular at least 400 mg / kg, but preferably not more than 4000 mg / kg, based on the amount of the element zirconium.
  • the total fluoride content in the aqueous phase of the corrosion protection agent is less than 50 mg / kg, preferably less than 10 mg / kg, particularly preferably less than 1 mg / kg, based on the corrosion protection agent.
  • the corrosion protection agent does not have to contain anions which form sparingly soluble salts such as phosphates in order to form a passivating coating.
  • the corrosion protection agent therefore contains less than 0.2% by weight, particularly preferably less than 0.1% by weight, of dissolved phosphates, calculated as PO 4 .
  • the method according to the invention is outstandingly suitable for providing a paint primer on metallic substrates, in particular by drying a wet film of the corrosion protection agent.
  • This suitability means that the presence of organic polymers that improve paint adhesion in the aqueous corrosion protection agent does not have a negative effect on the passivation.
  • the corrosion protection agent therefore contains at least 0.1% by weight, particularly preferably at least 0.2% by weight, of organic compounds (C) each based on the aqueous corrosion protection agent, which have a molar mass above 5,000 g / mol. In the present case, the molar mass can be determined directly in the anticorrosion agent at 20 ° C.
  • the organic compounds (C) preferably contain at least partially functional groups selected from hydroxyl groups, carboxyl groups, phosphate groups, phosphonate groups and amino groups.
  • the sum of the acid number and hydroxyl number is at least 100 milligrams of KOH per gram, particularly preferably at least 200 milligrams of KOH per gram of the organic compounds (C), but preferably not more than 600 milligrams of KOH per gram of the organic compounds (C) .
  • the acid number is a measured variable to be determined experimentally, which is a measure of the number of free acid groups in the polymer or in a polymer mixture.
  • the acid number is determined by dissolving a weighed amount of the polymer or the polymer mixture in a solvent mixture of methanol and distilled water in a volume ratio of 3: 1 and then potentiometrically titrating it with 0.05 mol / l KOH in methanol.
  • the potentiometric measurement is carried out with a combination electrode (LL-Solvotrode® from Metrohm; reference electrolyte: 0.4 mol / l tetraethylammonium bromide in ethylene glycol).
  • the acid number corresponds to the added amount of KOH in milligrams per gram of polymer or polymer mixture at the turning point of the potentiometric titration curve.
  • the hydroxyl number can be determined experimentally by potentiometric titration as a measure of the number of free hydroxyl groups in the polymer or in a polymer mixture.
  • a weighed amount of the polymer or the polymer mixture in a reaction solution of 0.1 mol / l phthalic anhydride in pyridine is heated at 130 ° C for 45 minutes and first with 1.5 times the volume of the reaction solution of pyridine and then with the 1, 5 times the volume of the reaction solution of deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ) was added.
  • the amount of phthalic acid released is titrated in this mixture using 1 M potassium hydroxide solution.
  • the potentiometric measurement is carried out with a combination electrode (LL-Solvotrode® from Metrohm; reference electrolyte: 0.4 mol / l tetraethylammonium bromide in ethylene glycol).
  • the hydroxyl number corresponds to the added amount of KOH in milligrams per gram of polymer or polymer mixture at the turning point of the potentiometric titration curve.
  • those aqueous corrosion inhibitors are preferred according to the invention which contain, as organic compounds (C), copolymers or copolymer mixtures of alkenes and vinyl alcohol, particularly preferably ethene and vinyl alcohol, which particularly preferably have a hydroxyl number im Range from 200 to 500 milligrams of KOH per gram of the copolymer or the copolymer mixture.
  • the proportion of these copolymers or copolymer mixture is preferably at least 0.1% by weight, particularly preferably at least 0.2% by weight, but preferably does not exceed 5% by weight, particularly preferably not 2% by weight, in each case based on the aqueous corrosion protection agents.
  • the corrosion protection agent contains less than 0.1% by weight, particularly preferably less than 0.01% by weight, of particulate inorganic constituents which, in the case of ultrafiltration, have an exclusion limit of 50 kD Retentate to be retained.
  • the aqueous corrosion protection agent can be formulated essentially free of toxic heavy metals.
  • the aqueous corrosion protection agent therefore contains less than 50 mg / kg, preferably less than 10 mg / kg, particularly preferably less than 10 mg / kg, of compounds of the element chromium, and in a further preferred embodiment less than 50 mg / kg kg, preferably less than 10 mg / kg, particularly preferably less than 1 mg / kg, of compounds of the elements chromium, nickel and cobalt.
  • the metallic substrates pretreated in the process according to the invention should have a sufficient solution pressure in the aqueous anti-corrosive agent under the usual process engineering conditions with respect to acids and atmospheric oxygen, and thus corrode at least to such an extent that a conversion of the natural or thin oxide layer specifically adjusted by means of wet-chemical cleaning on the respective Metal substrate is set in motion, which is completed by the deposition of elements and compounds of the active components of the anti-corrosion agent.
  • the pretreatment of those metallic substrates is preferred according to the invention, which in an oxygen-saturated potassium hydrogen phthalate buffer (0.05 mol / L, pH 4.01, 20 ° C, 0.21 bar oxygen partial pressure in the atmosphere) has a corrosion potential of less as +0.2 V (SHE).
  • the metallic substrates are selected from zinc and / or aluminum and their alloys, particularly preferably from aluminum and its alloys.
  • alloys are formed from metal substrates which contain the respective metal element in a proportion of at least 50 at%.
  • the anti-corrosion agent can be brought into contact with the metal substrate by means of conventional methods known to those skilled in the art of surface treatment.
  • a preferred type of application according to the invention is the setting of a defined wet film on the surface of a preferably flat metal substrate, for example in the roller application process or by spraying and wiping it on, and drying it, so that reproducible and always sufficient quantities of the active components of the corrosion protection agent on the Metal substrate remain.
  • a wet chemical treatment is any treatment of the substrate with a water-containing agent which does not only serve to remove active components contained in a wet film from a previous treatment step from the surface of the metal substrate.
  • the wet film of the corrosion protection agent remains on the metal substrate in such a film thickness that, after drying, a layer of zirconium of more than 5 mg / m 2 , preferably more than 10 mg / m 2 , but preferably less than 150 mg / m 2 , particularly preferably less than 50 mg / m 2 .
  • a special embodiment of the method according to the invention therefore serves to produce coated can ends from aluminum strip, for their production in a first step on aluminum strip such a wet film of an aqueous corrosion protection agent containing at least one water-soluble compound (A) of the element zirconium and at least one polycyclic hydrocarbon (B) , which has at least one fused benzene ring with at least two nucleus-substituted hydroxyl groups in ortho position to one another, is applied, which, after drying, realizes a layer of zirconium of more than 5 mg / m 2 , whereupon, after drying, the cover material is punched out of the tape and Can end is reshaped.
  • A water-soluble compound
  • B polycyclic hydrocarbon
  • an organic coating is applied by means of a primer containing at least one curable film-forming organic resin, which in turn preferably has functional groups capable of condensation selected from phosphonic acid, phosphoric acid, oxirane, amino, hydroxyl and / or has carboxyl groups, preferably applied according to the invention and cured.
  • a primer is understood to mean an agent for the first coating of the metal substrates pretreated according to the invention with the corrosion protection agent with an organic material which as such necessarily contains at least one curable film-forming organic resin.
  • layer thicknesses in the range of 0.5 - 50 ⁇ m are usually implemented.
  • the corrosion protection agents already described in more detail in the context of the general method for the anticorrosive pretreatment of a metallic substrate are preferably to be used.
  • the primer contains a curable film-forming organic resin which is selected from a copolymer or a copolymer mixture of at least one aliphatic and acyclic alkene with at least one ⁇ , ⁇ unsaturated carboxylic acid in water-dispersed form, the acid number being of the copolymer or the copolymer mixture is preferably at least 20 mg KOH / g, but preferably not more than 200 mg KOH / g and the acid groups of the copolymer or the copolymer mixture in water-dispersed form is preferably at least 20%, but preferably not more than 60% neutralized exist.
  • a curable film-forming organic resin which is selected from a copolymer or a copolymer mixture of at least one aliphatic and acyclic alkene with at least one ⁇ , ⁇ unsaturated carboxylic acid in water-dispersed form, the acid number being of the copolymer or the copolymer mixture is preferably at least 20 mg KOH /
  • the curable film-forming organic resin of the primer is preferably selected from an acrylate dispersion obtainable as a reaction product of a polymer having terminal or pendant ethylenically unsaturated groups, which preferably has a number average molecular weight in the range of 3000-50,000 g / mol, with a mixture of ethylenic Monomers containing unsaturated groups include those with carboxyl groups such as, for example, (meth) acrylic acid, itaconic acid and crotonic acid.
  • the preparation of such dispersions is in the US 2015/0218407 A1 described in detail in paragraphs [0048] - [0049].
  • the primers for the first coating of the pretreated aluminum strip for the production of can lids are preferably largely free of organic compounds that have a diphenylmethane structural unit and particularly preferably contain less than 0.1% by weight of diphenylmethane structural units, calculated as C 15 H 14 and based on the total amount of compounds with a boiling point of more than 150 ° C at 1 bar (0.1 MPa).
  • the present invention comprises a concentrate of the above-described corrosion protection agent, the concentrate having a pH in the range from 0.5 to 2.0 and based on at least 1% by weight of a water-soluble compound (A) of the element zirconium on the element zirconium and at least 0.01% by weight of polycyclic hydrocarbons (B) with at least two fused benzene rings each with at least contains two ring-substituted hydroxyl groups in the ortho position to one another, the benzene rings being bridged to one another by annulation to an acyclic hydrocarbon system, the acyclic hydrocarbon system preferably having at least one oxo group or hydroxyl group.
  • A water-soluble compound
  • B polycyclic hydrocarbons
  • the concentrate optionally contains at least 1% by weight, preferably at least 2% by weight, but preferably not more than 20% by weight, particularly preferably not more than 10% by weight, of organic compounds (C) selected are made from copolymers or copolymer mixtures of alkenes and vinyl alcohol, preferably of ethene and vinyl alcohol, which in turn preferably each have a hydroxyl number in the range from 200 to 500 milligrams of KOH per gram of the copolymer or the copolymer mixture.
  • organic compounds (C) selected are made from copolymers or copolymer mixtures of alkenes and vinyl alcohol, preferably of ethene and vinyl alcohol, which in turn preferably each have a hydroxyl number in the range from 200 to 500 milligrams of KOH per gram of the copolymer or the copolymer mixture.
  • the water-soluble compound (A) of the element zirconium is preferably selected from zirconyl nitrate.
  • the polycyclic hydrocarbon (B) selected from 1,2-hydroxyanthraquinone is also preferred in the concentrate according to the invention.
  • the corrosion protection agent for use in a method according to the invention can be produced by diluting the concentrate by a factor of 5-20.
  • the effectiveness of the pretreatment according to the invention to form a potential paint primer can be achieved after a small amount (approx. 1 ml) of an acidic aqueous pretreatment solution according to the invention (pH 1.5) containing 15 g / kg Zr in the form of zirconyl nitrate and 500 mg / kg alizarin on aluminum sheet (AI 3008; 0.2 mm thickness) and subsequent drying at 30 ° C in comparison to a treatment with a solution that does not contain the alizarin.
  • an acidic aqueous pretreatment solution according to the invention pH 1.5
  • an acidic aqueous pretreatment solution according to the invention pH 1.5
  • the treatment according to the invention provides an iridescent coating that cannot be wiped off
  • the rather white coating based solely on the zirconyl nitrate-containing solution is easy to remove with a cloth.
  • Table 1 lists the various pretreatments and primer coatings that were tested in this regard.
  • the pretreatment was carried out on alkaline (Bonderite® C-AK 1803 from Henkel AG & Co.KGaA, 15 g / L, 60 ° C, 10 s) cleaned and rinsed with deionized water ( ⁇ ⁇ 1 ⁇ Scm -1 ) aluminum sheets (AI 3006) was carried out with a thickness of 0.2 mm and a wet film of the pretreatment solution of approx. 4-6 ml / m 2 was applied and dried at 80 ° C. so that the zirconium layer was 12 mg / m 2 in each case.
  • the organic primer was applied with a doctor blade and dried and cured at 249 ° C.
  • PMT Peak Metal Temperature
  • the pretreatment according to the invention in particular for the coating based on the acrylate-based primer, provides excellent paint adhesion values compared to a conventional fluorozirconate-based pretreatment, while for a coating based on the epoxy-based primer at least equally good results both in terms of paint adhesion as well as in terms of "blushing".

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur korrosionsschützenden Vorbehandlung von Metallsubstraten unter Verwendung Zirkonium-basierter wässriger Korrosionsschutzmittel. Die korrosionsschützende Wirkung des Zirkonium-basierten Mittels beruht dabei auf der Anwesenheit polyzyklischer Kohlenwasserstoffe, die mindestens einen anellierten Benzenring mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander aufweisen. Das wässrige Korrosionsschutzmittel kann dabei im Wesentlichen frei sowohl von passivierenden Chrom-haltigen Verbindungen als auch von das Metallsubstrat beizenden Fluorid-haltigen Verbindungen sein. Erfindungsgemäß ist die Vorbehandlung durch Auftrocknen (Dry-in-Place Verfahren) besonders vorteilhaft. Dementsprechend eignet sich das erfindungsgemäße Verfahren insbesondere für die Vorbehandlung von Metallband, wobei hervorragende Korrosionsschutzergebnisse auf Oberflächen von Aluminium oder Stahl erzielt werden. Die Erfindung umfasst zusätzlich ein Verfahren zur Herstellung beschichteter Dosendeckel aus Aluminiumband unter Verwendung des zuvor genannten Zirkonium-basierten Korrosionsschutzmittels. In einem weiteren Aspekt wird ein wässriges Konzentrat zur Bereitstellung der anwendungsfertigen Korrosionsschutzmittel umfasst.
  • Die Konversionsbehandlung metallischer Oberflächen zur Bereitstellung eines vor Korrosion schützenden Überzuges auf Basis wässriger Zusammensetzungen enthaltend wasserlösliche Verbindungen des Elements Zirkonium ist ein in der Patentliteratur extensiv beschriebenes technisches Gebiet. Zur Verbesserung der Eigenschaftsprofils derartiger Konversionsbehandlungen hinsichtlich Korrosionsschutz und Vermittlung einer hinreichenden Lackhaftung sind vielfältige Varianten einer solchen Metallvorbehandlung bekannt, die entweder auf die Zusammensetzung der die Konversion bewirkenden Agentien abzielen oder auf im unmittelbaren Kontext der Konversionsbehandlung weitere nasschemische Behandlungsschritte zurückgreifen.
  • In diesem Zusammenhang sind auch verschiedene Verfahrensvarianten zur Bereitstellung der passivierenden Beschichtung prinzipiell bekannt, wobei das Auftrocknen derselben nach Aufbringen eines definierten Nassfilms stets eine Vorbehandlung in möglichst wenigen Schritten ermöglicht und diesbezüglich in verfahrenstechnischer Sicht eine herausragende Stellung einnimmt.
    Grundsätzlich ist die Applikation wässriger Korrosionsschutzmittel durch Auftrocknen eines Nassfilms vollkommen etabliert und in der Praxis umgesetzt. Der DE 199 33 186 A1 kann hierzu beispielsweise ein Walzenauftragsverfahren entnommen werden, das die Applikation eines definierten Nassfilms von konventionellen wässrigen Korrosionsschutzmitteln auf Basis von Fluorokomplexen der Elemente Zirkonium und/oder Titan auf Flacherzeugnissen und deren kontrolliertes Auftrocknen ermöglicht. Auch die US 2014/0137246 A1 offenbart Auftrocknungsverfahren für derartige Korrosionsschutzmittel, die zusätzlich organische Verbindungen mit 1,2-Dihydroxybenzen Struktureinheiten und anorganische Partikel enthalten. Dennoch unterscheiden sich die Beschichtungen, die durch Auftrocknen eines Nassfilms erhalten werden in Ihrer morphologischen und chemischen Beschaffenheit deutlich von den klassischen Konversionsschichten, die durch Tauch- oder Sprühapplikation nach anschließendem Entfernen des am Metallsubstrat anhaftenden Nassfilms des Korrosionsschutzmittels zugänglich sind. Üblicherweise werden im Auftrocknen sämtliche Aktivkomponenten des Korrosionsschutzmittels, die beim Auftrocknen nicht in den gasförmigen Zustand übergehen, auf dem Metallsubstrat abgeschieden. Dies umfasst demnach nicht nur sämtliche nichtflüchtige Verbindungen der Elemente, die für die Passivschicht vorgesehen sind, beispielsweise Oxide/Hydroxide oder Phosphate des Elements Zirkonium, sondern auch alle nichtflüchtigen Aktivkomponenten des Korrosionsschutzmittels und Zwischenstufen derselben Elemente, die im Falle von wasserlöslichen Fluorokomplexen des Elements Zirkonium als Aktivkomponente des Korrosionsschutzmittels einen beträchtliche Fluorid-Anteil in der aufgetrockneten Beschichtung verursachen. Gerade diese nicht vollständig umgewandelten Aktivkomponenten und Zwischenstufen, die Bestandteil der aufgetrockneten Beschichtung geworden sind, sind jedoch meist ursächlich für unzulängliche Korrosionsschutzeigenschaften oder die Notwendigkeit einer Nachbehandlung. In diesem Zusammenhang gibt die EP 1 455 002 A1 beispielsweise vor, dass der Anteil an Fluoriden in der passivierenden Beschichtung hervorgerufen durch nasschemische Konversion mittels wasserlöslicher Fluoro-Verbindungen des Elements Zirkonium einen gewissen Anteil nicht überschreiten soll und schlägt zugleich als geeignete Nachbehandlungen die Trocknung bei erhöhter Temperatur und das Spülen mit einer alkalischen Lösung vor, um eine erhebliche Reduktion des Fluorid-Anteils herbeizuführen.
  • Es besteht demnach weiterhin ein Bedarf darin, ein verfahrenstechnisch hinsichtlich der Anzahl an notwendigen Verfahrensschritten möglichst effizientes Verfahren für die korrosionsschützende Vorbehandlung metallischer Substrate bereitzustellen, bei dem auf die passivierende Wirkung von Verbindungen des Elements Zirkonium abgestellt wird. Von besonderer Bedeutung ist dabei, ein solches Korrosionsschutzmittel bereitzustellen, dass bereits durch Auftragen und Auftrocknen ("Dry-in-Place" Verfahren) hervorragende Ergebnisse erzielt. Hervorragende Ergebnisse sind dann erreicht, wenn die Applikation im Dry-in-Place Verfahren Beschichtungen ergibt, die zusätzlich zu ihrer temporär vor Korrosion schützenden Wirkung im Zusammenspiel mit nachfolgend aufgebrachten Primer-Beschichtungen auf Basis filmbildender organischer Harze einen hervorragenden Schutz gegenüber korrosiver Enthaftung entfalten. Insbesondere die Eignung des Korrosionsschutzmittels durch Auftrocknen einen guten Lackhaftgrund auf Aluminiumsubstraten zu vermitteln und somit für die Herstellung von Getränkedosen in Frage zu kommen, ist vorliegend wünschenswert. Vorteilhafterweise ist das in einem deratigen Verfahren aufzutragende Korrosionsschutzmittel zudem weitgehend frei von umwelthygienisch problematischen Fluorid-freisetzenden Verbindungen.
  • Dieses Aufgabenspektrum wird gelöst durch ein Verfahren zur korrosionsschützenden Vorbehandlung eines metallischen Substrats, bei dem die Oberfläche des metallischen Substrats mit einem wässrigen Korrosionsschutzmittel in Kontakt gebracht wird, das mindestens eine wasserlösliche Verbindung (A) des Elements Zirkonium enthält, wobei das Mittel zusätzlich mindestens einen polyzyklischen Kohlenwasserstoff (B) enthält, der mindestens einen anellierten Benzenring mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander aufweist, und wobei das molare Verhältnis von Zirkonium zum Gesamtfluorid-Gehalt in der homogenen wässrigen Phase des Korrosionsschutzmittels größer als 1 ist.
  • Eine Verbindung (A) des Elements Zirkonium ist im Rahmen der vorliegenden Erfindung wasserlöslich, wenn selbige bei 20°C in entionisierten Wasser, das eine spezifische Leitfähigkeit von weniger als 11µScm-1 aufweist, eine Löslichkeit von zumindest 0,1 g der Verbindung bezogen als auf das Element Zirkonium pro Kilogramm der dadurch hergestellten wässrigen Lösung aufweist.
  • Im erfindungsgemäßen Verfahren ist gewährleistet, dass in Folge eines Beizangriffes auf das metallische Substrat eine Passivierung des metallischen Substrats vermittelt durch eine Oberflächenbelegung auf Basis schwerlöslicher Verbindungen des Elements Zirkon und des polyzyklischen Kohlenwasserstoffs eintritt. Erfindungsgemäß vorbehandelte metallische Substrate, die damit eine entsprechende Oberflächenbelegung aufweisen, sind darüber hinaus bestens geeignet einen hervorragenden Lackhaftgrund zu nachfolgenden Primern enthaltend filmbildende organische Harze zu vermitteln, hierzu kann das wässrige Korrosionsschutzmittel zusätzlich organische Polymere enthalten, ohne dass die Passivierung nachteilig beeinflusst wird. Für eine gute Passivierung, auf die sich auch die Anwesenheit von die Lackhaftung verbessernden organischen Polymeren nicht negativ auswirkt, ist es insbesondere vorteilhaft, wenn der polyzyklische Kohlenwasserstoff (B) eine geringe Löslichkeit in Wasser aufweist, so dass die für eine hinreichend Oberflächenbelegung im jeweiligen Applikationsverfahren notwendige gelöste Menge an polyzyklischen Kohlenwasserstoffs (B) idealerweise gerade noch im wässrigen Korrosionsschutzmittel gelöst vorliegt. In diesem Zusammenhang sind erfindungsgemäße Verfahren bevorzugt, in denen der polyzyklische Kohlenwasserstoff (B) bei 20°C in entionisierten Wasser mit einer spezifischen Leitfähigkeit von weniger als 1 µScm-1 eine Löslichkeit von weniger als 5 g, besonders bevorzugt von weniger als 1 g pro Kilogramm der dadurch hergestellten wässrigen Lösung aufweist. Eine derart geringe Löslichkeit des polyzyklischen Kohlenwasserstoffs (B) ist insbesondere bei Applikation des Korrosionsschutzmittels im Auftrocknungsverfahren (sogenanntes "Dry-in-Place Verfahren") von Vorteil, in der bereits geringe Mengen der Aktivkomponenten des Korrosionsschutzmittels für eine passivierend wirkende Oberflächenbelegung des zu schützenden metallischen Substrates ausreichend sein können. Der Begriff der Löslichkeit in Wasser ist bezüglich der Verbindung (B) so zu verstehen, dass oberhalb der genannten Löslichkeitsgrenzen bei einer Schergeschwindigkeit von 100 s-1 Dispersionen oder Emulsionen mit einem mittleren Partikeldurchmesser (D50-Wert) berechnet aus kumulativen Partikeldurchmesserverteilungskurven bestimmt mittels dynamischer Lichtstreumethoden von mehr als 50 nm resultieren.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens enthält der polyzyklische Kohlenwasserstoff (B) mindestens zwei anellierte Benzenringe mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander, wobei die Benzenringe jeweils durch Anellierung an ein acyclisches Kohlenwasserstoffsystem miteinander verbrückt vorliegen, wobei das acyclische Kohlenwasserstoffsystem vorzugsweise mindestens eine Oxo-Gruppe oder Hydroxyl-Gruppe aufweist. Derartige polyzyklische Kohlenwasserstoffe (B) sind dem Fachmann beispielsweise in Form des Hämatoxylins und dessen Oxidationsprodukts Hämatein sowie in Form des Alizarins geläufig.
  • Eine besonders homogene Oberflächenbelegung auf Basis des Elements Zirkonium und damit auch Passivierung gelingt, wenn die erfindungsgemäße Vorbehandlung in Anwesenheit von polyzyklischen Kohlenwasserstoffen (B) erfolgt, die auf dem Anthrachinon-Grundgerüst aufbauen. Dem folgend sind solche polyzyklischen Kohlenwasserstoffe (B) in erfindungsgemäßen Verfahren bevorzugt, die aus der Gruppe der mit mindestens zwei Hydroxyl-Gruppen in ortho-Stellung zueinander kernsubstituierten Anthrachinonen ausgewählt sind, besonders bevorzugt ausgewählt aus der Gruppe bestehend aus 1,2-Dihydroxyanthrachinon, 3,4-Dihydroxyanthrachinon, 1,2,3-Trihydroxyanthrachinon, 1,2,4-Trihydroxyanthrachinon, 1,2,3-Trihydroxyanthrachinon, 1,2,5-Trihydroxyanthrachinon, 1,2,6-Trihydroxyanthrachinon, 1,2,7-Trihydroxyanthrachinon, 1,2,8-Trihydroxyanthrachinon, 1,2,3-Trihydroxyanthrachinon, 1,3,4-Trihydroxyanthrachinon, 1,4,5-Trihydroxyanthrachinon, 1,6,7-Trihydroxyanthrachinon, 1,2,5,8-Tetrahydroxyanthrachinon, 1,2,5,8-Tetrahydroxyanthrachinon 1,4,5,8-Tetrahydroxyanthrachinon, 1,2,3,4-Tetrahydroxyanthrachinon, insbesondere bevorzugt ist der polyzyklische Kohlenwasserstoff (B) ausgewählt aus 1,2-Hydroxyanthrachinon.
  • Weiterhin sollte das Verhältnis von wasserlöslichen Verbindungen (A) des Elements Zirkonium zu polyzyklischen Kohlenwasserstoffen (B) für eine optimale Passivierung der Oberflächen der im erfindungsgemäßen Verfahren vorbehandelten metallischen Substrate in einem bestimmten Bereich liegen. Vorzugsweise ist das Gewichtsverhältnis von wasserlöslichen Verbindungen (A) des Elements Zirkonium bezogen auf das Element Zirkonium zu polyzyklischen Kohlenwasserstoffen (B) im Korrosionsschutzmittel des erfindungsgemäßen Verfahrens kleiner als 0,2, besonders bevorzugt kleiner als 0,1, jedoch bevorzugt größer als 0,02 ist.
  • Bevorzugte Mengen der polyzyklischen Kohlenwasserstoffe (B) im Korrosionsschutzmittel des erfindungsgemäßen Verfahrens liegen im Bereich von 5 - 250 mg/kg.
  • Das Korrosionsschutzmittel, das in erfindungsgemäßen Verfahren eingesetzt wird, ist für eine erhöhte Löslichkeit der wasserlöslichen Verbindungen (A) des Elements Zirkonium und eine das Metallsubstrat beizende Wirkung vorzugsweise sauer eingestellt. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist der pH-Wert des Korrosionsschutzmittels kleiner als 2,0, besonders bevorzugt kleiner als 1,6, jedoch vorzugsweise größer als 0,5, besonders bevorzugt größer als 1,0.
  • Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass ein hoher Beizabtrag also eine hohe Metallauflösungsrate während des In-Kontakt-Bringens mit dem Korrosionsschutzmittel für eine hinreichende Oberflächenpassivierung nicht notwendig ist. Konsequenterweise kann das Korrosionsschutzmittel in besonders vorteilhaften Ausführungsformen der Erfindung weitgehend frei von umwelthygienisch bedenklichen Fluoriden oder Fluorid-freisetzenden Verbindungen formuliert sein, die üblicherweise zur Erhöhung der Beizrate, insbesondere auf Aluminiumsubstraten, eingesetzt werden.
  • Dementsprechend ist im erfindungsgemäßen Verfahren das molare Verhältnis von Zirkonium zum Gesamtfluorid-Gehalt in der homogenen wässrigen Phase des Korrosionsschutzmittels größer als 1, vorzugsweise größer als 2, besonders bevorzugt größer als 4. Der Gesamtfluorid-Gehalt wird dabei in einem TISAB gepufferten aliquoten Teil des Korrosionsschutzmittels mit einer Fluoridsensitiven Elektrode bei 20 °C bestimmt (TISAB: "Total lonic Strength Adjustment Buffer"), wobei das volumenbezogene Mischungsverhältnis von Puffer zum aliquoten Teil des Korrosionsschutzmittels 1 : 1 ist. Der TISAB Puffer wird hergestellt durch Auflösung von 58 g NaCI, 1 g Natriumcitrat und 50 ml Eisessig in 500 ml entionisiertem Wasser (κ < 1µScm-1) und Einstellen eines pH-Wertes von 5,3 mittels 5 N NaOH sowie Auffüllen auf ein Gesamtvolumen von 1000 ml wiederum mit entionisiertem Wasser (κ < 1µScm-1).
  • Weitergehend ist in diesem Zusammenhang erfindungsgemäß bevorzugt, dass die Quelle der wasserlöslichen Verbindung (A) des Elements Zirkonium nicht auch eine Quelle für Fluorid-Ionen darstellt und vorzugsweise ausgewählt ist aus Zirkonylnitrat, Zirkoniumacetat und/oder Ammoniumzirkoniumcarbonat, besonders bevorzugt aus Zirkonylnitrat.
  • Die bevorzugte Menge der wasserlöslichen Verbindung (A) im Korrosionsschutzmittel des erfindungsgemäßen Verfahrens beträgt mindestens 40 mg/kg, besonders bevorzugt mindestens 200 mg/kg, insbesondere zumindest 400 mg/kg, jedoch vorzugsweise nicht mehr als 4000 mg/kg jeweils bezogen auf die Menge des Elements Zirkonium.
  • In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist der Gesamtfluorid-Gehalt in der wässrigen Phase des Korrosionsschutzmittels kleiner als 50 mg/kg, vorzugsweise kleiner als 10 mg/kg, besonders bevorzugt kleiner als 1 mg/kg jeweils bezogen auf das Korrosionsschutzmittel.
  • Ein weiterer Vorteil der vorliegenden Erfindung in ökologischer Hinsicht besteht auch darin, dass das Korrosionsschutzmittel keine schwerlöslichen Salze bildenden Anionen wie Phosphate enthalten muss, um eine passivierende Beschichtung auszubilden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens sind im Korrosionsschutzmittel daher weniger als 0,2 Gew.-%, besonders bevorzugt weniger als 0,1 Gew.-%, an gelösten Phosphaten berechnet als PO4 enthalten.
  • Das erfindungsgemäße Verfahren ist hervorragend geeignet, um auf metallischen Substraten einen Lackhaftgrund, insbesondere durch Auftrocknen eines Nassfilms des Korrosionsschutzmittels, bereitzustellen. Diese Eignung beinhaltet, dass sich die Anwesenheit lackhaftungsverbessernder organischer Polymere im wässrigen Korrosionsschutzmittel nicht negativ auf die Passivierung auswirkt. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens, in der organische Polymere zur weitergehenden Verbesserung der Lackhaftung eingesetzt werden, sind im Korrosionsschutzmittel daher mindestens 0,1 Gew.-%, besonders bevorzugt mindestens 0,2 Gew.-%, an organischen Verbindungen (C) jeweils bezogen auf das wässrige Korrosionsschutzmittel enthalten, die eine Molmasse oberhalb von 5.000 g/mol aufweisen. Die Molmasse kann vorliegend direkt im Korrosionsschutzmittel bei 20 °C mittels Gelpermeationschromatographie unter Verwendung eines konzentrationsabhängigem Detektor bestimmt werden, wobei auf gegen Pullalan-Standards kalibrierte Molmassenverteilungskurven zurückzugreifen ist. Die organischen Verbindungen (C) enthalten vorzugsweise zumindest teilweise funktionelle Gruppen ausgewählt aus Hydroxyl-Gruppen, Carboxyl-Gruppen, Phosphat-Gruppen, Phosphonat-Gruppen und Amino-Gruppen. In einer besonders bevorzugten Ausführungsform beträgt die Summe aus Säurezahl und Hydroxylzahl mindestens 100 Milligramm KOH pro Gramm, besonders bevorzugt mindestens 200 Milligramm KOH pro Gramm der organischen Verbindungen (C), jedoch vorzugsweise nicht mehr als 600 Milligramm KOH pro Gramm der organischen Verbindungen (C).
  • Die Säurezahl ist erfindungsgemäß eine experimentell zu bestimmende Messgröße, die ein Maß für die Anzahl der freien Säuregruppen im Polymer oder in einer Polymerenmischung ist. Die Säurezahl wird bestimmt, indem eine eingewogene Menge des Polymers oder der Polymerenmischung in einem Lösemittelgemisch aus Methanol und destilliertem Wasser im Volumenverhältnis 3 : 1 gelöst und anschließend mit 0,05 mol/l KOH in Methanol potentiometrisch titriert wird. Die potentiometrische Messung erfolgt mit einer Einstabmesskette (LL-Solvotrode® der Fa. Metrohm; Bezugselektrolyt: 0,4 mol/l Tetraethylammoniumbromid in Ethylenglykol). Die Säurezahl entspricht dabei der hinzugesetzten Menge an KOH in Milligramm pro Gramm Polymer bzw. Polymerenmischung im Wendepunkt der potentiometrischen Titrationskurve.
  • Analog gilt erfindungsgemäß, dass die Hydroxylzahl als Maß für die Anzahl an freien Hydroxylgruppen im Polymer oder in einer Polymerenmischung experimentell durch potentiometrische Titration bestimmt werden kann. Hierfür wird eine eingewogene Menge des Polymers oder der Polymerenmischung in einer Reaktionslösung von 0,1 mol/l Phthalsäureanhydrid in Pyridin bei 130 °C für 45 Minuten erwärmt und zunächst mit dem 1,5 fachen Volumen der Reaktionslösung an Pyridin und anschließend mit dem 1,5 fachen Volumen der Reaktionslösung an entionisiertem Wasser (κ < 1 µScm-1) versetzt. Die freigesetzte Menge an Phthalsäure wird in diesem Gemisch mittels 1 M Kalilauge titriert. Die potentiometrische Messung erfolgt mit einer Einstabmesskette (LL-Solvotrode® der Fa. Metrohm; Bezugselektrolyt: 0,4 mol/l Tetraethylammoniumbromid in Ethylenglykol). Die Hydroxylzahl entspricht dabei der hinzugesetzten Menge an KOH in Milligramm pro Gramm Polymer bzw. Polymerenmischung im Wendepunkt der potentiometrischen Titrationskurve.
  • Insbesondere für die Vorbehandlung von Aluminium im Dry-in-Place Verfahren sind erfindungsgemäß solche wässrigen Korrosionsschutzmittel bevorzugt, die als organische Verbindungen (C) Copolymere oder Copolymerenmischungen von Alkenen und Vinylalkohol, besonders bevorzugt von Ethen und Vinylalkohol, enthalten, die insbesondere bevorzugt eine Hydroxylzahl im Bereich von 200 bis 500 Milligramm KOH pro Gramm des Copoylmers bzw. der Copolymerenmischung aufweisen. Der Anteil dieser Copolymere oder Copolymerenmischung beträgt vorzugsweise mindestens 0,1 Gew.-%, besonders bevorzugt mindestens 0,2 Gew.-%, übersteigt jedoch vorzugsweise nicht 5 Gew.-%, besonders bevorzugt nicht 2 Gew.-% jeweils bezogen auf das wässrige Korrosionsschutzmittel.
  • Die Anwesenheit von partikulären Bestandteilen, beispielsweise Korrosionsschutzpigmenten, im Korrosionsschutzmittel bringt für eine weitergehende Passivierung keine signifikanten Vorteile und ist für die Ausbildung homogener dünner Überzüge im erfindungsgemäßen Verfahren eher nachteilig. Entsprechend sind erfindungsgemäße Verfahren bevorzugt, in denen im Korrosionsschutzmittel weniger als 0,1 Gew.-%, besonders bevorzugt weniger als 0,01 Gew.-%, an partikulären anorganischen Bestandteilen enthalten sind, die bei einer Ultrafiltration mit einer Ausschlussgrenze von 50 kD im Retentat zurückgehalten werden.
  • Ein weiterer Vorteil der vorliegenden Erfindung besteht darin, dass das wässrige Korrosionsschutzmittel im Wesentlichen frei von toxischen Schwermetallen formuliert sein kann. In einer bevorzugten Ausführungsform enthält das wässrige Korrosionsschutzmittel daher weniger als 50 mg/kg, vorzugsweise weniger als 10 mg/kg, besonders bevorzugt weniger als 10 mg/kg, an Verbindungen des Elements Chrom, und in einer weiteren bevorzugten Ausführungsform weniger als 50 mg/kg, vorzugsweise weniger als 10 mg/kg, besonders bevorzugt weniger als 1 mg/kg, an Verbindungen der Elemente Chrom, Nickel und Cobalt.
  • Die im erfindungsgemäßen Verfahren vorbehandelten metallischen Substrate sollten im wässrigen Korrosionsschutzmittel unter den verfahrenstechnisch üblichen Bedingungen gegenüber Säuren und Luftsauerstoff einen hinreichenden Lösungsdruck aufweisen, und damit zumindest in einem solchem Umfang korrodieren, dass eine Konversion der natürlichen oder mittels nasschemischer Reinigung spezifisch eingestellten dünnen Oxidschicht auf dem jeweiligen Metallsubstrat in Gang gesetzt wird, die durch die Abscheidung von Elementen und Verbindungen der Aktivkomponenten des Korrosionsschutzmittels vollendet wird.
  • Daher ist die Vorbehandlung von solchen metallischen Substraten erfindungsgemäß bevorzugt, die in einem mit Sauerstoff gesättigten Kaliumhydrogenphthalat-Puffer (0,05 mol/L, pH 4,01, 20 °C, 0,21 bar Sauerstoffpartialdruck in der Atmosphäre) ein Korrosionspotential von weniger als +0,2 V (SHE) aufweisen.
  • In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens sind die metallischen Substrate ausgewählt aus Zink und/oder Aluminium sowie deren Legierungen, besonders bevorzugt aus Aluminium und seinen Legierungen. Legierungen werden dabei im Rahmen der vorliegenden Erfindung von solchen Metallsubstraten gebildet, die das jeweilige Metallelement mit einen Anteil von mindestens 50 At.-% enthalten. Gerade auf Substraten des Metalls Aluminium kann im erfindungsgemäßen Verfahren eine besonders effektive und homogene Passivierung des Aluminiumwerkstoffes beobachtet werden, die nahezu unabhängig von der Applikationsart eintritt und üblicherweise derart vollzogen ist, dass eine hervorragende Haftung zu nachträglich aufgebrachten Primern enthaltend mindestens ein aushärtbares filmbildendes organisches Harz resultiert, insbesondere dann wenn das filmbildende Harz zur Kondensation befähigte funktionelle Gruppen ausgewählt aus Phosphonsäure-, Phosphorsäure-, Oxiran-, Amino-, Hydroxyl- und/oder Carboxylgruppen aufweist.
  • Das Korrosionsschutzmittel kann mittels üblicher dem Fachmann der Oberflächenbehandlung bekannter Methoden mit dem Metallsubstrat in Kontakt gebracht werden. Eine erfindungsgemäß bevorzugte Applikationsart ist jedoch die Einstellung eines definierten Nassfilms auf der Oberfläche eines vorzugsweise flächig ausgebildeten Metallsubstrates, bspw. im Walzenauftragsverfahren oder durch Aufsprühen und Abwischen, und Auftrocknen desselben, so dass reproduzierbare und für eine Passivierung stets ausreichende Mengen der Aktivkomponenten des Korrosionsschutzmittels auf dem Metallsubstrat verbleiben.
  • Insofern ist ein solches Verfahren erfindungsgemäß bevorzugt, bei dem nach dem In-Kontakt-Bringen des metallischen Substrats mit dem wässrigen Korrosionsschutzmittel ein Nassfilm des Korrosionsschutzmittels auf der Oberfläche des metallischen Substrats verbleibt, der vor einem nachfolgenden Spülschritt oder einer nachfolgenden nasschemischen Behandlung, vorzugsweise durch Wärmezufuhr, getrocknet wird (sogenanntes "Dry-in-Place" Verfahren). Die Trocknung kann mit allen technischen Mitteln erfolgen, die im Resultat bewirken, dass die flüssigen Bestandteile des Nassfilms mit einem Siedepunkt bei 1 bar (1 bar = 0,1 MPa) von nicht mehr als 150 °C in die umgebende Atmosphäre übergehen. Die Trocknung kann daher alternativ zur Wärmezufuhr, auch durch Überleiten eines trockenen Luftstromes erfolgen. Eine nasschemische Behandlung ist im Rahmen der vorliegenden Erfindung jedwede Behandlung des Substrats mit einem Wasser enthaltenden Mittel, die nicht allein dazu dient, in einem Nassfilm enthaltende Aktivkomponenten eines vorausgegangenen Behandlungsschrittes von der Oberfläche des Metallsubstrates zu entfernen.
  • Weiterhin ist für eine hinreichende Passivierung, insbesondere auf den Substraten Zink und/oder Aluminium sowie deren Legierungen, erfindungsgemäß zu bevorzugen, dass der Nassfilm des Korrosionsschutzmittels in einer solchen Filmdicke auf dem Metallsubstrat verbleibt, dass nach dem Trocknen eine Schichtauflage an Zirkonium von mehr als 5 mg/m2, vorzugsweise mehr als 10 mg/m2, jedoch vorzugsweise von weniger als 150 mg/m2, besonders bevorzugt von weniger als 50 mg/m2 resultiert.
  • Die besondere Eignung des erfindungsgemäßen Verfahrens für Aluminium und seine Legierungen im Zusammenspiel mit der bevorzugten Applikation des Korrosionsschutzmittels durch Auftragen und unmittelbar nachfolgendem Eintrocknen macht das erfindungsgemäße Verfahren speziell für die Bereitstellung von vorbehandeltem Aluminiumband attraktiv. Eine besondere Ausgestaltung des erfindungsgemäßen Verfahrens dient daher der Herstellung beschichteter Dosendeckel aus Aluminiumband, wobei zu deren Herstellung in einem ersten Schritt auf Aluminiumband ein solcher Nassfilm eines wässrigen Korrosionsschutzmittels enthaltend mindestens eine wasserlösliche Verbindung (A) des Elements Zirkonium und mindestens einen polyzyklischen Kohlenwasserstoff (B), der mindestens einen anellierten Benzenring mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander aufweist, aufgebracht wird, der nach Trocknung eine Schichtauflage an Zirkonium von mehr als 5 mg/m2 realisiert, woraufhin nach Trocknung das Deckelmaterial aus dem Band ausgestanzt und zum Dosendeckel umgeformt wird. Der Trocknung nachfolgend, jedoch vorzugsweise vor der Umformung zum Deckelmaterial wird eine organische Beschichtung mittels Primer enthaltend mindestens ein aushärtbares filmbildendes organisches Harz, das wiederum bevorzugt zur Kondensation befähigte funktionelle Gruppen ausgewählt aus Phosphonsäure-, Phosphorsäure-, Oxiran-, Amino-, Hydroxyl- und/oder Carboxylgruppen aufweist, erfindungsgemäß bevorzugt aufgebracht und ausgehärtet. Als Primer wird vorliegend ein Mittel zur Erstbeschichtung der erfindungsgemäß mit dem Korrosionsschutzmittel vorbehandelten Metallsubstrate mit einem organischen Material verstanden, das als solches notwendigerweise mindestens ein aushärtbares filmbildendes organisches Harz enthält. Im Zuge der Erstbeschichtung mit dem Primer werden üblicherweise Schichtdicken im Bereich von 0,5 - 50 µm realisiert.
  • Für das erfindungsgemäße Verfahren zur Herstellung beschichteter Dosendeckel aus Aluminiumband sind analog die bereits im Kontext des allgemeinen Verfahrens zur korrosionsschützenden Vorbehandlung eines metallischen Substrats näher beschriebenen Korrosionsschutzmittel vorzugsweise einzusetzen.
  • In einem bevorzugten erfindungsgemäßen Verfahren zur Herstellung beschichteter Dosendeckel aus Aluminiumband enthält der Primer ein aushärtbares filmbildendes organisches Harz, das ausgewählt ist aus einem Copolymer oder einer Copolymerenmischung mindestens eines aliphatischen und acyclischen Alkens mit mindestens einer α,β ungesättigten Carbonsäure in wasserdispergierter Form, wobei die Säurezahl des Copolymers oder der Copolymerenmischung vorzugsweise mindestens 20 mg KOH / g, jedoch vorzugsweise nicht mehr als 200 mg KOH / g beträgt und die Säuregruppen des Copolymers oder der Copolymerenmischung in wasserdispergierter Form vorzugsweise zumindest zu 20%, jedoch vorzugsweise nicht mehr als zu 60% neutralisiert vorliegen.
  • Alternativ ist das aushärtbare filmbildende organische Harz des Primers bevorzugt ausgewählt aus einer Acrylat-Dispersion erhältlich als Reaktionsprodukt eines terminale oder seitenständige ethylenisch ungesättigte Gruppen aufweisenden Polymers, das vorzugsweise eine zahlenmittlere Molmasse im Bereich von 3000-50.000 g/mol aufweist, mit einer Mischung von ethylenisch ungesättigten Gruppen aufweisenden Monomeren umfassend solche mit Carboxyl-Gruppen wie beispielsweise (Meth)acrylsäure, Itaconsäure und Crotonsäure. Die Herstellung derartiger Dispersionen ist in der US 2015/0218407 A1 in den Absätzen [0048]-[0049] detailliert beschrieben.
  • Aufgrund der ausgesprochen guten Lackhaftung, die durch eine erfindungsgemäße Vorbehandlung auf Basis der zuvor beschriebenen Korrosionsschutzmittel erzielt wird, kann auf spezielle häufig Epoxid-basierte Primer verzichtet werden, die im Verpackungsbereich geringe Mengen an Hormongiften, beispielsweise Bisphenol A, an das bevorratete Lebensmittel abgeben können und daher vorzugsweise nicht zur Anwendung kommen sollten. Entsprechend sind die Primer zur Erstbeschichtung des vorbehandelten Aluminiumbands zur Herstellung von Dosendeckeln vorzugsweise weitestgehend frei von organischen Verbindungen, die eine Diphenylmethan-Struktureinheit aufweisen und enthalten besonders bevorzugt weniger als 0,1 Gew.-% an Diphenylmethan-Struktureinheiten berechnet als C15H14 und bezogen auf die Gesamtmenge der Verbindungen mit einem Siedepunkt von mehr als 150 °C bei 1 bar (0,1 MPa).
  • In einem weiteren Aspekt umfasst die vorliegende Erfindung ein Konzentrat des zuvor beschriebenen Korrosionsschutzmittels, wobei das Konzentrat einen pH-Wert im Bereich von 0,5 bis 2,0 aufweist und mindestens 1 Gew.-% einer wasserlöslichen Verbindung (A) des Elements Zirkonium bezogen auf das Element Zirkonium sowie mindestens 0,01 Gew.-% an polyzyklischen Kohlenwasserstoffen (B) mit mindestens zwei anellierten Benzenringen mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander enthält, wobei die Benzenringe jeweils durch Anellierung an ein acyclisches Kohlenwasserstoffsystem miteinander verbrückt vorliegen, wobei das acyclische Kohlenwasserstoffsystem vorzugsweise mindestens eine Oxo-Gruppe oder Hydroxyl-Gruppe aufweist.
  • Für das erfindungsgemäße Konzentrat sind naturgemäß dieselben Anteile an wasserlöslichen Verbindungen (A) des Elements Zirkonium und polyzyklischen Kohlenwasserstoffen (B) relativ zueinander bevorzugt wie für das daraus bereitgestellte Korrosionsschutzmittel im erfindungsgemäßen Verfahren.
  • Optional enthält das Konzentrat mindestens 1 Gew.-%, vorzugsweise mindestens 2 Gew.-%, jedoch vorzugsweise nicht mehr als 20 Gew.-%, besonders bevorzugt nicht mehr als 10 Gew.-%, an organischen Verbindungen (C), die ausgewählt sind aus Copolymeren oder Copolymerenmischungen von Alkenen und Vinylalkohol, vorzugsweise von Ethen und Vinylalkohol, die wiederum jeweils bevorzugt eine Hydroxylzahl im Bereich von 200 bis 500 Milligramm KOH pro Gramm des Copoylmers bzw. der Copolymerenmischung aufweisen.
  • Vorzugsweise ist im erfindungsgemäßen Konzentrat die wasserlösliche Verbindung (A) des Elements Zirkonium ausgewählt aus Zirkonylnitrat.
  • Weiterhin bevorzugt ist im erfindungsgemäßen Konzentrat der polyzyklische Kohlenwasserstoff (B) ausgewählt aus 1,2-Hydroxyanthrachinon.
  • Das Korrosionsschutzmittel zur Anwendung in einem erfindungsgemäßen Verfahren kann durch Verdünnen des Konzentrates um den Faktor 5-20 hergestellt werden.
  • Insoweit zuvor für das Korrosionsschutzmittel in den beschriebenen erfindungsgemäßen Verfahren herausgestellt ist, dass selbiges bestimmte Komponenten für die Gewährleistung einer hinreichenden Passivierung nicht oberhalb vorgegebener Mengen enthalten soll, gilt dies sinngemäß auch für das erfindungsgemäße Konzentrat, wobei die jeweiligen Obergrenzen im erfindungsgemäßen Konzentrat um den Faktor 5 höher liegen als für das Korrosionsschutzmittel im erfindungsgemäßen Verfahren.
  • Ausführungsbeispiele:
  • Die Effektivität der erfindungsgemäßen Vorbehandlung einen potentiellen Lackhaftgrund auszubilden kann nach Aufträufeln einer geringen Menge (ca. 1 ml) einer erfindungsgemäßen sauren wässrigen Vorbehandlungslösung (pH-Wert 1,5) enthaltend 15 g/kg Zr in Form von Zirkonylnitrat sowie 500 mg/kg Alizarin auf Aluminiumblech (AI 3008; 0,2 mm Dicke) und nachfolgendem Eintrocknen bei 30 °C im Vergleich zu einer Behandlung mit einer Lösung, die das Alizarin nicht enthält, nachgewiesen werden. Während die erfindungsgemäße Behandlung einen nicht abwischbaren irisierenden Überzug liefert, ist der eher weiße Überzug basierend allein auf der Zirkonylnitrat-haltigen Lösung mit einem Tuch leicht zu entfernen.
  • Für die Darlegung der Eignung der erfindungsgemäßen Vorbehandlung einen guten Lackhaftgrund bereitzustellen wurden verschiedene Beschichtungssysteme für Dosendeckel aufgebracht und die Lackhaftung, insbesondere Lackablösungen, das sogenannte "Feathering", sowie Verfärbungen, das sogenannte "Blushing", nach Auslagerung unter Sterilisationsbedingungen, denen eine Beschichtung, eines Werkstoffes, die zur Bevorratung von Lebensmitteln geeignet sein will und daher in direktem Kontakt mit Lebensmitteln steht, üblicherweise standhalten muss, bewertet.
  • In Tabelle 1 sind die verschiedenen Vorbehandlungen und Primerbeschichtungen aufgeführt, die diesbezüglich getestet wurden. Die Vorbehandlung erfolgte auf alkalisch (Bonderite® C-AK 1803 der Fa. Henkel AG & Co.KGaA, 15 g/L, 60°C, 10 s) gereinigten und mit entionisiertem Wasser (κ < 1µScm-1) gespülten Aluminiumfeinblechen (AI 3006) mit einer Stärke von 0,2 mm durchgeführt und hierfür ein Nassfilm der Vorbehandlungslösung von ca. 4-6 ml/m2 aufgebracht und bei 80 °C getrocknet, so dass die Schichtauflage an Zirkon jeweils 12 mg/m2 betrug. Der organische Primer wurde unmittelbar nach dem Trockenschritt aufgerakelt und bei 249 °C PMT (Peak Metal Temperature) eingetrocknet und ausgehärtet, wobei eine Trockenfilmauflage an Primer von ca. 12 g/m2 eingestellt wurde.
  • Die Auslagerung der derart beschichteten Aluminiumbleche unter Sterilisationsbedingungen erfolgte bei 121°C mit Leitungswasser oder in Leitungswasser enthaltend 2 Gew.-%ige Zitronensäure für jeweils 30 Minuten im Autoklaven. Eine Beurteilung der Lackenthaftung am Gitterschnitt nach DIN EN ISO 2409 und des "Blushing", also dem Auftreten von weißlichen Verfärbungen, wurde sodann vorgenommen. Die Ergebnisse sind in Tab. 2 zusammengefasst.
    Tab.1
    Versuchs-Nr. Vorbehandlung Primer
    Zirkonylnitrat: 6 g/kg Epoxid-Dispersion 3
    E1 Alizarin: 0,08 g/kg
    Ethylen-Vinylalkohol-Copolymer 1: 4,8 g/kg
    Zirkonylnitrat: 6 g/kg Acrylat-Dispersion 4
    E2 Alizarin: 0,08 g/kg
    Ethylen-Vinylalkohol-Copolymer 1: 4,8 g/kg
    CE1 Basis: Bonderite ® MNT-802 N 2 Epoxid-Dispersion 3
    CE2 Basis: Bonderite ® MNT-802 N 2 Acrylat-Dispersion 4
    1 Hydrolysegrad 93 Mol-%
    2 10 Gew.-%ige wässrige Lösung des kommerziellen Produktes (Fa. Henkel AG &
    Co.KGaA) enthaltend H2ZrF6 und Polyacrylsäure im Gewichtsverhältnis von 1,23 : 1
    3 2489-814(Fa. PPG)
    4 2466-810 (Fa. PPG)
  • Es zeigt sich, dass die erfindungsgemäße Vorbehandlung insbesondere für die Beschichtung auf Basis des Acrylat-basierten Primer im Vergleich zu einer konventionellen Fluorozirkonat-basierten Vorbehandlung hervorragende Lackhaftungswerte liefert, während für eine Beschichtung auf Basis des Epoxid-basierten Primers zumindest gleich gute Ergebnisse sowohl hinsichtlich Lackhaftung als auch hinsichtlich "Blushing" resultieren.
    Tab.2
    Versuchs-Nr. Gitterschnitt1 Blushing2
    Leitungswasser Zitronensäure Leitungswasser Zitronensäure
    E1 0 0 1 2
    E2 0 2 0 2
    CE1 0 0 1 2
    CE2 0 5 3 4
    1 nach DIN EN ISO 2409 (0-5)
    2 0: keine Verfärbung
    1: weniger als 10% der Fläche ist verfärbt, einzelne Stellen
    2: weniger als 20% der Fläche ist verfärbt, einzelne Stellen
    3: mindestens 20% der Fläche ist verfärbt; Streifenförmig
    4: mindestens 40% der Fläche ist verfärbt
    5: mindestens 60% der Fläche ist verfärbt

Claims (15)

  1. Verfahren zur korrosionsschützenden Vorbehandlung eines metallischen Substrats, bei dem die Oberfläche des metallischen Substrats mit einem wässrigen Korrosionsschutzmittel in Kontakt gebracht wird, das mindestens eine wasserlösliche Verbindung (A) des Elements Zirkonium und mindestens einen polyzyklischen Kohlenwasserstoff (B) enthält, der mindestens einen anellierten Benzenring mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander aufweist, dadurch gekennzeichnet, dass das molare Verhältnis von Zirkonium zum Gesamtfluorid-Gehalt in der homogenen wässrigen Phase des Korrosionsschutzmittels größer als 1 ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der polyzyklische Kohlenwasserstoff (B) bei 20°C in entionisierten Wasser mit einer spezifischen Leitfähigkeit von weniger als 1µScm-1 eine Löslichkeit von weniger als 5 g/kg, vorzugsweise von weniger als 1 g/kg aufweist.
  3. Verfahren nach einem oder beiden der vorherigen Ansprüche, dadurch gekennzeichnet, dass der polyzyklische Kohlenwasserstoff (B) mindestens zwei anellierte Benzenringe mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander aufweist, wobei die Benzenringe jeweils durch Anellierung an ein acyclisches Kohlenwasserstoffsystem miteinander verbrückt vorliegen, wobei das acyclische Kohlenwasserstoffsystem vorzugsweise mindestens eine Oxo-Gruppe oder Hydroxyl-Gruppe aufweist.
  4. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der polyzyklische Kohlenwasserstoff (B) ausgewählt ist aus der Gruppe der mit mindestens zwei Hydroxyl-Gruppen in ortho-Stellung einander kernsubstituierten Anthrachinonen, vorzugsweise aus 1,2-Hydroxyanthrachinon.
  5. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Quelle der wasserlöslichen Verbindung (A) des Elements Zirkonium nicht auch eine Quelle für Fluorid-Ionen darstellt und vorzugsweise ausgewählt ist aus Zirkonylnitrat, Zirkoniumacetat und/oder Ammoniumzirkoniumcarbonat, besonders bevorzugt aus Zirkonylnitrat.
  6. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass das der Gesamtfluorid-Gehalt in der wässrigen Phase des Korrosionsschutzmittels kleiner als 50 mg/kg, vorzugsweise kleiner als 10 mg/kg, besonders bevorzugt kleiner als 1 mg/kg ist.
  7. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis von wasserlöslichen Verbindungen (A) des Elements Zirkonium bezogen auf das Element Zirkonium zu polyzyklischem Kohlenwasserstoff (B) kleiner als 0,2, vorzugsweise kleiner als 0,1, jedoch bevorzugt größer als 0,02 ist.
  8. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der pH-Wert des Korrosionsschutzmittels kleiner als 2,0, besonders bevorzugt kleiner als 1,6, jedoch vorzugsweise größer als 0,5, besonders bevorzugt größer als 1,0 ist.
  9. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass im Korrosionsschutzmittel zusätzlich mindestens 0,1 Gew.-%, vorzugsweise mindestens 0,2 Gew.-%, an organischen Verbindungen (C) jeweils bezogen auf das wässrige Korrosionsschutzmittel enthalten sind, die eine Molmasse oberhalb von 5.000 g/mol aufweisen und vorzugsweise zumindest teilweise funktionelle Gruppen ausgewählt aus Hydroxyl-Gruppen, Carboxyl-Gruppen, Phosphat-Gruppen, Phosphonat-Gruppen und Amino-Gruppen aufweisen, wobei die Summe aus Säurezahl und Hydroxylzahl vorzugsweise mindestens 100 Milligramm KOH pro Gramm, jedoch vorzugsweise nicht mehr als 600 Milligramm KOH pro Gramm der organischen Verbindungen (C) beträgt.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die organischen Verbindungen (C) ausgewählt sind aus Copolymeren oder Copolymerenmischungen von Alkenen, vorzugsweise Ethen, und Vinylalkohol, die vorzugsweise eine Hydroxylzahl im Bereich von 200 bis 500 Milligramm KOH pro Gramm des Copoylmers bzw. der Copolymerenmischung aufweisen, wobei der Anteil dieser Copolymere oder Copolymerenmischung vorzugsweise nicht 5 Gew.-%, besonders bevorzugt nicht 2 Gew.-% jeweils bezogen auf das wässrige Korrosionsschutzmittel übersteigt.
  11. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die metallischen Substrate ausgewählt sind aus Zink und/oder Aluminium, vorzugsweise aus Aluminium.
  12. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass das nach dem In-Kontakt-Bringen des metallischen Substrats mit dem wässrigen Korrosionsschutzmittel ein Nassfilm auf der Oberfläche des metallischen Substrats verbleibt, der vor einem nachfolgenden Spülschritt oder einer nachfolgenden nasschemischen Behandlung, vorzugsweise durch Wärmezufuhr, getrocknet wird.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Nassfilm in einer solchen Filmdicke verbleibt, dass nach dem Trocknen eine Schichtauflage an Zirkonium von mehr als 5 mg/m2, vorzugsweise mehr als 10 mg/m2, jedoch vorzugsweise von weniger als 150 mg/m2, besonders bevorzugt von weniger als 50 mg/m2 resultiert.
  14. Verfahren zur Herstellung beschichteter Dosendeckel aus Aluminiumband, wobei zunächst in einem ersten Schritt auf Aluminiumband eine Schichtauflage an Zirkonium von mehr als 5 mg/m2 gemäß dem Verfahren des Anspruches 13 und optional anschließend ein Primer aufgebracht und ausgehärtet wird, woraufhin das Deckelmaterial aus dem Band ausgestanzt und zum Dosendeckel umgeformt wird.
  15. Konzentrat eines Korrosionsschutzzmittels gemäß Anspruch 1, wobei das Konzentrat einen pH-Wert im Bereich von 0,5 bis 2,0 aufweist und mindestens 1 Gew.-% einer wasserlöslichen Verbindung des Elements Zirkonium bezogen auf das Element Zirkonium sowie mindestens 0,01 Gew.-% an polyzyklischen Kohlenwasserstoffen mit mindestens zwei anellierten Benzenringen mit jeweils mindestens zwei kernsubstituierten Hydroxylgruppen in ortho-Stellung zueinander, wobei die Benzenringe jeweils durch Anellierung an ein acyclisches Kohlenwasserstoffsystem miteinander verbrückt vorliegen, wobei das acyclische Kohlenwasserstoffsystem vorzugsweise mindestens eine Oxo-Gruppe oder Hydroxyl-Gruppe aufweist.
EP17701835.5A 2016-03-08 2017-01-23 Fluorid-freie zirkonium-basierte metallvorbehandlung zur passivierung Active EP3426822B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203771.4A DE102016203771A1 (de) 2016-03-08 2016-03-08 Fluorid-freie Zirkonium-basierte Metallvorbehandlung zur Passivierung
PCT/EP2017/051291 WO2017153075A1 (de) 2016-03-08 2017-01-23 Fluorid-freie zirkonium-basierte metallvorbehandlung zur passivierung

Publications (2)

Publication Number Publication Date
EP3426822A1 EP3426822A1 (de) 2019-01-16
EP3426822B1 true EP3426822B1 (de) 2020-10-21

Family

ID=57909607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17701835.5A Active EP3426822B1 (de) 2016-03-08 2017-01-23 Fluorid-freie zirkonium-basierte metallvorbehandlung zur passivierung

Country Status (11)

Country Link
US (1) US11142827B2 (de)
EP (1) EP3426822B1 (de)
JP (1) JP7049259B2 (de)
KR (1) KR20180118680A (de)
CN (1) CN108699699B (de)
AU (1) AU2017229193B2 (de)
BR (1) BR112018016295B1 (de)
CA (1) CA3015541A1 (de)
DE (1) DE102016203771A1 (de)
ES (1) ES2831777T3 (de)
WO (1) WO2017153075A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1135544A1 (de) * 1998-10-30 2001-09-26 Henkel Corporation Sichtbare chrom- und phosphorfreie konversionsbeschichtung für aluminium und seine legierungen
DE19923118A1 (de) * 1999-05-19 2000-11-23 Henkel Kgaa Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren
DE19933186A1 (de) 1999-07-15 2001-01-18 Henkel Kgaa Verfahren zum Auftrag von No-Rinse-Produkten auf laufende Metallbänder
US6893687B2 (en) * 2000-09-25 2005-05-17 Chemetall Gmbh Method for coating metallic surfaces
DE10146446B4 (de) * 2000-09-25 2006-05-18 Chemetall Gmbh Verfahren zur Beschichtung von metallischen Oberflächen und Verwendung der derart beschichteten Substrate und der derart hergestellten Beschichtungen
ATE327291T1 (de) * 2000-10-11 2006-06-15 Chemetall Gmbh Verfahren zur beschichtung von metallischen oberflächen mit einer wässerigen zusammensetzung, die wässerige zusammensetzung und verwendung der beschichteten substrate
JP4652592B2 (ja) * 2001-03-15 2011-03-16 日本ペイント株式会社 金属表面処理剤
DE10164671A1 (de) * 2001-12-27 2003-07-10 Basf Ag Derivate von Polymeren für die Metallbehandlung
JP4526807B2 (ja) 2002-12-24 2010-08-18 日本ペイント株式会社 塗装前処理方法
US7063735B2 (en) * 2003-01-10 2006-06-20 Henkel Kommanditgesellschaft Auf Aktien Coating composition
AU2003300475B2 (en) * 2003-01-10 2009-07-16 Henkel Ag & Co. Kgaa A coating composition
JP5775453B2 (ja) * 2009-07-02 2015-09-09 日本パーカライジング株式会社 クロムおよびフッ素フリー金属表面用化成処理液、金属表面処理方法および金属表面塗装方法
US10233349B2 (en) 2014-02-04 2019-03-19 Ppg Industries Ohio, Inc. Acrylic aqueous dispersions for container coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017153075A1 (de) 2017-09-14
US11142827B2 (en) 2021-10-12
US20190010610A1 (en) 2019-01-10
CA3015541A1 (en) 2017-09-14
AU2017229193B2 (en) 2022-10-27
AU2017229193A1 (en) 2018-09-06
EP3426822A1 (de) 2019-01-16
CN108699699A (zh) 2018-10-23
KR20180118680A (ko) 2018-10-31
DE102016203771A1 (de) 2017-09-14
JP2019513892A (ja) 2019-05-30
ES2831777T3 (es) 2021-06-09
CN108699699B (zh) 2021-07-20
BR112018016295A2 (pt) 2018-12-26
JP7049259B2 (ja) 2022-04-06
BR112018016295B1 (pt) 2023-03-07

Similar Documents

Publication Publication Date Title
EP1957692B2 (de) Nass in nass verfahren und chromfreie saure lösung zur korrosionsschutzbehandlung von stahloberflächen
DE2433704A1 (de) Metallbehandlungsmittel, verfahren zu ihrer herstellung und ihre anwendung
DE102009044821B4 (de) Behandlungslösung und Verfahren zur Beschichtung von Metalloberflächen
DE2732753A1 (de) Praeparat zur oberflaechenbehandlung von metallen
EP1751327A1 (de) Farbige konversionsschichten auf metalloberflächen
DE69010811T2 (de) Verbesserte Schutzschichtverfahren für Zink beschichteten Stahl.
EP3350357B1 (de) Vorbehandlung von aluminiumoberflächen mit zirkon- und molybdänhaltigen zusammensetzungen
EP2340319A1 (de) Lackhaftung durch polyvinylamine in sauren wässrigen polymerhaltigen korrosionsschutzmitteln
EP0356855A2 (de) Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien
EP1678344B1 (de) Im wesentlichen chrom-freies verfahren zum passivieren von metallischen oberflächen aus zn, zn-legierungen, al oder al-legierungen
DE1295961B (de) Verfahren zur Behandlung von chemisch aufgebrachten UEberzuegen auf Metallen
EP1570109B1 (de) Verfahren zur beschichtung von metallsubstraten mit einem radikalisch polymerisierbaren berzugsmittel und beschichtete subst rate
DE69301851T2 (de) Phosphatierungsbehandlung für metallische Substrate
EP3426822B1 (de) Fluorid-freie zirkonium-basierte metallvorbehandlung zur passivierung
DE1295962B (de) Verfahren und Zusatzmittel zur Herstellung von Boehmit auf Aluminiumoberflaechen
WO1996016205A1 (de) Korrosionsschutz und reibungsverminderung von metalloberflächen
EP1444381B2 (de) Verfahren zur herstellung von dunklen schutzschichten auf flacherzeugnissen aus titanzink
WO2014095904A1 (de) Verfahren zur herstellung beschichteter dosendeckel
EP0459550B1 (de) Verfahren zur Nachspülung von Konversionsschichten
DE102012223355A1 (de) Hochvernetzende Lackformulierung für Doseninnenflächen
WO2016193004A1 (de) Konditionierung vor einer konversionsbehandlung von metalloberflächen
WO1999020696A1 (de) Verfahren zum beschichten von metallen und hiermit beschichtetes metall
EP3502311A1 (de) Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
EP0222282A2 (de) Verfahren zum Aufbringen von organischen Überzügen auf Metalloberflächen
DE102021102513A1 (de) Substituierte Phytinsäurederivate

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017007834

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1325956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210222

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210121

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2831777

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017007834

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1325956

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240227

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8

Ref country code: GB

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240119

Year of fee payment: 8

Ref country code: FR

Payment date: 20240122

Year of fee payment: 8