EP3417507B1 - Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate - Google Patents

Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate Download PDF

Info

Publication number
EP3417507B1
EP3417507B1 EP17708866.3A EP17708866A EP3417507B1 EP 3417507 B1 EP3417507 B1 EP 3417507B1 EP 17708866 A EP17708866 A EP 17708866A EP 3417507 B1 EP3417507 B1 EP 3417507B1
Authority
EP
European Patent Office
Prior art keywords
dielectric substrate
reflective plate
conductive element
substrate layer
vias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17708866.3A
Other languages
German (de)
French (fr)
Other versions
EP3417507A1 (en
Inventor
Nebil KRISTOU
Jean-François PINTOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3417507A1 publication Critical patent/EP3417507A1/en
Application granted granted Critical
Publication of EP3417507B1 publication Critical patent/EP3417507B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2005Electromagnetic photonic bandgaps [EPB], or photonic bandgaps [PBG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/0066Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces

Definitions

  • the present invention relates to an electromagnetic reflection plate with a metamaterial structure for a miniature antenna device. It also relates to a miniature antenna device comprising such an electromagnetic reflection plate and an antenna arranged at a short distance from this plate.
  • An antenna is generally placed there in front of a reflector plane to have unidirectional radiation and to allow the integration of an electronic circuit close behind the reflector plane without appreciable interference. The radiation is thus directed in a direction of interest, making it possible, on the one hand, to improve the gain of the antenna and, on the other hand, to reduce the sensitivity of the antenna in a half-space.
  • the latter is of a type approaching the model of a perfect electrical conductor with reflection of the electromagnetic field in phase opposition.
  • the antenna must then be placed at a distance from the reflector plane as close as possible to a quarter of its average operating wavelength to compensate for the phase opposition in reflection and obtain constructive interference between an incident wave coming directly from the antenna and a wave reflected by the reflector plane.
  • the latter is of the artificial magnetic conductor type approaching the model of a perfect magnetic conductor with reflection of the electromagnetic field without phase shift.
  • the antenna can then be placed very close to the reflective plane, in particular well below a quarter of its average operating wavelength, or even below a tenth of this wavelength. This considerably reduces the size of the antenna device and allows its advantageous integration into the design of miniature antennas.
  • a reflector plane according to this technology can be produced using an electromagnetic reflection plate with a metamaterial structure which is precisely the subject of the present invention.
  • phase diagram A method was also proposed in 1999 in Sievenpiper's thesis paper, entitled “High-impedance electromagnetic surfaces”, PhD from the University of California, Los Angeles (USA ), to characterize artificial magnetic conductors by a method known as the phase diagram.
  • This method consists of illuminating the surface to be characterized using a plane wave and at normal incidence. The phase difference which exists between the incident wave and the reflected wave is then compared. Interference is considered to be constructive when the phase difference is between ⁇ / 2 and + ⁇ / 2, which thus defines the bandwidth of use of the artificial magnetic conductor.
  • each of these resonant conductive elements is generally of dimensions close to a quarter of the average operating wavelength of the antenna. Consequently, a metamaterial structure very quickly imposes a large reflecting surface facing the antenna to guarantee its operation in the frequency band of interest of the antenna.
  • the invention it is possible to increase the phase shift between interconnected metal vias without increasing the size of the conductive elements of the metamaterial structure by cleverly exploiting, using one or more meanders on at least part of the electrical connections between vias, the surface located under the ground plane.
  • one or more meanders on at least part of the electrical connections between vias, the surface located under the ground plane.
  • each electrical connection for connecting one metallic via to another is etched on the underside of the second layer of dielectric substrate.
  • the arrangement of the meanders is optimal.
  • each of said electrical connections has several meanders.
  • This option is advantageous in the case where it is desired to obtain axial symmetry along two orthogonal axes.
  • each conductive element and their respective electrical connections are distributed in a central symmetry around a central axis of symmetry of this conductive element.
  • At least part of the meandering electrical connections etched on the underside of the second dielectric substrate layer is further provided with adjustable phase shift devices.
  • each meandering electrical connection etched on the underside of the second layer of dielectric substrate gradually widens from its end in contact with the corresponding metal via towards one of the edges of the conductive element under which it is engraved.
  • each of the conductive elements has one of the shapes of the assembly consisting of a square shape, a shape rectangular, of a spiral shape, of a fork shape, of a cross shape with crutches and a dual shape of a cross with crutches known as the UC-EBG shape.
  • the conductive elements are periodically distributed over the upper face of the first layer of dielectric substrate.
  • figure 1 can be considered as composed of several elementary cells repeating themselves in two main directions x and y.
  • FIG 2A only four elementary cells 12, 14, 16 and 18 are illustrated, one of which, for example cell 12, is shown alone on the diagram. figure 2A .
  • conductive elements 20, 22, 24, 26 separated from each other are etched on an upper face 28 of a first layer 30 of dielectric substrate.
  • These conductive elements are for example rectangular or square but could be of any shape already studied in the state of the art.
  • they could be in the form of a spiral, fork, cross with crutches or dual cross with crutches known as the UC-EBG form.
  • they could have interdigitated capacitors or spiral inductances, known to allow a certain miniaturization of the reflector plate as specified previously.
  • the conductive elements are also, for example, distributed in a matrix by periodically repeating their shape in the x and y directions on the upper face 28 of the first layer 30 of dielectric substrate.
  • the conductive elements could be of different shapes for a non-uniform distribution on the upper face 28, for example of increasing surfaces when moving away from a center, or any other topology relevant to the person skilled in the art in depending on the application context.
  • the plate portion 10 further comprises a ground plane 32 disposed between a lower face 34 of the first layer 30 of dielectric substrate and an upper face 36 of a second layer 38 of dielectric substrate, with holes 40 formed in this plane. mass 32.
  • through metal vias 42 are formed in the thickness of the first and second layers 30, 38 of substrate, each having an upper end in contact with one of the conductive elements 20, 22, 24, 26, and an end lower reaching a lower face 44 of the second layer 38 of dielectric substrate. Each of these vias 42 passes through the ground plane 32 without electrical contact through one of the holes 40.
  • each conductive element 20, 22, 24 or 26 is in electrical contact with four vias 42. Furthermore, according to the invention, each via 42 of each conductive element 20, 22, 24 or 26 is connectable to another via d 'a neighboring conductive element, using a corresponding electrical connection 46 etched on the lower face 44 of the second layer 38 of dielectric substrate and in contact with the lower end of this via 42. Also according to the invention , so as to increase the phase shift between any two vias interconnected by their lower ends, at least part of the electrical connections 46 etched on the lower face 44 of the second layer 38 of dielectric substrate has one or more meanders to optimize the occupation of this lower face 44. In the non-limiting example of figure 1 , each of these electrical connections 46 is meandering.
  • the elementary cell 12 shown alone in transparent perspective on the figure 2A and in front, top and bottom views on the figures 2B, 2C and 2D , is formed of the conductive member 20 and the entire thickness of the substrate below in the z direction. It is for example square with sides of length P.
  • the conductive element 20 is also square with sides of length W slightly less than P so that two conductive elements of two adjacent elementary cells do not touch each other.
  • vias 42 are in contact with the conductive element 20 via their upper ends. They are more precisely referenced 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d on figures 2A to 2D . They are off-center with respect to the center of symmetry of the conductive element 20 but remain on its axes of symmetry. More precisely, the two vias 42 (12) a and 42 (12) d are on the x-directional axis of symmetry of the conductive element 20 but off-center with respect to its center of symmetry. More precisely also, the two vias 42 (12) b and 42 (12) c are on the y direction axis of symmetry of the conductive element 20 but off-center with respect to its center of symmetry. We denote by d the common distance between each via and the corresponding edge closest to the elementary cell 12.
  • meandering electrical connections 46 are etched on the lower face 44 of the second layer 38 of dielectric substrate in the elementary cell 12. They are more precisely referenced 46 (12) a , 46 (12) b , 46 (12) c and 46 (12) d on figures 2A to 2D and correspond respectively to vias 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d while being in respective contact with their lower ends.
  • the meandering electrical connection 46 (12) a has four prominent meanders on the 2D figure and gradually widens from its end in contact with the corresponding metallic via 42 (12) a towards one of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12).
  • the meandering electrical connection 46 (12) b has four meanders clearly visible on the 2D figure and gradually widens from its end in contact with the corresponding metallic via 42 (12) b towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) b of this edge and allows its electrical connection with another via a conductive element (not shown on the figure 1 ) adjacent in the negative direction of the y direction.
  • the meandering electrical connection 46 (12) c has four clearly visible meanders on the 2D figure and gradually widens from its end in contact with the corresponding metal via 42 (12) c towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) c of this edge and allows its electrical connection with another via the adjacent conductive element in the positive direction of the y direction, that is to say via 42 (14) b of the elementary cell 14.
  • the electrical connection with meanders 46 (12) d has four meanders clearly visible on the 2D figure and gradually widens from its end in contact with the corresponding metal via 42 (12) d towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) d from this edge and allows its electrical connection with another via the adjacent conductive element in the positive direction of the x direction, i.e. via 42 (16) a of the elementary cell 16.
  • the four vias 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d of the conductive element 20 and their respective meandering electrical connections 46 (12) a , 46 ( 12) b , 46 (12) c and 46 (12) d are distributed in a central symmetry around the center of symmetry of this conductive element 20.
  • the surface of the lower face 44 of the second layer 38 of dielectric substrate is largely occupied by the respective meandering electrical connections 46 (12) a , 46 (12) b , 46 (12) c and 46 (12) d between vias 42 (12) a , 42 (12) b , 42 ( 12) c , 42 (12) d and the four edges of elementary cell 12.
  • Such a metamaterial structure described with reference to figures 1, 2A , 2B, 2C and 2D can advantageously be used for the design of a miniature antenna device such as that shown in top and bottom views on the figures 3A and 3B .
  • This device comprises a reflector plate 50 with a metamaterial structure composed of 25 elementary cells such as that illustrated in figure 2A distributed in a matrix of 5 rows and 5 columns. It also comprises a dipole antenna 52, visible in top view on the figure 3A , placed at a distance from the plate reflector 50. More precisely, if this dipole antenna 52 has an average operating wavelength denoted A, it can be placed at a distance from the reflector plate 50 less than one tenth of this average operating wavelength, or even even at a distance close to ⁇ / 20, since the reflector plate 50 can behave like an artificial magnetic conductor when it is dimensioned to reflect the waves with zero phase shift at the average operating frequency of the antenna.
  • the figure 3B illustrates a bottom view of the vias interconnection network using the meander connections described above. It is shown that for a dipole antenna 52 with a length of 149 mm and a width of 3.5 mm arranged at a distance ⁇ / 20 from the reflector plate 50, an antenna device of total dimensions 0.63. ⁇ x 0.63 is obtained. . ⁇ x 0.071. ⁇ , where 0.071. ⁇ is the thickness, i.e. a low profile antenna device since its total thickness is less than ⁇ / 10.
  • At least part of the meandering connections engraved on the lower face 44 may be provided with adjustable phase shift devices well known to those skilled in the art, for example with diodes, for the interconnection of the conductive elements between them. This makes it possible to adjust the phase shifts according to the application to be optimized by simply varying the behavior of the active or passive elements employed while maintaining the structure of the metamaterial 10 or 50 and without the need to modify the length of the meandering connections.
  • a miniaturization of the elementary cells can be obtained by optimally adjusting the position of the four vias of each elementary cell and the phase shift ⁇ between interconnected vias, this phase shift ⁇ being adjusted by the length of the meandering connections.
  • k the parameter equal to P / d. This parameter k is necessarily strictly greater than 2 in order to be able to have four eccentric vias.
  • k 2.
  • the figure 5 is a comparative phase diagram of reflection coefficients as a function of operating frequencies for a miniature antenna device according to the invention (in solid line) and a miniature antenna device of the prior art of the same dimensions (in short dashed lines).
  • the device of the prior art chosen has a reflector plate of the mushroom type, that is to say with square conductive elements connected to a solid ground plane by means of a single via each (without a second layer substrate).
  • a gain in miniaturization of approximately 35% per dimension is thus demonstrated, which results in a gain of more than 57% in surface area.
  • comparisons on other properties such as antenna adaptation and radiation efficiency at a chosen operating frequency, or directivity, show that miniature antenna devices according to the invention and with a mushroom reflector plate exhibit quite comparable performance in terms of improvement over reflector plane type devices approaching the perfect electrical conductor model. The gain in miniaturization is therefore all the more appreciable.
  • an electromagnetic reflection plate with a metamaterial structure such as that described above makes it possible to miniaturize an antenna device including it without, however, exhibiting cost drawbacks, significant reduction in the bandwidth of the antenna. or substantial bulk in thickness. Only the surface available under the ground plane is exploited to obtain the advantageous technical effects resulting from the meandering connections.
  • the invention is applicable to an antenna device whose antenna is of the ZOR type (standing for “Zeroth-Order Resonator”). ), wire-plate, broadband, circularly polarized or otherwise, arranged parallel or perpendicular to the reflective plane.
  • each conductive element of the metamaterial may be in electrical contact with a number of vias other than four: for example two, six, etc.
  • the vias are not necessarily all identical either.
  • the invention also applies to a reflector plate with a metamaterial structure, the conductive elements of which are distributed over several layers, which may or may not be offset.
  • the electrical connections between vias may not all be identical. It is in particular possible to vary the values of k and ⁇ from one elementary cell to another.
  • the electrical connections between vias can be etched on several layers, not only on the underside of the second layer of dielectric substrate.
  • each conductive element of the metamaterial may be in electrical contact with vias and / or corresponding electrical connections which are not distributed in a central and / or axial symmetry with respect to the center and / or to one or more axes of symmetry of the conductive element.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Description

La présente invention concerne une plaque de réflexion électromagnétique à structure de métamatériau pour dispositif miniature d'antenne. Elle concerne également un dispositif miniature d'antenne comportant une telle plaque de réflexion électromagnétique et une antenne disposée à courte distance de cette plaque.The present invention relates to an electromagnetic reflection plate with a metamaterial structure for a miniature antenna device. It also relates to a miniature antenna device comprising such an electromagnetic reflection plate and an antenna arranged at a short distance from this plate.

Elle s'inscrit d'une façon générale dans des applications pour systèmes de télécommunications ou objets communicants dans lesquels des dispositifs radiofréquence, incluant antennes et circuits électroniques, sont présents et doivent être aussi peu encombrants que possible. En particulier, l'utilisation d'antennes dans des systèmes de communication pour l'aéronautique, de surveillance ou de navigation satellitaire est incontournable. Cependant, dans ce type de dispositifs, la place est réduite et engendre un besoin en miniaturisation des antennes. Une antenne y est généralement placée devant un plan réflecteur pour avoir un rayonnement unidirectionnel et permettre l'intégration d'un circuit électronique à proximité derrière le plan réflecteur sans interférences sensibles. Le rayonnement est ainsi dirigé dans une direction d'intérêt, permettant d'une part d'améliorer le gain de l'antenne et d'autre part de réduire la sensibilité de l'antenne dans un demi-espace.It generally fits into applications for telecommunications systems or communicating objects in which radiofrequency devices, including antennas and electronic circuits, are present and must be as compact as possible. In particular, the use of antennas in communication systems for aeronautics, surveillance or satellite navigation is essential. However, in this type of device, the space is reduced and generates a need for miniaturization of the antennas. An antenna is generally placed there in front of a reflector plane to have unidirectional radiation and to allow the integration of an electronic circuit close behind the reflector plane without appreciable interference. The radiation is thus directed in a direction of interest, making it possible, on the one hand, to improve the gain of the antenna and, on the other hand, to reduce the sensitivity of the antenna in a half-space.

Selon une première technologie de réalisation possible du plan réflecteur, celui-ci est d'un type se rapprochant du modèle de conducteur électrique parfait avec réflexion du champ électromagnétique en opposition de phase. L'antenne doit alors être disposée à une distance du plan réflecteur la plus proche possible du quart de sa longueur d'onde moyenne de fonctionnement pour compenser l'opposition de phase en réflexion et obtenir une interférence constructive entre une onde incidente issue directement de l'antenne et une onde réfléchie par le plan réflecteur. Aux longueurs d'ondes métriques et décamétriques, cette technologie présente l'inconvénient d'être volumineuse. Par exemple pour une fréquence moyenne de fonctionnement f0=100 MHz de l'antenne, il faudrait la placer à 75 cm du plan réflecteur et pour f0=1 GHz cela représente encore une distance de 7,5 cm.According to a first possible production technology of the reflector plane, the latter is of a type approaching the model of a perfect electrical conductor with reflection of the electromagnetic field in phase opposition. The antenna must then be placed at a distance from the reflector plane as close as possible to a quarter of its average operating wavelength to compensate for the phase opposition in reflection and obtain constructive interference between an incident wave coming directly from the antenna and a wave reflected by the reflector plane. At VHF and HF wavelengths, this technology has the drawback of being bulky. For example for an average operating frequency f 0 = 100 MHz of the antenna, it should be placed 75 cm from the reflective plane and for f 0 = 1 GHz this still represents a distance of 7.5 cm.

Selon une deuxième technologie de réalisation possible du plan réflecteur, celui-ci est du type conducteur magnétique artificiel se rapprochant du modèle de conducteur magnétique parfait avec réflexion du champ électromagnétique sans déphasage. L'antenne peut alors être disposée très près du plan réflecteur, notamment bien en deçà du quart de sa longueur d'onde moyenne de fonctionnement, voire même en deçà du dixième de cette longueur d'onde. Cela réduit considérablement l'encombrement du dispositif d'antenne et permet son intégration avantageuse dans la conception d'antennes miniatures. Un plan réflecteur selon cette technologie peut être réalisé à l'aide d'une plaque de réflexion électromagnétique à structure de métamatériau qui fait justement l'objet de la présente invention. Une méthode a par ailleurs été proposée en 1999 dans le document de thèse de Sievenpiper, intitulé « High-impedance electromagnetic surfaces », PhD de l'Université de Californie, Los Angeles (USA ), pour caractériser les conducteurs magnétiques artificiels par une méthode dite du diagramme de phase. Cette méthode consiste à illuminer la surface à caractériser à l'aide d'une onde plane et sous une incidence normale. On compare ensuite l'écart de phase qui existe entre l'onde incidente et l'onde réfléchie. Les interférences sont considérées comme constructives lorsque l'écart de phase est compris entre ―π/2 et + π/2, ce qui définit ainsi la bande passante d'usage du conducteur magnétique artificiel.According to a second possible technology for producing the reflector plane, the latter is of the artificial magnetic conductor type approaching the model of a perfect magnetic conductor with reflection of the electromagnetic field without phase shift. The antenna can then be placed very close to the reflective plane, in particular well below a quarter of its average operating wavelength, or even below a tenth of this wavelength. This considerably reduces the size of the antenna device and allows its advantageous integration into the design of miniature antennas. A reflector plane according to this technology can be produced using an electromagnetic reflection plate with a metamaterial structure which is precisely the subject of the present invention. A method was also proposed in 1999 in Sievenpiper's thesis paper, entitled “High-impedance electromagnetic surfaces”, PhD from the University of California, Los Angeles (USA ), to characterize artificial magnetic conductors by a method known as the phase diagram. This method consists of illuminating the surface to be characterized using a plane wave and at normal incidence. The phase difference which exists between the incident wave and the reflected wave is then compared. Interference is considered to be constructive when the phase difference is between ―π / 2 and + π / 2, which thus defines the bandwidth of use of the artificial magnetic conductor.

Conformément à cette deuxième technologie de conducteur magnétique artificiel, la présente invention porte donc plus précisément sur une plaque de réflexion électromagnétique à structure de métamatériau pour dispositif miniature d'antenne, comportant :

  • une pluralité d'éléments conducteurs séparés les uns des autres et gravés sur une face supérieure d'une couche de substrat diélectrique,
  • un plan de masse disposé en face inférieure de cette couche de substrat diélectrique, et
  • un ensemble de vias métalliques traversants formés dans l'épaisseur du substrat, chacun comportant une extrémité supérieure en contact avec l'un des éléments conducteurs.
In accordance with this second artificial magnetic conductor technology, the present invention therefore relates more precisely to an electromagnetic reflection plate with a metamaterial structure for a miniature antenna device, comprising:
  • a plurality of conductive elements separated from each other and etched on an upper face of a dielectric substrate layer,
  • a ground plane disposed on the lower face of this dielectric substrate layer, and
  • a set of through metal vias formed in the thickness of the substrate, each comprising an upper end in contact with one of the conductive elements.

Cependant, la miniaturisation d'une telle plaque de réflexion électromagnétique est limitée par le nombre minimal d'éléments conducteurs nécessaires à l'obtention d'une structure de métamatériau, souvent organisés en une matrice d'au moins quatre lignes et quatre colonnes. En effet, chacun de ces éléments conducteurs résonants est généralement de dimensions proches du quart de la longueur d'onde moyenne de fonctionnement de l'antenne. En conséquence, une structure de métamatériau impose très rapidement une surface réflectrice importante face à l'antenne pour garantir son fonctionnement dans la bande de fréquence d'intérêt de l'antenne.However, the miniaturization of such an electromagnetic reflection plate is limited by the minimum number of conductive elements necessary to obtain a metamaterial structure, often organized in a matrix of at least four rows and four columns. In fact, each of these resonant conductive elements is generally of dimensions close to a quarter of the average operating wavelength of the antenna. Consequently, a metamaterial structure very quickly imposes a large reflecting surface facing the antenna to guarantee its operation in the frequency band of interest of the antenna.

Différentes solutions , comme par exemple US2011/061925 A1 ou US2010/252319 A1 , ont été apportées pour améliorer la miniaturisation des structures de métamatériaux, notamment en jouant sur la géométrie des éléments conducteurs (capacités interdigitées, inductances en spirales, etc.), sur une multiplication de couches couplées en capacités ou par utilisation de composants électroniques discrets passifs ou actifs. Mais toutes ces solutions présentent des inconvénients de coûts, de réduction sensible de la bande passante de l'antenne ou d'encombrement en épaisseur.Different solutions, such as US2011 / 061925 A1 Where US2010 / 252319 A1 , were made to improve the miniaturization of metamaterial structures, in particular by playing on the geometry of the conductive elements (interdigitated capacitors, spiral inductors, etc.), on a multiplication of layers coupled in capacitance or by the use of passive discrete electronic components or active. However, all of these solutions have drawbacks in terms of costs, of significant reduction in the bandwidth of the antenna or of overall thickness.

Dans une utilisation des structures de métamatériaux différente de celle envisagée dans la présente invention, celle des composants filtrants inter-antennes à bande interdite électromagnétique dits EBG (de l'anglais « Electromagnetic Band-Gap »), des approches innovantes ont été proposées.In a use of the metamaterial structures different from that envisaged in the present invention, that of the inter-antenna filtering components with electromagnetic band gap known as EBG (standing for “Electromagnetic Band-Gap”), innovative approaches have been proposed.

Par exemple, dans la demande de brevet US 2014/0354502 A1 , il est proposé un plan de masse percé de trous au travers desquels passent les vias métalliques, ceux-ci n'étant pas en contact avec le plan de masse mais connectés entre eux deux à deux à l'aide de connexions électriques dédiées situées de l'autre côté du plan de masse par rapport aux éléments conducteurs.For example, in the patent application US 2014/0354502 A1 , it is proposed a ground plane pierced with holes through which pass the metal vias, these not being in contact with the ground plane but connected between them two by two using dedicated electrical connections located from the other side of the ground plane with respect to the conductive elements.

Par exemple également, dans la demande de brevet US 2009/0236141 A1 , il est proposé en figure 8 une structure de métamatériau pour filtrage EBG comportant :

  • une pluralité d'éléments conducteurs séparés les uns des autres et gravés sur une face supérieure d'une première couche de substrat diélectrique,
  • un plan de masse disposé entre une face inférieure de la première couche de substrat diélectrique et une face supérieure d'une deuxième couche de substrat diélectrique, avec des trous aménagés dans ce plan de masse,
  • un ensemble de vias métalliques traversants formés dans l'épaisseur des première et deuxième couches de substrat, chacun comportant une extrémité supérieure en contact avec l'un des éléments conducteurs, une extrémité inférieure atteignant une face inférieure de la deuxième couche de substrat diélectrique, et traversant le plan de masse sans contact électrique par l'un de ses trous,
    dans laquelle :
    • chaque élément conducteur est en contact avec plusieurs vias métalliques, et
    • chaque via métallique de chaque élément conducteur est connectable à un autre via métallique d'un élément conducteur voisin, à l'aide d'une connexion électrique correspondante en contact avec l'extrémité inférieure de ce via métallique.
For example also, in the patent application US 2009/0236141 A1 , FIG. 8 shows a structure of a metamaterial for EBG filtering comprising:
  • a plurality of conductive elements separated from each other and etched on an upper face of a first layer of dielectric substrate,
  • a ground plane disposed between a lower face of the first layer of dielectric substrate and an upper face of a second layer of dielectric substrate, with holes made in this ground plane,
  • a set of through metal vias formed in the thickness of the first and second substrate layers, each having an upper end in contact with one of the conductive elements, a lower end reaching a lower face of the second dielectric substrate layer, and crossing the ground plane without electrical contact through one of its holes,
    in which :
    • each conductive element is in contact with several metal vias, and
    • each metallic via of each conductive element is connectable to another metallic via of a neighboring conductive element, using a corresponding electrical connection in contact with the lower end of this metal via.

Mais dans ces deux derniers documents, les propriétés réfléchissantes de la structure obtenue ne sont pas observées, seuls le découplage entre antennes voisines et le filtrage de signaux parasites étant étudiés. En outre, une telle structure n'apparaît pas suffisante pour obtenir une miniaturisation supplémentaire dans le cas d'une application de réflexion électromagnétique.But in these last two documents, the reflecting properties of the structure obtained are not observed, only the decoupling between neighboring antennas and the filtering of parasitic signals being studied. In addition, such a structure does not appear sufficient to obtain additional miniaturization in the case of an application of electromagnetic reflection.

Il peut ainsi être souhaité de concevoir une plaque de réflexion électromagnétique à structure de métamatériau pour dispositif miniature d'antenne qui permette une miniaturisation supplémentaire tout en s'affranchissant d'au moins une partie des problèmes et contraintes précités.It may thus be desired to design an electromagnetic reflection plate with a metamaterial structure for a miniature antenna device which allows additional miniaturization while overcoming at least some of the aforementioned problems and constraints.

Il est donc proposé une plaque de réflexion électromagnétique à structure de métamatériau pour antenne miniature comportant les caractéristiques de la revendication 1.There is therefore proposed an electromagnetic reflection plate with a metamaterial structure for a miniature antenna comprising the features of claim 1.

Grâce à l'invention, il est possible d'augmenter le déphasage entre vias métalliques interconnectés sans augmenter la taille des éléments conducteurs de la structure de métamatériau en exploitant astucieusement, à l'aide d'un ou plusieurs méandres sur au moins une partie des connexions électriques entre vias, la surface située sous le plan de masse. Or il a été observé que de façon surprenante, alors que le fait de multiplier le nombre de vias métalliques par élément conducteur ne permet pas en soi de réduire la taille globale d'une plaque de réflexion électromagnétique, le fait de le faire en combinaison avec une augmentation de déphasage utilisant une ou plusieurs connexions à méandre(s) permet une telle réduction de taille.Thanks to the invention, it is possible to increase the phase shift between interconnected metal vias without increasing the size of the conductive elements of the metamaterial structure by cleverly exploiting, using one or more meanders on at least part of the electrical connections between vias, the surface located under the ground plane. However, it has been observed that, surprisingly, while the fact of multiplying the number of metal vias per conductive element does not in itself make it possible to reduce the overall size of an electromagnetic reflection plate, the fact of doing so in combination with an increase in phase shift using one or more meander connections allows such a size reduction.

De façon optionnelle, chaque connexion électrique de connexion d'un via métallique à un autre est gravée sur la face inférieure de la deuxième couche de substrat diélectrique. Ainsi, la disposition des méandres est optimale.Optionally, each electrical connection for connecting one metallic via to another is etched on the underside of the second layer of dielectric substrate. Thus, the arrangement of the meanders is optimal.

De façon optionnelle également, chacune desdites connexions électriques présente plusieurs méandres.Also optionally, each of said electrical connections has several meanders.

De façon optionnelle également :

  • les éléments conducteurs sont répartis en matrice sur la face supérieure de la première couche de substrat diélectrique, et
  • chaque élément conducteur est en contact avec quatre vias métalliques, chacun de ces quatre vias métalliques étant connectable à un autre via métallique d'un élément conducteur adjacent en ligne ou en colonne dans la matrice.
Also optionally:
  • the conductive elements are distributed in a matrix on the upper face of the first layer of dielectric substrate, and
  • each conductive element is in contact with four metal vias, each of these four metal vias being connectable to another metal via of an adjacent conductive element in a row or in a column in the matrix.

Cette option est avantageuse dans le cas où l'on souhaite obtenir une symétrie axiale suivant deux axes orthogonaux.This option is advantageous in the case where it is desired to obtain axial symmetry along two orthogonal axes.

De façon optionnelle également, les vias métalliques de chaque élément conducteur et leurs connexions électriques respectives sont répartis selon une symétrie centrale autour d'un axe de symétrie centrale de cet élément conducteur.Also optionally, the metal vias of each conductive element and their respective electrical connections are distributed in a central symmetry around a central axis of symmetry of this conductive element.

De façon optionnelle également, au moins une partie des connexions électriques à méandres gravées sur la face inférieure de la deuxième couche de substrat diélectrique est en outre munie de dispositifs de déphasage réglables.Also optionally, at least part of the meandering electrical connections etched on the underside of the second dielectric substrate layer is further provided with adjustable phase shift devices.

Selon l'invention, chaque connexion électrique à méandres gravée sur la face inférieure de la deuxième couche de substrat diélectrique s'élargit progressivement depuis son extrémité en contact avec le via métallique correspondant vers l'un des bords de l'élément conducteur sous lequel elle est gravée.According to the invention, each meandering electrical connection etched on the underside of the second layer of dielectric substrate gradually widens from its end in contact with the corresponding metal via towards one of the edges of the conductive element under which it is engraved.

De façon optionnelle également, chacun des éléments conducteurs présente l'une des formes de l'ensemble constitué d'une forme carrée, d'une forme rectangulaire, d'une forme de spirale, d'une forme de fourchette, d'une forme de croix à béquilles et d'une forme duale de croix à béquilles dite forme UC-EBG.Also optionally, each of the conductive elements has one of the shapes of the assembly consisting of a square shape, a shape rectangular, of a spiral shape, of a fork shape, of a cross shape with crutches and a dual shape of a cross with crutches known as the UC-EBG shape.

De façon optionnelle également, les éléments conducteurs sont répartis périodiquement sur la face supérieure de la première couche de substrat diélectrique.Also optionally, the conductive elements are periodically distributed over the upper face of the first layer of dielectric substrate.

Il est également proposé un dispositif miniature d'antenne selon la revendication 9.There is also provided a miniature antenna device according to claim 9.

L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :

  • la figure 1 représente en perspective transparente la structure générale d'une portion de plaque de réflexion électromagnétique à structure de métamatériau pour dispositif miniature d'antenne, selon un mode de réalisation de l'invention,
  • la figure 2A représente, selon une même perspective transparente, une cellule élémentaire de la portion de plaque de la figure 1,
  • les figures 2B, 2C et 2D sont respectivement des vues de face, de dessus et de dessous de la cellule élémentaire de la figure 2A,
  • les figures 3A et 3B illustrent, en vues de dessus et de dessous, un exemple de réalisation d'un dispositif miniature d'antenne comportant une plaque de réflexion électromagnétique à structure de métamatériau, selon un mode de réalisation de l'invention,
  • la figure 4 est un diagramme illustrant une relation entre la fréquence de fonctionnement d'un dispositif d'antenne tel que celui des figures 3A, 3B et certains paramètres de configuration propres à l'invention, et
  • la figure 5 est un diagramme comparatif de phases de coefficients de réflexion en fonction de fréquences de fonctionnement pour un dispositif selon l'invention et un dispositif de l'état de la technique.
The invention will be better understood with the aid of the description which will follow, given solely by way of example and made with reference to the appended drawings in which:
  • the figure 1 shows in transparent perspective the general structure of a portion of an electromagnetic reflection plate with a metamaterial structure for a miniature antenna device, according to one embodiment of the invention,
  • the figure 2A represents, according to the same transparent perspective, an elementary cell of the plate portion of the figure 1 ,
  • the figures 2B, 2C and 2D are respectively front, top and bottom views of the elementary cell of the figure 2A ,
  • the figures 3A and 3B illustrate, in top and bottom views, an exemplary embodiment of a miniature antenna device comprising an electromagnetic reflection plate with a metamaterial structure, according to one embodiment of the invention,
  • the figure 4 is a diagram illustrating a relationship between the operating frequency of an antenna device such as that of figures 3A, 3B and certain configuration parameters specific to the invention, and
  • the figure 5 is a comparative phase diagram of reflection coefficients as a function of operating frequencies for a device according to the invention and a device of the state of the art.

La portion de plaque 10 de réflexion électromagnétique à structure de métamatériau représentée schématiquement en perspective transparente sur la figure 1 peut être considérée comme composée de plusieurs cellules élémentaires se répétant selon deux directions principales x et y. Dans l'exemple de cette figure, par souci de simplicité, seules quatre cellules élémentaires 12, 14, 16 et 18 sont illustrées, dont l'une, par exemple la cellule 12, est représentée seule sur la figure 2A.The portion of electromagnetic reflection plate 10 with a metamaterial structure, shown schematically in transparent perspective on the figure. figure 1 can be considered as composed of several elementary cells repeating themselves in two main directions x and y. In the example of this figure, for for the sake of simplicity, only four elementary cells 12, 14, 16 and 18 are illustrated, one of which, for example cell 12, is shown alone on the diagram. figure 2A .

Selon une description globale par couches suivant une direction z perpendiculaire aux directions x et y de la portion de plaque 10, plusieurs éléments conducteurs 20, 22, 24, 26 séparés les uns des autres sont gravés sur une face supérieure 28 d'une première couche 30 de substrat diélectrique. Ces éléments conducteurs sont par exemple rectangulaires ou carrés mais pourraient être de toute forme déjà étudiée dans l'état de la technique. En particulier, ils pourraient être en forme de spirale, de fourchette, de croix à béquilles ou duale de croix à béquilles dite forme UC-EBG. En particulier également, ils pourraient présenter des capacités interdigitées ou des inductances en spirales, connues pour permettre une certaine miniaturisation de la plaque réflectrice comme précisé précédemment. Ils sont aussi par exemple répartis en matrice par répétition périodique de leur forme selon les directions x et y sur la face supérieure 28 de la première couche 30 de substrat diélectrique. En variante les éléments conducteurs pourraient être de formes différentes pour une distribution non uniforme sur la face supérieure 28, par exemple de surfaces croissantes lorsque l'on s'éloigne d'un centre, ou toute autre topologie pertinente pour l'homme du métier en fonction du contexte d'application.According to an overall description by layers in a z direction perpendicular to the x and y directions of the plate portion 10, several conductive elements 20, 22, 24, 26 separated from each other are etched on an upper face 28 of a first layer 30 of dielectric substrate. These conductive elements are for example rectangular or square but could be of any shape already studied in the state of the art. In particular, they could be in the form of a spiral, fork, cross with crutches or dual cross with crutches known as the UC-EBG form. In particular also, they could have interdigitated capacitors or spiral inductances, known to allow a certain miniaturization of the reflector plate as specified previously. They are also, for example, distributed in a matrix by periodically repeating their shape in the x and y directions on the upper face 28 of the first layer 30 of dielectric substrate. As a variant, the conductive elements could be of different shapes for a non-uniform distribution on the upper face 28, for example of increasing surfaces when moving away from a center, or any other topology relevant to the person skilled in the art in depending on the application context.

La portion de plaque 10 comporte en outre un plan de masse 32 disposé entre une face inférieure 34 de la première couche 30 de substrat diélectrique et une face supérieure 36 d'une deuxième couche 38 de substrat diélectrique, avec des trous 40 aménagés dans ce plan de masse 32.The plate portion 10 further comprises a ground plane 32 disposed between a lower face 34 of the first layer 30 of dielectric substrate and an upper face 36 of a second layer 38 of dielectric substrate, with holes 40 formed in this plane. mass 32.

Par ailleurs, des vias métalliques traversants 42 sont formés dans l'épaisseur des première et deuxième couches 30, 38 de substrat, chacun comportant une extrémité supérieure en contact avec l'un des éléments conducteurs 20, 22, 24, 26, et une extrémité inférieure atteignant une face inférieure 44 de la deuxième couche 38 de substrat diélectrique. Chacun de ces vias 42 traverse le plan de masse 32 sans contact électrique par l'un des trous 40.Furthermore, through metal vias 42 are formed in the thickness of the first and second layers 30, 38 of substrate, each having an upper end in contact with one of the conductive elements 20, 22, 24, 26, and an end lower reaching a lower face 44 of the second layer 38 of dielectric substrate. Each of these vias 42 passes through the ground plane 32 without electrical contact through one of the holes 40.

Plus précisément, dans l'exemple non limitatif de la figure 1, chaque élément conducteur 20, 22, 24 ou 26 est en contact électrique avec quatre vias 42. De plus, conformément à l'invention, chaque via 42 de chaque élément conducteur 20, 22, 24 ou 26 est connectable à un autre via d'un élément conducteur voisin, à l'aide d'une connexion électrique 46 correspondante gravée sur la face inférieure 44 de la deuxième couche 38 de substrat diélectrique et en contact avec l'extrémité inférieure de ce via 42. Conformément à l'invention également, de manière à augmenter le déphasage entre deux vias quelconques interconnectés par leurs extrémités inférieures, au moins une partie des connexions électriques 46 gravées sur la face inférieure 44 de la deuxième couche 38 de substrat diélectrique présente un ou plusieurs méandres pour optimiser l'occupation de cette face inférieure 44. Dans l'exemple non limitatif de la figure 1, chacune de ces connexions électriques 46 est à méandres.More precisely, in the non-limiting example of figure 1 , each conductive element 20, 22, 24 or 26 is in electrical contact with four vias 42. Furthermore, according to the invention, each via 42 of each conductive element 20, 22, 24 or 26 is connectable to another via d 'a neighboring conductive element, using a corresponding electrical connection 46 etched on the lower face 44 of the second layer 38 of dielectric substrate and in contact with the lower end of this via 42. Also according to the invention , so as to increase the phase shift between any two vias interconnected by their lower ends, at least part of the electrical connections 46 etched on the lower face 44 of the second layer 38 of dielectric substrate has one or more meanders to optimize the occupation of this lower face 44. In the non-limiting example of figure 1 , each of these electrical connections 46 is meandering.

La cellule élémentaire 12, représentée seule en perspective transparente sur la figure 2A et en vues de face, dessus et dessous sur les figures 2B, 2C et 2D, est formée de l'élément conducteur 20 et de toute l'épaisseur de substrat située en dessous dans la direction z. Elle est par exemple carrée avec des côtés de longueur P. L'élément conducteur 20 est également carré avec des côtés de longueur W légèrement inférieure à P pour que deux éléments conducteurs de deux cellules élémentaires adjacentes ne se touchent pas.The elementary cell 12, shown alone in transparent perspective on the figure 2A and in front, top and bottom views on the figures 2B, 2C and 2D , is formed of the conductive member 20 and the entire thickness of the substrate below in the z direction. It is for example square with sides of length P. The conductive element 20 is also square with sides of length W slightly less than P so that two conductive elements of two adjacent elementary cells do not touch each other.

Quatre vias 42 sont en contact avec l'élément conducteur 20 par leurs extrémités supérieures. Ils sont plus précisément référencés 42(12)a, 42(12)b, 42(12)c et 42(12)d sur les figures 2A à 2D. Ils sont décentrés par rapport au centre de symétrie de l'élément conducteur 20 mais restent sur ses axes de symétries. Plus précisément, les deux vias 42(12)a et 42(12)d sont sur l'axe de symétrie de direction x de l'élément conducteur 20 mais décentrés par rapport à son centre de symétrie. Plus précisément également, les deux vias 42(12)b et 42(12)c sont sur l'axe de symétrie de direction y de l'élément conducteur 20 mais décentrés par rapport à son centre de symétrie. On note d la distance commune entre chaque via et le bord correspondant le plus proche de la cellule élémentaire 12.Four vias 42 are in contact with the conductive element 20 via their upper ends. They are more precisely referenced 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d on figures 2A to 2D . They are off-center with respect to the center of symmetry of the conductive element 20 but remain on its axes of symmetry. More precisely, the two vias 42 (12) a and 42 (12) d are on the x-directional axis of symmetry of the conductive element 20 but off-center with respect to its center of symmetry. More precisely also, the two vias 42 (12) b and 42 (12) c are on the y direction axis of symmetry of the conductive element 20 but off-center with respect to its center of symmetry. We denote by d the common distance between each via and the corresponding edge closest to the elementary cell 12.

Quatre connexions électriques à méandres 46 sont gravées sur la face inférieure 44 de la deuxième couche 38 de substrat diélectrique dans la cellule élémentaire 12. Elles sont plus précisément référencées 46(12)a, 46(12)b, 46(12)c et 46(12)d sur les figures 2A à 2D et correspondent respectivement aux vias 42(12)a, 42(12)b, 42(12)c et 42(12)d en étant en contacts respectifs avec leurs extrémités inférieures. La connexion électrique à méandres 46(12)a comporte quatre méandres bien visibles sur la figure 2D et s'élargit progressivement depuis son extrémité en contact avec le via métallique correspondant 42(12)a vers l'un des bords de la cellule élémentaire 12. Elle présente ainsi une longueur bien supérieure à la distance qui sépare le via 42(12)a de ce bord et permet sa connexion électrique avec un autre via d'un élément conducteur (non représenté sur la figure 1) adjacent dans le sens négatif de la direction x. La connexion électrique à méandres 46(12)b comporte quatre méandres bien visibles sur la figure 2D et s'élargit progressivement depuis son extrémité en contact avec le via métallique correspondant 42(12)b vers un autre des bords de la cellule élémentaire 12. Elle présente ainsi une longueur bien supérieure à la distance qui sépare le via 42(12)b de ce bord et permet sa connexion électrique avec un autre via d'un élément conducteur (non représenté sur la figure 1) adjacent dans le sens négatif de la direction y. La connexion électrique à méandres 46(12)c comporte quatre méandres bien visibles sur la figure 2D et s'élargit progressivement depuis son extrémité en contact avec le via métallique correspondant 42(12)c vers un autre des bords de la cellule élémentaire 12. Elle présente ainsi une longueur bien supérieure à la distance qui sépare le via 42(12)c de ce bord et permet sa connexion électrique avec un autre via de l'élément conducteur adjacent dans le sens positif de la direction y, c'est-à-dire le via 42(14)b de la cellule élémentaire 14. Enfin, la connexion électrique à méandres 46(12)d comporte quatre méandres bien visibles sur la figure 2D et s'élargit progressivement depuis son extrémité en contact avec le via métallique correspondant 42(12)d vers un autre des bords de la cellule élémentaire 12. Elle présente ainsi une longueur bien supérieure à la distance qui sépare le via 42(12)d de ce bord et permet sa connexion électrique avec un autre via de l'élément conducteur adjacent dans le sens positif de la direction x, c'est-à-dire le via 42(16)a de la cellule élémentaire 16.Four meandering electrical connections 46 are etched on the lower face 44 of the second layer 38 of dielectric substrate in the elementary cell 12. They are more precisely referenced 46 (12) a , 46 (12) b , 46 (12) c and 46 (12) d on figures 2A to 2D and correspond respectively to vias 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d while being in respective contact with their lower ends. The meandering electrical connection 46 (12) a has four prominent meanders on the 2D figure and gradually widens from its end in contact with the corresponding metallic via 42 (12) a towards one of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12). a of this edge and allows its electrical connection with another via a conductive element (not shown on the figure 1 ) adjacent in the negative direction of the x direction. The meandering electrical connection 46 (12) b has four meanders clearly visible on the 2D figure and gradually widens from its end in contact with the corresponding metallic via 42 (12) b towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) b of this edge and allows its electrical connection with another via a conductive element (not shown on the figure 1 ) adjacent in the negative direction of the y direction. The meandering electrical connection 46 (12) c has four clearly visible meanders on the 2D figure and gradually widens from its end in contact with the corresponding metal via 42 (12) c towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) c of this edge and allows its electrical connection with another via the adjacent conductive element in the positive direction of the y direction, that is to say via 42 (14) b of the elementary cell 14. Finally, the electrical connection with meanders 46 (12) d has four meanders clearly visible on the 2D figure and gradually widens from its end in contact with the corresponding metal via 42 (12) d towards another of the edges of the elementary cell 12. It thus has a length much greater than the distance which separates the via 42 (12) d from this edge and allows its electrical connection with another via the adjacent conductive element in the positive direction of the x direction, i.e. via 42 (16) a of the elementary cell 16.

On remarque que les quatre vias 42(12)a, 42(12)b, 42(12)c et 42(12)d de l'élément conducteur 20 et leurs connexions électriques à méandres respectives 46(12)a, 46(12)b, 46(12)c et 46(12)d sont répartis selon une symétrie centrale autour du centre de symétrie de cet élément conducteur 20. De plus, la surface de la face inférieure 44 de la deuxième couche 38 de substrat diélectrique est largement occupées par les connexions électriques à méandres respectives 46(12)a, 46(12)b, 46(12)c et 46(12)d entre les vias 42(12)a, 42(12)b, 42(12)c, 42(12)d et les quatre bords de la cellule élémentaire 12.Note that the four vias 42 (12) a , 42 (12) b , 42 (12) c and 42 (12) d of the conductive element 20 and their respective meandering electrical connections 46 (12) a , 46 ( 12) b , 46 (12) c and 46 (12) d are distributed in a central symmetry around the center of symmetry of this conductive element 20. In addition, the surface of the lower face 44 of the second layer 38 of dielectric substrate is largely occupied by the respective meandering electrical connections 46 (12) a , 46 (12) b , 46 (12) c and 46 (12) d between vias 42 (12) a , 42 (12) b , 42 ( 12) c , 42 (12) d and the four edges of elementary cell 12.

Une telle structure de métamatériau décrite en référence aux figures 1, 2A, 2B, 2C et 2D est avantageusement utilisable pour la conception d'un dispositif miniature d'antenne tel que celui représenté en vues de dessus et dessous sur les figures 3A et 3B.Such a metamaterial structure described with reference to figures 1, 2A , 2B, 2C and 2D can advantageously be used for the design of a miniature antenna device such as that shown in top and bottom views on the figures 3A and 3B .

Ce dispositif comporte une plaque réflectrice 50 à structure de métamatériau composée de 25 cellules élémentaires telles que celle illustrée en figure 2A réparties en une matrice de 5 lignes et 5 colonnes. Il comporte en outre une antenne dipolaire 52, visible en vue de dessus sur la figure 3A, disposée à distance de la plaque réflectrice 50. Plus précisément, si cette antenne dipolaire 52 présente une longueur d'onde moyenne de fonctionnement notée A, elle peut être disposée à une distance de la plaque réflectrice 50 inférieure à un dixième de cette longueur d'onde moyenne de fonctionnement, voire même à une distance proche de λ/20, puisque la plaque réflectrice 50 peut se comporter comme un conducteur magnétique artificiel lorsqu'elle est dimensionnée pour réfléchir les ondes avec un déphasage nul à la fréquence moyenne de fonctionnement de l'antenne.This device comprises a reflector plate 50 with a metamaterial structure composed of 25 elementary cells such as that illustrated in figure 2A distributed in a matrix of 5 rows and 5 columns. It also comprises a dipole antenna 52, visible in top view on the figure 3A , placed at a distance from the plate reflector 50. More precisely, if this dipole antenna 52 has an average operating wavelength denoted A, it can be placed at a distance from the reflector plate 50 less than one tenth of this average operating wavelength, or even even at a distance close to λ / 20, since the reflector plate 50 can behave like an artificial magnetic conductor when it is dimensioned to reflect the waves with zero phase shift at the average operating frequency of the antenna.

La figure 3B illustre en vue de dessous le réseau d'interconnexion des vias à l'aide des connexions à méandres décrites précédemment. On montre que pour une antenne dipolaire 52 de longueur 149 mm et de largeur 3,5 mm disposée à distance λ/20 de la plaque réflectrice 50, on obtient un dispositif d'antenne de dimensions totales 0,63.λ x 0,63.λ x 0,071.λ, où 0,071.λ est l'épaisseur, c'est-à-dire un dispositif d'antenne à faible profil puisque son épaisseur totale est inférieure à λ/10.The figure 3B illustrates a bottom view of the vias interconnection network using the meander connections described above. It is shown that for a dipole antenna 52 with a length of 149 mm and a width of 3.5 mm arranged at a distance λ / 20 from the reflector plate 50, an antenna device of total dimensions 0.63.λ x 0.63 is obtained. .λ x 0.071.λ, where 0.071.λ is the thickness, i.e. a low profile antenna device since its total thickness is less than λ / 10.

Dans une variante de réalisation, au moins une partie des connexions à méandres gravées sur la face inférieure 44 peut être munie de dispositifs de déphasage réglables bien connus de l'homme du métier, par exemple de diodes, pour l'interconnexion des éléments conducteurs entre eux. Ceci permet d'ajuster les déphasages en fonction de l'application à optimiser en variant simplement le comportement des éléments actifs ou passifs employés tout en conservant la structure de métamatériau 10 ou 50 et sans besoin de modifier la longueur des connexions à méandres.In an alternative embodiment, at least part of the meandering connections engraved on the lower face 44 may be provided with adjustable phase shift devices well known to those skilled in the art, for example with diodes, for the interconnection of the conductive elements between them. This makes it possible to adjust the phase shifts according to the application to be optimized by simply varying the behavior of the active or passive elements employed while maintaining the structure of the metamaterial 10 or 50 and without the need to modify the length of the meandering connections.

Conformément à l'invention et comme illustré sur la figure 4, une miniaturisation des cellules élémentaires peut être obtenue en réglant de façon optimale la position des quatre vias de chaque cellule élémentaire et le déphasage Δϕ entre vias interconnectés, ce déphasage Δϕ étant réglé par la longueur des connexions à méandres. Notons k le paramètre égal à P/d. Ce paramètre k est nécessairement strictement supérieur à 2 pour pouvoir disposer quatre vias excentrés. A la limite, la présence d'un unique via centré donne k = 2. Les trois courbes de la figure 4 sont : la courbe en trait plein pour k = 2, la courbe en traits interrompus longs pour k = 3 et la courbe en traits interrompus courts pour k = 4. On remarque par l'expérimentation que plus les vias sont centrés donc loin des bords de la cellule élémentaire 12, k diminuant en tendant vers 2, plus la fréquence de fonctionnement avec réflexion à déphasage nul, notée F, diminue. Or la fréquence de fonctionnement est inversement proportionnelle à la taille d'antenne. Donc à fréquence de fonctionnement et taille d'antenne données, un rapprochement des vias vers le centre induit une miniaturisation des cellules élémentaires. On remarque également par l'expérimentation que, sous cette configuration de cellules élémentaires à plusieurs vias, plus les déphasages Δϕ et donc les longueurs de connexions à méandres augmentent, plus la fréquence de fonctionnement avec réflexion à déphasage nul diminue, ce qui induit également une miniaturisation des cellules élémentaires. Mais on remarque aussi que plus les vias sont proches du centre, moins l'effet des déphasages Δϕ sur la fréquence de fonctionnement est important. A la limite, pour k=2, il n'y a aucun effet de l'augmentation des déphasages Δϕ sur la fréquence de fonctionnement comme le montre la droite horizontale en trait plein du diagramme de la figure 4. Il y a donc un compromis à trouver entre la distance d des vias par rapport aux bords de chaque cellule élémentaire et les déphasages Δϕ implémentables qui sont directement liés à l'encombrement possible des connexions à méandres sur la face inférieure 44 de la deuxième couche 38 de substrat diélectrique. Cette recherche du compromis optimal dépend de l'application visée et est à la portée de l'homme du métier.In accordance with the invention and as illustrated in figure 4 , a miniaturization of the elementary cells can be obtained by optimally adjusting the position of the four vias of each elementary cell and the phase shift Δϕ between interconnected vias, this phase shift Δϕ being adjusted by the length of the meandering connections. Denote by k the parameter equal to P / d. This parameter k is necessarily strictly greater than 2 in order to be able to have four eccentric vias. Ultimately, the presence of a single centered via gives k = 2. The three curves of the figure 4 are: the curve in solid lines for k = 2, the curve in long dashed lines for k = 3 and the curve in short dashed lines for k = 4. We notice by the experiment that the more the vias are centered and therefore far from the edges of the elementary cell 12, k decreasing while tending towards 2, the more the operating frequency with reflection with zero phase shift, denoted F, decreases. However, the operating frequency is inversely proportional to the antenna size. So at given operating frequency and antenna size, a rapprochement of the vias towards the center induces a miniaturization of the elementary cells. It is also noted through experimentation that, under this configuration of elementary cells with several vias, the more the phase shifts Δϕ and therefore the lengths of meandering connections increase, the more the operating frequency with reflection at zero phase shift decreases, which also induces a miniaturization of elementary cells. But we also notice that the closer the vias are to the center, the less the effect of the phase shifts Δϕ on the operating frequency. Ultimately, for k = 2, there is no effect of the increase in phase shifts Δϕ on the operating frequency as shown by the horizontal straight line in the solid line of the diagram of the figure 4 . There is therefore a compromise to be found between the distance d of the vias with respect to the edges of each elementary cell and the implementable phase shifts Δϕ which are directly related to the possible size of the meandering connections on the lower face 44 of the second layer 38 dielectric substrate. This search for the optimal compromise depends on the intended application and is within the abilities of those skilled in the art.

Les résultats de la figure 4 ont été obtenus en faisant varier les paramètres k et Δϕ à l'aide de simulations établies sur la base du dispositif miniature d'antenne des figures 3A et 3B avec les paramètres suivants :

  • P = 53 mm,
  • W = 51 mm,
  • épaisseur de la première couche 30 de substrat diélectrique = 5 mm,
  • épaisseur de la deuxième couche 38 de substrat diélectrique = 1,6 mm,
  • permittivité relative du substrat diélectrique = 4,4,
  • pertes diélectriques = 0,02.
The results of the figure 4 were obtained by varying the parameters k and Δϕ using simulations established on the basis of the miniature antenna device of the figures 3A and 3B with the following parameters:
  • P = 53 mm,
  • W = 51 mm,
  • thickness of the first layer 30 of dielectric substrate = 5 mm,
  • thickness of the second layer 38 of dielectric substrate = 1.6 mm,
  • relative permittivity of the dielectric substrate = 4.4,
  • dielectric losses = 0.02.

La figure 5 est un diagramme comparatif de phases de coefficients de réflexion en fonction de fréquences de fonctionnement pour un dispositif miniature d'antenne selon l'invention (en trait plein) et un dispositif miniature d'antenne de l'état de la technique de mêmes dimensions (en traits interrompus courts). Le dispositif de l'état de la technique choisi présente une plaque réflectrice de type champignon, c'est-à-dire à éléments conducteurs carrés connectés à un plan de masse plein à l'aide d'un seul via chacun (sans deuxième couche de substrat).The figure 5 is a comparative phase diagram of reflection coefficients as a function of operating frequencies for a miniature antenna device according to the invention (in solid line) and a miniature antenna device of the prior art of the same dimensions ( in short dashed lines). The device of the prior art chosen has a reflector plate of the mushroom type, that is to say with square conductive elements connected to a solid ground plane by means of a single via each (without a second layer substrate).

Plus précisément, pour cette comparaison on a imposé les paramètres suivants :

  • P = 42 mm,
  • W = 40 mm,
  • épaisseur de la première couche 30 de substrat diélectrique = 5 mm,
  • épaisseur de la deuxième couche 38 de substrat diélectrique = 1,6 mm (pour le dispositif selon l'invention uniquement),
  • permittivité relative du substrat diélectrique = 4,4,
  • pertes diélectriques = 0,02,
  • rayon des vias = 0,5 mm,
  • k = 4 (pour le dispositif selon l'invention uniquement),
  • Δϕ = 186° (pour le dispositif selon l'invention uniquement).
More precisely, for this comparison the following parameters were imposed:
  • P = 42 mm,
  • W = 40 mm,
  • thickness of the first layer 30 of dielectric substrate = 5 mm,
  • thickness of the second layer 38 of dielectric substrate = 1.6 mm (for the device according to the invention only),
  • relative permittivity of the dielectric substrate = 4.4,
  • dielectric losses = 0.02,
  • vias radius = 0.5 mm,
  • k = 4 (for the device according to the invention only),
  • Δϕ = 186 ° (for the device according to the invention only).

Les courbes de la figure 5 ont été obtenues par simulation électromagnétique 3D. Alors que la courbe en pointillés obtenue avec le dispositif miniature d'antenne de l'état de la technique présente un passage à déphasage nul autour de 1,35 GHz, celle en trait plein obtenue avec le dispositif miniature d'antenne selon l'invention présente non seulement un passage a déphasage nul légèrement en-deçà de 1,35 GHz mais surtout un point d'inflexion à 940 MHz. Or l'expérience montre que la présence de ce point d'inflexion permet d'utiliser la plaque réflectrice du dispositif miniature d'antenne selon l'invention comme conducteur magnétique artificiel à 940 MHz au lieu de 1,35 GHz. Pour utiliser un dispositif à plaque réflectrice de type champignon comme conducteur magnétique artificiel à 940 MHz, il faudrait imposer P = 64 mm pour avoir un passage a déphasage nul autour de 940 MHz.The curves of the figure 5 were obtained by 3D electromagnetic simulation. While the dotted curve obtained with the miniature antenna device of the state of the art has a zero phase shift around 1.35 GHz, that in solid line obtained with the miniature antenna device according to the invention not only has a zero phase shift slightly below 1.35 GHz but above all an inflection point at 940 MHz. However, experience shows that the presence of this inflection point makes it possible to use the reflector plate of the miniature antenna device according to the invention as an artificial magnetic conductor at 940 MHz instead of 1.35 GHz. To use a reflector plate device of the mushroom type as an artificial magnetic conductor at 940 MHz, it would be necessary to impose P = 64 mm to have a zero phase shift around 940 MHz.

On met ainsi en évidence un gain en miniaturisation d'environ 35% par dimension, ce qui fait un gain de plus de 57% en surface. Or des comparaisons sur d'autres propriétés telles que l'adaptation d'antenne et le rendement de rayonnement à une fréquence de fonctionnement choisie, ou la directivité, montrent que des dispositifs miniatures d'antennes selon l'invention et à plaque réflectrice champignon présentent des performances tout à fait comparables en termes d'amélioration par rapport aux dispositifs à plan réflecteur de type se rapprochant du modèle de conducteur électrique parfait. Le gain en miniaturisation est donc d'autant plus appréciable.A gain in miniaturization of approximately 35% per dimension is thus demonstrated, which results in a gain of more than 57% in surface area. However, comparisons on other properties such as antenna adaptation and radiation efficiency at a chosen operating frequency, or directivity, show that miniature antenna devices according to the invention and with a mushroom reflector plate exhibit quite comparable performance in terms of improvement over reflector plane type devices approaching the perfect electrical conductor model. The gain in miniaturization is therefore all the more appreciable.

Il apparaît clairement qu'une plaque de réflexion électromagnétique à structure de métamatériau telle que celle décrite précédemment permet de miniaturiser un dispositif d'antenne l'incluant sans pour autant présenter des inconvénients de coûts, de réduction sensible de la bande passante de l'antenne ou d'encombrement substantiel en épaisseur. Seule la surface disponible sous le plan de masse est exploitée pour obtenir les effets techniques avantageux résultant des connexions à méandres.It clearly appears that an electromagnetic reflection plate with a metamaterial structure such as that described above makes it possible to miniaturize an antenna device including it without, however, exhibiting cost drawbacks, significant reduction in the bandwidth of the antenna. or substantial bulk in thickness. Only the surface available under the ground plane is exploited to obtain the advantageous technical effects resulting from the meandering connections.

On notera par ailleurs que l'invention n'est pas limitée aux modes de réalisation décrits précédemment.It will also be noted that the invention is not limited to the embodiments described above.

En particulier, bien qu'un dispositif miniature d'antenne à antenne dipolaire ait été détaillé précédemment, l'invention est applicable à un dispositif d'antenne dont l'antenne est de type ZOR (de l'anglais « Zeroth-Order Resonator »), fil-plaque, large bande, à polarisation circulaire ou autre, disposée parallèlement ou perpendiculairement au plan réflecteur.In particular, although a miniature antenna device with a dipole antenna has been detailed previously, the invention is applicable to an antenna device whose antenna is of the ZOR type (standing for “Zeroth-Order Resonator”). ), wire-plate, broadband, circularly polarized or otherwise, arranged parallel or perpendicular to the reflective plane.

En variante également, chaque élément conducteur du métamatériau peut être en contact électrique avec un nombre de vias différent de quatre : par exemple deux, six, etc. Les vias ne sont pas non plus nécessairement tous identiques.Also in a variant, each conductive element of the metamaterial may be in electrical contact with a number of vias other than four: for example two, six, etc. The vias are not necessarily all identical either.

En variante également, l'invention s'applique également à une plaque réflectrice à structure de métamatériau dont les éléments conducteurs sont répartis sur plusieurs couches décalées ou non.Also in a variant, the invention also applies to a reflector plate with a metamaterial structure, the conductive elements of which are distributed over several layers, which may or may not be offset.

En variante également, les connexions électriques entre vias peuvent ne pas être toutes identiques. Il est en particulier possible de faire varier les valeurs de k et Δϕ d'une cellule élémentaire à l'autre.Also in a variant, the electrical connections between vias may not all be identical. It is in particular possible to vary the values of k and Δϕ from one elementary cell to another.

En variante également, les connexions électriques entre vias peuvent être gravées sur plusieurs couches, pas seulement sur la face inférieure de la deuxième couche de substrat diélectrique.Also as a variant, the electrical connections between vias can be etched on several layers, not only on the underside of the second layer of dielectric substrate.

En variante également, chaque élément conducteur du métamatériau peut être en contact électrique avec des vias et/ou des connexions électriques correspondantes qui ne sont pas répartis selon une symétrie centrale et/ou axiale par rapport au centre et/ou à un ou plusieurs axes de symétrie de l'élément conducteur.Also as a variant, each conductive element of the metamaterial may be in electrical contact with vias and / or corresponding electrical connections which are not distributed in a central and / or axial symmetry with respect to the center and / or to one or more axes of symmetry of the conductive element.

Claims (9)

  1. An electromagnetically reflective plate (10; 50) with a metamaterial structure for a miniature antenna device including:
    - a dielectric substrate having at least two dielectric substrate layers;
    - a plurality of conductive elements (20, 22, 24, 26) separated from each other and etched on an upper face (28) of a first dielectric substrate layer (30),
    - a ground plane (32) placed between a lower face (34) of the first dielectric substrate layer (30) and an upper face (36) of a second dielectric substrate layer (38), with apertures (40) arranged in this ground plane (32),
    - a set of metal through-vias (42) formed in the thickness of the first (30) and second (38) substrate layers, each one including an upper end making contact with one of the conductive elements (20, 22, 24, 26), a lower end reaching a lower face (44) of the second dielectric substrate layer (38), and passing through the ground plane (32) without electrical contact in one of its apertures (40),
    wherein:
    - each conductive element (20, 22, 24, 26) makes contact with a plurality of metal vias (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d), and
    - each metal via (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) of each conductive element is connectable to another metal via of a neighboring conductive element, using a corresponding electrical connection (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) making contact with the lower end of this metal via,
    characterized in that at least some of said electrical connections (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) has several meanders, wherein each electrical connection with meanders (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) is etched on the lower face (44) of the second dielectric substrate layer (38) and progressively expands from the end thereof making contact with the corresponding metal via (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) towards one of the edges of the conductive element (20, 22, 24, 26) under which it is etched.
  2. The electromagnetically reflective plate (10; 50) as claimed in claim 1, wherein each electrical connection (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) for connecting a metal via to another is etched on the lower face (44) of the second dielectric substrate layer (38).
  3. The electromagnetically reflective plate (10; 50) as claimed in claim 1 or 2, wherein each one of said electrical connections (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) has a plurality of meanders.
  4. The electromagnetically reflective plate (10; 50) as claimed in any one of claims 1 to 3, wherein:
    - the conductive elements (20, 22, 24, 26) are distributed in a matrix on the upper face (28) of the first dielectric substrate layer (30), and
    - each conductive element (20, 22, 24, 26) makes contact with four metal vias (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d), each one of these four metal vias being connectable to another metal via of an adjacent conductive element in line or in column in the matrix.
  5. The electromagnetically reflective plate (10; 50) as claimed in any one of claims 1 to 4, wherein the metal vias (42; 42(12)a, 42(12)b, 42(12)c, 42(12)d) of each conductive element (20, 22, 24, 26) and the respective electrical connections (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) thereof are distributed according to a central symmetry around a central symmetry axis of this conductive element.
  6. The electromagnetically reflective plate (10; 50) as claimed in any one of claims 1 to 5, wherein at least some of the electrical connections with meanders (46; 46(12)a, 46(12)b, 46(12)c, 46(12)d) etched on the lower face (44) of the second dielectric substrate layer (38) is further equipped with adjustable dephasing devices.
  7. The electromagnetically reflective plate (10; 50) as claimed in any one of claims 1 to 6, wherein each one of the conductive elements (20, 22, 24, 26) has one of the shapes of the set consisting of a square shape, a rectangular shape, a spiral shape, a fork shape, a crutch cross shape and a dual crutch cross shape referred to as a UC-EBG shape.
  8. The electromagnetically reflective plate (10; 50) as claimed in any one of claims 1 to 7, wherein the conductive elements (20, 22, 24, 26) are periodically distributed over the upper face (28) of the first dielectric substrate layer (30).
  9. A miniature antenna device including:
    - an electromagnetically reflective plate (50) as claimed in any one of claims 1 to 8, and
    - an antenna (52), having an average functioning wavelength and placed at a distance from the reflective plate (50) less than one tenth of this average functioning wavelength.
EP17708866.3A 2016-02-17 2017-02-16 Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate Active EP3417507B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1651278A FR3047845A1 (en) 2016-02-17 2016-02-17 ELECTROMAGNETIC REFLECTION PLATE WITH METAMATERIAL STRUCTURE AND MINIATURE ANTENNA DEVICE COMPRISING SUCH PLATE
FR1651373A FR3047846B1 (en) 2016-02-17 2016-02-19 ELECTROMAGNETIC REFLECTION PLATE WITH METAMATERIAL STRUCTURE AND MINIATURE ANTENNA DEVICE COMPRISING SUCH PLATE
PCT/FR2017/050349 WO2017140987A1 (en) 2016-02-17 2017-02-16 Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate

Publications (2)

Publication Number Publication Date
EP3417507A1 EP3417507A1 (en) 2018-12-26
EP3417507B1 true EP3417507B1 (en) 2021-11-17

Family

ID=56411701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17708866.3A Active EP3417507B1 (en) 2016-02-17 2017-02-16 Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate

Country Status (4)

Country Link
US (1) US10826188B2 (en)
EP (1) EP3417507B1 (en)
FR (2) FR3047845A1 (en)
WO (1) WO2017140987A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109273860B (en) * 2018-10-18 2020-11-13 哈尔滨工业大学 Transmission line type broadband active frequency selective surface
JP2022165135A (en) * 2021-04-19 2022-10-31 京セラ株式会社 Complex resonator and aggregate
WO2023199870A1 (en) * 2022-04-11 2023-10-19 京セラ株式会社 Radio wave refraction plate
WO2024024447A1 (en) * 2022-07-26 2024-02-01 京セラ株式会社 Radio wave control plate and complex resonator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142036A1 (en) * 2001-02-08 2003-07-31 Wilhelm Michael John Multiband or broadband frequency selective surface
US9755320B2 (en) * 2014-07-01 2017-09-05 Asustek Computer Inc. Electromagnetic bandgap structure and electronic device having the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354975B2 (en) * 2007-12-26 2013-01-15 Nec Corporation Electromagnetic band gap element, and antenna and filter using the same
US8164006B2 (en) 2008-03-19 2012-04-24 Samsung Electro-Mechanics Co., Ltd. Electromagnetic bandgap structure and printed circuit board
JP5135178B2 (en) * 2008-11-25 2013-01-30 株式会社東芝 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
US9136609B2 (en) * 2009-03-30 2015-09-15 Nec Corporation Resonator antenna
KR101055483B1 (en) * 2009-04-07 2011-08-08 포항공과대학교 산학협력단 Electromagnetic bandgap structure and printed circuit board including the same
KR101038236B1 (en) * 2009-09-16 2011-06-01 삼성전기주식회사 printed circuit board having electromagnetic bandgap structure
FR3006505B1 (en) 2013-05-31 2017-02-10 Commissariat Energie Atomique DEVICE FOR DISTURBING ELECTROMAGNETIC WAVE PROPAGATION AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142036A1 (en) * 2001-02-08 2003-07-31 Wilhelm Michael John Multiband or broadband frequency selective surface
US9755320B2 (en) * 2014-07-01 2017-09-05 Asustek Computer Inc. Electromagnetic bandgap structure and electronic device having the same

Also Published As

Publication number Publication date
FR3047846B1 (en) 2018-03-02
WO2017140987A1 (en) 2017-08-24
FR3047845A1 (en) 2017-08-18
EP3417507A1 (en) 2018-12-26
US10826188B2 (en) 2020-11-03
FR3047846A1 (en) 2017-08-18
US20190044244A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
EP2808946B1 (en) Device for disrupting a propagation of electromagnetic waves and method for manufacturing same
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
CA2681548C (en) Reflector network and antenna comprising such a reflector network
EP2202846B1 (en) Planar radiating element with dual polarisation and network antenna comprising such a radiating element
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
EP2184803B1 (en) Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
WO2005117208A1 (en) Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method
EP2345104B1 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
WO2012085067A1 (en) Radiating cell having two phase states for a transmitting network
FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP2087553A2 (en) Multi-sector antenna
FR3012917A1 (en) COMPACT POWER DISTRIBUTION BIPOLARIZATION, NETWORK OF SEVERAL DISTRIBUTORS, COMPACT RADIATION ELEMENT AND FLAT ANTENNA HAVING SUCH A DISTRIBUTOR
EP3235058B1 (en) Wire-plate antenna having a capacitive roof incorporating a slot between the feed probe and the short-circuit wire
EP3840124B1 (en) Antenna with leaky wave in afsiw technology
EP2817850B1 (en) Electromagnetic band gap device, use thereof in an antenna device, and method for determining the parameters of the antenna device
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP3227960A1 (en) Self-complementary multilayer array antenna
EP3485534B1 (en) Controllable multifunctional frequency selective surface
FR3028355A1 (en) RECONFIGURABLE COMPACT ANTENNA DEVICE
EP0831550B1 (en) Versatile array antenna
WO2012131086A1 (en) Wide-band directional printed-circuit array antenna

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200609

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210713

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017049395

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211117

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1448802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017049395

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602017049395

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

26N No opposition filed

Effective date: 20220818

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220216

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117