EP2808946B1 - Device for disrupting a propagation of electromagnetic waves and method for manufacturing same - Google Patents

Device for disrupting a propagation of electromagnetic waves and method for manufacturing same Download PDF

Info

Publication number
EP2808946B1
EP2808946B1 EP14169886.0A EP14169886A EP2808946B1 EP 2808946 B1 EP2808946 B1 EP 2808946B1 EP 14169886 A EP14169886 A EP 14169886A EP 2808946 B1 EP2808946 B1 EP 2808946B1
Authority
EP
European Patent Office
Prior art keywords
conductive elements
interconnection networks
substrate
electromagnetic wave
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14169886.0A
Other languages
German (de)
French (fr)
Other versions
EP2808946A1 (en
Inventor
Jean-François PINTOS
Ossama El Bouayadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2808946A1 publication Critical patent/EP2808946A1/en
Application granted granted Critical
Publication of EP2808946B1 publication Critical patent/EP2808946B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/525Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/0066Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices being reconfigurable, tunable or controllable, e.g. using switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/006Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces
    • H01Q15/008Selective devices having photonic band gap materials or materials of which the material properties are frequency dependent, e.g. perforated substrates, high-impedance surfaces said selective devices having Sievenpipers' mushroom elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the present invention relates to a device for disturbing an electromagnetic wave propagation. It also relates to a method of manufacturing this device.
  • antennas in communication, monitoring or satellite navigation systems are essential. However, in this type of system, the space available for these devices is reduced and imposes a need for miniaturization of the antennas.
  • planar antennas make good candidates for this type of system.
  • a planar antenna comprises a radiating conductive surface, for example square, separated from a conductive reflector plane or ground plane by a substrate.
  • a planar antenna can be used alone or as part of an antenna array.
  • it is necessary to reduce the distance between their radiating surfaces.
  • this increases the coupling level between these radiating surfaces.
  • this coupling greatly degrades the performance of the antennas causing a drop in efficiency, problems of degradation of the polarization of the antennas or asymmetries in their radiation pattern.
  • EBG structures English, “Electromagnetic Band Gap” also known to those skilled in the art under the name of BIE structures (French, "Electromagnetic Band Prohibited”)
  • BIE structures “Electromagnetic Band Prohibited”
  • EBG structures allow to reduce the level of coupling between the antennas of a network.
  • this type of EBG structures has the property of preventing the propagation of waves in a frequency band called electromagnetic band gap.
  • a so-called “mushroom” EBG structure generally comprises a periodic set of EBG-type conductive elements separated from each other, printed on a dielectric substrate and connected to a ground plane by the intermediate of a set of metal vias formed in the dielectric substrate.
  • the electrical behavior of this type of EBG structure subjected to an electromagnetic wave can be modeled according to an LC resonant circuit. Indeed, when an electromagnetic wave interacts with the surface of the conductive elements, it generates a charge accumulation at the edge of the surface of these conductive elements and a current loop is established between two of these conductive elements by means of metal vias.
  • an inductance (L) results from the current flowing through the metal vias and a capacitance (C) results from the accumulation of charges between the conductive elements.
  • the resonance frequency f r of an LC circuit is proportional to the expression: 1 LC
  • the width BW of the bandwidth associated with this resonance frequency f r is proportional to the expression: The VS .
  • the band gap of a "mushroom” EBG structure depends on a certain number of parameters inherent to the structure, for example the size and the number of conductive elements, the type of substrate, the dimensions of the substrate, etc. These parameters being fixed during the design of the EBG structure, the modification of the behavior of this type of structures is not easily conceivable after its manufacture.
  • Other EBG structures are described in the documents EP 2 518 823 A1 , US 2005/0134521 , EP 2 362 487 A1 , EP 2 518 824 A1 , GB 2467763 A , US 2003/0112186 A1 and US 2010/0252319 .
  • a metamaterial to modify its filtering properties is proposed.
  • This metamaterial is made from transverse conductive elements formed of metal islands in a dielectric matrix, for example a polymer foam.
  • the idea is to create a 3D network of conductive elements for pre-disturbing the propagation of electromagnetic waves.
  • the filtering properties of such a volume structure of conductive elements may be predetermined.
  • These transverse conductor elements may be transverse dipoles. They can also form transverse loops, open or closed, using one or two conductive tracks connecting one or both ends of the two transverse conductive elements together.
  • connections using passive components or active components for example PIN diodes, interconnecting two adjacent conductive elements with one another can be used.
  • this structure only allows to interconnect two adjacent conductive elements. Since the distance between two adjacent conductive elements is constant, the phase difference generated between them during their connection is identical for all the pairs of elements thus connected.
  • this type of 3D metamaterial structure is not optimal in size when it is to use it in a planar antenna array or in any system in which a reduced size of the devices is desired.
  • a new way of modifying the behavior of a metamaterial is proposed. More precisely, an additional adjustment is proposed, this setting being extrinsic to the structure of the metamaterial. Indeed, by interconnecting the conductive elements of the metamaterial with each other by means of several electrically isolated networks, phase shifts are established between the electrically connected conductive elements and it has surprisingly been observed that an optimum combination of at least two different phase shifts between elements of one network to another makes it possible to further reduce the coupling between antennas planar placed around a metamaterial of this type. This results in improved efficiency of these metamaterials, particularly when used as an EBG structure but not only.
  • the invention imposes by dimensioning interconnection networks that at least two of these distances are different in order to allow this optimal combination of different phase shifts.
  • phase shift adjustment of interconnection networks by dimensioning them differently makes it possible to adjust the resonance frequency of the metamaterial without increasing its bulk.
  • it is not only suitable for any type of metamaterial structure, for example homogeneous, non-homogeneous, planar, volumic or other, but it is also easy to achieve in industrial form whatever the technology of the metamaterial, for example the printed circuit boards, waveguides, coaxial lines, etc.
  • At least a portion of said interconnection networks is provided with adjustable phase shifters for connecting the conductive elements to each other.
  • active elements that are adjustable phase shifters, for example diodes
  • active elements that are adjustable phase shifters, for example diodes
  • the lower ends of the metal vias in contact with the interconnected conductive elements form power point access ports to which the interconnection networks are connected.
  • the metamaterial structure comprises two layers of conductive elements superimposed and arranged on an upper face of the substrate, each of these layers comprising a plurality of conductive elements separated from each other and distributed in a matrix manner along m lines and n columns, these two layers being separated from each other in a direction normal to the upper face of the substrate by a predetermined distance, the conductive elements of the first layer being arranged in staggered relation to the conductive elements of the second layer so as to increase the capacitive effect of the cell.
  • each of the conductive elements has one of the shapes of the assembly consisting of a square shape, a rectangular shape, a spiral shape, a fork shape, a shape from crutches to crutches and from a dual form of crutches to crutches known as UC-EBG form.
  • said plurality of interconnection networks has one of the topologies of the set consisting of a linear topology, a star topology, a radial topology and a tree topology.
  • the invention also relates to a system for transmitting / receiving electromagnetic waves comprising at least two antennas between which is disposed at least one device for disturbing an electromagnetic wave propagation according to the invention.
  • the figure 1 represents in cut perspective the general structure of a device 10 for disturbing an electromagnetic wave propagation with a metamaterial structure 12, according to a possible embodiment of the invention.
  • This device can for example be placed between two elements of a planar antenna defined on the same substrate to limit the surface waves between these two elements.
  • the metamaterial structure 12 is of the mushroom type and comprises a plurality of conductive elements e 1,1 , ..., e i, j ,..., E m, n of rectangular shape, separated each other and arranged on an upper face of a substrate 14 made, for example, of dielectric material.
  • This substrate may be an insulating material based on epoxy, insulating material well known to those skilled in the art, for example of the FR4 type with a relative permittivity value ⁇ R of about 4.4.
  • each line of conductive elements for example the first line, comprises n conductive elements in the direction x (e1, 1 , ..., e1 , j , ..., e1 , n , for this first line) and each column of conductive elements, for example the last column, has m conductive elements in the direction y (e 1, n , ..., e i, n , ..., e m, n , for this last column).
  • a ground plane 16 is placed on a lower face of the substrate 14 with holes 18 formed in this ground plane 16 and arranged vis-à-vis the conductive elements in a direction z orthogonal to the plane (x, y).
  • a single hole 18 is shown on the figure 1 but the ground plane 16 has concretely as many holes 18 as conductive elements e 1,1 , ..., e i, j , ..., e m, n .
  • the device 10 for disturbing an electromagnetic wave propagation further comprises a set of metal vias v1 ,..., V i, j ,..., V m, n formed in the substrate 14.
  • the upper end of each of these metal vias, for example the via v i, j is in contact with one of the conductive elements, in this case the conductive element e i, j for the via v i, j .
  • each of these metal vias is disposed opposite one of the holes 18 of the ground plane 16, without electrical contact with the ground plane 16, allowing the conductive elements to establish external electrical connections to the ground plane 16.
  • metamaterial structure 12. for example, the conductive element e 1,1 can be electrically connected to the conductive element e 1, n by using a transmission line connecting the lower ends of their respective vias v 1,1 and v 1, n .
  • the conductive elements e 1 , 1 ,..., e i, j ,..., e m, n are electrically interconnected two by two, in a preferred direction, that of the axis y, with the aid of a plurality of interconnection networks, these interconnection networks not being electrically connected to each other.
  • the interconnection networks of the last line m is represented on the figure 1 by the references 20, 22, 24, but all the lines of conductive elements also comprise interconnection networks.
  • each interconnection network connects two conductive elements of the same i-th line placed on the not 2 - j - th and not 2 + 1 + j - th columns, where, for each interconnect network, i takes one of the values of the interval [1, m ] and j one of the values of the interval 0 not 2 - 1 .
  • the interconnection network 20 illustrated on the figure 1 connects the two elements e m, n / 2 and e m, n / 2 + 1 placed in the center of the m-th and last line, the interconnection network 22 then connects the two neighboring elements e m, n / 2- 1 , e m, n / 2 + 2 between them.
  • the other conductive elements of the mth and last line are interconnected in the same manner two by two step by step to the interconnection network 24 which connects the first element e m, 1 and the last element e m, n from the mth and last line.
  • the interconnection networks of the conductive elements e 1 , 1 ,..., E i, j ,..., M m, n between them may consist of transmission lines. It is known to those skilled in the art that a first-order equivalent model characterizes a transmission line by a phase shift whose value is a function of the length of this transmission line.
  • n is necessarily an even number, making it possible to connect all the elements of a line between them two by two.
  • an identical linear topology of the interconnection networks is applied to all the lines of the metamaterial structure 12.
  • the linear topology of the interconnection networks can be different from one line to another of this structure.
  • the conductive elements e 1 , 1 ,..., E i, j ,..., E m, n of the metamaterial structure 12 may be electrically interconnected according to various and in particular different interconnection network topologies. of a linear topology. They can, for example, be interconnected according to a star topology or a radial topology or a tree topology.
  • At least two of the interconnection networks are dimensioned differently from one another to generate phase shifts, between the conductive elements they interconnect, different from one of these interconnection networks to another.
  • the conductive elements may have different shapes from that, rectangular, illustrated on the figure 1 . It is well known to those skilled in the art to design conductive elements in the form of a square, spiral, fork, cross on crutches and in the form of a dual cross with so-called UC-EBG crutches as detailed in the article by Kovacs et al, entitled "Dispersion analysis of planar metallo-dielectric EBG structures in Ansoft HFSS", published on the occasion of "17th International Conference on Microwaves, Radar and Wireless Communications", 19-21 May 2008 .
  • the figure 2 represents in perspective an example of a preferred arrangement of the conductive elements of the metamaterial structure 12 of the device 10 for disturbing an electromagnetic wave propagation. More specifically, this preferred arrangement comprises two layers of vertically conductive elements superposed (the vertical being defined by the direction z) and disposed on the upper face of the substrate 14.
  • the superposition of layers of conductive elements makes it possible to increase the capacitive effect of the metamaterial structure 12 by allowing a partial overlap of the conducting elements of these layers, thus making the resonance frequency f r of this structure independent of the size of the conductive elements.
  • the resonance frequency f r rather becomes a function of the number of conductive elements.
  • each of these two layers comprises a plurality of rectangularly shaped conducting elements separated from each other and distributed in a matrix manner along m rows and n columns. These two layers are separated from each other by a predetermined distance along the z direction.
  • the conductive elements e 1,1 , ..., e i, j , ..., e m, n of the first layer are offset from the conductive elements e ' 1,1 , ..., e' i, j , ..., e ' m, n of the second layer along the two main directions x and y of the upper face of the substrate 14 not parallel to each other.
  • the conductive elements e 1 , 1 ,..., E i, j ,..., E m, n of the first layer are arranged in staggered relation to the conductive elements e ' 1 , 1 , ... , e ' i, j , ..., e' m, n of the second layer which partially overlap.
  • Each of the conductive elements of each layer is connected to a metal via.
  • the plurality of conductive elements e 1 , 1 ,..., E i, j ,..., E m, n of the first layer is connected to a plurality of metal vias v 1.1 , ...
  • v i, j ..., v m, n formed in the substrate 14 and the plurality of conductive elements e ' 1,1 , ..., e' i, j , ..., e ' m, n of the second layer is connected to a plurality of metal vias v ' 1,1 , ..., v' i, j , ..., v ' m, n also formed in the substrate 14.
  • the metal vias in contact with the conductive elements of the two layers are all of the same size and pass through all the layers of the metamaterial structure 12, in particular the two layers of conductive elements, the substrate 14 and the ground plane 16.
  • Tracks The conductors 26 are placed in the same plane as the conducting elements e ' 1 , 1 ,..., e' i, j ,..., e ' m, n of the second layer, which is the highest of the two layers.
  • conductive elements above the substrate 14 in order to cover the upper end of the metal vias v1, 1 , ..., v i, j , ..., v m , in contact with the conductive elements e 1, 1 , ..., e i, j , ..., e m, n of the first layer.
  • These conductive tracks 26 of square shape are arranged separately from each other and conductive elements e ' 1,1 , ..., e' i, j , ..., e ' m, n of the second layer. They are distributed in a matrix manner according to the m lines and n columns mentioned above.
  • the figure 3 represents in cut perspective an elementary cell of the plurality of conductive elements of the figure 2 .
  • This elementary cell comprises at its center a conductive element e i, j belonging to the first layer of conductive elements situated at a height h 1 , for example about 2.5 mm, from the ground plane 16.
  • Four adjacent conductive elements e ' i, j-1 , e' i, j , e ' + 1, j-1 , e' i + 1, j belonging to the second layer of conductive elements, the latter separated by a distance h 2 of the first layer in the direction z, for example about 0.2 mm, are arranged above this conductive element e i, j and staggered so as to partially cover it.
  • These four neighboring conductive elements are partially represented in this elementary cell of the figure 3 .
  • a dielectric material of the FR4 type and relative permittivity ⁇ R 4.4.
  • alternative embodiments may be envisaged with other types of insulating material or without insulating material.
  • each conductive element e ' i, j-1 , e' i, j , e ' i + 1, j-1 , e' i + 1, j covering the conductive element e i, j is determined according of the size of this conductive element e i, j and that of its conductive track 26.
  • the capacitive effect resulting from an elementary cell thus increases with the approximation of the conductive elements of the same layer and the superposition ratio between the elements. conductive elements of different layers.
  • the inductive effect of an elementary cell is determined by the metal vias that pass through it and depends on the value of their dimensions.
  • the diameter d v of any metal wire v i, j is for example about 0.3 mm and its length about 2.7 mm.
  • the metal vias v 1.1 , ..., v i, j , ..., v m, n in contact with the conductive elements e 1.1 , ..., e i, j , ..., e m, n of the first layer may be blind metal vias.
  • the conductive tracks 26 are no longer necessary.
  • each metal vias v 1.1 , ..., v i, j , ..., v m, n is in direct contact with each of the conductive elements e 1,1 , ..., e i, j , ..., e m, n and does not extend beyond the first layer.
  • the figure 4 is a partial top view of the set of conductive elements of the figure 2 . More precisely, it makes it possible to present, by way of example, the dimensions of the rectangular conductive elements of the figure 2 as well as the distances between these elements.
  • all the conducting elements e1, 1 ,..., E i, j ,..., E m, n and e ' 1 , 1 , ..., e ' i, j , ..., e ' m, n of the two layers have the same dimensions, the length c e1 along the y axis of any one of the conductive elements being approximately 2 mm and the width c e2 along the x axis being about 1.5 mm.
  • the metal vias are placed in the center of these conductive elements.
  • the upper ends of the metal vias in contact with the conductive elements of the first layer are connected to the conductive tracks 26 of square shape.
  • the side, c n , of any one of these conductive tracks 26 is approximately 0.64 mm.
  • the distance g between two conductive elements of the same layer is 1 mm, thus leaving a sufficient space between any one of the conductive tracks 26 and the four neighboring coplanar conductive elements, for example e ' i, j-1 , e i, j , e ' i + 1, j-1 , e' i + 1, j for the conductive track 26 located above the conductive element e i, j .
  • the distance P 1 between two vias of the same layer in the direction y is about 3 mm and the distance P 2 between two vias in the x direction is about 2.5 mm.
  • the figure 5 illustrates an example of an electromagnetic wave transmission / reception system comprising two planar antennas. More specifically, it illustrates a sectional view of a transmission / reception system comprising two planar antennas 30 and 32 arranged next to each other coplanarly on a substrate such as the substrate 14.
  • Each planar antenna 30 or 32 comprises a square radiating conductive surface separated from the ground plane 16 by the substrate 14 and excitation means 34 and 36, in particular coaxial probes, for feeding the planar antennas 30 and 32 respectively. These coaxial probes cross the ground plane 16 without electrical contact with the latter through two holes that are arranged there.
  • the figure 5 also illustrates three types of waves that can generate the coupling phenomena from any of the two antennas 30 and 32: space waves 38 radiated by the square radiating conductive surfaces of the planar antennas 30 and 32, surface waves 40 between the substrate 14 and the air and surface waves 42 guided by the substrate 14 between the two antennas planar 30 and 32. These waves 38, 40, 42 can cause couplings between the antennas of the transmission / reception system thus degrading their performance.
  • the figure 6 is a top view of the transmission / reception system of the figure 5 .
  • the radiating conductive surfaces of the planar antennas 30 and 32 are of square shape, each side L, W measuring about 11.5 mm. Of course, in other embodiments they may be of different shape, for example rectangular with a length L and a width W different.
  • the excitation means 34 and 36 are placed at a distance ⁇ of approximately 2.5 mm from the center of each of the radiating conductive surfaces of the planar antennas 30 and 32, respectively.
  • this transmission / reception system being sized to be used around a frequency of about 5.5 GHz, the value of the distance ⁇ is about 32.7 mm.
  • a zone of width D of about 14.75 mm is reserved for insertion of a device 10 with a metamaterial structure 12 thus making it possible to reduce the level of coupling between these antennas.
  • the figure 7 is a top view of the transmission / reception system illustrated in the Figures 5 and 6 further comprising the disturbing device 10 according to the invention disposed between the planar antennas 30 and 32 in the zone of width D.
  • the metamaterial structure 12 is in this case a mushroom type structure comprising for example, according to the embodiment favorite of the figure 2 two layers of conductive elements e1, 1 ,..., e i, j ,..., e4, and e ' 1 , 1 ,..., e ' i, j ,. e ' 4,6 , each layer having four rows of six conductive elements each.
  • a single layer of conductive elements of the disturbance device 10 is represented on the figure 7 .
  • These conductive elements e 1,1 , ..., e i, j , ..., e 4,6 and e ' 1,1 , ..., e' i, j , ..., e ' 4, 6 are connected to as many metal vias v 1.1 , ..., v i, j , ..., V 4.6 and v ' 1.1 , ..., v' i, j , ... 4.6 whose free lower ends constitute ports for access to feeding points.
  • interconnection networks being of the linear type previously detailed, for each layer, the six conductive elements e i, 1 , e i, 2 , e i, 3 , e i, 4 , e i, 5 , e i , 6 of a same line i are interconnected with each other in pairs, starting with the two conductive elements placed at the center of the line, e i, 3 and e i, 4 , for example using a line such as the interconnection 20 illustrated on the figure 1 . Then, the interconnection of their two neighbors e i, 2 and e i, 5 is achieved using a transmission line such as the interconnection 22 illustrated on the figure 1 .
  • the two conductive elements placed at the ends of the line, e i, 1 and e i, 6. are interconnected by means of a transmission line such as the interconnection 24 illustrated on FIG. figure 1 .
  • This same topology of the interconnection networks is repeated for each of the four lines of each layer.
  • the three transmission lines 20, 22 and 24 each connecting a pair of conductive elements to each other are insulated from one another and have different lengths, they make it possible to generate different phase shifts between the conductive elements.
  • this particular embodiment allows three phase shifts ⁇ 1 , ⁇ 2 , ⁇ 3 adjustable and different from each other on each line.
  • An optimal combination of values of these phase shifts ⁇ 1 , ⁇ 2 , ⁇ 3 makes it possible to optimize the decoupling of the planar antennas 30 and 32 placed around this disturbance device 10.
  • the figure 8 illustrates coupling curves 44, 46 and 48 between the planar antennas of the transmission / reception systems of Figures 6 and 7 for a frequency band from 4 to 7 GHz.
  • curve 44 presents the level of coupling in dB of the transmission / reception system of the figure 6 in the absence of a disturbance device such as the device 10.
  • This transmission / reception system has a resonance frequency f r at about 5.5 GHz and a coupling of about -16 dB at this resonance frequency f r .
  • Curve 46 shows the level of coupling in dB of the transmission / reception system of the figure 6 in the case where a metamaterial structure 12 without a network interconnecting conductive elements with each other is placed in the zone of width D between the two planar antennas 30 and 32 of the system. As can be seen on the curve 46, the presence of the metamaterial structure 12 between the planar antennas 30 and 32 reduces their coupling by about 2 dB at the frequency of 5.5 GHz.
  • Curve 48 presents the level of coupling in dB of the transmission / reception system of the figure 7 in the case where the disturbing device 10 according to the invention is placed in the zone of width D between the two planar antennas 30 and 32 of the system.
  • the coupling between the planar antennas 30 and 32 at the resonance frequency f r of 5.5 GHz is in this case approximately -32 dB, which indicates that the presence of this 10, with phase shifts ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) values (300 °, 300 °, 45 °) respectively, reduces the coupling of the planar antennas 30 and 32 by 14 dB compared to the presence of the metamaterial structure 12 without a network interconnecting the conductive elements with each other.
  • the figure 9 illustrates coupling curves 50, 52 and 54 between the planar antennas 30 and 32 of the transmission / reception systems of the Figures 6 and 7 as a function of the distance ⁇ between these two antennas normalized with respect to the wavelength ⁇ 0 and for a frequency of 5.5 GHz.
  • the curve 50 presents the level of coupling in dB of the transmission / reception system of the figure 6 in the absence of a disturbance device such as the device 10.
  • Curve 52 presents the level of coupling in dB of the transmission / reception system of the figure 6 in the case where a metamaterial structure 12 without a network interconnecting conductive elements with each other is placed in the zone of width D between the two planar antennas 30 and 32 of the system.
  • Curve 54 shows the level of coupling in dB of the transmission / reception system of the figure 7 in the case where the disturbing device 10 according to the invention is placed in the zone of width D between the two planar antennas 30 and 32 of the system.
  • the three curves are represented for distances ⁇ between antennas in the range of 0.6 ⁇ 0 to 2 ⁇ 0 .
  • the coupling level in dB is the optimum level obtained for a particular combination of phase shift values ⁇ 1 , ⁇ 2 , ⁇ 3 .
  • the table below illustrates the values of phase shifts ⁇ 1 , ⁇ 2 , ⁇ 3 making it possible to optimize the decoupling between the antennas of the preceding system for distances in the range from 0.6 ⁇ 0 to 2 ⁇ 0 : ⁇ / ⁇ 0 ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) 0.6 (300 °, 300 °, 45 °) 0.7 (100 °, 80 °, 60 °) 0.8 (260 °, 260 °, 270 °) 0.9 (260 °, 260 °, 255 °) 1 (260 °, 260 °, 255 °) 1.1 (260 °, 260 °, 240 °) 1.2 (260 °, 260 °, 240 °) 1.3 (260 °, 260 °, 240 °) 1.4 (0 °, 45 °, 60 °) 1.5 (240 °, 220 °, 45 °) 1.6 (225 °
  • the presence of the perturbation device 10 with adjustable phase shifts ⁇ 1 , ⁇ 2 , ⁇ 3 makes it possible to obtain optimal combinations of values of these phase shifts ⁇ 1 , ⁇ 2 , ⁇ 3 for each distance ⁇ and thus further reduce the coupling between the antennas 30 and 32 with respect to the curves 50 and 52, this for all distances in the range of 0.6 ⁇ 0 to 2 ⁇ 0 .
  • This manufacturing method comprises a first step 100 of placing on the substrate 14 a plurality of conductive elements separated from each other.
  • two conductive element layers e ' 1 , 1 ,..., E' i, j ,..., E ' m, n and e 1,1 , ..., e i, j , ..., e m, n are vertically superimposed (ie in the z direction) and arranged on the upper face of the substrate 14.
  • a set of metal vias v 1.1 , ..., v i, j , ..., v m, n and v ' 1.1,. .., v ' i, j , ..., v' m, n are formed in the substrate 14, passing through its entire thickness.
  • a ground plane 16 with holes 18 formed opposite the through vias is defined on the underside of the substrate 14.
  • a second step 108 at least a portion of the conductive elements e ' 1.1 , ..., e' i, j , ..., e ' m, n and e 1.1 , ... , e i, j , ..., e m, n is electrically interconnected using a plurality of interconnection networks, for example the interconnection networks 20, 22, 24 previously described, these networks of interconnection not being electrically connected to each other.
  • At least two interconnection networks are dimensioned differently from one another to generate these phase shifts ⁇ 1 , ⁇ 2 , ..., ⁇ n / 2 between the conductive elements they interconnect.
  • the conductive elements concerned are effectively connected to each other, for example two by two, and according to a linear topology as illustrated in FIGS. figures 1 and 7 , using the lower ends of their metal vias as access ports to the power points of the interconnection networks.
  • the phase shifts ⁇ 1 , ⁇ 2 , ..., ⁇ n / 2 characterizing the interconnection networks determine the length of the transmission lines used for the connection of the conductive elements to each other. a given transmission / reception system.
  • At least a portion of these interconnection networks is provided with adjustable phase shifters well known to those skilled in the art, for example diodes, for the interconnection of the conductive elements together.
  • adjustable phase shifters well known to those skilled in the art, for example diodes, for the interconnection of the conductive elements together.
  • a device for disturbing an electromagnetic wave propagation such as that described previously makes it possible to improve the level of decoupling between planar antennas without increasing the size of the transmission / reception system including such antennas. whatever the frequency of resonance of the system and the distance between the antennas.
  • the modification of the behavior of an EBG structure after its manufacture thus becomes possible thanks to the interconnection of the conductive elements by means of transmission lines with different phase shifts.
  • the use of adjustable phase shifters to perform these interconnections makes it possible to adapt the behavior of the same device for disturbing an electromagnetic wave propagation to different transmission / reception systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

La présente invention concerne un dispositif de perturbation d'une propagation d'ondes électromagnétiques. Elle concerne également un procédé de fabrication de ce dispositif.The present invention relates to a device for disturbing an electromagnetic wave propagation. It also relates to a method of manufacturing this device.

L'invention s'applique plus particulièrement à un dispositif de perturbation d'une propagation d'ondes électromagnétiques à structure de métamatériau comportant :

  • une pluralité d'éléments conducteurs séparés les uns des autres et disposés sur un substrat,
  • une pluralité de réseaux d'interconnexion interconnectant électriquement au moins une partie de ces éléments conducteurs, ces réseaux d'interconnexion n'étant pas nécessairement connectés électriquement entre eux.
The invention applies more particularly to a device for disturbing an electromagnetic wave propagation with a metamaterial structure comprising:
  • a plurality of conductive elements separated from each other and arranged on a substrate,
  • a plurality of interconnection networks electrically interconnecting at least a portion of these conductive elements, these interconnection networks not necessarily being electrically connected to each other.

L'utilisation d'antennes dans des systèmes de communication, de surveillance ou de navigation satellitaire est incontournable. Cependant, dans ce type de systèmes, la place disponible pour ces dispositifs est réduite et impose un besoin de miniaturisation des antennes.The use of antennas in communication, monitoring or satellite navigation systems is essential. However, in this type of system, the space available for these devices is reduced and imposes a need for miniaturization of the antennas.

Grâce à leur taille réduite, les antennes planaires font de bonnes candidates pour ce type de systèmes. De façon générale, une antenne planaire comporte une surface conductrice rayonnante, par exemple carrée, séparée d'un plan réflecteur conducteur ou plan de masse par un substrat.Because of their small size, planar antennas make good candidates for this type of system. In general, a planar antenna comprises a radiating conductive surface, for example square, separated from a conductive reflector plane or ground plane by a substrate.

Une antenne planaire peut être utilisée seule ou comme élément d'un réseau d'antennes. Afin de réduire la taille d'un réseau d'antennes, il est nécessaire de réduire la distance entre leurs surfaces rayonnantes. Cependant, ceci augmente le niveau de couplage entre ces surfaces rayonnantes. Or, ce couplage dégrade fortement les performances des antennes engendrant une baisse du rendement, des problèmes de dégradation de la polarisation des antennes ou des asymétries dans leur diagramme de rayonnement.A planar antenna can be used alone or as part of an antenna array. In order to reduce the size of an antenna array, it is necessary to reduce the distance between their radiating surfaces. However, this increases the coupling level between these radiating surfaces. However, this coupling greatly degrades the performance of the antennas causing a drop in efficiency, problems of degradation of the polarization of the antennas or asymmetries in their radiation pattern.

Parmi les différents types d'ondes qui peuvent se propager à partir d'une antenne planaire provoquant des couplages entre les surfaces rayonnantes du réseau d'antennes, on peut distinguer : des ondes spatiales diffractées par les bords des surfaces rayonnantes, des ondes de surface entre le substrat et l'air et des ondes de surface guidées par le substrat. En outre, un substrat diélectrique placé entre la surface rayonnante d'une antenne planaire et le plan de masse favorise le couplage par des ondes de surface qui peuvent être particulièrement gênantes.Among the different types of waves that can propagate from a planar antenna causing couplings between the radiating surfaces of the antenna array, we can distinguish: space waves diffracted by the edges of the radiating surfaces, surface waves between the substrate and the air and surface waves guided by the substrate. In addition, a dielectric substrate placed between the radiating surface of a planar antenna and the ground plane promotes coupling by surface waves which can be particularly troublesome.

Grâce à leurs propriétés électromagnétiques particulières, les métamatériaux ont trouvé un grand nombre d'applications dans le domaine des antennes. Notamment, parmi les différentes structures de métamatériaux existantes, les structures dites EBG (de l'anglais, « Electromagnetic Band Gap ») aussi connues de l'homme du métier sous le nom de structures BIE (du français, « Bande Interdite Electromagnétique »), permettent de réduire le niveau de couplage entre les antennes d'un réseau. En effet, ce type de structures EBG possède la propriété d'empêcher la propagation d'ondes dans une bande de fréquences dite bande interdite électromagnétique. Ainsi, lorsque de telles structures EBG sont insérées entre les surfaces rayonnantes d'un réseau d'antennes, elles empêchent notamment la propagation des ondes de surface d'une antenne à l'autre permettant de réduire le niveau de couplage entre ces antennes.Thanks to their particular electromagnetic properties, metamaterials have found a large number of applications in the field of antennas. Notably, among the various structures of existing metamaterials, the so-called EBG structures (English, "Electromagnetic Band Gap") also known to those skilled in the art under the name of BIE structures (French, "Electromagnetic Band Prohibited") , allow to reduce the level of coupling between the antennas of a network. Indeed, this type of EBG structures has the property of preventing the propagation of waves in a frequency band called electromagnetic band gap. Thus, when such EBG structures are inserted between the radiating surfaces of an antenna array, they notably prevent the propagation of surface waves from one antenna to another, making it possible to reduce the coupling level between these antennas.

L'article de Yang et al., intitulé « Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications », publié dans IEEE Transactions on Antennas and Propagation, volume 51, numéro 10, octobre 2003 , propose l'utilisation d'une structure EBG de type « champignon » placée entre deux antennes planaires et démontre que cette structure est capable de diminuer le couplage entre les antennes dans la bande interdite électromagnétique de cette structure EBG.The article of Yang et al., Entitled Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications, published in IEEE Transactions on Antennas and Propagation, Volume 51, Number 10, October 2003 , proposes the use of a "mushroom" type EBG structure placed between two planar antennas and demonstrates that this structure is capable of reducing the coupling between the antennas in the electromagnetic band gap of this EBG structure.

Selon cet article, une structure EBG dite de type « champignon » comporte, de façon générale, un ensemble périodique d'éléments conducteurs de type EBG séparés les uns des autres, imprimés sur un substrat diélectrique et connectés à un plan de masse par l'intermédiaire d'un ensemble de vias métalliques formés dans le substrat diélectrique. Le comportement électrique de ce type de structure EBG soumise à une onde électromagnétique peut être modélisé selon un circuit résonant LC. En effet, lorsqu'une onde électromagnétique interagit avec la surface des éléments conducteurs, elle engendre une accumulation de charges au bord de la surface de ces éléments conducteurs et une boucle de courant s'établit entre deux de ces éléments conducteurs par l'intermédiaire des vias métalliques. Ainsi, une inductance (L) résulte du courant circulant à travers les vias métalliques et une capacité (C) résulte de l'accumulation de charges entre les éléments conducteurs. Il est bien connu de l'homme du métier que la fréquence de résonance fr d'un circuit LC est proportionnelle à l'expression : 1 LC ,

Figure imgb0001
et que la largeur BW de la bande passante associée à cette fréquence de résonance fr est proportionnelle à l'expression : L C .
Figure imgb0002
Ainsi, selon ce modèle de circuit résonant LC, ce type de structure EBG se comporte comme un filtre coupe-bande des ondes incidentes à cette fréquence de résonance.According to this article, a so-called "mushroom" EBG structure generally comprises a periodic set of EBG-type conductive elements separated from each other, printed on a dielectric substrate and connected to a ground plane by the intermediate of a set of metal vias formed in the dielectric substrate. The electrical behavior of this type of EBG structure subjected to an electromagnetic wave can be modeled according to an LC resonant circuit. Indeed, when an electromagnetic wave interacts with the surface of the conductive elements, it generates a charge accumulation at the edge of the surface of these conductive elements and a current loop is established between two of these conductive elements by means of metal vias. Thus, an inductance (L) results from the current flowing through the metal vias and a capacitance (C) results from the accumulation of charges between the conductive elements. It is well known to those skilled in the art that the resonance frequency f r of an LC circuit is proportional to the expression: 1 LC ,
Figure imgb0001
and that the width BW of the bandwidth associated with this resonance frequency f r is proportional to the expression: The VS .
Figure imgb0002
Thus, according to this LC resonant circuit model, this type of EBG structure behaves as a notch filter of the waves incident at this resonant frequency.

Les auteurs proposent une méthode expérimentale pour caractériser la bande interdite d'une structure EBG de type « champignon » avec plus de précision que le modèle LC, démontrant par la suite que la suppression des ondes de surface n'a lieu que lorsque la fréquence de propagation de ces ondes de surface se trouve dans la bande interdite de fréquences de la structure EBG.The authors propose an experimental method to characterize the forbidden band of a "mushroom" EBG structure with more precision than the LC model, demonstrating later that the suppression of surface waves occurs only when the frequency of propagation of these surface waves lies within the forbidden band of frequencies of the EBG structure.

Enfin, après avoir effectué une comparaison des performances des structures EBG avec d'autres techniques bien connues de l'homme du métier permettant elles aussi la suppression d'ondes de surface, les auteurs montrent que, parmi ces techniques, les structures de type EBG présentent les meilleurs résultats de réduction du couplage entre antennes.Finally, after performing a comparison of the performances of the EBG structures with other techniques well known to those skilled in the art also allowing the removal of surface waves, the authors show that, among these techniques, the structures of the EBG type present the best results of reducing the coupling between antennas.

Néanmoins, la bande interdite d'une structure EBG de type « champignon » dépend d'un certain nombre de paramètres inhérents à la structure, par exemple la taille et le nombre d'éléments conducteurs, le type de substrat, les dimensions du substrat, etc. Ces paramètres étant fixés lors de la conception de la structure EBG, la modification du comportement de ce type de structures n'est pas facilement envisageable après sa fabrication. Autres structures EBG sont décrites dans les documents EP 2 518 823 A1 , US 2005/0134521 , EP 2 362 487 A1 , EP 2 518 824 A1 , GB 2467763 A , US 2003/0112186 A1 et US 2010/0252319 .
Dans le brevet publié sous le numéro FR 2 867 617 B1 , un exemple de réalisation d'un métamatériau permettant de modifier ses propriétés de filtrage est proposé. Ce métamatériau est réalisé à partir d'éléments conducteurs transversaux formés d'îlots métalliques dans une matrice diélectrique, par exemple une mousse de polymère. L'idée est de réaliser un réseau 3D d'éléments conducteurs permettant de perturber de façon prédéterminée la propagation d'ondes électromagnétiques. Ainsi, par superposition de plusieurs couches d'éléments conducteurs dont au moins une couche comporte des éléments conducteurs transversaux, les propriétés de filtrage d'une telle structure volumique d'éléments conducteurs peuvent être prédéterminées. Ces éléments conducteurs transversaux peuvent être des dipôles transversaux. Ils peuvent aussi former des boucles transversales, ouvertes ou fermées, à l'aide d'une ou de deux pistes conductrices reliant une ou les deux extrémités des deux éléments conducteurs transversaux entre elles.
Nevertheless, the band gap of a "mushroom" EBG structure depends on a certain number of parameters inherent to the structure, for example the size and the number of conductive elements, the type of substrate, the dimensions of the substrate, etc. These parameters being fixed during the design of the EBG structure, the modification of the behavior of this type of structures is not easily conceivable after its manufacture. Other EBG structures are described in the documents EP 2 518 823 A1 , US 2005/0134521 , EP 2 362 487 A1 , EP 2 518 824 A1 , GB 2467763 A , US 2003/0112186 A1 and US 2010/0252319 .
In the patent published under the number FR 2 867 617 B1 , an embodiment of a metamaterial to modify its filtering properties is proposed. This metamaterial is made from transverse conductive elements formed of metal islands in a dielectric matrix, for example a polymer foam. The idea is to create a 3D network of conductive elements for pre-disturbing the propagation of electromagnetic waves. Thus, by superposition of several layers of conductive elements of which at least one layer comprises transverse conductive elements, the filtering properties of such a volume structure of conductive elements may be predetermined. These transverse conductor elements may be transverse dipoles. They can also form transverse loops, open or closed, using one or two conductive tracks connecting one or both ends of the two transverse conductive elements together.

Afin de pouvoir relier les couches entre elles, des connexions utilisant des composants passifs ou des composants actifs, par exemple des diodes PIN, permettant d'interconnecter deux éléments conducteurs adjacents entre eux, peuvent être utilisées.In order to be able to connect the layers together, connections using passive components or active components, for example PIN diodes, interconnecting two adjacent conductive elements with one another can be used.

Cependant, cette structure permet seulement d'interconnecter deux éléments conducteurs adjacents. Etant donné que la distance entre deux éléments conducteurs adjacents est constante, le déphasage généré entre eux lors de leur connexion est identique pour toutes les paires d'éléments ainsi connectés.However, this structure only allows to interconnect two adjacent conductive elements. Since the distance between two adjacent conductive elements is constant, the phase difference generated between them during their connection is identical for all the pairs of elements thus connected.

Lorsque des interconnexions à base de diodes PIN sont utilisées, celles-ci sont simplement employées en tant que commutateurs. Dans ce cas, une logique de contrôle permet de modifier la polarisation de ces composants actifs et en conséquence de couper ou d'établir les connexions entre les éléments conducteurs.When PIN-based interconnects are used, these are simply used as switches. In this case, a control logic makes it possible to modify the polarization of these active components and consequently to cut or establish the connections between the conductive elements.

En outre, ce type de structure de métamatériau 3D n'est pas optimal en taille lorsqu'il s'agit de l'utiliser dans un réseau d'antennes planaires ou dans un système quelconque dans lequel un encombrement réduit des dispositifs est souhaité.In addition, this type of 3D metamaterial structure is not optimal in size when it is to use it in a planar antenna array or in any system in which a reduced size of the devices is desired.

Il peut ainsi être souhaité de prévoir un dispositif de perturbation d'une propagation d'ondes électromagnétiques qui permette de s'affranchir d'au moins une partie des problèmes et contraintes précités.It may thus be desirable to provide a device for disturbing an electromagnetic wave propagation that makes it possible to overcome at least some of the aforementioned problems and constraints.

L'invention a donc pour objet un dispositif de perturbation d'une propagation d'ondes électromagnétiques à structure de métamatériau comme définit dans la revendication 1. Le dispositif comporte en outre :

  • une pluralité d'éléments conducteurs séparés les uns des autres et disposés sur un substrat,
  • une pluralité de réseaux d'interconnexion interconnectant électriquement au moins une partie de ces éléments conducteurs, ces réseaux d'interconnexion n'étant pas connectés électriquement entre eux,
dans lequel au moins deux de ces réseaux d'interconnexion sont dimensionnés différemment l'un de l'autre pour engendrer des déphasages, entre les éléments conducteurs qu'ils interconnectent, différents de l'un de ces réseaux d'interconnexion à l'autre.The subject of the invention is therefore a device for disturbing an electromagnetic wave propagation with a metamaterial structure as defined in claim 1. The device furthermore comprises:
  • a plurality of conductive elements separated from each other and arranged on a substrate,
  • a plurality of interconnection networks electrically interconnecting at least a portion of these conductive elements, these interconnection networks not being electrically connected to each other,
wherein at least two of these interconnection networks are dimensioned differently from one another to generate phase shifts, between the conductive elements they interconnect, different from one of these interconnection networks to the other .

Grâce à l'invention, une nouvelle manière de modifier le comportement d'un métamatériau est proposée. Plus précisément, un réglage supplémentaire est proposé, ce réglage étant extrinsèque à la structure du métamatériau. En effet, en interconnectant les éléments conducteurs du métamatériau entre eux à l'aide de plusieurs réseaux isolés électriquement, des déphasages s'établissent entre les éléments conducteurs reliés électriquement et il a été remarqué de façon surprenante qu'une combinaison optimale d'au moins deux déphasages différents entre éléments d'un réseau à l'autre permet de diminuer davantage le couplage entre des antennes planaires placées autour d'un métamatériau de ce type. Il en résulte une meilleure efficacité de ces métamatériaux, en particulier lorsqu'ils sont utilisés en tant que structure EBG mais pas seulement.Thanks to the invention, a new way of modifying the behavior of a metamaterial is proposed. More precisely, an additional adjustment is proposed, this setting being extrinsic to the structure of the metamaterial. Indeed, by interconnecting the conductive elements of the metamaterial with each other by means of several electrically isolated networks, phase shifts are established between the electrically connected conductive elements and it has surprisingly been observed that an optimum combination of at least two different phase shifts between elements of one network to another makes it possible to further reduce the coupling between antennas planar placed around a metamaterial of this type. This results in improved efficiency of these metamaterials, particularly when used as an EBG structure but not only.

Contrairement à l'état de la technique précédemment cité, où les distances entre les éléments conducteurs interconnectés sont identiques, l'invention impose par dimensionnement des réseaux d'interconnexion qu'au moins deux de ces distances soient différentes afin de permettre cette combinaison optimale de déphasages différents.In contrast to the state of the art mentioned above, where the distances between the interconnected conductive elements are identical, the invention imposes by dimensioning interconnection networks that at least two of these distances are different in order to allow this optimal combination of different phase shifts.

Ce type de réglage par déphasage de réseaux d'interconnexion en les dimensionnant différemment permet de régler la fréquence de résonance du métamatériau sans augmenter son encombrement. En outre, il est non seulement adapté à tout type de structure de métamatériau, par exemple homogène, non homogène, planaire, volumique ou autre, mais il est aussi facile à réaliser sous forme industrielle quelle que soit la technologie du métamatériau, par exemple les circuits imprimés, les guides d'ondes, les lignes coaxiales, etc.This type of phase shift adjustment of interconnection networks by dimensioning them differently makes it possible to adjust the resonance frequency of the metamaterial without increasing its bulk. In addition, it is not only suitable for any type of metamaterial structure, for example homogeneous, non-homogeneous, planar, volumic or other, but it is also easy to achieve in industrial form whatever the technology of the metamaterial, for example the printed circuit boards, waveguides, coaxial lines, etc.

De façon optionnelle, au moins une partie desdits réseaux d'interconnexion est munie de dispositifs de déphasage réglables pour la connexion des éléments conducteurs entre eux.Optionally, at least a portion of said interconnection networks is provided with adjustable phase shifters for connecting the conductive elements to each other.

Ainsi, avec l'utilisation d'éléments actifs que sont des dispositifs de déphasage réglables, par exemple des diodes, lors de l'interconnexion des éléments conducteurs entre eux, il devient possible d'ajuster les déphasages en fonction de l'application à optimiser en réglant simplement ces éléments actifs tout en conservant la structure du métamatériau et sans toucher au dimensionnement établi des réseaux d'interconnexion.Thus, with the use of active elements that are adjustable phase shifters, for example diodes, during the interconnection of the conductive elements with each other, it becomes possible to adjust the phase shifts as a function of the application to be optimized. by simply adjusting these active elements while maintaining the structure of the metamaterial and without affecting the established dimensioning of the interconnection networks.

De façon optionnelle également, les éléments conducteurs sont répartis sur le substrat de façon matricielle selon m lignes et n colonnes, n étant un nombre pair, chaque réseau d'interconnexion interconnectant deux éléments conducteurs d'une même i-ème ligne placés sur les n 2 j ème

Figure imgb0003
et n 2 + 1 + j ème
Figure imgb0004
colonnes, où, pour chaque réseau d'interconnexion, i prend l'une des valeurs de l'intervalle [1,m] et j l'une des valeurs de l'intervalle 0, n 2 1 .
Figure imgb0005
Selon l'invention, le substrat comporte une face supérieure et une face inférieure, la pluralité d'éléments conducteurs étant placée sur la face supérieure du substrat, la structure de métamatériau comportant en outre :

  • un plan de masse placé sur la face inférieure du substrat avec des trous aménagés dans ce plan de masse,
  • un ensemble de vias métalliques formés dans le substrat et le traversant sur toute son épaisseur, chacun de ces vias métalliques comportant une extrémité supérieure en contact avec l'un des éléments conducteurs et une extrémité inférieure disposée en regard de l'un des trous du plan de masse, sans contact électrique avec le plan de masse.
Also optionally, the conductive elements are distributed on the substrate in a matrix manner along m lines and n columns, n being an even number, each interconnection network interconnecting two conductive elements of the same i-th line placed on the not 2 - j - th
Figure imgb0003
and not 2 + 1 + j - th
Figure imgb0004
columns, where, for each interconnect network, i takes one of the values of the interval [1, m] and j one of the values of the interval 0 not 2 - 1 .
Figure imgb0005
According to the invention, the substrate comprises an upper face and a lower face, the plurality of conductive elements being placed on the upper face of the substrate, the metamaterial structure further comprising:
  • a ground plane placed on the underside of the substrate with holes in this ground plane,
  • a set of metal vias formed in the substrate and passing through its entire thickness, each of these metal vias having an upper end in contact with one of the conductive elements and a lower end disposed facing one of the holes of the plane mass, without electrical contact with the ground plane.

De façon optionnelle également, les extrémités inférieures des vias métalliques en contact avec les éléments conducteurs interconnectés forment des ports d'accès en points d'alimentation auxquels sont raccordés les réseaux d'interconnexion.Also optionally, the lower ends of the metal vias in contact with the interconnected conductive elements form power point access ports to which the interconnection networks are connected.

De façon optionnelle également, la structure de métamatériau comporte deux couches d'éléments conducteurs superposées et disposées sur une face supérieure du substrat, chacune de ces couches comportant une pluralité d'éléments conducteurs séparés les uns des autres et répartis de façon matricielle selon m lignes et n colonnes, ces deux couches étant séparées entre elles suivant une direction normale à la face supérieure du substrat d'une distance prédéterminée, les éléments conducteurs de la première couche étant disposés en quinconce par rapport aux éléments conducteurs de la deuxième couche de façon à augmenter l'effet capacitif de la cellule.Also optionally, the metamaterial structure comprises two layers of conductive elements superimposed and arranged on an upper face of the substrate, each of these layers comprising a plurality of conductive elements separated from each other and distributed in a matrix manner along m lines and n columns, these two layers being separated from each other in a direction normal to the upper face of the substrate by a predetermined distance, the conductive elements of the first layer being arranged in staggered relation to the conductive elements of the second layer so as to increase the capacitive effect of the cell.

De façon optionnelle également, chacun des éléments conducteurs présente l'une des formes de l'ensemble constitué d'une forme carrée, d'une forme rectangulaire, d'une forme de spirale, d'une forme de fourchette, d'une forme de croix à béquilles et d'une forme duale de croix à béquilles dite forme UC-EBG.Also optionally, each of the conductive elements has one of the shapes of the assembly consisting of a square shape, a rectangular shape, a spiral shape, a fork shape, a shape from crutches to crutches and from a dual form of crutches to crutches known as UC-EBG form.

De façon optionnelle également, ladite pluralité de réseaux d'interconnexion présente l'une des topologies de l'ensemble constitué d'une topologie linéaire, d'une topologie en étoile, d'une topologie radiale et d'une topologie en arbre.Also optionally, said plurality of interconnection networks has one of the topologies of the set consisting of a linear topology, a star topology, a radial topology and a tree topology.

L'invention a également pour objet un système d'émission/réception d'ondes électromagnétiques comprenant au moins deux antennes entre lesquelles est disposé au moins un dispositif de perturbation d'une propagation d'ondes électromagnétiques selon l'invention.The invention also relates to a system for transmitting / receiving electromagnetic waves comprising at least two antennas between which is disposed at least one device for disturbing an electromagnetic wave propagation according to the invention.

L'invention a également pour objet un procédé de fabrication d'un dispositif de perturbation d'une propagation d'ondes électromagnétiques à structure de métamatériau comme définit dans la revendication 9. Le procédé comporte en outre les étapes suivantes :

  • disposition sur un substrat d'une pluralité d'éléments conducteurs séparés les uns des autres,
  • interconnexion électrique d'au moins une partie de ces éléments conducteurs à l'aide d'une pluralité de réseaux d'interconnexion, ces réseaux d'interconnexion n'étant pas connectés électriquement entre eux,
comprenant en outre une étape de dimensionnement des réseaux d'interconnexion, dans laquelle au moins deux de ces réseaux d'interconnexion sont dimensionnés différemment l'un de l'autre pour engendrer des déphasages, entre les éléments conducteurs qu'ils interconnectent, différents de l'un de ces réseaux d'interconnexion à l'autre.The invention also relates to a method for manufacturing a device for disturbing an electromagnetic wave propagation with a metamaterial structure as defined in claim 9. The method also comprises the following steps:
  • disposing on a substrate a plurality of conductive elements separated from one another,
  • electrical interconnection of at least a portion of these conductive elements using a plurality of interconnection networks, these interconnection networks not being electrically connected to each other,
further comprising a step of dimensioning the interconnection networks, wherein at least two of these interconnection networks are dimensioned differently from one another to generate phase shifts, between the conductive elements they interconnect, different from one of these interconnection networks to another.

L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :

  • la figure 1 représente en perspective coupée la structure générale d'un dispositif de perturbation d'une propagation d'ondes électromagnétiques, selon un mode de réalisation de l'invention,
  • la figure 2 représente en perspective un exemple de disposition d'une pluralité d'éléments conducteurs d'un dispositif de perturbation d'une propagation d'ondes électromagnétiques, selon un mode de réalisation préféré de l'invention,
  • la figure 3 représente en perspective coupée une cellule élémentaire de la pluralité d'éléments conducteurs de la figure 2,
  • la figure 4 est une vue de dessus partielle de l'ensemble d'éléments conducteurs de la figure 2,
  • la figure 5 est une vue en coupe d'un exemple de système d'émission/réception à deux antennes,
  • la figure 6 est une vue schématique de dessus du système d'émission/réception de la figure 5,
  • la figure 7 est une vue schématique de dessus du système d'émission/réception de la figure 5 comportant en outre un dispositif de perturbation d'une propagation d'ondes électromagnétiques, selon un mode de réalisation de l'invention,
  • la figure 8 illustre des courbes de couplage entre antennes des systèmes d'émission/réception des figures 6 et 7 en fonction de la fréquence d'émission/réception des antennes,
  • la figure 9 illustre des courbes de couplage entre antennes des systèmes d'émission/réception des figures 6 et 7 en fonction de la distance entre les antennes,
  • la figure 10 illustre les étapes successives d'un procédé de fabrication d'un dispositif de perturbation d'une propagation d'ondes électromagnétiques, selon un mode de réalisation de l'invention.
The invention will be better understood with the aid of the description which follows, given solely by way of example and with reference to the appended drawings in which:
  • the figure 1 represents in cut perspective the general structure of a device for disturbing an electromagnetic wave propagation, according to an embodiment of the invention,
  • the figure 2 represents in perspective an example of arrangement of a plurality of conductive elements of a device for disturbing an electromagnetic wave propagation, according to a preferred embodiment of the invention,
  • the figure 3 represents in cut perspective an elementary cell of the plurality of conductive elements of the figure 2 ,
  • the figure 4 is a partial top view of the set of conductive elements of the figure 2 ,
  • the figure 5 is a sectional view of an example of a two-antenna transmission / reception system,
  • the figure 6 is a schematic view from above of the transmission / reception system of the figure 5 ,
  • the figure 7 is a schematic view from above of the transmission / reception system of the figure 5 further comprising a device for disturbing an electromagnetic wave propagation, according to one embodiment of the invention,
  • the figure 8 illustrates coupling curves between antennas of transmission / reception systems of Figures 6 and 7 according to the frequency of transmission / reception of the antennas,
  • the figure 9 illustrates coupling curves between antennas of transmission / reception systems of Figures 6 and 7 depending on the distance between the antennas,
  • the figure 10 illustrates the successive steps of a method of manufacturing a device for disturbing an electromagnetic wave propagation, according to one embodiment of the invention.

La figure 1 représente en perspective coupée la structure générale d'un dispositif 10 de perturbation d'une propagation d'ondes électromagnétiques à structure de métamatériau 12, selon un mode de réalisation possible de l'invention. Ce dispositif peut par exemple être placé entre deux éléments d'une antenne planaire définis sur un même substrat pour limiter les ondes de surface entre ces deux éléments.The figure 1 represents in cut perspective the general structure of a device 10 for disturbing an electromagnetic wave propagation with a metamaterial structure 12, according to a possible embodiment of the invention. This device can for example be placed between two elements of a planar antenna defined on the same substrate to limit the surface waves between these two elements.

Dans ce mode de réalisation, la structure de métamatériau 12 est de type champignon et comporte une pluralité d'éléments conducteurs e1,1,..., ei,j,..., em,n de forme rectangulaire, séparés les uns des autres et disposés sur une face supérieure d'un substrat 14 réalisé, par exemple, en matériau diélectrique. Ce substrat peut être un matériau isolant à base d'époxy, matériau isolant bien connu de l'homme du métier, par exemple du type FR4 avec une valeur de permittivité relative εR d'environ 4,4. Les éléments conducteurs e1,1,..., ei,j,..., em,n sont répartis sur le substrat 14 de façon matricielle en m lignes et n colonnes selon deux directions principales orthogonales notées y et x. Ainsi, chaque ligne d'éléments conducteurs, par exemple la première ligne, comporte n éléments conducteurs selon la direction x (e1,1,..., e1,j,..., e1,n, pour cette première ligne) et chaque colonne d'éléments conducteurs, par exemple la dernière colonne, comporte m éléments conducteurs selon la direction y (e1,n,...,ei,n,..., em,n, pour cette dernière colonne). Un plan de masse 16 est placé sur une face inférieure du substrat 14 avec des trous 18 aménagés dans ce plan de masse 16 et disposés en vis-à-vis des éléments conducteurs selon une direction z orthogonale au plan (x, y). Pour des raisons de clarté, un seul trou 18 est représenté sur la figure 1, mais le plan de masse 16 comporte concrètement autant de trous 18 que d'éléments conducteurs e1,1,..., ei,j,..., em,n.In this embodiment, the metamaterial structure 12 is of the mushroom type and comprises a plurality of conductive elements e 1,1 , ..., e i, j ,..., E m, n of rectangular shape, separated each other and arranged on an upper face of a substrate 14 made, for example, of dielectric material. This substrate may be an insulating material based on epoxy, insulating material well known to those skilled in the art, for example of the FR4 type with a relative permittivity value ε R of about 4.4. The conductive elements e 1 , 1 ,..., E i, j ,..., E m, n are distributed on the substrate 14 in a matrix manner in m rows and n columns according to two orthogonal principal directions denoted y and x. Thus, each line of conductive elements, for example the first line, comprises n conductive elements in the direction x (e1, 1 , ..., e1 , j , ..., e1 , n , for this first line) and each column of conductive elements, for example the last column, has m conductive elements in the direction y (e 1, n , ..., e i, n , ..., e m, n , for this last column). A ground plane 16 is placed on a lower face of the substrate 14 with holes 18 formed in this ground plane 16 and arranged vis-à-vis the conductive elements in a direction z orthogonal to the plane (x, y). For the sake of clarity, a single hole 18 is shown on the figure 1 but the ground plane 16 has concretely as many holes 18 as conductive elements e 1,1 , ..., e i, j , ..., e m, n .

Le dispositif 10 de perturbation d'une propagation d'ondes électromagnétiques comporte en outre un ensemble de vias métalliques v1,1,..., vi,j,..., vm,n formés dans le substrat 14. Ces vias métalliques v1,1,..., vi,j,..., vm,n traversent le substrat 14 sur toute son épaisseur. L'extrémité supérieure de chacun de ces vias métalliques, par exemple le via vi,j, est en contact avec l'un des éléments conducteurs, en l'occurrence l'élément conducteur ei,j pour le via vi,j. L'extrémité inférieure de chacun de ces vias métalliques est disposée en regard de l'un des trous 18 du plan de masse 16, sans contact électrique avec le plan de masse 16, permettant aux éléments conducteurs d'établir des connexions électriques externes à la structure de métamatériau 12. A titre d'exemple, l'élément conducteur e1,1 peut être connecté électriquement à l'élément conducteur e1,n à l'aide d'une ligne de transmission connectant les extrémités inférieures de leurs vias respectifs v1,1 et v1,n.The device 10 for disturbing an electromagnetic wave propagation further comprises a set of metal vias v1 ,..., V i, j ,..., V m, n formed in the substrate 14. vias metal v 1.1 , ..., v i, j , ..., v m, n through the substrate 14 over its entire thickness. The upper end of each of these metal vias, for example the via v i, j , is in contact with one of the conductive elements, in this case the conductive element e i, j for the via v i, j . The lower end of each of these metal vias is disposed opposite one of the holes 18 of the ground plane 16, without electrical contact with the ground plane 16, allowing the conductive elements to establish external electrical connections to the ground plane 16. metamaterial structure 12. for example, the conductive element e 1,1 can be electrically connected to the conductive element e 1, n by using a transmission line connecting the lower ends of their respective vias v 1,1 and v 1, n .

Selon le mode particulier de réalisation de la figure 1, les éléments conducteurs e1,1,..., ei,j,..., em,n sont interconnectés électriquement deux par deux, selon une direction privilégiée, celle de l'axe y, à l'aide d'une pluralité de réseaux d'interconnexion, ces réseaux d'interconnexion n'étant pas connectés électriquement entre eux. Pour des raisons de clarté, seule une partie des réseaux d'interconnexion de la dernière ligne m est représentée sur la figure 1 par les références 20, 22, 24, mais toutes les lignes d'éléments conducteurs comportent également des réseaux d'interconnexion.According to the particular embodiment of the figure 1 the conductive elements e 1 , 1 ,..., e i, j ,..., e m, n are electrically interconnected two by two, in a preferred direction, that of the axis y, with the aid of a plurality of interconnection networks, these interconnection networks not being electrically connected to each other. For the sake of clarity, only part of the interconnection networks of the last line m is represented on the figure 1 by the references 20, 22, 24, but all the lines of conductive elements also comprise interconnection networks.

Ainsi, selon ce mode de réalisation, chaque réseau d'interconnexion connecte deux éléments conducteurs d'une même i-ème ligne placés sur les n 2 j ème

Figure imgb0006
et n 2 + 1 + j ème
Figure imgb0007
colonnes, où, pour chaque réseau d'interconnexion, i prend l'une des valeurs de l'intervalle [1,m] et j l'une des valeurs de l'intervalle 0, n 2 1 .
Figure imgb0008
De cette façon, le réseau d'interconnexion 20 illustré sur la figure 1 connecte les deux éléments em,n/2 et em,n/2+1 placés au centre de la m-ième et dernière ligne, le réseau d'interconnexion 22 connecte ensuite les deux éléments voisins em,n/2-1, em,n/2+2 entre eux. Les autres éléments conducteurs de la m-ième et dernière ligne sont interconnectés de la même manière deux à deux de proche en proche jusqu'au réseau d'interconnexion 24 qui connecte le premier élément em,1 et le dernier élément em,n de la m-ième et dernière ligne.Thus, according to this embodiment, each interconnection network connects two conductive elements of the same i-th line placed on the not 2 - j - th
Figure imgb0006
and not 2 + 1 + j - th
Figure imgb0007
columns, where, for each interconnect network, i takes one of the values of the interval [1, m ] and j one of the values of the interval 0 not 2 - 1 .
Figure imgb0008
In this way, the interconnection network 20 illustrated on the figure 1 connects the two elements e m, n / 2 and e m, n / 2 + 1 placed in the center of the m-th and last line, the interconnection network 22 then connects the two neighboring elements e m, n / 2- 1 , e m, n / 2 + 2 between them. The other conductive elements of the mth and last line are interconnected in the same manner two by two step by step to the interconnection network 24 which connects the first element e m, 1 and the last element e m, n from the mth and last line.

Comme évoqué précédemment, les réseaux d'interconnexion des éléments conducteurs e1,1,..., ei,j,..., em,n entre eux peuvent être constitués de lignes de transmission. Il est connu de l'homme du métier qu'un modèle équivalent de premier ordre caractérise une ligne de transmission par un déphasage dont la valeur est fonction de la longueur de cette ligne de transmission.As mentioned above, the interconnection networks of the conductive elements e 1 , 1 ,..., E i, j ,..., M m, n between them may consist of transmission lines. It is known to those skilled in the art that a first-order equivalent model characterizes a transmission line by a phase shift whose value is a function of the length of this transmission line.

En conséquence, une topologie linéaire de réseaux d'interconnexion telle que celle décrite précédemment permet d'engendrer des déphasages différents Φ1, Φ2,..., Φn/2 entre les éléments conducteurs interconnectés par les réseaux d'interconnexion 20, 22, 24 (et les autres non représentés) puisque les longueurs de ces réseaux d'interconnexion constitués de lignes de transmission sont différentes.Consequently, a linear topology of interconnection networks such as that described above makes it possible to generate different phase shifts Φ 1 , Φ 2 ,..., Φ n / 2 between the conductive elements interconnected by the interconnection networks. 20, 22, 24 (and the others not shown) since the lengths of these interconnection networks consist of transmission lines are different.

Il faut noter que dans ce mode de réalisation n est nécessairement un nombre pair, permettant de connecter tous les éléments d'une ligne entre eux deux à deux. Cependant, dans d'autres variantes de réalisation, il peut y avoir certains éléments conducteurs parmi les n éléments conducteurs ei,1,..., ei,j,..., ei,n d'une ligne i quelconque du métamatériau qui ne sont pas interconnectés électriquement entre eux ou qui sont interconnectés à plus de deux par réseau d'interconnexion.It should be noted that in this embodiment n is necessarily an even number, making it possible to connect all the elements of a line between them two by two. However, in other embodiments, there may be some conductive elements among the n conductive elements e i, 1 ,..., E i, j ,..., E i, n of any line i metamaterial that are not interconnected electrically with each other or that are interconnected to more than two by interconnection network.

Egalement, dans ce mode de réalisation, une topologie linéaire identique des réseaux d'interconnexion est appliquée à toutes les lignes de la structure de métamatériau 12. Néanmoins, dans d'autres variantes de réalisation, la topologie linéaire des réseaux d'interconnexion peut être différente d'une ligne à une autre de cette structure.Also, in this embodiment, an identical linear topology of the interconnection networks is applied to all the lines of the metamaterial structure 12. Nevertheless, in other variants of embodiment, the linear topology of the interconnection networks can be different from one line to another of this structure.

En outre, les éléments conducteurs e1,1,..., ei,j,..., em,n de la structure de métamatériau 12 peuvent être interconnectés électriquement selon des topologies de réseaux d'interconnexion diverses et notamment différentes d'une topologie linéaire. Ils peuvent, par exemple, être interconnectés selon une topologie en étoile ou une topologie radiale ou une topologie en arbre.In addition, the conductive elements e 1 , 1 ,..., E i, j ,..., E m, n of the metamaterial structure 12 may be electrically interconnected according to various and in particular different interconnection network topologies. of a linear topology. They can, for example, be interconnected according to a star topology or a radial topology or a tree topology.

D'une façon générale, conformément à l'invention, et quelle que soit la topologie choisie d'interconnexion des éléments conducteurs, au moins deux des réseaux d'interconnexion sont dimensionnés différemment l'un de l'autre pour engendrer des déphasages, entre les éléments conducteurs qu'ils interconnectent, différents de l'un de ces réseaux d'interconnexion à l'autre.In a general manner, according to the invention, and whatever the chosen topology of interconnection of the conductive elements, at least two of the interconnection networks are dimensioned differently from one another to generate phase shifts, between the conductive elements they interconnect, different from one of these interconnection networks to another.

D'autre part, dans d'autres modes de réalisation possibles, les éléments conducteurs peuvent avoir des formes différentes de celle, rectangulaire, illustrée sur la figure 1. Il est bien connu de l'homme du métier la conception d'éléments conducteurs en forme de carré, spirale, fourchette, croix à béquilles et en forme duale de croix à béquilles dite forme UC-EBG comme détaillé dans l'article de Kovacs et al, intitulé « Dispersion analysis of planar metallo-dielectric EBG structures in Ansoft HFSS », publié à l'occasion de « 17th International Conference on Microwaves, Radar and Wireless Communications », 19-21 mai 2008 .On the other hand, in other possible embodiments, the conductive elements may have different shapes from that, rectangular, illustrated on the figure 1 . It is well known to those skilled in the art to design conductive elements in the form of a square, spiral, fork, cross on crutches and in the form of a dual cross with so-called UC-EBG crutches as detailed in the article by Kovacs et al, entitled "Dispersion analysis of planar metallo-dielectric EBG structures in Ansoft HFSS", published on the occasion of "17th International Conference on Microwaves, Radar and Wireless Communications", 19-21 May 2008 .

La figure 2 représente en perspective un exemple de disposition préférée des éléments conducteurs de la structure de métamatériau 12 du dispositif 10 de perturbation d'une propagation d'ondes électromagnétiques. Plus précisément, cette disposition préférée comporte deux couches d'éléments conducteurs verticalement superposées (la verticale étant définie par la direction z) et disposées sur la face supérieure du substrat 14.The figure 2 represents in perspective an example of a preferred arrangement of the conductive elements of the metamaterial structure 12 of the device 10 for disturbing an electromagnetic wave propagation. More specifically, this preferred arrangement comprises two layers of vertically conductive elements superposed (the vertical being defined by the direction z) and disposed on the upper face of the substrate 14.

La superposition de couches d'éléments conducteurs permet d'augmenter l'effet capacitif de la structure de métamatériau 12 en permettant un recouvrement partiel des éléments conducteurs de ces couches, rendant ainsi la fréquence de résonance fr de cette structure indépendante de la taille des éléments conducteurs. En revanche, la fréquence de résonance fr devient plutôt fonction du nombre d'éléments conducteurs.The superposition of layers of conductive elements makes it possible to increase the capacitive effect of the metamaterial structure 12 by allowing a partial overlap of the conducting elements of these layers, thus making the resonance frequency f r of this structure independent of the size of the conductive elements. On the other hand, the resonance frequency f r rather becomes a function of the number of conductive elements.

Comme dans le mode de réalisation précédemment décrit, chacune de ces deux couches comporte une pluralité d'éléments conducteurs de forme rectangulaire séparés les uns des autres et répartis de façon matricielle selon m lignes et n colonnes. Ces deux couches sont séparées entre elles d'une distance prédéterminée selon la direction z. Les éléments conducteurs e1,1,..., ei,j,..., em,n de la première couche sont décalés des éléments conducteurs e'1,1,..., e'i,j,..., e'm,n de la deuxième couche suivant les deux directions principales x et y de la face supérieure du substrat 14 non parallèles entre elles. Autrement dit, les éléments conducteurs e1,1,..., ei,j,..., em,n de la première couche sont disposés en quinconce par rapport aux éléments conducteurs e'1,1,..., e'i,j,..., e'm,n de la deuxième couche qui les recouvrent partiellement.As in the embodiment previously described, each of these two layers comprises a plurality of rectangularly shaped conducting elements separated from each other and distributed in a matrix manner along m rows and n columns. These two layers are separated from each other by a predetermined distance along the z direction. The conductive elements e 1,1 , ..., e i, j , ..., e m, n of the first layer are offset from the conductive elements e ' 1,1 , ..., e' i, j , ..., e ' m, n of the second layer along the two main directions x and y of the upper face of the substrate 14 not parallel to each other. In other words, the conductive elements e 1 , 1 ,..., E i, j ,..., E m, n of the first layer are arranged in staggered relation to the conductive elements e ' 1 , 1 , ... , e ' i, j , ..., e' m, n of the second layer which partially overlap.

Chacun des éléments conducteurs de chaque couche est connecté à un via métallique. Ainsi, la pluralité d'éléments conducteurs e1,1,..., ei,j,..., em,n de la première couche est connectée à une pluralité de vias métalliques v1,1,..., vi,j,..., vm,n formés dans le substrat 14 et la pluralité d'éléments conducteurs e'1,1,..., e'i,j,..., e'm,n de la deuxième couche est connectée à une pluralité de vias métalliques v'1,1,..., v'i,j,..., v'm,n formés aussi dans le substrat 14.Each of the conductive elements of each layer is connected to a metal via. Thus, the plurality of conductive elements e 1 , 1 ,..., E i, j ,..., E m, n of the first layer is connected to a plurality of metal vias v 1.1 , ... , v i, j , ..., v m, n formed in the substrate 14 and the plurality of conductive elements e ' 1,1 , ..., e' i, j , ..., e ' m, n of the second layer is connected to a plurality of metal vias v ' 1,1 , ..., v' i, j , ..., v ' m, n also formed in the substrate 14.

Les vias métalliques en contact avec les éléments conducteurs des deux couches sont tous de même taille et traversent toutes les couches de la structure de métamatériau 12, notamment les deux couches d'éléments conducteurs, le substrat 14 et le plan de masse 16. Des pistes conductrices 26 sont placées dans le même plan que les éléments conducteurs e'1,1,..., e'i,j,..., e'm,n de la deuxième couche qui est la plus élevée des deux couches d'éléments conducteurs au-dessus du substrat 14, afin de couvrir l'extrémité supérieure des vias métalliques v1,1,..., vi,j,..., vm, en contact avec les éléments conducteurs e1,1,..., ei,j,..., em,n de la première couche. Ces pistes conductrices 26 de forme carrée sont disposées séparément les unes des autres et des éléments conducteurs e'1,1,..., e'i,j,..., e'm,n de la deuxième couche. Elles sont réparties de façon matricielle selon les m lignes et n colonnes précitées.The metal vias in contact with the conductive elements of the two layers are all of the same size and pass through all the layers of the metamaterial structure 12, in particular the two layers of conductive elements, the substrate 14 and the ground plane 16. Tracks The conductors 26 are placed in the same plane as the conducting elements e ' 1 , 1 ,..., e' i, j ,..., e ' m, n of the second layer, which is the highest of the two layers. conductive elements above the substrate 14, in order to cover the upper end of the metal vias v1, 1 , ..., v i, j , ..., v m , in contact with the conductive elements e 1, 1 , ..., e i, j , ..., e m, n of the first layer. These conductive tracks 26 of square shape are arranged separately from each other and conductive elements e ' 1,1 , ..., e' i, j , ..., e ' m, n of the second layer. They are distributed in a matrix manner according to the m lines and n columns mentioned above.

La figure 3 représente en perspective coupée une cellule élémentaire de la pluralité d'éléments conducteurs de la figure 2. Cette cellule élémentaire comporte en son centre un élément conducteur ei,j appartenant à la première couche d'éléments conducteurs située à une hauteur h1, par exemple d'environ 2,5 mm, du plan de masse 16. Quatre éléments conducteurs voisins e'i,j-1, e'i,j, e'i+1,j-1, e'i+1,j, appartenant à la deuxième couche d'éléments conducteurs, celle-ci séparée d'une distance h2 de la première couche selon la direction z, par exemple d'environ 0,2 mm, sont disposés au-dessus de cet élément conducteur ei,j et en quinconce de manière à le recouvrir partiellement. Ces quatre éléments conducteurs voisins sont représentés partiellement dans cette cellule élémentaire de la figure 3.The figure 3 represents in cut perspective an elementary cell of the plurality of conductive elements of the figure 2 . This elementary cell comprises at its center a conductive element e i, j belonging to the first layer of conductive elements situated at a height h 1 , for example about 2.5 mm, from the ground plane 16. Four adjacent conductive elements e ' i, j-1 , e' i, j , e ' + 1, j-1 , e' i + 1, j , belonging to the second layer of conductive elements, the latter separated by a distance h 2 of the first layer in the direction z, for example about 0.2 mm, are arranged above this conductive element e i, j and staggered so as to partially cover it. These four neighboring conductive elements are partially represented in this elementary cell of the figure 3 .

Entre les deux couches d'éléments conducteurs, un matériau isolant 28 est inséré, par exemple un matériau diélectrique du type FR4 et de permittivité relative εR = 4,4. Bien entendu des variantes de réalisation peuvent être envisagées avec d'autres types de matériau isolant ou sans matériau isolant.Between the two layers of conductive elements, an insulating material 28 is inserted, for example a dielectric material of the FR4 type and relative permittivity ε R = 4.4. Naturally, alternative embodiments may be envisaged with other types of insulating material or without insulating material.

La portion de chaque élément conducteur e'i,j-1, e'i,j, e'i+1,j-1, e'i+1,j recouvrant l'élément conducteur ei,j est déterminée en fonction de la taille de cet élément conducteur ei,j et de celle de sa piste conductrice 26. L'effet capacitif résultant d'une cellule élémentaire augmente ainsi avec le rapprochement des éléments conducteurs d'une même couche et le ratio de superposition entre les éléments conducteurs de couches différentes. Néanmoins, tous les éléments conducteurs e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n doivent rester séparés les uns des autres et des pistes conductrices 26.The portion of each conductive element e ' i, j-1 , e' i, j , e ' i + 1, j-1 , e' i + 1, j covering the conductive element e i, j is determined according of the size of this conductive element e i, j and that of its conductive track 26. The capacitive effect resulting from an elementary cell thus increases with the approximation of the conductive elements of the same layer and the superposition ratio between the elements. conductive elements of different layers. Nevertheless, all the conducting elements e 1,1 , ..., e i, j , ..., e m, n , e ' 1,1 , ..., e' i, j , ..., e ' m, n must remain separated from each other and from conducting tracks 26.

L'effet inductif d'une cellule élémentaire est déterminé par les vias métalliques qui la traversent et dépend de la valeur de leurs dimensions. Le diamètre dv d'un via métallique quelconque vi,j est par exemple d'environ 0,3 mm et sa longueur d'environ 2,7 mm.The inductive effect of an elementary cell is determined by the metal vias that pass through it and depends on the value of their dimensions. The diameter d v of any metal wire v i, j is for example about 0.3 mm and its length about 2.7 mm.

Selon une variante de réalisation, les vias métalliques v1,1,..., vi,j,..., vm,n en contact avec les éléments conducteurs e1,1,..., ei,j,..., em,n de la première couche peuvent être des vias métalliques borgnes. Dans ce cas, les pistes conductrices 26 ne sont plus nécessaires. En effet, avec ce type de vias borgnes, bien connus de l'homme du métier, l'extrémité supérieure borgne de chacun des vias métalliques v1,1,..., vi,j,..., vm,n est en contact direct avec chacun des éléments conducteurs e1,1,..., ei,j,..., em,n et ne s'étend pas au-delà de la première couche.According to an alternative embodiment, the metal vias v 1.1 , ..., v i, j , ..., v m, n in contact with the conductive elements e 1.1 , ..., e i, j , ..., e m, n of the first layer may be blind metal vias. In this case, the conductive tracks 26 are no longer necessary. Indeed, with this type of blind vias, well known to those skilled in the art, the blind upper end of each metal vias v 1.1 , ..., v i, j , ..., v m, n is in direct contact with each of the conductive elements e 1,1 , ..., e i, j , ..., e m, n and does not extend beyond the first layer.

La figure 4 est une vue de dessus partielle de l'ensemble d'éléments conducteurs de la figure 2. Plus précisément, elle permet de présenter, à titre d'exemple, les dimensions des éléments conducteurs rectangulaires de la figure 2 ainsi que les distances entre ces éléments.The figure 4 is a partial top view of the set of conductive elements of the figure 2 . More precisely, it makes it possible to present, by way of example, the dimensions of the rectangular conductive elements of the figure 2 as well as the distances between these elements.

Dans cet exemple d'application, tous les éléments conducteurs e1,1,..., ei,j,..., em,n et e'1,1,..., e'i,j,..., e'm,n des deux couches ont les mêmes dimensions, la longueur ce1 selon l'axe y de l'un quelconque des éléments conducteurs étant d'environ 2 mm et la largeur ce2 selon l'axe x étant d'environ 1,5 mm. Les vias métalliques sont placés au centre de ces éléments conducteurs. Les extrémités supérieures des vias métalliques en contact avec les éléments conducteurs de la première couche sont connectées aux pistes conductrices 26 de forme carrée. Le côté, cn, de l'une quelconque de ces pistes conductrices 26 mesure environ 0,64 mm.In this example of application, all the conducting elements e1, 1 ,..., E i, j ,..., E m, n and e ' 1 , 1 , ..., e ' i, j , ..., e ' m, n of the two layers have the same dimensions, the length c e1 along the y axis of any one of the conductive elements being approximately 2 mm and the width c e2 along the x axis being about 1.5 mm. The metal vias are placed in the center of these conductive elements. The upper ends of the metal vias in contact with the conductive elements of the first layer are connected to the conductive tracks 26 of square shape. The side, c n , of any one of these conductive tracks 26 is approximately 0.64 mm.

La distance g entre deux éléments conducteurs d'une même couche est de 1 mm, laissant ainsi un espace suffisant entre l'une quelconque des pistes conductrices 26 et les quatre éléments conducteurs coplanaires voisins, par exemple e'i,j-1, e'i,j, e'i+1,j-1, e'i+1,j pour la piste conductrice 26 située au-dessus de l'élément conducteur ei,j. La distance P1 entre deux vias d'une même couche selon la direction y est d'environ 3 mm et la distance P2 entre deux vias selon la direction x est d'environ 2,5 mm.The distance g between two conductive elements of the same layer is 1 mm, thus leaving a sufficient space between any one of the conductive tracks 26 and the four neighboring coplanar conductive elements, for example e ' i, j-1 , e i, j , e ' i + 1, j-1 , e' i + 1, j for the conductive track 26 located above the conductive element e i, j . The distance P 1 between two vias of the same layer in the direction y is about 3 mm and the distance P 2 between two vias in the x direction is about 2.5 mm.

La figure 5 illustre un exemple de système d'émission/réception d'ondes électromagnétiques comprenant deux antennes planaires. Plus précisément, elle illustre une vue en coupe d'un système d'émission/réception comprenant deux antennes planaires 30 et 32 disposées l'une à côté de l'autre de façon coplanaire sur un substrat tel que le substrat 14. Chaque antenne planaire 30 ou 32 comporte une surface conductrice rayonnante carrée séparée du plan de masse 16 par le substrat 14 et des moyens d'excitation 34 et 36, notamment des sondes coaxiales, permettant l'alimentation des antennes planaires 30 et 32 respectivement. Ces sondes coaxiales traversent le plan de masse 16 sans contact électrique avec ce dernier grâce à deux trous qui y sont aménagés.The figure 5 illustrates an example of an electromagnetic wave transmission / reception system comprising two planar antennas. More specifically, it illustrates a sectional view of a transmission / reception system comprising two planar antennas 30 and 32 arranged next to each other coplanarly on a substrate such as the substrate 14. Each planar antenna 30 or 32 comprises a square radiating conductive surface separated from the ground plane 16 by the substrate 14 and excitation means 34 and 36, in particular coaxial probes, for feeding the planar antennas 30 and 32 respectively. These coaxial probes cross the ground plane 16 without electrical contact with the latter through two holes that are arranged there.

La figure 5 illustre en outre trois types d'ondes pouvant générer les phénomènes de couplage à partir de l'une quelconque des deux antennes 30 et 32 : des ondes spatiales 38 rayonnées par les surfaces conductrices rayonnantes carrées des antennes planaires 30 et 32, des ondes de surface 40 entre le substrat 14 et l'air et des ondes de surface 42 guidées par le substrat 14 entre les deux antennes planaires 30 et 32. Ces ondes 38, 40, 42 peuvent provoquer des couplages entre les antennes du système d'émission/réception dégradant ainsi leurs performances.The figure 5 also illustrates three types of waves that can generate the coupling phenomena from any of the two antennas 30 and 32: space waves 38 radiated by the square radiating conductive surfaces of the planar antennas 30 and 32, surface waves 40 between the substrate 14 and the air and surface waves 42 guided by the substrate 14 between the two antennas planar 30 and 32. These waves 38, 40, 42 can cause couplings between the antennas of the transmission / reception system thus degrading their performance.

La figure 6 est une vue de dessus du système d'émission/réception de la figure 5. Dans cet exemple de réalisation et comme indiqué précédemment, les surfaces conductrices rayonnantes des antennes planaires 30 et 32 sont de forme carrée, chaque côté L, W mesurant environ 11,5 mm. Bien entendu, dans d'autres variantes de réalisation ils peuvent être de forme différente, par exemple rectangulaire avec une longueur L et une largeur W différentes. Les moyens d'excitation 34 et 36 sont placés à une distance δ d'environ 2,5 mm du centre de chacune des surfaces conductrices rayonnantes des antennes planaires 30 et 32 respectivement.The figure 6 is a top view of the transmission / reception system of the figure 5 . In this embodiment and as indicated above, the radiating conductive surfaces of the planar antennas 30 and 32 are of square shape, each side L, W measuring about 11.5 mm. Of course, in other embodiments they may be of different shape, for example rectangular with a length L and a width W different. The excitation means 34 and 36 are placed at a distance δ of approximately 2.5 mm from the center of each of the radiating conductive surfaces of the planar antennas 30 and 32, respectively.

La distance Δ entre les moyens d'excitation 34 et 36 des deux antennes planaires 30 et 32 est d'environ 0,6λ0 avec λ 0 = c f ,

Figure imgb0009
où c est une constante représentant la vitesse de la lumière dans le vide et f correspond à la fréquence de fonctionnement du système.The distance Δ between the excitation means 34 and 36 of the two planar antennas 30 and 32 is approximately 0.6λ 0 with λ 0 = vs f ,
Figure imgb0009
where c is a constant representing the speed of light in a vacuum and f is the operating frequency of the system.

Ainsi, ce système d'émission/réception étant dimensionné pour être utilisé autour d'une fréquence d'environ 5,5 GHz, la valeur de la distance Δ est d'environ 32,7 mm. Entre les deux antennes planaires 30 et 32, une zone de largeur D d'environ 14,75 mm est réservée à l'insertion d'un dispositif 10 à structure de métamatériau 12 permettant ainsi de diminuer le niveau de couplage entre ces antennes.Thus, this transmission / reception system being sized to be used around a frequency of about 5.5 GHz, the value of the distance Δ is about 32.7 mm. Between the two planar antennas 30 and 32, a zone of width D of about 14.75 mm is reserved for insertion of a device 10 with a metamaterial structure 12 thus making it possible to reduce the level of coupling between these antennas.

La figure 7 est une vue de dessus du système d'émission/réception illustré dans les figures 5 et 6 comportant en outre le dispositif de perturbation 10 selon l'invention disposé entre les antennes planaires 30 et 32 dans la zone de largeur D. La structure de métamatériau 12 est dans ce cas une structure de type champignon comportant par exemple, conformément au mode de réalisation préféré de la figure 2, deux couches d'éléments conducteurs e1,1, ..., ei,j,..., e4,6 et e'1,1, ..., e'i,j,..., e'4,6, chaque couche comportant quatre lignes de six éléments conducteurs chacune. Pour des raisons de clarté, une seule couche d'éléments conducteurs du dispositif de perturbation 10 est représentée sur la figure 7.The figure 7 is a top view of the transmission / reception system illustrated in the Figures 5 and 6 further comprising the disturbing device 10 according to the invention disposed between the planar antennas 30 and 32 in the zone of width D. The metamaterial structure 12 is in this case a mushroom type structure comprising for example, according to the embodiment favorite of the figure 2 two layers of conductive elements e1, 1 ,..., e i, j ,..., e4, and e ' 1 , 1 ,..., e ' i, j ,. e ' 4,6 , each layer having four rows of six conductive elements each. For the sake of clarity, a single layer of conductive elements of the disturbance device 10 is represented on the figure 7 .

Ces éléments conducteurs e1,1,..., ei,j,..., e4,6 et e'1,1,..., e'i,j,..., e'4,6 sont connectés à autant de vias métalliques v1,1,..., vi,j,..., V4,6 et v'1,1,..., v'i,j,..., v'4,6 dont les extrémités inférieures libres constituent des ports d'accès à des points d'alimentation. Ces points d'alimentation permettent l'interconnexion des éléments conducteurs e1,1,..., ei,j,..., e4,6 et e'1,1,..., e'i,j,..., e'4,6 de chaque couche à l'aide d'une pluralité de réseaux d'interconnexion.These conductive elements e 1,1 , ..., e i, j , ..., e 4,6 and e ' 1,1 , ..., e' i, j , ..., e ' 4, 6 are connected to as many metal vias v 1.1 , ..., v i, j , ..., V 4.6 and v ' 1.1 , ..., v' i, j , ... 4.6 whose free lower ends constitute ports for access to feeding points. These power points allow the interconnection of elements conductors e 1,1 , ..., e i, j , ..., e 4,6 and e ' 1 , 1 , ..., e' i, j , ..., e ' 4,6 of each layer using a plurality of interconnection networks.

La topologie de ces réseaux d'interconnexion étant du type linéaire détaillé précédemment, pour chaque couche, les six éléments conducteurs ei,1, ei,2, ei,3, ei,4, ei,5, ei,6 d'une même ligne i sont interconnectés entre eux deux par deux, en commençant par les deux éléments conducteurs placés au centre de la ligne, ei,3 et ei,4, à l'aide par exemple d'une ligne de transmission telle que l'interconnexion 20 illustrée sur la figure 1. Ensuite, l'interconnexion de leurs deux voisins ei,2 et ei,5 est réalisée à l'aide d'une ligne de transmission telle que l'interconnexion 22 illustrée sur la figure 1. Enfin, les deux éléments conducteurs placés aux extrémités de la ligne, ei,1 et ei,6., sont interconnectés à l'aide d'une ligne de transmission telle que l'interconnexion 24 illustrée sur la figure 1. Cette même topologie des réseaux d'interconnexion est répétée pour chacune des quatre lignes de chaque couche.The topology of these interconnection networks being of the linear type previously detailed, for each layer, the six conductive elements e i, 1 , e i, 2 , e i, 3 , e i, 4 , e i, 5 , e i , 6 of a same line i are interconnected with each other in pairs, starting with the two conductive elements placed at the center of the line, e i, 3 and e i, 4 , for example using a line such as the interconnection 20 illustrated on the figure 1 . Then, the interconnection of their two neighbors e i, 2 and e i, 5 is achieved using a transmission line such as the interconnection 22 illustrated on the figure 1 . Finally, the two conductive elements placed at the ends of the line, e i, 1 and e i, 6. , Are interconnected by means of a transmission line such as the interconnection 24 illustrated on FIG. figure 1 . This same topology of the interconnection networks is repeated for each of the four lines of each layer.

Etant donné que les trois lignes de transmission 20, 22 et 24 connectant chacune une paire d'éléments conducteurs entre eux sont isolées les unes des autres et ont des longueurs différentes, elles permettent d'engendrer des déphasages différents entre les éléments conducteurs.Since the three transmission lines 20, 22 and 24 each connecting a pair of conductive elements to each other are insulated from one another and have different lengths, they make it possible to generate different phase shifts between the conductive elements.

Ainsi, ce mode de réalisation particulier permet trois déphasages Φ1, Φ2, Φ3 réglables et différents les uns des autres sur chaque ligne. Une combinaison optimale de valeurs de ces déphasages Φ1, Φ2, Φ3 permet d'optimiser le découplage des antennes planaires 30 et 32 placées autour de ce dispositif de perturbation 10. A titre d'exemple, pour le système d'émission/réception de la figure 7 et avec les dimensions indiquées en référence à la figure 6, une valeur des déphasages (Φ1, Φ2, Φ3) = (300°, 300°, 45°) permet de minimiser le couplage entre les antennes 30 et 32 lorsqu'elles fonctionnent à une fréquence de 5,5 GHz en empêchant la transmission des ondes de surface 40.Thus, this particular embodiment allows three phase shifts Φ 1 , Φ 2 , Φ 3 adjustable and different from each other on each line. An optimal combination of values of these phase shifts Φ 1 , Φ 2 , Φ 3 makes it possible to optimize the decoupling of the planar antennas 30 and 32 placed around this disturbance device 10. For example, for the transmission system / receipt of the figure 7 and with the dimensions indicated with reference to the figure 6 , a value of the phase shifts (Φ 1 , Φ 2 , Φ 3 ) = (300 °, 300 °, 45 °) makes it possible to minimize the coupling between the antennas 30 and 32 when they operate at a frequency of 5.5 GHz in preventing the transmission of surface waves 40.

La figure 8 illustre des courbes de couplage 44, 46 et 48 entre les antennes planaires des systèmes d'émission/réception des figures 6 et 7 pour une bande de fréquences allant de 4 à 7 GHz.The figure 8 illustrates coupling curves 44, 46 and 48 between the planar antennas of the transmission / reception systems of Figures 6 and 7 for a frequency band from 4 to 7 GHz.

Plus précisément, la courbe 44 présente le niveau de couplage en dB du système d'émission/réception de la figure 6 en l'absence de dispositif de perturbation tel que le dispositif 10. Ce système d'émission/réception présente une fréquence de résonance fr à environ 5,5 GHz et un couplage d'environ -16 dB à cette fréquence de résonance fr.More precisely, curve 44 presents the level of coupling in dB of the transmission / reception system of the figure 6 in the absence of a disturbance device such as the device 10. This transmission / reception system has a resonance frequency f r at about 5.5 GHz and a coupling of about -16 dB at this resonance frequency f r .

La courbe 46 présente le niveau de couplage en dB du système d'émission/réception de la figure 6 dans le cas où une structure de métamatériau 12 sans réseau d'interconnexion des éléments conducteurs entre eux est placée dans la zone de largeur D entre les deux antennes planaires 30 et 32 du système. Comme on peut le voir sur la courbe 46, la présence de la structure de métamatériau 12 entre les antennes planaires 30 et 32 permet de réduire leur couplage d'environ 2 dB à la fréquence de 5,5 GHz.Curve 46 shows the level of coupling in dB of the transmission / reception system of the figure 6 in the case where a metamaterial structure 12 without a network interconnecting conductive elements with each other is placed in the zone of width D between the two planar antennas 30 and 32 of the system. As can be seen on the curve 46, the presence of the metamaterial structure 12 between the planar antennas 30 and 32 reduces their coupling by about 2 dB at the frequency of 5.5 GHz.

La courbe 48 présente le niveau de couplage en dB du système d'émission/réception de la figure 7 dans le cas où le dispositif de perturbation 10 selon l'invention est placé dans la zone de largeur D entre les deux antennes planaires 30 et 32 du système. Comme on peut le voir sur la courbe 48, le couplage entre les antennes planaires 30 et 32 à la fréquence de résonance fr de 5,5 GHz est dans ce cas d'environ -32 dB, ce qui indique que la présence de ce dispositif 10, avec des déphasages (Φ1, Φ2, Φ3) de valeurs (300°, 300°, 45°) respectivement, permet de réduire le couplage des antennes planaires 30 et 32 de 14 dB par rapport à la présence de la structure de métamatériau 12 sans réseau d'interconnexion des éléments conducteurs entre eux.Curve 48 presents the level of coupling in dB of the transmission / reception system of the figure 7 in the case where the disturbing device 10 according to the invention is placed in the zone of width D between the two planar antennas 30 and 32 of the system. As can be seen on the curve 48, the coupling between the planar antennas 30 and 32 at the resonance frequency f r of 5.5 GHz is in this case approximately -32 dB, which indicates that the presence of this 10, with phase shifts (Φ 1 , Φ 2 , Φ 3 ) values (300 °, 300 °, 45 °) respectively, reduces the coupling of the planar antennas 30 and 32 by 14 dB compared to the presence of the metamaterial structure 12 without a network interconnecting the conductive elements with each other.

La figure 9 illustre des courbes de couplage 50, 52 et 54 entre les antennes planaires 30 et 32 des systèmes d'émission/réception des figures 6 et 7 en fonction de la distance Δ entre ces deux antennes normalisée par rapport à la longueur d'onde λ0 et pour une fréquence de 5,5 GHz.The figure 9 illustrates coupling curves 50, 52 and 54 between the planar antennas 30 and 32 of the transmission / reception systems of the Figures 6 and 7 as a function of the distance Δ between these two antennas normalized with respect to the wavelength λ 0 and for a frequency of 5.5 GHz.

Plus précisément, la courbe 50 présente le niveau de couplage en dB du système d'émission/réception de la figure 6 en l'absence de dispositif de perturbation tel que le dispositif 10.More precisely, the curve 50 presents the level of coupling in dB of the transmission / reception system of the figure 6 in the absence of a disturbance device such as the device 10.

La courbe 52 présente le niveau de couplage en dB du système d'émission/réception de la figure 6 dans le cas où une structure de métamatériau 12 sans réseau d'interconnexion des éléments conducteurs entre eux est placée dans la zone de largeur D entre les deux antennes planaires 30 et 32 du système.Curve 52 presents the level of coupling in dB of the transmission / reception system of the figure 6 in the case where a metamaterial structure 12 without a network interconnecting conductive elements with each other is placed in the zone of width D between the two planar antennas 30 and 32 of the system.

La courbe 54 présente le niveau de couplage en dB du système d'émission/réception de la figure 7 dans le cas où le dispositif de perturbation 10 selon l'invention est placé dans la zone de largeur D entre les deux antennes planaires 30 et 32 du système.Curve 54 shows the level of coupling in dB of the transmission / reception system of the figure 7 in the case where the disturbing device 10 according to the invention is placed in the zone of width D between the two planar antennas 30 and 32 of the system.

Les trois courbes sont représentées pour des distances Δ entre antennes comprises dans l'intervalle de 0,6λ0 à 2λ0. Dans le cas particulier de la courbe 54, pour chacune de ces distances le niveau de couplage en dB est le niveau optimal obtenu pour une combinaison particulière de valeurs des déphasages Φ1, Φ2, Φ3.The three curves are represented for distances Δ between antennas in the range of 0.6λ 0 to 2λ 0 . In the particular case of curve 54, for each of these distances the coupling level in dB is the optimum level obtained for a particular combination of phase shift values Φ 1 , Φ 2 , Φ 3 .

A titre d'exemple, la table ci-dessous illustre les valeurs des déphasages Φ1, Φ2, Φ3 permettant d'optimiser le découplage entre les antennes du système précédent pour des distances comprises dans l'intervalle de 0,6λ0 à 2λ0 : Δ/λ0 1, Φ2, Φ3) 0,6 (300°, 300°, 45°) 0,7 (100°, 80°, 60°) 0,8 (260°, 260°, 270°) 0,9 (260°, 260°, 255°) 1 (260°, 260°, 255°) 1,1 (260°, 260°, 240°) 1,2 (260°, 260°, 240°) 1,3 (260°, 260°, 240°) 1,4 (0°, 45°, 60°) 1,5 (240°, 220°, 45°) 1,6 (225°, 0°, 30°) 1,7 (260°, 260°, 255°) 1,8 (270°, 225°, 0°) 1,9 (260°, 260°, 255°) 2 (260°, 260°, 255°) By way of example, the table below illustrates the values of phase shifts Φ 1 , Φ 2 , Φ 3 making it possible to optimize the decoupling between the antennas of the preceding system for distances in the range from 0.6λ 0 to 2λ 0 : Δ / λ 0 1 , Φ 2 , Φ 3 ) 0.6 (300 °, 300 °, 45 °) 0.7 (100 °, 80 °, 60 °) 0.8 (260 °, 260 °, 270 °) 0.9 (260 °, 260 °, 255 °) 1 (260 °, 260 °, 255 °) 1.1 (260 °, 260 °, 240 °) 1.2 (260 °, 260 °, 240 °) 1.3 (260 °, 260 °, 240 °) 1.4 (0 °, 45 °, 60 °) 1.5 (240 °, 220 °, 45 °) 1.6 (225 °, 0 °, 30 °) 1.7 (260 °, 260 °, 255 °) 1.8 (270 °, 225 °, 0 °) 1.9 (260 °, 260 °, 255 °) 2 (260 °, 260 °, 255 °)

Comme on peut le voir sur la courbe 54, la présence du dispositif de perturbation 10 avec des déphasages Φ1, Φ2, Φ3 réglables permet d'obtenir des combinaisons optimales de valeurs de ces déphasages Φ1, Φ2, Φ3 pour chaque distance Δ et ainsi de diminuer davantage le couplage entre les antennes 30 et 32 par rapport aux courbes 50 et 52, ceci pour toutes distances comprises dans l'intervalle de distances de 0,6λ0 à 2λ0.As can be seen on the curve 54, the presence of the perturbation device 10 with adjustable phase shifts Φ 1 , Φ 2 , Φ 3 makes it possible to obtain optimal combinations of values of these phase shifts Φ 1 , Φ 2 , Φ 3 for each distance Δ and thus further reduce the coupling between the antennas 30 and 32 with respect to the curves 50 and 52, this for all distances in the range of 0.6λ 0 to 2λ 0 .

On va maintenant détailler les étapes successives d'un procédé de fabrication du dispositif de perturbation 10 de la figure 1 en référence à la figure 10.We will now detail the successive steps of a manufacturing process of the disturbance device 10 of the figure 1 with reference to the figure 10 .

Ce procédé de fabrication comporte une première étape 100 de disposition sur le substrat 14 d'une pluralité d'éléments conducteurs séparés les uns des autres.This manufacturing method comprises a first step 100 of placing on the substrate 14 a plurality of conductive elements separated from each other.

Plus précisément, lors d'une première sous-étape 102 de la première étape 100, deux couches d'éléments conducteurs e'1,1,..., e'i,j,..., e'm,n et e1,1,..., ei,j,..., em,n sont verticalement superposées (i.e. selon la direction z) et disposées sur la face supérieure du substrat 14.More specifically, during a first substep 102 of the first step 100, two conductive element layers e ' 1 , 1 ,..., E' i, j ,..., E ' m, n and e 1,1 , ..., e i, j , ..., e m, n are vertically superimposed (ie in the z direction) and arranged on the upper face of the substrate 14.

Lors d'une deuxième sous-étape 104 de la première étape 100, un ensemble de vias métalliques v1,1,..., vi,j,..., vm,n et v'1,1,..., v'i,j,..., v'm,n sont formés dans le substrat 14, le traversant sur toute son épaisseur.In a second sub-step 104 of the first step 100, a set of metal vias v 1.1 , ..., v i, j , ..., v m, n and v ' 1.1,. .., v ' i, j , ..., v' m, n are formed in the substrate 14, passing through its entire thickness.

Au cours d'une troisième sous-étape 106 de la première étape 100, un plan de masse 16 avec des trous 18 aménagés en vis-à-vis des vias métalliques traversants est défini sur la face inférieure du substrat 14.During a third substep 106 of the first step 100, a ground plane 16 with holes 18 formed opposite the through vias is defined on the underside of the substrate 14.

Au cours d'une deuxième étape 108, au moins une partie des éléments conducteurs e'1,1,..., e'i,j,..., e'm,n et e1,1,..., ei,j,..., em,n est interconnectée électriquement à l'aide d'une pluralité de réseaux d'interconnexion, par exemple les réseaux d'interconnexion 20, 22, 24 décrits précédemment, ces réseaux d'interconnexion n'étant pas connectés électriquement entre eux.During a second step 108, at least a portion of the conductive elements e ' 1.1 , ..., e' i, j , ..., e ' m, n and e 1.1 , ... , e i, j , ..., e m, n is electrically interconnected using a plurality of interconnection networks, for example the interconnection networks 20, 22, 24 previously described, these networks of interconnection not being electrically connected to each other.

Plus précisément, lors d'une première sous-étape 110 de la deuxième étape 108, à partir des valeurs des déphasages Φ1, Φ2,..., Φn/2 prédéterminées et optimales pour un système d'émission/réception fonctionnant à une fréquence de résonance fr, au moins deux réseaux d'interconnexion sont dimensionnés différemment l'un de l'autre pour engendrer ces déphasages Φ1, Φ2,..., Φn/2 entre les éléments conducteurs qu'ils interconnectent.More specifically, during a first sub-step 110 of the second step 108, from the predetermined and optimal phase shift values Φ 1 , Φ 2 ,..., Φ n / 2 for a transmitting / receiving system operating at a resonance frequency f r , at least two interconnection networks are dimensioned differently from one another to generate these phase shifts Φ 1 , Φ 2 , ..., Φ n / 2 between the conductive elements they interconnect.

Enfin, lors d'une deuxième sous-étape 112 de la deuxième étape 108, les éléments conducteurs concernés sont effectivement raccordés entre eux, par exemple deux à deux et selon une topologie linéaire telle qu'illustrée sur les figures 1 et 7, en utilisant les extrémités inférieures de leurs vias métalliques comme ports d'accès aux points d'alimentation des réseaux d'interconnexion.Finally, during a second substep 112 of the second step 108, the conductive elements concerned are effectively connected to each other, for example two by two, and according to a linear topology as illustrated in FIGS. figures 1 and 7 , using the lower ends of their metal vias as access ports to the power points of the interconnection networks.

Comme déjà évoqué dans les exemples de réalisation décrits précédemment, les déphasages Φ1, Φ2,..., Φn/2 caractérisant les réseaux d'interconnexion déterminent la longueur des lignes de transmission utilisées pour la connexion des éléments conducteurs entre eux pour un système d'émission/réception donné.As already mentioned in the embodiments described above, the phase shifts Φ 1 , Φ 2 , ..., Φ n / 2 characterizing the interconnection networks determine the length of the transmission lines used for the connection of the conductive elements to each other. a given transmission / reception system.

Dans une variante de réalisation, au moins une partie de ces réseaux d'interconnexion est munie de dispositifs de déphasage réglables bien connus de l'homme du métier, par exemple de diodes, pour l'interconnexion des éléments conducteurs entre eux. Ceci permet d'ajuster les déphasages en fonction de l'application à optimiser en variant simplement le comportement des éléments actifs ou passifs employés tout en conservant la structure de métamatériau 12 et sans besoin de modifier la longueur des lignes de transmission.In an alternative embodiment, at least a portion of these interconnection networks is provided with adjustable phase shifters well known to those skilled in the art, for example diodes, for the interconnection of the conductive elements together. This makes it possible to adjust the phase shifts according to the application to be optimized by simply varying the behavior of the active elements or employed passive while retaining the metamaterial structure 12 and without the need to change the length of the transmission lines.

Il apparaît clairement qu'un dispositif de perturbation d'une propagation d'ondes électromagnétiques tel que celui décrit précédemment permet d'améliorer le niveau de découplage entre antennes planaires sans augmenter l'encombrement du système d'émission/réception incluant de telles antennes quelle que soit la fréquence de résonance du système et la distance entre les antennes. La modification du comportement d'une structure EBG après sa fabrication devient ainsi envisageable grâce à l'interconnexion des éléments conducteurs à l'aide de lignes de transmission à déphasages différents. En outre, l'utilisation de dispositifs de déphasage réglables pour effectuer ces interconnexions permet d'adapter le comportement d'un même dispositif de perturbation d'une propagation d'ondes électromagnétiques à des systèmes d'émission/réception différents.It clearly appears that a device for disturbing an electromagnetic wave propagation such as that described previously makes it possible to improve the level of decoupling between planar antennas without increasing the size of the transmission / reception system including such antennas. whatever the frequency of resonance of the system and the distance between the antennas. The modification of the behavior of an EBG structure after its manufacture thus becomes possible thanks to the interconnection of the conductive elements by means of transmission lines with different phase shifts. In addition, the use of adjustable phase shifters to perform these interconnections makes it possible to adapt the behavior of the same device for disturbing an electromagnetic wave propagation to different transmission / reception systems.

Claims (9)

  1. Electromagnetic wave propagation disruption device (10) with a metamaterial structure (12) comprising:
    - a plurality of conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) separated from each other and arranged on a top face of a substrate (14),
    - a plurality of interconnection networks (20, 22, 24) electrically interconnecting at least some of these conductive elements (e1,i,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n), these interconnection networks (20, 22, 24) not being electrically connected to each other and at least two of these interconnection networks (20, 22, 24) being dimensioned differently to each other, therefore involving distances between interconnected conductive elements that are different from one network to the other, wherein these interconnection networks (20, 22, 24) generate thanks to their different dimensioning phase shifts (Φ1, Φ2,..., Φn/2), between the conductive elements (e1,i,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) interconnected thereby, different from one of these interconnection networks to the other,
    - a ground plane (16) positioned on a bottom face of the substrate (14) with holes (18) formed in this ground plane (16), and
    - a set of metallic vias (v1,1,..., vi,j,..., vm,n, v'1,1,..., v'i,j,..., v'm,n) formed in the substrate (14) and passing through the entire thickness thereof, each of these metallic vias (v1,1,..., vi,j,..., vm,n, v'1,1,..., v'i,j,..., v'm,n) comprising an upper end in contact with one of the conductive elements (e1,i,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) and a lower end arranged facing one of the holes (18) of the ground plane (16), with no electrical contact with the ground plane (16) and with electrical contact with one of the interconnection networks.
  2. Electromagnetic wave propagation disruption device (10) according to claim 1, wherein at least some of said interconnected networks (20, 22, 24) are equipped with adjustable phase shift devices for connecting the conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) to each other.
  3. Electromagnetic wave propagation disruption device (10) according to claim 1 or 2, wherein the conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) are distributed on the substrate (14) in an array along m rows and n columns, n being an even number, each interconnection network (20, 22, 24) interconnecting two conductive elements of the same i-th row positioned on the n 2 j th
    Figure imgb0016
    and n 2 + 1 + j th
    Figure imgb0017
    columns, where, for each interconnection network (20, 22, 24), i adopts one of the values from the range [1, m] and j one of the values from the range 0, n 2 1 .
    Figure imgb0018
  4. Electromagnetic wave propagation disruption device (10) according to any of claims 1 to 3, wherein the lower ends of the metallic vias (v1,1,..., vi,j,..., vm,n, v'1,1,..., v'i,j,..., v'm,n) in contact with the interconnected conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) form access ports to power supply points to which the interconnection networks (20, 22, 24) are connected.
  5. Electromagnetic wave propagation disruption device (10) according to any of claims 1 to 4, wherein the metamaterial structure (12) comprises two overlaid layers of conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) arranged on the top face of the substrate (14), each of these layers comprising a plurality of conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) separated from each other and distributed in an array along m rows and n columns, these two layers being separated from each other along a perpendicular direction (z) to the top face of the substrate (14) by a predetermined distance (h2), the conductive elements (e1,1,..., ei,j,..., em,n) of the first layer being arranged in a staggered fashion relative to the conductive elements (e'1,1,..., e'i,j,..., e'm,n) of the second layer.
  6. Electromagnetic wave propagation disruption device (10) according to any of claims 1 to 5, wherein each of the conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) has any of the shapes of the set consisting of a square shape, a rectangular shape, a spiral shape, a fork shape, a Jerusalem cross shape and a dual Jerusalem cross shape known as a UC-EBG shape.
  7. Electromagnetic wave propagation disruption device (10) according to any of claims 1 to 6, wherein said plurality of interconnection networks (20, 22, 24) has any of the topologies from the set consisting of a linear topology, a star topology, a radial topology and a tree topology.
  8. Electromagnetic wave transmission/receiving system comprising at least two antennas (30, 32) between which at least one electromagnetic wave propagation disruption device (10) according to any of claims 1 to 7 is arranged.
  9. Method for producing an electromagnetic wave propagation disruption device (10) with a metamaterial structure (12) comprising the following steps:
    - arranging (100) a plurality of conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) separated from each other on a top face of a substrate (14),
    - electrically interconnecting (108) at least some of these conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) using a plurality of interconnection networks (20, 22, 24), these interconnection networks (20, 22, 24) not being electrically connected to each other,
    - dimensioning (110) the interconnection networks (20, 22, 24), wherein at least two of these interconnection networks (20, 22, 24) are dimensioned differently to each other, therefore involving distances between interconnected conductive elements that are different from one network to the other, wherein these interconnection networks (20, 22, 24) generate thanks to their different dimensionning phase shifts (Φ1, Φ2,..., Φn/2), between the conductive elements interconnected thereby, different from one of these interconnection networks to the other,
    - arranging (106) a ground plane (16) on a bottom face of the substrate (14) with holes (18) formed in this ground plane (16), and
    - forming (104) a set of metallic vias (v1,1,..., vi,j,..., vm,n, v'1,1,..., v'i,j,..., v'm,n) in the substrate (14) and passing through the entire thickness thereof, each of these metallic vias (v1,1,..., vi,j,..., vm,n, v'1,1,..., v'i,j,..., v'm,n) comprising an upper end in contact with one of the conductive elements (e1,1,..., ei,j,..., em,n, e'1,1,..., e'i,j,..., e'm,n) and a lower end arranged facing one of the holes (18) of the ground plane (16), with no electrical contact with the ground plane (16) and with electrical contact with one of the interconnection networks.
EP14169886.0A 2013-05-31 2014-05-26 Device for disrupting a propagation of electromagnetic waves and method for manufacturing same Active EP2808946B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1354998A FR3006505B1 (en) 2013-05-31 2013-05-31 DEVICE FOR DISTURBING ELECTROMAGNETIC WAVE PROPAGATION AND METHOD FOR MANUFACTURING THE SAME

Publications (2)

Publication Number Publication Date
EP2808946A1 EP2808946A1 (en) 2014-12-03
EP2808946B1 true EP2808946B1 (en) 2018-05-09

Family

ID=49378375

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14169886.0A Active EP2808946B1 (en) 2013-05-31 2014-05-26 Device for disrupting a propagation of electromagnetic waves and method for manufacturing same

Country Status (3)

Country Link
US (1) US9419335B2 (en)
EP (1) EP2808946B1 (en)
FR (1) FR3006505B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084779A1 (en) 2018-08-02 2020-02-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives ANTENNA DEVICE COMPRISING AT LEAST TWO ANTENNAS WITH THE SAME ELECTRICAL CONNECTION SUBSTRATE

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
KR102252382B1 (en) * 2014-07-22 2021-05-14 엘지이노텍 주식회사 Radar apparatus
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9853485B2 (en) * 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10135286B2 (en) 2015-12-24 2018-11-20 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture offset from a patch antenna
WO2018111921A1 (en) 2016-12-12 2018-06-21 Energous Corporation Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
FR3047845A1 (en) 2016-02-17 2017-08-18 Commissariat Energie Atomique ELECTROMAGNETIC REFLECTION PLATE WITH METAMATERIAL STRUCTURE AND MINIATURE ANTENNA DEVICE COMPRISING SUCH PLATE
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10886622B1 (en) * 2017-10-05 2021-01-05 Hrl Laboratories, Llc Tunable antenna isolators
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
CN113661660B (en) 2019-02-06 2023-01-24 艾诺格思公司 Method of estimating optimal phase, wireless power transmitting apparatus, and storage medium
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN114731061A (en) 2019-09-20 2022-07-08 艾诺格思公司 Classifying and detecting foreign objects using a power amplifier controller integrated circuit in a wireless power transmission system
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation Systems and methods of protecting wireless power receivers using multiple rectifiers and establishing in-band communications using multiple rectifiers
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
CN111600129A (en) * 2020-05-27 2020-08-28 西安朗普达通信科技有限公司 Novel multi-antenna system
CN113224539B (en) * 2021-04-13 2022-09-20 南京理工大学 Reconfigurable electromagnetic metamaterial
CN114497932B (en) * 2021-12-28 2023-07-18 江苏亨通太赫兹技术有限公司 Millimeter wave duplexer inserted with EBG structure
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252319A1 (en) * 2009-04-07 2010-10-07 Won Woo Cho Electromagnetic bandgap structure and printed circuit board having the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917343B2 (en) * 2001-09-19 2005-07-12 Titan Aerospace Electronics Division Broadband antennas over electronically reconfigurable artificial magnetic conductor surfaces
US6995733B2 (en) * 2002-12-24 2006-02-07 Intel Corporation Frequency selective surface and method of manufacture
US20050134521A1 (en) * 2003-12-18 2005-06-23 Waltho Alan E. Frequency selective surface to suppress surface currents
US7190315B2 (en) * 2003-12-18 2007-03-13 Intel Corporation Frequency selective surface to suppress surface currents
FR2867617B1 (en) 2004-03-10 2006-06-09 Adventen DEVICE FOR DISTURBING ELECTROMAGNETIC WAVE PROPAGATION, METHOD OF MANUFACTURE AND CORRESPONDING APPLICATION
US7209082B2 (en) * 2005-06-30 2007-04-24 Intel Corporation Method and apparatus for a dual band gap wideband interference suppression
GB2467763B (en) * 2009-02-13 2013-02-20 Univ Kent Canterbury Tuneable surface
KR101072591B1 (en) * 2009-08-10 2011-10-11 삼성전기주식회사 Electromagnetic interference noise reduction board using electromagnetic bandgap structure
JP5236754B2 (en) * 2010-02-26 2013-07-17 株式会社エヌ・ティ・ティ・ドコモ Device having a mushroom structure
EP2518823B1 (en) * 2011-04-27 2013-07-03 Research In Motion Limited Antenna assembly utilizing metal-dielectric resonant structures for specific absorption rate compliance
EP2518824A1 (en) * 2011-04-27 2012-10-31 Research In Motion Limited Multiple antenna assembly utilizing electromagnetic band gap isolation structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100252319A1 (en) * 2009-04-07 2010-10-07 Won Woo Cho Electromagnetic bandgap structure and printed circuit board having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084779A1 (en) 2018-08-02 2020-02-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives ANTENNA DEVICE COMPRISING AT LEAST TWO ANTENNAS WITH THE SAME ELECTRICAL CONNECTION SUBSTRATE

Also Published As

Publication number Publication date
FR3006505B1 (en) 2017-02-10
FR3006505A1 (en) 2014-12-05
US9419335B2 (en) 2016-08-16
US20140354502A1 (en) 2014-12-04
EP2808946A1 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
EP2808946B1 (en) Device for disrupting a propagation of electromagnetic waves and method for manufacturing same
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
EP1407512B1 (en) Antenna
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR2936906A1 (en) OPTIMIZED ARRANGEMENT REFLECTOR NETWORK AND ANTENNA HAVING SUCH A REFLECTIVE NETWORK
FR2772517A1 (en) MULTI-FREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE AND DEVICE INCLUDING THIS ANTENNA
EP2087553A2 (en) Multi-sector antenna
WO2005117208A1 (en) Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP1564842B1 (en) Ultrawideband antenna
FR2863110A1 (en) ANTENNA IN MULTI-BAND NETWORK WITH DOUBLE POLARIZATION
EP3417507B1 (en) Electromagnetically reflective plate with a metamaterial structure and miniature antenna device including such a plate
EP0098192B1 (en) Multiplexing device for combining two frequency bands
CA2460820C (en) Broadband or multiband antenna
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
EP3335267B1 (en) Surface-wave antenna, antenna array and use of an antenna or an antenna array
EP2637254B1 (en) Planar antenna for terminal operating with dual circular polarisation, airborne terminal and satellite telecommunication system comprising at least one such antenna
EP3840116B1 (en) Reconfigurable antenna with transmitter network with monolithic integration of elementary cells
FR2736212A1 (en) Microwave frequency coupler device esp. for dipole antenna
EP3942649B1 (en) Compact directional antenna, device comprising such an antenna
FR2906937A1 (en) DECOUPLING NETWORKS OF RADIANT ELEMENTS OF AN ANTENNA
FR3123513A1 (en) Stack for manufacturing an integrated circuit intended to provide an electromagnetic lens function for a reconfigurable antenna with a transmitter array
FR3060864A1 (en) SLOW WAVE TRANSMISSION LINE IN MEANDRES
FR3123162A1 (en) ANTENNA WITH GAP DISTRIBUTION NETWORK

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150602

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 998352

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014025119

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180509

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180810

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 998352

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180509

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014025119

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180526

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

26N No opposition filed

Effective date: 20190212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140526

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180509

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220523

Year of fee payment: 9

Ref country code: DE

Payment date: 20220519

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230531

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602014025119

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230526