EP3414498A1 - Dispositif de réfrigération cryogénique - Google Patents

Dispositif de réfrigération cryogénique

Info

Publication number
EP3414498A1
EP3414498A1 EP17706538.0A EP17706538A EP3414498A1 EP 3414498 A1 EP3414498 A1 EP 3414498A1 EP 17706538 A EP17706538 A EP 17706538A EP 3414498 A1 EP3414498 A1 EP 3414498A1
Authority
EP
European Patent Office
Prior art keywords
linear
compressor
piston
working fluid
refrigeration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17706538.0A
Other languages
German (de)
English (en)
Other versions
EP3414498B1 (fr
Inventor
Fabien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3414498A1 publication Critical patent/EP3414498A1/fr
Application granted granted Critical
Publication of EP3414498B1 publication Critical patent/EP3414498B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/002Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/02Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/073Linear compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream

Definitions

  • the invention relates to a cryogenic refrigeration device.
  • the invention more particularly relates to a cryogenic refrigeration device comprising a working circuit for cooling a working fluid circulating in said circuit, the working circuit comprising, arranged in series within a loop: a compression portion, a cooling portion, a valve portion (s), a detent portion, and a warming portion, for subjecting the working fluid to a recuperative-type work cycle comprising compressing and then cooling and then relaxing and warming in order to of a new cycle.
  • the invention also relates to a cryogenic gas liquefier comprising such a refrigeration device.
  • a concern for the constant improvement of existing cryogenic refrigerators or liquefiers is to increase their service life, reduce the minimum operating temperature, increase their reliability. In particular, it is particularly advantageous to eliminate maintenance operations and to eliminate the use of oils.
  • a first known solution consists in using a regenerative thermodynamic cycle of the Stirling or Inc.-Tube type.
  • the disadvantages of these regenerative solutions are as follows: These devices have poor performance at temperatures below 30K. This is related to the low heat capacity of the materials constituting the regenerator at this temperature level. In addition, in these solutions, it is relatively difficult to thermally bond the refrigerator to the system to be cooled and the heat removal system.
  • Another solution is to use an inverted Brayton type thermodynamic recuperative cycle based on a screw-lubricated compressor, a plate counter-current exchanger and a centripetal expansion turbine.
  • This solution however has the disadvantage of using oil to cool and lubricate the compressor. This imposes a de-oiling operation of the cycle gas after compression.
  • the life of this type of system is relatively short because of the compressor technology used as well as because of the compressor leaks. This technology also has difficulties to relax a two-phase fluid and the energy efficiency is not optimal.
  • the compression ratio achievable per centrifugal compression stage is relatively low because of the low molecular weight of the gases that can be used at cryogenic temperature.
  • the manufacturing cost of such turbomachines is also relatively high and centripetal machines used are poorly adapted to relax a two-phase fluid.
  • An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the device according to the invention is essentially characterized in that the compression portion comprises at least one linear piston compressor driven by an engine.
  • the trigger portion comprises at least one linear piston holder
  • the valve portion comprises at least one linear type control valve actuated by a linear motor and driven to supply or extract the working fluid of at least a piston regulator.
  • embodiments of the invention may include one or more of the following features:
  • the device comprises at least one linear piston holder coupled to the linear motor which drives at least one linear piston compressor, that is to say that at least one linear motor couples at the same time a linear piston holder and a linear piston compressor,
  • the device comprises at least one linear type control valve coupled to the linear motor which drives at least one linear piston compressor, that is to say that at least one linear motor couples at the same time a linear piston compressor. and a linear type control valve, the device comprises at least one linear piston holder coupled to a linear alternator separate from the motor of the at least one compressor, that is to say that at least one linear alternator couples a linear piston holder to said alternator,
  • the working fluid is cooled to a temperature of between 4K and 200 K
  • the compression portion of the working circuit comprises several linear piston compressors,
  • the expansion portion of the working circuit comprises a plurality of linear piston holders each associated with a respective linear type regulating valve (9),
  • the working circuit comprises a high-pressure line connecting a high-pressure outlet of a compressor to the inlet of a pressure reducer, said high pressure line comprising a check valve system, at least one heat exchanger, compressed gas cooling, and a linear type control valve,
  • the working circuit comprises a low pressure line connecting an outlet of a pressure reducer to the inlet of a compressor, said low pressure line comprising, a linear type control valve, at least one heat exchanger gas heating and a check valve system,
  • the at least one heat exchanger comprises a countercurrent heat exchanger putting in heat exchange the working fluid flowing in the high and low pressure lines,
  • the at least one heat exchanger puts the working fluid in heat exchange with at least one of: water, air, nitrogen, helium, hydrogen, methane , neon, oxygen or argon,
  • the at least one linear type control valve is actuated by its linear motor at the same frequency as the operating frequency of the linear piston expansion valve for which the valve controls the supply or removal of working fluid but is out of phase by relative to the actuation of the piston regulator,
  • the device comprises two linear piston compressors arranged in series, the working circuit comprising a first high pressure connecting pipe a high pressure outlet of a first compressor at the inlet of a second compressor via a check valve system and a second high pressure line connecting a high pressure outlet of the second compressor to the inlet of the first compressor via at least one heat exchanger in heat exchange with the working fluid, a check valve system (s), at least one and preferably two linear type control valves and at least one and preferably two piston expander linear, the at least one control valve being controlled to transfer fluid from the compressors and heat exchanged with the at least one heat exchanger to the at least one expander and then to transfer the expanded fluid from the at least one expander in the compressors with an intermediate heat exchange with at least one heat exchanger,
  • the working circuit comprises a phase separator disposed downstream of at least one control valve for liquefying at least a portion of the working fluid at the outlet of an expander and separating the liquid phase from the gaseous phase of the latter ,
  • the working circuit comprises a liquefied working fluid sampling line and a working fluid supply line to the gaseous circuit
  • thermodynamic cycle chosen from: a Brayton cycle, a Joule-Thomson cycle, a Claude cycle,
  • the working circuit is closed (or respectively open), that is to say that the working fluid is not (or, respectively is) withdrawn from the circuit
  • the working fluid always flows in the same direction in the work circuit, that is to say that the working fluid does not go back / forth in the same circuit of the circuit between two work circuit members ,
  • the refrigerator transfers heat from the user organ (cold source) to a hot source (organ at a higher temperature than the cold source),
  • the at least one linear motor is of the flexible bearing or gas bearing or magnetic bearing type
  • the at least one linear piston compressor is of the "dry” type, that is to say not bringing the working fluid into contact with lubricating oil
  • the at least one linear piston expander is of the “dry” type, that is to say not bringing the working fluid into contact with lubricating oil
  • the at least one valve is of the "dry” type, that is to say not bringing the working fluid into contact with lubricating oil,
  • the working fluid comprises at least one of: helium, hydrogen, nitrogen, methane, neon, oxygen or argon,
  • the at least one control valve forms a piston expander, in particular for gaseous, liquid or two-phase working fluid,
  • the at least one linear piston holder coupled to the linear motor of a linear piston compressor is configured to transfer mechanical work of expansion of the working fluid of the expander to the compressor via a motor shaft of said motor,
  • At least one branch is provided in the working circuit to relax a part of the working fluid in one of several expansion valves, all or part of the working fluid expanded in one of the regulators can be returned to the compressor (s) via a return line connected to a determined intermediate level of the low pressure line.
  • the invention has many advantages over the prior art, in particular:
  • the device according to the invention which uses a recuperative cycle (the working circuit forms a different structure loop in which the working fluid always circulates in the same direction) can achieve very low temperatures, typically 4 K, the use of a piston compressor (s) can achieve compression rates particularly important up to ten per compression stage. Compared with a cycle using centrifugal compressors, this feature reduces cycle throughput and increases cycle efficiency, given the low number of moving parts and the simplicity of the system, the refrigerator has high reliability .
  • the compressor does requires no mechanical power transmission: speed multiplier, universal joints,
  • the device requires little or no maintenance
  • the recuperative cycle according to the invention makes it possible to easily connect the refrigerator to the system to be cooled, for example via a plate heat exchanger as well as to the heat evacuation system, for example via a tube / shell heat exchanger,
  • the recuperative cycle according to the invention makes it possible to deport the system to cool compression / expansion machines as well as the system for evacuating the heat from the compression / expansion machines via tubes,
  • the modularity of the device makes it possible to adapt it to a multitude of different needs. For example, it is possible to extract heat at several temperature levels,
  • the absence of oil in the device allows to connect directly with a cooling system that would not tolerate this type of pollution, preferably the refrigerator does not use oil for lubrication or cooling. This removes the de-oiling plant downstream of the compressor, as well as the waste oil treatment and recycling operations,
  • the expansion work of the piston expander can be upgraded and used by the compressor
  • the device may be devoid of rotating or sliding seals, the system is then completely airtight with respect to the outside. This prevents any loss or pollution of the cycle gas,
  • the device makes it possible to relax a two-phase fluid and to replace, for example, on a Joules Thomson or Claude cycle, the Joules Thomson expansion valve by a pressure reducer with work recovery, unlike existing piston regulators using complex mechanical systems requiring lubrication and maintenance to actuate the regulator valves, the device uses a simpler mechanism and whose life span is typically several decades,
  • the invention also relates to a method for refrigerating a user organ by means of such a cryogenic refrigeration device in which the cooled working fluid is placed in heat exchange with said user organ.
  • the invention also relates to a liquefier or liquefaction process comprising or using such a refrigeration device.
  • the invention may also relate to any alternative device or method comprising any combination of the above or below features.
  • FIG. 1 represents a schematic and partial view illustrating an exemplary structure and operation of a refrigeration device according to the invention
  • FIG. 2 shows a schematic and partial view illustrating another example of structure and operation of a liquefaction device according to the invention.
  • the nonlimiting exemplary embodiment illustrated in FIG. 1 is a cryogenic refrigerator, for example having a cold temperature of 77 k, capable of liquefying nitrogen at saturation.
  • the cooling device 100 is preferably intended to transfer heat from a cold source 13 at low temperature (via a heat exchange with a member or user 7 to be cooled) to a hot source 15 at a higher temperature (for example via a heat exchange with a cooling member 5).
  • the device comprises a working circuit for a working fluid (for example helium).
  • the working circuit forms a loop in which the working fluid circulates in one direction while being subjected to a thermodynamic cycle of the recuperative type.
  • the device may comprise all or part of the components described below.
  • the device comprises one or more linear motors 1 preferably using flexible bearings 2 (or gas or low friction or magnetic).
  • the bearings shown by way of example in FIG. 1 are of the flexible bearing type.
  • the circuit comprises one or more compressors 3 with pistons arranged in series preferably operating at ambient temperature and driven by the linear motor (s) 1.
  • the piston compressor is in particular a linear displacement piston compressor driven by a motor 1.
  • the piston is coupled to a shaft displaced in translation in reciprocating motion via a motor, for example an electromagnetic motor whose reciprocating translation movement of the shaft integral with the piston is driven by a system of magnetic coils (cooperating with solid magnets of the shaft or secured to a stator).
  • piston compressors 3 use, for example, non-return valves 4 and 14 to communicate with high-pressure (for discharging compressed fluid) and low-pressure lines 11 (for accommodating relaxed fluid with a view to re-compressing it. ).
  • non-return valves 4 and 14 to communicate with high-pressure (for discharging compressed fluid) and low-pressure lines 11 (for accommodating relaxed fluid with a view to re-compressing it. ).
  • check valves for example leaf valves.
  • any other type of member for preventing the return of the compressed fluid in the opposite direction in the circuit may be considered.
  • the working circuit comprises one or more exchangers 5 designed to evacuate heat from the compressed gas to a hot source and arranged at the outlet of the compressor or compressors 3.
  • This cooling exchanger for example puts the working fluid in heat exchange with a coolant coolant.
  • At least one countercurrent heat changer 6 is provided downstream in the direction of circulation of the working fluid in the circuit on the high pressure line 12.
  • This heat exchanger 6 can separate the relatively high temperature elements from the relatively low temperature elements 6 of the circuit.
  • the circuit further comprises at least one valve 9 operating at low temperature (that is to say between 4 and 200K).
  • This valve 9 is provided for supplying and extracting gas from a downstream piston expander 10.
  • This valve 9 can be actuated by a linear motor 8 of technology equivalent to the technology of the motor 1 of the compressor.
  • This valve 9 can be coupled indifferently to the motor 1 of the compressor 3 or to a separate motor.
  • the regulator 10 can be coupled indifferently to the engine 1 of the compressor or the motor 8 of the valve
  • this linear alternator may be of technology equivalent to the engine 1 technology described above
  • This alternator has for example a structure of the same type as the compressor or engines but used in an alternator mode: c that is, the piston is displaced by the fluid and produces energy).
  • This valve 9 is preferably operated at the same frequency as the expander 10, however, its movement is out of phase with the expander
  • the piston regulator (s) 10 operate at low temperature and may or may not be mechanically linked to the engine 1 of the compressor.
  • the gas expanded by the expander 10 is sent back to the compressor 3 via a low-pressure pipe 11 (through the valve 9).
  • One or more heat exchangers 7 are provided for heating the working fluid and thus extracting heat from the cold source 13.
  • the expanded fluid passes in particular in the countercurrent exchanger 6 before returning to the compressor 3 (FIG. via the corresponding flap 4).
  • the function of this refrigerator 100 can be the following.
  • the working gas (helium in this example) in the gas phase (for example at 20 ° C.) is compressed through the piston compressor 3 from a low pressure (for example 10 bar) to a high pressure (for example of 18 bar).
  • the nonreturn valves 4, 14 are used to alternately communicate the compression chamber of the compressor with the low pressure line 1 1 and the high pressure line 12.
  • the helium is heated at the outlet of the compressor (for example at 110 ° C.).
  • the helium is then cooled through a first exchanger 5 using a flow of water (or any other suitable cooling agent).
  • the temperature of the helium is reduced to 25 ° C.
  • the helium then passes through the countercurrent exchanger 6, its temperature is lowered, for example to 79K. Downstream, the control valve 9 is used to alternately communicate the expansion chamber of the expander 10 with the low pressure line 1 1 and the high pressure line 12.
  • This piston expander 10 is especially configured to operate with a two-phase fluid or liquid.
  • the expansion work of the expander 10 can be transferred via the common shaft of the linear motor 1 to the compressor 3.
  • the helium then passes through the heat exchanger 7 where it cools the user member 13 cold (nitrogen in this example).
  • the cooled nitrogen gas 13 is, for example, liquefied to saturation by extracting heat from it.
  • the temperature of the helium is, for example, brought to 76 K.
  • the helium then passes again through the countercurrent exchanger 6 where it is heated (for example to 20 ° C).
  • the helium then returns to the compressor 3 to perform a new identical cycle via the valve 4.
  • Figure 2 illustrates another embodiment of the invention.
  • This example represents a gas liquefier, in particular hydrogen.
  • This liquefier uses the same main elements as those described above.
  • the working gas for example at 20 ° C (gas phase) is compressed in two piston compressors 20 and 21 arranged in series.
  • each compressor 20, 21, (via a high-pressure pipe and a valve 14), the gas is cooled by a heat exchanger 22, 23. This hydrogen is then cooled through a first heat exchanger 24. against a current.
  • Part of the cooled gas flow may be passed through a bypass 15 including a first linear valve 9 through a first piston expander 25 to extract heat from hydrogen.
  • this first piston expander 25 may be connected to the first compressor 20 via a linear motor (not shown for simplification purposes but may be of the same type as that described above).
  • the first regulator can be coupled to a separate engine (alternator).
  • the first control valve 9 upstream of the first expander 25 is preferably operated via a linear motor (not shown for the sake of simplification but may be of the same type as that described above).
  • the hydrogen (expanded or not) can then be cooled through a second countercurrent exchanger 26, and possibly through a third countercurrent exchanger 27.
  • This hydrogen expanded in the first expander 25 can be returned directly to the first compressor 20 (via the countercurrent heat exchanger (s) 24, 26. That is, the hydrogen expanded in the first expander 25 can be returned to the compressors without being subjected to a second relaxation or cooling.
  • the second expander 28 is preferably of the two-phase piston type for extracting heat from hydrogen with a view to partially liquefying it.
  • This second piston expander 28 can be mechanically linked (coupled) to the second compressor 21 (via a linear motor not shown for simplification purposes as previously) or to a separate alternator.
  • the second control valve 9 located upstream of the second expander 28 can also be actuated by a linear motor (not shown for the sake of simplification).
  • control valves 9 controlling the circulation of the fluid between the regulators 25, 28 and the compressors 20 may, if necessary, be actuated by one and the same common actuator.
  • the two-phase mixture obtained after passing through the second expander 28 can then be sent to a cryogenic separator 29.
  • the gaseous phase of the hydrogen is returned to the first compressor 20 through the exchangers 27, 26, 24 against the current.
  • the liquid phase produced can be sent to an end user through a conduit 30 provided for this purpose.
  • the circuit may comprise an inlet 31 for supplying working fluid (for example upstream of the first compressor 20) to compensate for the liquid withdrawal.
  • working fluid for example upstream of the first compressor 20
  • the working fluid used may be any other fluid than helium or hydrogen, for example nitrogen, methane, neon, oxygen or argon.
  • the working circuit can thus be of open or closed type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Dispositif de réfrigération cryogénique comprenant un circuit de travail destiné à refroidir un fluide de travail circulant dans ledit circuit, le circuit de travail comprenant, disposés en série au sein d'une boucle: une portion de compression (3), une portion (5, 6, 22, 23, 24, 26, 27) de refroidissement, une portion à vanne(s) (9), une portion de détente (10, 25, 28) et une portion de réchauffement, pour soumettre le fluide de travail à une cycle de travail de type récupératif comprenant une compression puis un refroidissement puis une détente puis un réchauffement en vue d'un nouveau cycle, dans lequel, la portion de compression comprend au moins un compresseur (3, 20, 21) à piston linéaire entraîné par un moteur (1) linéaire, la portion de détente comprend au moins un détenteur (10, 25, 28) à piston linéaire, la portion à vanne(s) comprend au moins une vanne (9) de régulation de type linéaire actionnée par un moteur linéaire et pilotée pour alimenter ou extraire le fluide de travail du au moins un détendeur à piston.

Description

Dispositif de réfrigération cryogénique
L'invention concerne un dispositif de réfrigération cryogénique.
L'invention concerne plus particulièrement un dispositif de réfrigération cryogénique comprenant un circuit de travail destiné à refroidir un fluide de travail circulant dans ledit circuit, le circuit de travail comprenant, disposés en série au sein d'une boucle: une portion de compression, une portion de refroidissement, une portion à vanne(s), une portion de détente et une portion de réchauffement, pour soumettre le fluide de travail à une cycle de travail de type récupératif comprenant une compression puis un refroidissement puis une détente puis un réchauffement en vue d'un nouveau cycle.
L'invention concerne également un liquéfacteur de gaz cryogénique comprenant un tel dispositif de réfrigération.
Un souci pour l'amélioration constante des réfrigérateurs ou liquéfacteurs cryogéniques existants vise à augmenter leur durée de vie, diminuer la température minimale de fonctionnement, augmenter leur fiabilité. En particulier, il est particulièrement avantageux de supprimer les opérations de maintenance et de supprimer l'utilisation d'huiles.
Une première solution connue consiste à utiliser un cycle thermodynamique régénératif de type Stirling ou Puise-Tube. Les inconvénients de ces solutions régénératives sont les suivants : Ces dispositifs ont de faibles performances à des températures inférieures à 30K. Ceci est lié à la faible capacité thermique des matériaux constituant le régénérateur à ce niveau de température. De plus, dans ces solutions, il est relativement difficile de lier thermiquement le réfrigérateur au système à refroidir ainsi qu'au système d'évacuation de la chaleur.
Une autre solution consiste à utiliser un cycle thermodynamique récupératif de type Brayton inversé basé sur un compresseur lubrifié à vis, un échangeur à contre courant à plaques et une turbine de détente centripète. Cette solution a cependant pour inconvénient d'utiliser de l'huile pour refroidir et lubrifier le compresseur. Ce qui impose une opération de déshuilage du gaz de cycle après compression. De plus, la durée de vie de ce type de système est relativement courte du fait de la technologie de compression employée ainsi que du fait des fuites au niveau du compresseur. Cette technologie présente en outre des difficultés pour détendre un fluide diphasique et l'efficacité énergétique n'est pas optimale.
Encore une autre solution consiste à utiliser un cycle thermodynamique récupératif du type Turbo-Brayton inversé basé sur des compresseurs centrifuges secs, un échangeur à contre courant à plaques et une turbine de détente centripète (cf. FR2924205A1 ). Cette solution est cependant peu adaptée aux faibles puissances thermiques du fait de la difficulté de miniaturiser les turbomachines utilisées.
De plus, le taux de compression réalisable par étage de compression centrifuge est relativement faible du fait de la faible masse molaire des gaz utilisables à température cryogénique. Le coût de fabrication de telles turbomachines est par ailleurs relativement élevé et les machines centripète utilisées sont mal adaptée pour détendre un fluide diphasique.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que la portion de compression comprend au moins un compresseur à piston linéaire entraîné par un moteur linéaire, la portion de détente comprend au moins un détenteur à piston linéaire, la portion à vanne(s) comprend au moins une vanne de régulation de type linéaire actionnée par un moteur linéaire et pilotée pour alimenter ou extraire le fluide de travail du au moins un détendeur à piston.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
- le dispositif comprend au moins un détenteur à piston linéaire accouplé au moteur linéaire qui entraîne au moins un compresseur à piston linéaire, c'est-à- dire qu'au moins un moteur linéaire accouple à la fois un détenteur à piston linéaire et un compresseur à piston linéaire,
- le dispositif comprend au moins une vanne de régulation de type linéaire accouplé au moteur linéaire qui entraîne au moins un compresseur à piston linéaire, c'est-à-dire qu'au moins un moteur linéaire accouple à la fois un compresseur à piston linéaire et une vanne de régulation de type linéaire, - le dispositif comprend au moins un détenteur à piston linéaire accouplé à un alternateur linéaire distinct du moteur du au moins un compresseur, c'est à dire qu'au moins un alternateur linéaire accouple un détenteur à piston linéaire ledit alternateur,
- le fluide de travail est refroidi jusqu'à une température comprise entre 4K et 200 K,
- la portion de compression du circuit de travail comprend plusieurs compresseurs à piston linéaire,
- la portion de détente du circuit de travail comprend plusieurs détenteurs à piston linéaire associés chacun à une vanne (9) de régulation de type linéaire respective,
- le circuit de travail comprend une conduite haute pression reliant une sortie à haute pression d'un compresseur à l'entrée d'un détendeur, ladite conduite à haute pression comprenant un système de clapet anti-retour, au moins un échangeur de chaleur de refroidissement du gaz comprimé, et une vanne de régulation de type linéaire,
- le circuit de travail comprend une conduite basse pression reliant une sortie d'un détendeur à l'entrée d'un compresseur, ladite conduite basse pression comprenant, une vanne de régulation de type linéaire, au moins un échangeur de chaleur réchauffement du gaz détendu et un système de clapet anti-retour,
- le au moins un échangeur de chaleur comprend un échangeur de chaleur à contre-courant mettant en échange thermique le fluide de travail circulant dans les conduite haute et basse pression,
- le au moins un échangeur de chaleur met en échange thermique le fluide de travail avec au moins un fluide parmi : de l'eau, de l'air, de l'azote, de l'hélium, de l'hydrogène, du méthane, du néon , de l'oxygène ou de l'argon,
- la au moins une vanne de régulation de type linéaire est actionnée par son moteur linéaire à la même fréquence que la fréquence de fonctionnement du détendeur à piston linéaire pour lequel la vanne commande la fourniture ou le retrait de fluide de travail mais de façon déphasée par rapport à l'actionnement du détendeur à piston,
- le dispositif comprend deux compresseurs à piston linéaire disposés en série, le circuit de travail comprenant une première conduite haute pression reliant une sortie à haute pression d'un premier compresseur à l'entrée d'un second compresseur via un système de clapet anti-retour et une seconde conduite haute pression reliant une sortie à haute pression du second compresseur à l'entrée du premier compresseur via au moins un échangeur de chaleur en échange thermique avec le fluide de travail, un système de clapet(s) anti-retour, au moins une et de préférence deux vannes de régulation de type linéaire et au moins un et de préférence deux détendeurs à piston linéaire, la au moins une vanne de régulation étant pilotée pour transférer du fluide issu des compresseurs et ayant échangé thermiquement avec le au moins un échangeur de chaleur vers le au moins un détendeur puis pour transférer le fluide détendu issu du au moins un détendeur dans les compresseurs avec un échange thermique intermédiaire avec au moins un échangeur de chaleur,
- le circuit de travail comprend un séparateur de phase disposé en aval d'au moins une vanne de régulation pour liquéfier au moins une partie du fluide de travail à la sortie d'un détendeur et séparer la phase liquide de la phase gazeuse de ce dernier,
- le circuit de travail comprend une conduite de prélèvement de fluide de travail liquéfié et une conduite de fourniture de fluide de travail au circuit sous forme gazeuse,
- le circuit de travail soumet le fluide de travail à un cycle thermodynamique choisi parmi : un cycle de Brayton, un cycle Joule-Thomson, un cycle Claude,
- le circuit de travail est fermé (ou, respectivement ouvert), c'est-à-dire que le fluide de travail n'est pas (ou, respectivement est), soutiré du circuit,
- le fluide de travail circule toujours dans le même sens dans le circuit de travail, c'est-à-dire que le fluide de travail ne réalise pas d'aller/retour dans une même conduite du circuit entre deux organes de circuit de travail,
- le réfrigérateur transfère de la chaleur de l'organe utilisateur (source froide) vers une source chaude (organe à température plus élevée que la source froide),
- le au moins un moteur linéaire est du type à palier flexible ou palier à gaz ou paliers magnétiques,
- le au moins un compresseur à piston linéaire est du type « sec » c'est-à- dire ne mettant pas en contact le fluide de travail avec de l'huile de lubrification, - le au moins un détendeur à piston linéaire est du type « sec » c'est-à-dire ne mettant pas en contact le fluide de travail avec de l'huile de lubrification,
- la au moins une vanne est du type « sèche » c'est-à-dire ne mettant pas en contact le fluide de travail avec de l'huile de lubrification,
- le fluide de travail comprend l'un au moins parmi : de l'hélium, de l'hydrogène, de l'azote, du méthane, du néon, de l'oxygène ou de l'argon,
- la au moins une vanne de régulation forme un détendeur à piston, notamment pour fluide de travail gazeux, liquide ou diphasique,
- le au moins un détenteur à piston linéaire accouplé au moteur linéaire d'un compresseur à piston linéaire est configuré pour transférer du travail mécanique de détente du fluide de travail du détendeur vers le compresseur via un arbre moteur dudit moteur,
- au moins une dérivation est prévue dans le circuit de travail pour détendre une partie du fluide de travail dans un détendeur parmi plusieurs détendeurs, - tout ou une partie du fluide de travail détendu dans un des détendeurs peut être renvoyé vers le ou les compresseurs via une conduite de retour reliée à un niveau intermédiaire déterminée de la conduite basse pression.
.L'invention présente de nombreux avantages par rapport à l'art antérieur notamment :
- en comparaison avec un cycle régénératif (du type puise-tube dans lequel le fluide de travail fait des aller-retour entre un compresseur et un régénérateur), le dispositif selon l'invention qui utilise un cycle récupératif (le circuit de travail forme une boucle de structure différente dans laquelle le fluide de travail circule toujours dans le même sens) permet d'atteindre des températures très basses, typiquement 4 K, l'utilisation d'un compresseur à piston(s) permet d'atteindre des taux de compression importants notamment jusqu'à dix par étage de compression. En comparaison avec un cycle utilisant des compresseurs centrifuges, cette caractéristique permet de réduire le débit du cycle ainsi que d'augmenter le rendement du cycle, compte tenu du faible nombre de pièces mobiles et de la simplicité du système, le réfrigérateur a une grande fiabilité. Le compresseur ne nécessite pas de transmission de puissance mécanique: multiplicateur de vitesse, joints de cardan,
le dispositif nécessite peu ou pas de maintenance,
la durée de vie d'un tel dispositif est typiquement de plusieurs dizaines d'années,
le cycle récupératif selon l'invention permet de lier facilement le réfrigérateur au système à refroidir, par exemple via un échangeur à plaques ainsi qu'au système d'évacuation de la chaleur, par exemple via un échangeur tubes/calandre,
- le cycle récupératif selon l'invention permet de déporter le système à refroidir des machines de compression/détente ainsi que le système d'évacuation de la chaleur des machines de compression/détente via des tubes,
la modularité du dispositif permet de l'adapter à une multitude de besoins différents. Il est par exemple possible d'extraire de la chaleur à plusieurs niveaux de températures,
l'absence d'huile dans le dispositif permet de la connecter directement avec un système à refroidir qui ne tolérerait pas ce type de pollution, avantageusement le réfrigérateur n'utilise pas d'huile pour la lubrification ou le refroidissement. Ceci supprime l'installation de déshuilage en aval du compresseur, ainsi que les opérations de traitement et de recyclage des huiles usagées,
le travail de détente du détendeur à piston peut être valorisé et utilisé par le compresseur,
- le dispositif peut être dépourvu de joints tournants ou glissants, le système est alors totalement hermétique vis à vis de l'extérieur. Ceci empêche toute perte ou pollution du gaz de cycle,
le dispositif permet de détendre un fluide diphasique et de remplacer par exemple sur un cycle Joules Thomson ou Claude, le détendeur Joules Thomson par un détendeur avec récupération de travail, contrairement aux détendeurs à piston existants utilisant des systèmes mécaniques complexe et nécessitant de la lubrification et de la maintenance pour actionner les vannes du détendeur, le dispositif utilise un mécanisme plus simple et dont la durée de vie est typiquement de plusieurs dizaines d'années,
L'invention concerne également un procédé de réfrigération d'un organe utilisateur au moyen d'un tel dispositif de réfrigération cryogénique dans lequel le fluide de travail refroidi est mis en échange thermique avec ledit organe utilisateur.
L'invention concerne également un liquéfacteur ou procédé de liquéfaction comprenant ou utilisant un tel dispositif de réfrigération.
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
- la figure 1 représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'un dispositif de réfrigération selon l'invention,
- la figure 2 représente une vue schématique et partielle illustrant un autre exemple de structure et de fonctionnement d'un dispositif de liquéfaction selon l'invention.
L'exemple de réalisation non limitatif illustré à la figure 1 est un réfrigérateur cryogénique, par exemple ayant une température froide de 77k, capable de liquéfier de l'azote à saturation.
Le dispositif 100 de réfrigération a de préférence pour but de transférer de la chaleur d'une source froide 13 à basse température (via un échange thermique avec un organe ou utilisateur 7 à refroidir) vers une source chaude 15 à plus haute température (par exemple via un échange thermique avec un organe 5 de refroidissement).
Comme illustré à la figure 1 , le dispositif comprend un circuit de travail pour un fluide de travail (par exemple de l'hélium). Le circuit de travail forme une boucle dans laquelle le fluide de travail circule dans un seul sens en étant soumis à un cycle thermodynamique de type récupératif.
Le dispositif peut comporter tout ou partie des composants ci-dessous décrits.
Le dispositif comprend un ou plusieurs moteurs linéaires 1 utilisant de préférence des paliers 2 flexibles (ou gaz ou à faible frottement ou magnétiques). Les paliers représentés à titre d'exemple sur la figure 1 sont du type paliers flexibles.
Le circuit comprend un ou plusieurs compresseurs 3 à pistons disposés en série fonctionnant préférentiellement à température ambiante et entraînés par le ou les moteurs 1 linéaires. Le compresseur à piston est notamment un compresseur à piston à déplacement linéaire entraîné par un moteur 1 . Le piston est accouplé à un arbre déplacé en translation selon un mouvement alternatif via un moteur, par exemple un moteur électromagnétique dont le mouvement alternatif de translation de l'arbre solidaire du piston est entraîné par un système de bobines magnétiques (coopérant avec des aimants solidaires de l'arbre ou solidaire d'un stator).
Ces compresseurs 3 à piston(s) utilisent par exemple des clapets antiretour 4 et 14 pour communiquer avec des conduites 12 haute pression (pour refouler du fluide compressé) et basse pression 1 1 (pour accueillir du fluide détendu en vue de le re-comprimer). Plusieurs technologies de clapets anti-retour sont envisageables, par exemple des clapets à lames. Bien entendu tout autre type d'organe permettant d'empêcher le retour du fluide comprimé en sens inverse dans le circuit peut être envisagé.
Le circuit de travail comprend un ou plusieurs échangeurs 5 prévus pour évacuer de la chaleur du gaz comprimé vers une source chaude et disposés à la sortie du ou des compresseurs 3. Cet échangeur de refroidissement met par exemple le fluide de travail en échange thermique avec un fluide 15 caloporteur de refroidissement.
Ensuite, (en aval dans le sens de circulation du fluide de travail dans le circuit sur la conduite 12 haute pression) au moins un changeur 6 de chaleur à contre-courant est prévu. Cet échangeur 6 de chaleur peut séparer les éléments relativement à haute température des éléments à relativement basse température 6 du circuit.
Le circuit comprend en suite au moins une vannes 9 fonctionnant à basse température (c'est-à-dire entre 4 et 200K). Cette vanne 9 est prévue pour alimenter et extraire le gaz d'un détendeur 10 à piston situé en aval.
Cette vanne 9 peut être actionnée par un moteur linéaire 8 de technologie équivalente à la technologie du moteur 1 du compresseur. Cette vanne 9 peut être accouplée indifféremment au moteur 1 du compresseur 3 ou à un moteur distinct. De même, le détendeur 10 peut être accouplé indifféremment au moteur 1 du compresseur ou au moteur 8 de la vanne
9 ou à un alternateur distinct (cet alternateur linéaire peut être de technologie équivalente à la technologie du moteur 1 décrit ci-dessus Cet alternateur a par exemple une structure du même type que le ou les moteurs du compresseur mais utilisé dans un mode alternateur : c'est-à-dire que le piston est déplacé par le fluide et produit de l'énergie).
Cette vanne 9 est actionnée de préférence à la même fréquence que le détendeur 10, cependant, son mouvement est déphasé par rapport au détendeur
10 de façon à maximiser le rendement du détendeur 10.
Le ou les détendeurs à piston 10 fonctionnent à basse température et peuvent ou non être liés mécaniquement au moteur 1 du compresseur.
Le gaz détendu par le détendeur 10 est renvoyé vers le compresseur 3 via une conduite basse pression 1 1 (au travers de la vanne 9). Un ou plusieurs échangeurs 7 de chaleurs sont prévus pour réchauffer le fluide de travail et ainsi extraire de la chaleur à la source froide 13. Le fluide détendu passe en particulier dans l'échangeur 6 à contre-courant avant de revenir dans le compresseur 3 (via le clapet 4 correspondant).
Le fonctionnent de ce réfrigérateur 100 peut être le suivant. Le gaz de travail (hélium dans cet exemple) en phase gazeuse (par exemple à 20°C) est comprimé au travers du compresseur à piston 3 d'une pression basse (par exemple 10 bar) jusqu'à une pression haute (par exemple de 18 bar).
Les clapets anti-retour 4, 14 sont utilisés pour faire communiquer alternativement la chambre de compression du compresseur avec la conduite basse pression 1 1 et la conduite haute pression 12.
L'hélium est réchauffé à la sortie du compresseur (par exemple à 1 10°C). L'hélium est ensuite refroidi au travers d'un premier échangeur 5 à l'aide d'un débit d'eau 15 (ou tout autre agent refroidissant approprié). La température de l'hélium est ramenée à 25°C.
L'hélium passe ensuite au travers de l'échangeur à contre courant 6, sa température est abaissée, par exemple à 79K. En aval, la vanne 9 de régulation est utilisée pour faire communiquer alternativement la chambre de détente du détendeur 10 avec la conduite basse pression 1 1 et la conduite haute pression 12.
L'hélium passe au travers du détendeur à piston 10, sa température chute (par exemple à 67 K). Ce détendeur 10 à piston est notamment configuré pour fonctionner avec un fluide diphasique ou liquide.
Lorsque le détendeur est accouplé au moteur du compresseur, le travail de détente du détendeur 10 peut être transféré via l'arbre commun du moteur linéaire 1 au compresseur 3.
L'hélium passe ensuite au travers de l'échangeur 7 de réchauffage où il refroidit l'organe 13 utilisateur de froid (de l'azote dans cet exemple). L'azote gazeux 13 refroidi est par exemple liquéfié à saturation en lui extrayant de la chaleur.
La température de l'hélium est par exemple amenée à 76 K.
L'hélium passe ensuite à nouveau au travers de l'échangeur à contre courant 6 où il est réchauffé (par exemple à 20°C).
L'hélium retourne ensuite dans le compresseur 3 pour effectuer un nouveau cycle identique via le clapet 4.
La figure 2 illustre un autre exemple de réalisation de l'invention. Cet exemple représente un liquéfacteur de gaz, notamment d'hydrogène. Ce liquéfacteur utilise les mêmes éléments principaux que ceux décrits ci-dessus.
Le gaz de travail (hydrogène) par exemple à 20°C (en phase gazeuse) est comprimé dans deux compresseurs à piston 20 et 21 disposés en série.
A la sortie de chaque compresseur 20, 21 , (via une conduite haute pression et un clapet 14), le gaz est refroidi par un échangeur de chaleur 22, 23. Cet hydrogène est ensuite refroidi au travers d'un premier échangeur 24 de chaleur à contre courant.
Une partie du débit de gaz refroidi peut être admis à passer, via une dérivation 15 comprenant une première vanne 9 linéaire, au travers d'un premier détendeur à piston 25 de manière à extraire de la chaleur à l'hydrogène.
Comme précédemment, ce premier détendeur 25 à piston peut être lié au premier compresseur 20 via un moteur linéaire (non représenté par soucis de simplification mais pouvant être du même type que celui décrit ci-dessus). De même, le premier détendeur peut être accouplé à un moteur (alternateur) distinct). La première vanne 9 de contrôle en amont du premier détendeur 25 est actionnée de préférence via un moteur linéaire (non représenté par soucis de simplification mais pouvant être du même type que celui décrit ci-dessus).
L'hydrogène (détendu ou non) peut être refroidi ensuite au travers d'un second échangeur à contre courant 26, et le cas échéant au travers d'un troisième échangeur à contre courant 27. Cet hydrogène détendu dans le premier détendeur 25 peut être renvoyé directement vers le premier compresseur 20 (via le ou les échangeurs de chaleur 24, 26 à contre-courant. C'est-à-dire que l'hydrogène détendu dans le premier détendeur 25 peut être renvoyé vers les compresseurs sans subir une seconde détente ou refroidissement.
En aval de la dérivation 15, l'hydrogène restant est ensuite détendu dans un second détendeur linéaire 28 (via une vanne 9 de contrôle linéaire). Le second détendeur 28 est de préférence du type à piston diphasique pour extraire de la chaleur à l'hydrogène en vue de le liquéfier en partie. Ce second détendeur 28 à piston peut être lié mécaniquement (accouplé) au second compresseur 21 (via un moteur linéaire non représenté par soucis de simplification comme précédemment) ou à un alternateur distinct.
La seconde vanne 9 de contrôle située en amont du second détendeur 28 peut également être actionnée par un moteur linéaire (non représenté par soucis de simplification).
Les vannes 9 de contrôle commandant la circulation du fluide entre les détendeurs 25, 28 et les compresseurs 20 peuvent le cas échéant être actionnées par un seul et même actionneur commun.
Le mélange diphasique obtenu après passage dans le second détendeur 28 peut être ensuite envoyé vers un séparateur 29 cryogénique. La phase gazeuse de l'hydrogène est retournée vers le premier compresseur 20 au travers des échangeurs 27, 26, 24 à contre-courant.
La phase liquide produite peut être envoyée vers un utilisateur final au travers d'une conduite 30 prévue à cet effet. Le circuit peut comporter une entrée 31 d'alimentation en fluide de travail (par exemple en amont du premier compresseur 20) pour compenser le prélèvement de liquide. Bien entendu, le fluide de travail utilisé peut être tout autre fluide que l'hélium ou l'hydrogène, par exemple de l'azote, du méthane, du néon, de l'oxygène ou de l'argon.
Le circuit de travail peut ainsi être de type ouvert ou fermé.
Bien entendu, l'invention n'est pas limitée aux exemples de cycles et circuits illustrés aux figures 1 et 2. Ainsi, Il est possible d'envisager une multitude d'architectures différentes basées par exemple sur les cycles de Brayton, Joules Thomson ou Claude notamment.

Claims

REVENDICATIONS
1 . Dispositif de réfrigération cryogénique comprenant un circuit de travail destiné à refroidir un fluide de travail circulant dans ledit circuit, le circuit de travail comprenant, disposés en série au sein d'une boucle: une portion de compression (3), une portion (5, 6, 22, 23, 24, 26, 27) de refroidissement, une portion à vanne(s) (9), une portion de détente (10, 25, 28) et une portion de réchauffement, pour soumettre le fluide de travail à une cycle de travail de type récupératif comprenant une compression puis un refroidissement puis une détente puis un réchauffement en vue d'un nouveau cycle, dans lequel, la portion de compression comprend au moins un compresseur (3, 20, 21 ) à piston linéaire entraîné par un moteur (1 ) linéaire, la portion de détente comprend au moins un détenteur (10, 25, 28) à piston linéaire, la portion à vanne(s) comprend au moins une vanne (9) de régulation de type linéaire actionnée par un moteur linéaire et pilotée pour alimenter ou extraire le fluide de travail du au moins un détendeur à piston.
2. Dispositif de réfrigération selon la revendication 1 , caractérisé en ce qu'il comprend au moins un détenteur (10, 25, 28) à piston linéaire accouplé au moteur (1 ) linéaire qui entraîne au moins un compresseur (3, 20, 21 ) à piston linéaire, c'est-à-dire qu'au moins un moteur (1 ) linéaire accouple à la fois un détenteur (10, 25, 28) à piston linéaire et un compresseur (3, 20, 21 ) à piston linéaire.
3. Dispositif de réfrigération selon la revendication 1 ou 2, caractérisé en ce qu'il comprend au moins une vanne (9) de régulation de type linéaire accouplé au moteur (1 ) linéaire qui entraîne au moins un compresseur (3, 20,
21 ) à piston linéaire, c'est-à-dire qu'au moins un moteur (1 ) linéaire accouple à la fois un compresseur (3, 20, 21 ) à piston linéaire et une vanne (9) de régulation de type linéaire.
4. Dispositif de réfrigération l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend au moins un détenteur (10, 25, 28) à piston linéaire accouplé à un alternateur linéaire distinct du moteur du au moins un compresseur, c'est à dire qu'au moins un alternateur linéaire accouple un détenteur (10, 25, 28) à piston linéaire ledit alternateur.
5. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 4 , caractérisé en ce que le fluide de travail est refroidi jusqu'à une température comprise entre 4K et 200 K .
6. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la portion de compression (3) du circuit de travail comprend plusieurs compresseurs (3, 20, 21 ) à piston linéaire.
7. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 6 , caractérisé en ce que la portion de détente (10, 25, 28) du circuit de travail comprend plusieurs détenteurs (10, 25, 28) à piston linéaire associés chacun à une vanne (9) de régulation de type linéaire respective.
8. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 7 , caractérisé en ce que le circuit de travail comprend une conduite (1 1 ) haute pression reliant une sortie à haute pression d'un compresseur (3) à l'entrée d'un détendeur (10), ladite conduite (1 1 ) à haute pression comprenant un système de clapet (4) anti-retour, au moins un échangeur (5,
6) de chaleur de refroidissement du gaz comprimé, et une vanne (9) de régulation de type linéaire.
9. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 8 , caractérisé en ce que le circuit de travail comprend une conduite (12) basse pression reliant une sortie d'un détendeur (10) à l'entrée d'un compresseur (3), ladite conduite (12) basse pression comprenant, une vanne (9) de régulation de type linéaire, au moins un échangeur (7, 6) de chaleur réchauffement du gaz détendu et un système de clapet (14) anti-retour.
10. Dispositif de réfrigération selon les revendications 8 et 9 prises en combinaison, caractérisé en ce que le au moins un échangeur de chaleur comprend un échangeur (7) de chaleur à contre-courant mettant en échange thermique le fluide de travail circulant dans les conduite (1 1 , 12) haute et basse pression.
1 1 .Dispositif de réfrigération selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le au moins un échangeur de chaleur (5, 7) met en échange thermique le fluide de travail avec au moins un fluide parmi : de l'eau, de l'air, de l'azote, de l'hélium, de l'hydrogène, du méthane, du néon , de l'oxygène ou de l'argon .
12. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que la au moins une vanne (9) de régulation de type linéaire est actionnée par son moteur linéaire à la même fréquence que la fréquence de fonctionnement du détendeur (10) à piston linéaire pour lequel la vanne (9) commande la fourniture ou le retrait de fluide de travail mais de façon déphasée par rapport à l'actionnement du détendeur (10) à piston.
13. Dispositif de réfrigération selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comprend deux compresseurs (20, 21 ) à piston linéaire disposés en série, le circuit de travail comprenant une première conduite (1 1 1 ) haute pression reliant une sortie à haute pression d'un premier compresseur (20) à l'entrée d'un second compresseur (21 ) via un système de clapet (14) anti-retour et une seconde conduite (1 1 ) haute pression reliant une sortie à haute pression du second compresseur (21 ) à l'entrée du premier compresseur (20) via au moins un échangeur (24, 26, 27) de chaleur en échange thermique avec le fluide de travail, un système de clapet(s) (14, 4) anti-retour, au moins une et de préférence deux vannes (9) de régulation de type linéaire et au moins un et de préférence deux détendeurs (25, 28) à piston linéaire, la au moins une vanne (9) de régulation étant pilotée pour transférer du fluide issu des compresseurs (20, 21 ) et ayant échangé thermiquement avec le au moins un échangeur (24, 26, 27) de chaleur vers le au moins un détendeur (25, 28) puis pour transférer le fluide détendu issu du au moins un détendeur (25, 28) dans les compresseurs (20, 21 ) avec un échange thermique intermédiaire avec au moins un échangeur (24, 26, 27) de chaleur.
14. Dispositif de réfrigération selon la revendication 13, caractérisé en ce que le circuit de travail comprend un séparateur (29) de phase disposé en aval d'au moins une vanne (9) de régulation pour liquéfier au moins une partie du fluide de travail à la sortie d'un détendeur (25, 28) et séparer la phase liquide de la phase gazeuse de ce dernier.
15. Dispositif de réfrigération selon la revendication 14, caractérisé en ce que le circuit de travail comprend une conduite (30) de prélèvement de fluide de travail liquéfié et une conduite (31 ) de fourniture de fluide de travail au circuit sous forme gazeuse.
EP17706538.0A 2016-02-08 2017-01-17 Dispositif de réfrigération cryogénique Active EP3414498B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1650962A FR3047551B1 (fr) 2016-02-08 2016-02-08 Dispositif de refrigeration cryogenique
PCT/FR2017/050098 WO2017137674A1 (fr) 2016-02-08 2017-01-17 Dispositif de réfrigération cryogénique

Publications (2)

Publication Number Publication Date
EP3414498A1 true EP3414498A1 (fr) 2018-12-19
EP3414498B1 EP3414498B1 (fr) 2020-01-08

Family

ID=55752535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17706538.0A Active EP3414498B1 (fr) 2016-02-08 2017-01-17 Dispositif de réfrigération cryogénique

Country Status (8)

Country Link
US (1) US11156388B2 (fr)
EP (1) EP3414498B1 (fr)
JP (1) JP6847966B2 (fr)
KR (1) KR102675446B1 (fr)
CN (1) CN108603701B (fr)
FR (1) FR3047551B1 (fr)
RU (1) RU2018130607A (fr)
WO (1) WO2017137674A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107103A1 (fr) * 2020-02-12 2021-08-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de compression, installation, station de remplissage et procédé utilisant un tel dispositif

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099820B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif et installation de réfrigération
FR3099817B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Procédé et installation de refroidissement et/ou de liquéfaction.
FR3100319B1 (fr) * 2019-09-04 2021-08-20 Absolut System Machine cryogénique régénérative
CN110986408A (zh) * 2019-12-13 2020-04-10 中国科学院合肥物质科学研究院 一种集成式氖气制冷机及制冷方法
JP7441379B2 (ja) * 2020-08-28 2024-02-29 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッド リバーシブル空気圧駆動エキスパンダ
CN112460825A (zh) * 2020-11-12 2021-03-09 新疆维吾尔自治区寒旱区水资源与生态水利工程研究中心(院士专家工作站) 单活塞压缩空气制冷循环装置
US11859885B2 (en) 2021-07-23 2024-01-02 Refrigerated Solutions Group Llc Refrigerant circuit with reduced environmental impact
CN115388615B (zh) * 2022-04-19 2023-11-24 北京师范大学 一种氩液化***

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE341705B (fr) * 1970-03-02 1972-01-10 P Knoeoes
US4267701A (en) 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant
FR2510181A1 (fr) * 1981-07-21 1983-01-28 Bertin & Cie Convertisseur d'energie thermique en energie electrique a moteur stirling et generateur electrique integre
SU1305506A1 (ru) * 1985-12-09 1987-04-23 Московский Институт Химического Машиностроения Свободнопоршневой детандер-компрессор
FR2668583B1 (fr) * 1990-10-26 1997-06-20 Air Liquide Procede de liquefaction d'un gaz et installation de refrigeration.
JPH0849943A (ja) * 1994-08-08 1996-02-20 Yamaha Motor Co Ltd エンジン駆動式熱ポンプ装置
US6965444B1 (en) * 2000-09-19 2005-11-15 Kabushiki Kaisha Toshiba Image output method and system for distributing image output
JP4129126B2 (ja) * 2001-06-26 2008-08-06 松下電器産業株式会社 リニア圧縮機の駆動制御方法及び車両用リニア圧縮機の駆動制御方法
FR2924205B1 (fr) 2007-11-23 2013-08-16 Air Liquide Dispositif et procede de refrigeration cryogenique
CN100575703C (zh) * 2007-11-30 2009-12-30 西安交通大学 一种双作用自由活塞式膨胀—压缩机组
JP5607901B2 (ja) * 2009-08-06 2014-10-15 ダイハツ工業株式会社 排ガス浄化用触媒
JP5599403B2 (ja) * 2009-09-24 2014-10-01 三菱電機株式会社 冷凍サイクル装置
US20120117984A1 (en) * 2010-11-11 2012-05-17 Quantum Design, Inc. Valve assembly adapted for dynamic control of gas-flow about a cryogenic region
GB2498378A (en) * 2012-01-12 2013-07-17 Isis Innovation Linear Stirling machine with expansion and compression pistons coupled by gas spring
US9140478B2 (en) * 2012-05-21 2015-09-22 Whirlpool Corporation Synchronous temperature rate control for refrigeration with reduced energy consumption
US20170010042A1 (en) 2014-04-02 2017-01-12 Dresser-Rand Company System and Method for the Production of Liquefied Natural Gas
KR102257508B1 (ko) 2014-06-24 2021-05-31 엘지전자 주식회사 냉각 시스템 및 이를 포함하는 냉장고

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107103A1 (fr) * 2020-02-12 2021-08-13 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de compression, installation, station de remplissage et procédé utilisant un tel dispositif
WO2021160326A1 (fr) * 2020-02-12 2021-08-19 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Dispositif de compression, installation, station de remplissage et procédé utilisant un tel dispositif

Also Published As

Publication number Publication date
FR3047551A1 (fr) 2017-08-11
CN108603701A (zh) 2018-09-28
JP6847966B2 (ja) 2021-03-24
RU2018130607A (ru) 2020-02-25
JP2019510184A (ja) 2019-04-11
CN108603701B (zh) 2020-11-27
US20190063791A1 (en) 2019-02-28
KR102675446B1 (ko) 2024-06-13
WO2017137674A1 (fr) 2017-08-17
EP3414498B1 (fr) 2020-01-08
US11156388B2 (en) 2021-10-26
FR3047551B1 (fr) 2018-01-26
KR20180108666A (ko) 2018-10-04

Similar Documents

Publication Publication Date Title
EP3414498B1 (fr) Dispositif de réfrigération cryogénique
EP2225501B1 (fr) Dispositif et procédé de réfrigeration cryogénique
WO2013144470A1 (fr) Dispositif et procédé de remplissage de réservoir
WO2021023458A1 (fr) Installation et procede de refroidissement et/ou de liquefaction
WO2021023457A1 (fr) Procédé et installation de refroidissement et/ou de liquéfaction
WO2021023456A1 (fr) Dispositif et installation de réfrigération
WO2021023459A1 (fr) Dispositif et installation de réfrigération
FR3098574A1 (fr) Dispositif de réfrigération et/ou de liquéfaction
WO2022171485A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
EP4226107A1 (fr) Installation et procédé de réfrigération et/ou de liquefaction d'un fluide
WO2022171392A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
EP4003840B1 (fr) Système de conditionnement d'air à récupération d'air cabine
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide
FR3065254B1 (fr) Ensemble de turbopompe pour un circuit ferme, en particulier de type a cycle de rankine, associe a un moteur a combustion interne, notamment pour vehicule automobile
FR3133075A1 (fr) Système de refroidissement cryogénique
WO2019115122A1 (fr) Ensemble de turbopompe electrifiee pour un circuit ferme, en particulier de type a cycle de rankine, comportant un refroidissement integre

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190621

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20191029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017010686

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1223194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017010686

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1223194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8

Ref country code: GB

Payment date: 20240119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240122

Year of fee payment: 8