EP3389926B1 - Massereduzierter schleif-grundkörper - Google Patents

Massereduzierter schleif-grundkörper Download PDF

Info

Publication number
EP3389926B1
EP3389926B1 EP16810357.0A EP16810357A EP3389926B1 EP 3389926 B1 EP3389926 B1 EP 3389926B1 EP 16810357 A EP16810357 A EP 16810357A EP 3389926 B1 EP3389926 B1 EP 3389926B1
Authority
EP
European Patent Office
Prior art keywords
base body
grinding base
connecting structure
inner member
outer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16810357.0A
Other languages
English (en)
French (fr)
Other versions
EP3389926A1 (de
Inventor
Frank Cichy
Maximilian BÜTTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
Original Assignee
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG filed Critical ThyssenKrupp AG
Publication of EP3389926A1 publication Critical patent/EP3389926A1/de
Application granted granted Critical
Publication of EP3389926B1 publication Critical patent/EP3389926B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/16Bushings; Mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/02Wheels in one piece
    • B24D7/04Wheels in one piece with reinforcing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/16Bushings; Mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D9/00Wheels or drums supporting in exchangeable arrangement a layer of flexible abrasive material, e.g. sandpaper
    • B24D9/08Circular back-plates for carrying flexible material

Definitions

  • the present invention relates, in various aspects, to a abrasive backing, a use of a abrasive backing, and a method of making a abrasive backing.
  • Different grinding base bodies are known from the prior art. Abrasive bases can be used to machine different objects. For this purpose, an abrasive is applied to the abrasive base. After wear of the abrasive this can be exchanged and the grinding base again be used.
  • the prior art abrasive bodies have a comparatively high weight. On the one hand, this results in a high price of the abrasive base body. On the other hand, the handling of the abrasive base body is more expensive due to the high weight.
  • JP11028668 A a grinding wheel, which has a core of several layered plate-shaped layers of a fiber-plastic composite. A grinding wheel section is glued to the core. The core also has flange portions on its side surfaces, via which the core can be attached to a shaft. As a result, this should be achieved a low weight, so that a high speed can be achieved during grinding.
  • WO 2007/033396 A1 discloses a sanding base body with a carrier body for a rotating grinding or cutting tool, wherein the carrier body consists of a fiber-plastic composite with a peripheral wall, side walls and a hub.
  • the document forms the preamble of claim 1.
  • the invention therefore has the object of specifying a sanding base body, a use of a sanding base body and a method for producing a sanding base body, wherein a cost-effective production can be achieved with low weight.
  • the object is achieved by the provision of a sanding base according to claim 1.
  • a mass-reduced abrasive base body can be provided by the inventive structure of the abrasive body of outer body, inner body and connecting structure in combination with the use of fiber-plastic composite materials.
  • the structure according to the invention in combination with the choice of material according to the invention makes it possible to achieve an extremely force-flow-oriented, stiffness-optimized and strength-optimized structure which can serve as a carrier for the abrasive.
  • the rotational mass and thus also the centrifugal forces occurring in the processing process of grinding can be reduced.
  • higher accelerations of the abrasive body and improved balance options can be achieved.
  • the substantially cylindrical outer body may advantageously be added to the abrasive.
  • the abrasive may, for example, on the outside of the outer body (releasably) attached, in particular glued to this. Due to the substantially cylindrical outer body can thus a sufficient contact surface for the abrasive and thus a sufficiently large grinding surface can be provided.
  • connection can be achieved, in particular via its inner side, to a drive.
  • the connection can be direct or indirect.
  • the inner body of the connection to a drive shaft.
  • connection structure is used for the mechanical transmission of force, in particular the torque transmission from the inner body to the outer body.
  • the connection structure can be designed differently, provided that it allows a mechanical power transmission.
  • the connection structure preferably extends from the inside of the outer body to the outer side of the inner body.
  • the connecting structure is substantially perpendicular to the inside of the outer body and substantially perpendicular to the outside of the inner body.
  • both the outer body and the inner body and the connecting structure consist of a fiber-plastic composite.
  • the outer body, the inner body and the connecting structure of the same fiber-plastic composite.
  • different fiber-plastic composite materials such as another fiber or another plastic matrix
  • the inner body is a substantially cylindrical inner body.
  • a substantially cylindrical inner body can over the inside of the Inner body is provided an advantageous surface for connection to a drive.
  • the substantially cylindrical inner body and the substantially cylindrical outer body are preferably arranged concentrically to one another.
  • the inside of the inner body is preferably formed tapered along its cylinder axis. In this way, a secure connection can be made for example with a drive shaft.
  • the fibers of the fiber-plastic composite of the outer body, the inner body and / or the connecting structure as a scrim, fabric, braid, fabric and / or winding structure are formed.
  • the fibers of the fiber-plastic composite of both the outer body, as well as the inner body and the connecting structure are formed as described. Due to the described embodiments of the fiber-plastic composite and the fiber orientation resulting therefrom, the occurring rotational forces, the acting moments and the stiffness requirements of the abrasive base body can advantageously be taken into account. As a result, further mass reduction of the abrasive base body can be achieved with high rigidity.
  • the fibers of the fiber-plastic composite of the outer body and / or the inner body are at least partially oriented in the circumferential direction of the respective body. This can advantageously increase the bending and torsional strength of the abrasive body.
  • a fiber-plastic composite with braided or wound fibers is advantageous.
  • the fibers of the fiber-plastic composite of the outer body, the Inner body and / or the connection structure at least partially oriented along the surface of the respective body.
  • the inner body and / or the connecting structure is constructed in one or more layers.
  • a claimed layer structure of the abrasive base body can be achieved, since thereby the rotational forces, the acting moments and the stiffness requirements can be taken into account and as a result a loop body can be provided with low mass ,
  • the connecting structure is formed as a flat, in particular disk-shaped connecting element.
  • a flat, disk-shaped connecting element may be formed, for example, as a flat disc arranged between the outer body and the inner body, which preferably extends substantially perpendicular to the cylinder axis of the outer body and of the inner body.
  • the abrasive base body can advantageously have a cover, in particular in this embodiment.
  • the cover is preferably provided at one end of the abrasive base body, so that in any case the space between the outer body and the inner body is covered on one side. Thereby, an excessive accumulation of grinding dust between the outer body and inner body and connecting structure can be prevented.
  • connection structure has a quasi-isotropic layer structure.
  • uniform properties of the connection structure in particular with regard to stability and elasticity can be achieved.
  • this behaves like a metallic material.
  • a mass reduction with reliable mechanical properties can be achieved.
  • the quasi-isotropic layer structure can basically be constructed by a different number of (for example unidirectional) layers. However, the quasi-isotropic layer structure preferably comprises at least three layers.
  • the connecting structure comprises a plurality of spoke-like arranged elements.
  • the connecting structure consists of the spoke-like angoerdneten elements.
  • the spoke-like arranged elements may be formed, for example, as struts.
  • the spoke-shaped elements extend in the radial direction between the inner body and the outer body.
  • the spoke-like arranged elements each have a core of foam material. In this way, an additional weight reduction in the region of the connection structure can be achieved.
  • the outer body, the inner body and / or the connecting structure are constructed from preforms.
  • preforms For example, carbon fiber preforms are used.
  • Preforms are understood in particular to be preforms made of fibers, which are used to form the corresponding regions of the abrasive base body.
  • different separate preforms are used for the outer body, the inner body and the connection structure.
  • connection structure is bonded to the outer body and / or inner body in a material-locking and / or form-fitting manner.
  • connection structure is bonded to the inner body as well as to the outer body in a material-locking and / or form-fitting manner.
  • connection structure, the outer body and the inner body are made of separate preforms and connected to each other by infiltration with plastic.
  • the fibers of the fiber-plastic composite of the outer body, the inner body and / or the connecting structure comprise inorganic and / or organic reinforcing fibers, in particular at least one of carbon fibers, glass fibers, basalt fibers and aramid fibers.
  • inorganic fibers such as glass fibers or basalt fibers
  • organic fibers such as aramid fibers or carbon fibers
  • a high degree of orientation of the fibers can be achieved.
  • the matrix material of the fiber-plastic composite of the outer body, the inner body and / or the connecting structure comprises a thermoset or a thermoplastic.
  • thermosets are the relatively high thermomechanical Strength and low specific gravity advantageous, while thermoplastics, for example, a weldability is given.
  • the abrasive base body comprises a metal bush arranged at least in sections within the inner body.
  • the metallic bush is essentially cylindrical.
  • the metallic bushing is designed to taper in the axial direction.
  • the metallic socket can be connected to the inner body by means of a clamping seat, which can be achieved, for example, by shrinking the inner body onto the metallic bushing.
  • the outer body has a greater axial extent than the inner body.
  • an axial extent is understood in particular to be the extent in the direction of the respective cylinder axis.
  • the abrasive base body further comprises a on the outer body applied abrasive.
  • the abrasive is formed for example as abrasive coating or as abrasive elements.
  • the abrasive is applied annularly on the outside of the outer body, in particular glued by means of an adhesive layer.
  • the object mentioned at the outset is achieved by using a grinding base body according to the first aspect for the abrasive machining of metallic parts, in particular camshafts.
  • abrasive machining especially the grinding of metallic parts, such as camshafts, large diameters and high speeds of the abrasive bodies are needed. Due to their properties, in particular their low mass, the abrasive base bodies according to the first aspect are particularly suitable for this purpose.
  • the object mentioned at the outset is achieved by a method according to claim 17 for producing a sanding base body, in particular according to the first aspect.
  • an advantageous construction and, as a result, a reduced-mass abrasive base body can be provided by the inventive structure in combination with the choice of material according to the invention an extremely force flow compatible, stiffness-optimized and strength-optimized abrasive base body can be achieved.
  • the Inner body formed as a substantially cylindrical inner body.
  • the outer body, the inner body and the connecting structure can be formed one after the other or at the same time.
  • the outer body, the inner body and / or the connecting structure are formed by first placing fibers on a molding tool and then infiltrating the fibers with plastic.
  • a mold By using a mold, the structure and the geometry of the abrasive base body can be precisely determined, since the fibers can first be brought as preforms in the desired position and orientation. Subsequently, the fibers can be fixed by plastic infiltration and consolidation. The plastic infiltration can be overpressure assisted or vacuum assisted. In this way, in particular individual preforms can be connected to one another in a material-locking manner.
  • the fibers are already pre-infiltrated applied to the molds, for example as a prepreg.
  • the fibers are pre-impregnated, for example, with a reaction resin.
  • the fibers can then be cured in particular under the action of pressure and temperature.
  • the abrasive base body is removed from the mold after removal of the mold after infiltration. By infiltration in particular a cohesive connection between the outer body, the connecting structure and the inner body was achieved. After infiltration, therefore, the mold, which gives the fiber-plastic composite and thus the abrasive base body its shape, are removed.
  • the molding tool comprises separate molding tool sections for the outer body, the inner body and / or the connecting structure.
  • the molding tool sections are in particular separate parts which can be mounted on one another or connected to one another.
  • a mold section for the inner body, a mold section for the connection structure, and a mold section for the outer body are provided.
  • the fibers for example, as preforms first applied to the corresponding mold sections, for example, be wrapped around them. Subsequently, the mold sections can be mounted. Finally, the fibers can be infiltrated.
  • a metallic bush is arranged and fixed at least in sections within the inner body.
  • a hybrid construction can be achieved, which allows a high stability of the abrasive body in the field of connection to the drive.
  • the inner body can be shrunk onto the metallic bushing by exploiting the geometric design or the different thermal expansion behavior of the metallic bushing and the inner body.
  • a press fit of the metallic bushing can be achieved.
  • Fig. 1 first shows a first embodiment of a grinding base body 1 according to the first aspect in partial supervision ( Fig. 1a ) and in partial longitudinal section ( Fig. 1b ).
  • the abrasive base body 1 comprises a substantially cylindrical outer body 2 for receiving an abrasive (not shown).
  • the abrasive can be applied, for example, flat on the outside of the outer body 2.
  • the sanding base body 1 comprises a substantially cylindrical inner body 4 for connecting the sanding base body 1 to a drive (not
  • the outer body 2, the inner body 4 and the connecting structure 6 are all formed of a fiber-plastic composite, the fibers each having organic reinforcing fibers, in this case Carbon fibers are. Alternatively or additionally, however, it is also possible to use other fibers, such as glass fibers, basalt fibers or aramid fibers.
  • the plastic or matrix material of the fiber-plastic composite may be a thermoset or a thermoplastic.
  • the connecting structure 6 is formed here from a plurality of radially outwardly extending spoke-like arranged struts, of which only two struts 6a, 6b are shown here. This has the advantage that due to the recesses a deposition of grinding dust on the connecting structure 6 can be reduced.
  • the struts 6a, 6b, etc. may have a core of foam material to allow a particularly easy variant of the abrasive base body 1.
  • connection structure 6 is in particular connected to the outer body 2 as well as to the inner body 4 in a materially bonded manner. This can be achieved in particular by means of a plastic infiltration.
  • the outer body 2 and the inner body 4 are arranged concentrically and have the common cylinder axis 8.
  • the outer body 2 and the inner body 4 extend from the connecting structure 6 in each case in both directions substantially parallel to the axis 8. It can be seen that the Outer body 2 in comparison to the inner body 4 on one side has a greater axial extent or that the inner body 4 on one side has a correspondingly smaller axial extent.
  • a further reduction in mass is achieved, in particular, which makes it possible to reduce the rotational mass and the centrifugal forces during machining and thus to increase the acceleration.
  • the fibers of the fiber-plastic composite of the outer body 2, the inner body 4 and the connecting structure 6 are preferably formed as a scrim, fabric, braid, fabric and / or winding structure.
  • the fiber-plastic composite of the outer body 2, the inner body 4 and the connecting structure 6 is preferably constructed in multiple layers.
  • the fibers of the outer body 2, the inner body 4 and the connecting structure 4 are constructed from preforms.
  • a metallic bush 10 is also arranged as a hub element, with which a shaft-hub connection can be made.
  • the inner body 4 has been shrunk onto the metallic bushing 10, so that the metallic bushing 10 is fixed in the inner body 4 by means of a clamping fit.
  • the inner body 4 and / or the metallic bushing 10 along the cylinder axis 8 is tapered.
  • Fig. 2 now shows a second embodiment of a grinding base body 1 'according to the first aspect in plan view (2a) and in the longitudinal section (2b).
  • the second embodiment is similar to that in FIG Fig. 1 illustrated embodiment.
  • the comments on Fig. 1 referenced and the same reference numerals (in the case of spelled notation) are used. In the following, the differences will be discussed.
  • the connecting structure 6 'of the grinding base body 1' is designed differently.
  • the connecting structure 6 ' is formed in this case as a flat, disk-shaped connecting element 6'.
  • the disk-shaped connecting structure 6 ' has a quasi-isotropic layer structure, as a result of which the connecting structure 6' behaves in the plane similar to a metallic material.
  • the abrasive base body 1 ' also has a cover 12'.
  • the cover 12 ' is provided at one end of the abrasive base body 1', so that the space between the Outer body 2 'and the inner body 4' is covered. Thereby, an excessive accumulation of grinding dust between the outer body 2 ', the inner body 1' and the disc-shaped connecting structure 6 'can be prevented.
  • Fig. 3 shows a schematic representation of an advantageous fiber profile of a grinding base body.
  • the abrasive base can, for example, the abrasive base body 1 from Fig. 1 or the abrasive base 1 ' Fig. 2 be.
  • the fibers of the fiber-plastic composite of the outer body 2, 2 'and the inner body 4, 4' are at least partially oriented in the circumferential direction of the respective body.
  • the fibers of the fiber-plastic composite of the outer body 2, 2 ', the inner body 4, 4' and the connecting structure 6, 6 ' are at least partially oriented along the respective surface.
  • the Fig. 4a-d Now show a schematic representation of an embodiment of a manufacturing method according to the third aspect.
  • the in Fig. 2 shown grinding base body 1 'produced.
  • the illustrated manufacturing method is also transferable to the production of differently shaped abrasive base body, such as abrasive base body 1.
  • fibers 30 are applied as a disk-shaped preform to form the subsequent connecting structure 6, 6 'on a mold section 20 ( Fig. 4a ).
  • fibers 32 are applied as a preform to form the later inner body 4, 4 'on a cylindrical mold section 22 ( Fig. 4b ).
  • the mold sections 20 and 22 can then be joined together.
  • the tool sections 20, 22 are connected to a further cylindrical mold section 24. Consisting of the mold section
  • the assembled tools 20 and 24, the fibers 34 are applied to form the later outer body 2, 2 'with a braiding process ( Fig. 4c ).
  • an enclosing outer tool (not shown) is mounted, which images the shape-negative, substantially cylindrical contour of the outer body 2, 2 'to be produced.
  • the outer tool and the now inner tools 20, 22, 24 form the horrkavtician for the fibers 30, 32, 34.
  • the cylindrical contour may also contain changes in diameter, so as to be able to apply stepped or stepped abrasive coatings without the remote outer contour of the consolidated fiber composite body must be made by machining (milling / turning).
  • the fibers 30, 32, 34 are infiltrated with plastic, so that the outer body 2, 2 ', the inner body 4, 4' and the connecting structure 6, 6 'are formed from a fiber-plastic composite.
  • the abrasive base 1 ' can be removed from the mold by removing the individual mold sections 20, 22, 24 (FIG. Fig. 4d )

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

  • Die vorliegende Erfindung betrifft gemäß unterschiedlicher Aspekte einen Schleif-Grundkörper, eine Verwendung eines Schleif-Grundkörpers und ein Verfahren zur Herstellung eines Schleif-Grundkörpers.
  • Aus dem Stand der Technik sind unterschiedliche Schleif-Grundkörper bekannt. Schleif-Grundkörper können zur Bearbeitung unterschiedlicher Objekte eingesetzt werden. Hierzu wird auf die Schleif-Grundkörper ein Schleifmittel aufgebracht. Nach Abnutzung des Schleifmittels kann dieses ausgetauscht werden und der Schleif-Grundkörper erneut eingesetzt werden. Allerdings weisen die Schleif-Grundkörper aus dem Stand der Technik ein vergleichsweise hohes Gewicht auf. Zum einen resultiert hieraus ein hoher Preis der Schleif-Grundkörper. Zum anderen wird durch das hohe Gewicht die Handhabung der Schleif-Grundkörper aufwendiger.
  • Um dem entgegenzuwirken, ist es aus dem Stand der Technik bereits bekannt, für den Schleif-Grundkörper einen Faser-Kunststoff-Verbund (FKV) einzusetzen. So beschreibt beispielsweise die Japanische Veröffentlichung JP11028668 A ein Schleifrad, welches einen Kern aus mehreren geschichteten plattenförmigen Lagen aus einem Faser-Kunststoff-Verbund besitzt. Auf den Kern wird ein Schleifrad-Abschnitt geklebt. Der Kern besitzt zudem Flanschabschnitte an seinen Seitenflächen, über die der Kern an einer Welle befestigt werden kann. Im Ergebnis soll hierdurch ein geringes Gewicht erreicht werden, sodass eine hohe Geschwindigkeit beim Schleifen erreicht werden kann.
  • Aus dem Stand der Technik ist des Weiteren das Dokument WO 2007/033396 A1 bekannt, das einen Schleif-Grundkörper mit einem Trägerkörper für ein rotierendes Schleif- bzw. Schneidwerkzeug offenbart, wobei der Trägerkörper aus einem Faser-Kunststoff-Verbund mit einer Umfangswand, Seitenwänden und einer Nabe besteht. Das Dokument bildet den Oberbegriff des Anspruchs 1.
  • Problematisch ist allerdings weiterhin, dass auch derartige Schleifräder weiterhin ein vergleichsweise hohes Gewicht besitzen, was weiterhin eine kostenintensive Herstellung und eine komplizierte Handhabung zur Folge hat.
  • Ausgehend von diesem Stand der Technik stellt sich der Erfindung daher die Aufgabe, einen Schleif-Grundkörper, eine Verwendung eines Schleif-Grundkörpers und ein Verfahren zur Herstellung eines Schleif-Grundkörpers anzugeben, wobei eine kostengünstige Herstellung bei geringem Gewicht erreicht werden kann.
  • Die Aufgabe wird durch die Bereitstellung eines Schleif-Grundkörpers gemäß Anspruch 1 gelöst.
  • Es wurde erkannt, dass durch den erfindungsgemäßen Aufbau des Schleif-Grundkörpers aus Außenkörper, Innenkörper und Verbindungsstruktur in Kombination mit der Verwendung von Faser-Kunststoff-Verbund-Werkstoffen ein massenreduzierter Schleif-Grundkörper bereitgestellt werden kann. Dies wird darauf zurückgeführt, dass durch die erfindungsgemäße Struktur in Kombination mit der erfindungsgemäßen Werkstoffwahl eine äußerst kraftflussgerechte, steifigkeitsoptimierte und festigkeitsoptimierte Struktur erreicht werden kann, die als Träger für das Schleifmittel dienen kann. Somit können die Rotationsmasse und damit auch die auftretenden Fliehkräfte bei dem Bearbeitungsprozess des Schleifens verringert werden. Zudem können höhere Beschleunigungen des Schleif-Grundkörpers und verbesserte Auswuchtungsmöglichkeiten erreicht werden.
  • Durch den im Wesentlichen zylinderförmigen Außenkörper kann vorteilhaft das Schleifmittel aufgenommen werden. Das Schleifmittel kann beispielsweise auf der Außenseite des Außenkörpers (lösbar) befestigt, insbesondere auf diese geklebt werden. Durch den im Wesentlichen zylinderförmigen Außenkörper kann somit eine ausreichende Kontaktfläche für das Schleifmittel und somit eine ausreichend große Schleiffläche bereitgestellt werden.
  • Durch den Innenkörper kann eine Anbindung, insbesondere über seine Innenseite, an einen Antrieb erreicht werden. Die Anbindung kann unmittelbar oder mittelbar erfolgen. Beispielsweise dient der Innenkörper der Anbindung an eine Antriebswelle.
  • Dabei kann innerhalb des Außenkörpers Material eingespart werden, indem kein massiver Schleif-Grundkörper, sondern eine Verbindungsstruktur vorgesehen ist. Die Verbindungsstruktur dient der mechanischen Kraftübertragung, insbesondere der Momentübertragung vom Innenkörper auf den Außenkörper. Die Verbindungsstruktur kann dabei unterschiedlich ausgestaltet sein, sofern sie eine mechanische Kraftübertragung ermöglicht. Die Verbindungsstruktur erstreckt sich bevorzugt von der Innenseite des Außenkörpers zur Außenseite des Innenkörpers. Bevorzugt verläuft die Verbindungsstruktur im Wesentlichen senkrecht zur Innenseite des Außenkörpers und im Wesentlichen senkrecht zur Außenseite des Innenkörpers.
  • Als besonders vorteilhaft hat sich herausgestellt, wenn sowohl der Außenkörper, als auch der Innenkörper und die Verbindungsstruktur aus einem Faser-Kunststoff-Verbund bestehen. Beispielsweise bestehen der Außenkörper, der Innenkörper und die Verbindungsstruktur aus dem gleichen Faser-Kunststoff-Verbund. Es ist jedoch ebenfalls möglich, dass für den Außenkörper, den Innenkörper und die Verbindungsstruktur unterschiedliche Faser-Kunststoff-Verbund-Werkstoffe (etwa eine andere Faser oder eine andere Kunststoffmatrix) zum Einsatz kommen.
  • Erfindungsgemäß ist der Innenkörper ein im Wesentlichen zylinderförmiger Innenkörper. Durch einen im Wesentlichen zylinderförmigen Innenkörper kann über die Innenseite des Innenkörpers eine vorteilhafte Fläche zur Anbindung an einen Antrieb bereitgestellt werden. Der im Wesentlichen zylinderförmige Innenkörper und der im Wesentlichen zylinderförmige Außenkörper sind vorzugsweise konzentrisch zueinander angeordnet.
  • Die Innenseite des Innenkörpers ist entlang seiner Zylinderachse gesehen vorzugsweise konisch zulaufend ausgebildet. Hierdurch kann eine sichere Verbindung beispielsweise mit einer Antriebswelle hergestellt werden.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt sind die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers, des Innenkörpers und/oder der Verbindungsstruktur als Gelege, Gewebe, Geflecht, Flächengebilde und/oder Wickelstruktur ausgebildet. Vorzugsweise sind die Fasern des Faser-Kunststoff-Verbunds sowohl des Außenkörpers, als auch des Innenkörpers und der Verbindungsstruktur wie beschrieben ausgebildet. Durch die beschriebenen Ausbildungen des Faser-Kunststoff-Verbunds und der daraus resultierenden Faserorientierung können vorteilhaft die auftretenden Rotationskräfte, die wirkenden Momente und die Steifigkeitsanforderungen an den Schleif-Grundkörper berücksichtigt werden. Im Ergebnis kann eine weitere Massenreduktion des Schleif-Grundkörpers bei hoher Steifigkeit erreicht werden.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt sind die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers und/oder des Innenkörpers zumindest abschnittsweise in Umfangsrichtung des jeweiligen Körpers orientiert. Dies kann die Biege- und Torsionsfestigkeit des Schleif-Grundkörpers vorteilhaft erhöhen. Es wurde insbesondere herausgefunden, dass in diesem Zusammenhang ein Faser-Kunststoff-Verbund mit geflochtenen oder gewickelten Fasern vorteilhaft ist.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt sind die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers, des Innenkörpers und/oder der Verbindungsstruktur zumindest teilweise entlang der Oberfläche des jeweiligen Körpers orientiert. Durch eine derartige Faserorientierung kann eine weiterhin vorteilhafte Stabilität und Festigkeit des Schleif-Grundkörpers erreicht werden, sodass die Masse des Schleif-Grundkörpers weiterhin reduziert werden kann.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt ist der Faser-Kunststoff-Verbund des Außenkörpers, des Innenkörpers und/oder der Verbindungsstruktur ein- oder mehrlagig aufgebaut. Insbesondere durch einen mehrlagigen Aufbau des jeweiligen Faser-Verbund-Kunststoffs kann ein beanspruchungsgemäßer Lagenaufbau des Schleif-Grundkörpers erreicht werden, da dadurch die Rotationskräfte, die wirkenden Momente und die Steifigkeitsanforderungen berücksichtigt werden können und im Ergebnis ein Schlei-Grundkörper mit geringer Masse bereitgestellt werden kann.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt ist die Verbindungsstruktur als flächiges, insbesondere scheibenförmiges Verbindungselement ausgebildet. Ein flächiges, scheibenförmiges Verbindungselement kann beispielsweise als flächige zwischen dem Außenkörper und dem Innenkörper angeordnete Scheibe ausgebildet sein, welche vorzugsweise im Wesentlichen senkrecht zu der Zylinderachse des Außenkörpers und des Innenkörpers verläuft.
  • Der Schleif-Grundkörper kann insbesondere bei dieser Ausgestaltung vorteilhaft eine Abdeckung aufweisen. Die Abdeckung ist vorzugsweise an einem Ende des Schleif-Grundkörpers vorgesehen, sodass jedenfalls einseitig der Raum zwischen dem Außenkörper und dem Innenkörper abgedeckt wird. Dadurch kann ein übermäßiges Ansammeln von Schleifstaub zwischen Außenkörper und Innenkörper und Verbindungsstruktur verhindert werden.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt weist die Verbindungsstruktur einen quasiisotropen Lagenaufbau auf. Hierdurch können gleichmäßige Eigenschaften der Verbindungsstruktur, insbesondere bezüglich der Stabilität und Elastizität erreicht werden. Insbesondere bei einer scheibenförmigen Verbindungsstruktur kann erreicht werden, dass sich diese wie ein metallischer Werkstoff verhält. Im Ergebnis kann daher eine Massenreduktion bei verlässlichen mechanischen Eigenschaften erreicht werden.
  • Unter einem quasiisotropen Lagenaufbau wird verstanden, dass insbesondere die elastischen Eigenschaften invariant bezüglich der Drehung um die Normale sind. Senkrecht zur Lagenebene können jedoch unterschiedliche Eigenschaften vorliegen. Der quasiisotrope Lagenaufbau kann grundsätzlich durch eine unterschiedliche Anzahl von (beispielsweise unidirektionalen) Lagen aufgebaut sein. Bevorzugt umfasst der quasiisotrope Lagenaufbau allerdings mindestens drei Lagen.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt umfasst die Verbindungsstruktur mehrere speichenartig angeordnete Elemente. Vorzugsweise besteht die Verbindungsstruktur aus den speichenartig angoerdneten Elementen. Die speichenartig angeordneten Elemente können beispielsweise als Streben ausgebildet sein. Beispielsweise verlaufen die speichförmigen Elemente in radialer Richtung zwischen Innenkörper und Außenkörper. Vorteilhaft an einer derartigen Gestaltung ist insbesondere, dass einer Ansammlung von Schleifstaub von vorneherein entgegengewirkt wird, da dieser zwischen den speichenartig angeordneten Elementen entweichen kann.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt weisen die speichenartig angeordneten Elemente jeweils einen Kern aus Schaummaterial auf. Hierdurch kann eine zusätzliche Gewichtsreduktion im Bereich der Verbindungsstruktur erreicht werden.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt sind der Außenkörper, der Innenkörper und/oder die Verbindungsstruktur aus Preforms aufgebaut. Beispielsweise werden Kohlenstofffaser-Preformen verwendet. Unter Preforms werden insbesondere Vorformen aus Fasern verstanden, welche zum Ausbilden der entsprechenden Bereiche des Schleif-Grundkörpers verwendet werden. Beispielsweise werden für den Außenkörper, den Innenkörper und die Verbindungsstruktur unterschiedliche separate Preforms verwendet.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt ist die Verbindungsstruktur stoffschlüssig und/oder formschlüssig an den Außenkörper und/oder Innenkörper angebunden. Vorzugsweise ist die Verbindungsstruktur sowohl an den Innenkörper als auch an den Außenkörper stoffschlüssig und/oder formschlüssig angebunden. Beispielsweise werden die Verbindungsstruktur, der Außenkörper und der Innenkörper aus separaten Preforms hergestellt und durch Infiltrieren mit Kunststoff miteinander verbunden.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt umfassen die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers, des Innenkörpers und/oder der Verbindungsstruktur anorganische und/oder organische Verstärkungsfasern, insbesondere zumindest eins von Kohlenstofffasern Glasfasern, Basaltfasern und Aramidfasern. Mit anorganischen Fasern, wie etwa Glasfasern oder Basaltfasern, können vorteilhaft eine hohe Temperaturfestigkeit und geringe Kosten erreicht werden. Mit organischen Fasern, wie etwa Aramidfasern oder Kohlenstofffasern, kann insbesondere ein hoher Orientierungsgrad der Fasern erreicht werden.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt umfasst das Matrixmaterial des Faser-Kunststoff-Verbunds des Außenkörpers, des Innenkörpers und/oder der Verbindungsstruktur einen Duroplasten oder einen Thermoplasten. Bei Duroplasten sind die vergleichsweise hohe thermomechanische Festigkeit und das geringe spezifische Gewicht vorteilhaft, während bei Thermoplasten beispielsweise eine Schweißbarkeit gegeben ist.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt umfasst der Schleif-Grundkörper eine zumindest abschnittsweise innerhalb des Innenkörpers angeordnete metallische Buchse. Durch die metallische Buchse kann vorteilhaft ein Schleif-Grundkörper mit einem metallischen Nabenelement bereitgestellt werden. Die metallische Buchse ist beispielsweise im Wesentlichen zylinderförmig. Beispielsweise ist die metallische Buchse in axialer Richtung gesehen konisch zulaufend ausgebildet. Die metallische Buchse kann mittels eines Klemmsitzes, welcher beispielsweise durch Aufschrumpfen des Innenkörpers auf die metallische Buchse erreicht werden kann, mit dem Innenkörper verbunden sein. Im Ergebnis kann durch die innerhalb des Innenkörpers angeordnete metallische Buchse ein Schleif-Grundkörper in Hybridbauweise bereitgestellt werden, welcher trotz geringem Gewicht eine stabile Anbindung an den Antrieb ermöglicht.
  • Erfindungsgemäß weist der Außenkörper eine im Vergleich zum Innenkörper größere axiale Ausdehnung auf. Unter einer axialen Ausdehnung wird bei im Wesentlichen zylinderförmigem Außenkörper bzw. Innenkörper insbesondere die Erstreckung in Richtung der jeweiligen Zylinderachse verstanden. Hierdurch ergibt sich eine asymmetrische Ausbildung des Grundschleifkörpers, welche einen im Vergleich zum Außenkörper verkürzten Innenkörper erlaubt, ohne die Schleiffläche zu verringern. Somit kann eine weitere Massenreduktion erreicht werden, was eine Reduzierung der Rotationsmasse und der Fliehkräfte bei der Bearbeitung und eine höhere Beschleunigung ermöglicht. Zudem kann die Antriebswelle oder Werkzeugspindel verkürzt werden, was die Hebel und die wirkenden Momente verringert.
  • Gemäß einer beispielhaften Ausgestaltung des Schleif-Grundkörpers gemäß dem ersten Aspekt umfasst der Schleif-Grundkörper weiterhin ein auf den Außenkörper aufgebrachtes Schleifmittel. Das Schleifmittel ist beispielsweise als Schleifbelag oder als Schleifelemente ausgebildet. Beispielsweise ist das Schleifmittel ringförmig auf die Außenseite des Außenkörpers aufgebracht, insbesondere mittels einer Klebeschicht aufgeklebt.
  • Gemäß einem zweiten Aspekt wird die eingangs genannte Aufgabe durch eine Verwendung eines Schleif-Grundkörpers gemäß dem ersten Aspekt zur abrasiven Bearbeitung von metallischen Teilen, insbesondere Nockenwellen gelöst. Bei der abrasiven Bearbeitung, insbesondere dem Schleifen von metallischen Teilen, wie etwa Nockenwellen, werden große Durchmesser und hohe Geschwindigkeiten der Schleif-Grundkörper benötigt. Die Schleif-Grundkörper gemäß dem ersten Aspekt eignen sich aufgrund ihrer Eigenschaften, insbesondere ihrer geringen Masse, besonders für diesen Einsatzzweck.
  • Gemäß einem dritten Aspekt wird die eingangs genannte Aufgabe durch ein Verfahren gemäß Anspruch 17 zur Herstellung eines Schleif-Grundkörpers, insbesondere gemäß dem ersten Aspekt, gelöst.
  • Wie bereits in Bezug auf den ersten Aspekt ausgeführt, kann durch die erfindungsgemäße Herstellung ein vorteilhafter Aufbau und im Ergebnis ein massereduzierter Schleif-Grundkörper bereitgestellt werden, da durch die erfindungsgemäße Struktur in Kombination mit der erfindungsgemäßen Materialwahl ein äußerst kraftflussgerechter, steifigkeitsoptimierter und festigkeitsoptimierter Schleif-Grundkörper erreicht werden kann. Wie bereits ausgeführt wird der Innenkörper als im Wesentlichen zylinderförmiger Innenkörper ausgebildet. Der Außenkörper, der Innenkörper und die Verbindungsstruktur können zeitlich nacheinander oder auch zeitgleich ausgebildet werden.
  • Erfindungsgemäß werden der Außenkörper, der Innenkörper und/oder die Verbindungsstruktur dadurch gebildet, dass zunächst Fasern auf ein Formwerkzeug gebracht werden und anschließend die Fasern mit Kunststoff infiltriert werden. Durch die Verwendung eines Formwerkzeugs können der Aufbau und die Geometrie des Schleif-Grundkörpers präzise bestimmt werden, da die Fasern zunächst als Preforms in die gewünschten Position und Ausrichtung gebracht werden können. Anschließend können die Fasern durch die Kunststoffinfiltration und Konsolidieren fixiert werden. Die Kunststoffinfiltration kann dabei überdruckunterstützt oder unterdruckunterstützt erfolgen. Hierdurch können insbesondere einzelne Preforms stoffschlüssig miteinander verbunden werden.
  • Alternativ oder zusätzlich ist denkbar, dass die Fasern bereits vorinfiltriert auf die Formwerkzeuge aufgebracht werden, beispielsweise als Prepreg. Dabei sind die Fasern beispielsweise mit einem Reaktionsharz vorimprägniert. Die Fasern können dann insbesondere unter Einwirkung von Druck und Temperatur ausgehärtet werden. Gemäß einer beispielhaften Ausgestaltung des Verfahrens gemäß dem dritten Aspekt wird der Schleif-Grundkörper nach dem Infiltrieren durch Entfernen des Formwerkzeugs entformt. Durch das Infiltrieren wurde insbesondere eine stoffschlüssige Verbindung zwischen dem Außenkörper, der Verbindungsstruktur und dem Innenkörper erzielt. Nach dem Infiltrieren kann daher das Formwerkzeug, welches dem Faser-Kunststoff-Verbund und damit dem Schleif-Grundkörper seine Form gibt, entfernt werden.
  • Erfindungsgemäß umfasst das Formwerkzeug separate Formwerkzeugabschnitte für den Außenkörper, den Innenkörper und/oder die Verbindungsstruktur. Dies ermöglicht einen einfachen Herstellungsprozess. Die Formwerkzeugabschnitte sind insbesondere separate Teile, welche aneinander montierbar oder miteinander verbindbar sind. Beispielsweise ist ein Formwerkzeugabschnitt für den Innenkörper, eine Formwerkzeugabschnitt für die Verbindungsstruktur und eine Formwerkzeugabschnitt für den Außenkörper vorgesehen. Auf diese Weise können die Fasern, beispielsweise als Preforms zunächst auf die entsprechenden Formwerkzeugabschnitte aufgebracht, beispielsweise um diese herumgewickelt werden. Anschließend können die Formwerkzeugabschnitte montiert werden. Schließlich können die Fasern infiltriert werden.
  • Gemäß einer beispielhaften Ausgestaltung des Verfahrens gemäß dem dritten Aspekt wird eine metallische Buchse zumindest abschnittsweise innerhalb des Innenkörpers angeordnet und fixiert. Hierdurch kann eine Hybridbauweise erreicht werden, welche eine hohe Stabilität des Schleif-Grundkörpers im Bereich der Anbindung an den Antrieb ermöglicht. Beispielsweise kann der Innenkörper auf die metallische Buchse aufgeschrumpft werden, indem die geometrische Gestaltung bzw. die unterschiedlichen thermischen Dehnungsverhalten der metallischen Buchse und des Innenkörpers ausgenutzt werden. Somit kann ein Klemmsitz der metallischen Buchse erzielt werden. Bezüglich weiterer vorteilhafter Ausgestaltungen des zweiten und des dritten Aspekts wird insbesondere auf die Beschreibung des ersten Aspekts und die dort beschriebenen Vorteile verwiesen. Auch sollen durch die vorherige oder folgende Beschreibung von Ausgestaltungen der unterschiedlichen Aspekte insbesondere auch vorteilhafte Ausgestaltungen der jeweils anderen Aspekte offenbart sein.
  • Weitere beispielhafte Ausgestaltungen der unterschiedlichen Aspekte der Erfindung sind der folgenden detaillierten Beschreibung beispielhafter Ausführungsformen der vorliegenden Erfindung, insbesondere in Verbindung mit den Figuren, zu entnehmen.
  • Die der Anmeldung beiliegenden Figuren sollen jedoch nur dem Zwecke der Verdeutlichung, nicht aber zur Bestimmung des Schutzbereiches der Erfindung dienen. Die beiliegenden Zeichnungen sind nicht maßstabsgetreu und sollen lediglich das allgemeine Konzept der vorliegenden Erfindung beispielhaft widerspiegeln. Insbesondere sollen Merkmale, die in den Figuren enthalten sind, keineswegs als notwendiger Bestandteil der vorliegenden Erfindung erachtet werden.
  • Die Zeichnung zeigt in
  • Fig. 1a,b
    ein erstes Ausführungsbeispiel eines Schleif-Grundkörpers gemäß dem ersten Aspekt in einer Teilaufsicht und in einem Teillängsschnitt;
    Fig. 2a,b
    ein zweites Ausführungsbeispiel eines Schleif-Grundkörpers gemäß dem ersten Aspekt in einer Teilaufsicht und in einem Teillängsschnitt;
    Fig. 3
    eine schematische Darstellung eines vorteilhaften Faserverlaufs; und
    Fig. 4a-d
    eine schematische Darstellung eines Ausführungsbeispiels eines Herstellungsverfahrens gemäß dem dritten Aspekt.
  • Fig. 1 zeigt zunächst ein erstes Ausführungsbeispiel eines Schleif-Grundkörpers 1 gemäß dem ersten Aspekt in Teilaufsicht (Fig. 1a) und im Teillängsschnitt (Fig. 1b).
  • Der Schleif-Grundkörper 1 umfasst einen im Wesentlichen zylinderförmigen Außenkörper 2 zur Aufnahme eines Schleifmittels (nicht dargestellt). Das Schleifmittel kann beispielsweise flächig auf die Außenseite des Außenkörpers 2 aufgebracht werden. Zudem umfasst der Schleif-Grundkörper 1 einen im Wesentlichen zylindrischen Innenkörper 4 zur Anbindung des Schleif-Grundkörpers 1 an einen Antrieb (nicht dargestellt) und eine Verbindungsstruktur 6 zur mechanischen Kraftübertragung zwischen dem Außenkörper 2 und dem Innenkörper 4. Der Außenkörper 2, der Innenkörper 4 und die Verbindungsstruktur 6 sind alle aus einem Faser-Kunststoff-Verbund gebildet, wobei die Fasern jeweils organische Verstärkungsfasern, in diesem Fall Kohlenstofffasern sind. Alternativ oder zusätzlich können aber auch andere Fasern, wie etwa Glasfasern, Basaltfasern oder Aramidfasern zum Einsatz kommen. Der Kunststoff oder das Matrixmaterial des Faser-Kunststoff-Verbunds kann ein Duroplast oder ein Thermoplast sein.
  • Die Verbindungsstruktur 6 ist hier aus mehreren radial nach außen verlaufenden speichenartig angeordneten Streben gebildet, von denen hier nur zwei Streben 6a, 6b dargestellt sind. Dies hat den Vorteil, dass aufgrund der Aussparungen eine Ablagerung von Schleifstaub auf der Verbindungsstruktur 6 vermindert werden kann. Die Streben 6a, 6b etc. können einen Kern aus Schaummaterial aufweisen, um eine besonders leichte Variante des Schleif-Grundkörpers 1 zu ermöglichen.
  • Die Verbindungsstruktur 6 ist hier insbesondere stoffschlüssig sowohl an den Außenkörper 2 als auch an den Innenkörper 4 angebunden. Dies kann insbesondere mittels einer Kunststoffinfiltration erreicht werden.
  • Der Außenkörper 2 und der Innenkörper 4 sind konzentrisch angeordnet und haben die gemeinsame Zylinderachse 8. Der Außenkörper 2 und der Innenkörper 4 erstrecken sich ausgehend von der Verbindungsstruktur 6 jeweils in beide Richtungen im Wesentlichen parallel zu der Achse 8. Es ist zu erkennen, dass der Außenkörper 2 im Vergleich zum Innenkörper 4 einseitig eine größere axiale Ausdehnung aufweist bzw. dass der Innenkörper 4 einseitig eine entsprechend geringere axiale Ausdehnung aufweist. Durch diese asymmetrische Ausbildung wird insbesondere eine weitere Massereduktion erreicht, die eine Reduzierung der Rotationsmasse und der Fliehkräfte bei der Bearbeitung und damit eine höhere Beschleunigung ermöglicht.
  • Die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers 2, des Innenkörpers 4 und der Verbindungsstruktur 6 sind bevorzugt als Gelege, Gewebe, Geflecht, Flächengebilde und/oder Wickelstruktur ausgebildet. Dabei ist der Faser-Kunststoff-Verbund des Außenkörpers 2, des Innenkörpers 4 und der Verbindungsstruktur 6 bevorzugt mehrlagig aufgebaut. Die Fasern des Außenkörpers 2, des Innenkörpers 4 und der Verbindungsstruktur 4 sind dabei aus Preforms aufgebaut.
  • Innerhalb des Innenkörpers 4 ist zudem eine metallische Buchse 10 als Nabenelement angeordnet, mit der eine Welle-Nabe-Verbindung hergestellt werden kann. Der Innenkörper 4 wurde auf die metallische Buchse 10 aufgeschrumpft, sodass die metallische Buchse 10 mittels Klemmsitz in dem Innenkörper 4 fixiert ist. Dabei ist der Innenkörper 4 und/oder die metallische Buchse 10 entlang der Zylinderachse 8 gesehen konisch zulaufend ausgebildet.
  • Fig. 2 zeigt nun ein zweites Ausführungsbeispiel eines Schleif-Grundkörpers 1' gemäß dem ersten Aspekt in Aufsicht (2a) und im Längsschnitt (2b). Das zweite Ausführungsbeispiel ist ähnlich zu dem in Fig. 1 dargestellten Ausführungsbeispiel. Insofern wird zunächst auf die Ausführungen zu Fig. 1 verwiesen und es werden die gleichen Bezugszeichen (in gestrichener Schreibweise) verwendet. Im Folgenden soll auf die Unterschiede eingegangen werden.
  • In dem in Fig. 2 dargestellten Ausführungsbeispiel ist insbesondere die Verbindungsstruktur 6' des Schleif-Grundkörpers 1' anders ausgeführt. Die Verbindungsstruktur 6' ist in diesem Fall als flächiges, scheibenförmiges Verbindungselement 6' ausgebildet. Die scheibenförmige Verbindungsstruktur 6' weist in diesem Fall einen quasiisotropen Lagenaufbau auf, wodurch sich die Verbindungsstruktur 6' in der Ebene ähnlich einem metallischen Werkstoff verhält.
  • Der Schleif-Grundkörper 1' weist zudem eine Abdeckung 12' auf. Die Abdeckung 12' ist an einem Ende des Schleif-Grundkörpers 1' vorgesehen, sodass der Raum zwischen dem Außenkörper 2' und dem Innenkörper 4' abgedeckt wird. Dadurch kann ein übermäßiges Ansammeln von Schleifstaub zwischen dem Außenkörper 2', dem Innenkörper 1' und der scheibenförmigen Verbindungsstruktur 6' verhindert werden.
  • Fig. 3 zeigt eine schematische Darstellung eines vorteilhaften Faserverlaufs eines Schleif-Grundkörpers. Der Schleif-Grundkörper kann beispielsweise der Schleif-Grundkörper 1 aus Fig. 1 oder der Schleif-Grundkörper 1' aus Fig. 2 sein.
  • Wie durch die gestrichelten Linien angedeutet, sind die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers 2, 2' und des Innenkörpers 4, 4' dabei zumindest abschnittsweise in Umfangsrichtung des jeweiligen Körpers orientiert. Die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers 2, 2', des Innenkörpers 4, 4' und der Verbindungsstruktur 6, 6' sind zumindest teilweise entlang der jeweiligen Oberfläche orientiert.
  • Die Fig. 4a-d zeigen nun eine schematische Darstellung eines Ausführungsbeispiels eines Herstellungsverfahrens gemäß dem dritten Aspekt. In diesem Fall wird der in Fig. 2 gezeigte Schleif-Grundkörper 1' hergestellt. Allerdings ist das dargestellte Herstellungsverfahren auch auf die Herstellung anders ausgebildeter Schleif-Grundkörper wie etwa Schleif-Grundkörper 1 übertragbar.
  • Zunächst werden Fasern 30 als scheibenförmige Preform zur Bildung der späteren Verbindungsstruktur 6, 6' auf einen Formwerkzeugabschnitt 20 aufgebracht (Fig. 4a).
  • Anschließend werden Fasern 32 als Preform zur Bildung des späteren Innenkörpers 4, 4' auf einen zylinderförmigen Formwerkzeugabschnitt 22 aufgebracht (Fig. 4b). Die Formwerkzeugabschnitte 20 und 22 können dann miteinander verbunden werden.
  • Nun werden die Werkzeugabschnitte 20, 22 mit einem weiteren zylinderförmigen Formwerkzeugabschnitt 24 verbunden. Auf den Formwerkzeugabschnitt bestehend aus den montierten Werkzeugen 20 und 24 werden mit einem Flechtprozess die Fasern 34 zur Bildung des späteren Außenkörpers 2, 2' aufgebracht (Fig. 4c).
  • Anschließend wird ein umschließendes Außenwerkzeug (nicht dargestellt) montiert, welches die formnegative im Wesentlichen zylindrische Kontur des zu fertigenden Außenkörpers 2, 2' abbildet. Das Außenwerkzeug und die nun innenliegenden Werkzeuge 20, 22, 24 bilden die Werkzeugkavität für die Fasern 30, 32, 34. Dabei kann die zylindrische Kontur auch Durchmesseränderungen enthalten, um somit abgesetzte bzw. gestufte Schleifbeläge applizieren zu können, ohne dass die abgesetzte Außenkontur des konsolidierten Faserverbundkörpers spanend (Fräsen/Drehen) hergestellt werden muss.
  • Schließlich werden die Fasern 30, 32, 34 mit Kunststoff infiltriert, sodass der Außenkörper 2, 2', der Innenkörper 4, 4' und die Verbindungsstruktur 6, 6' aus einem Faser-Kunststoff-Verbund gebildet werden. Nach dem Infiltrieren und Konsolidieren kann der Schleif-Grundkörper 1' durch Entfernen der einzelnen Formwerkzeugabschnitte 20, 22, 24 entformt werden (Fig. 4d)

Claims (19)

  1. Schleif-Grundkörper
    - mit einem im Wesentlichen zylinderförmigen Außenkörper (2, 2') zur Aufnahme eines Schleifmittels,
    - mit einem Innenkörper (4, 4') zur Anbindung des Schleif-Grundkörpers (1, 1') an einen Antrieb, und
    - mit einer Verbindungsstruktur (6, 6') zur mechanischen Kraftübertragung zwischen dem Außenkörper (2, 2') und dem Innenkörper (4, 4'),
    wobei der Außenkörper (2, 2'), der Innenkörper (4, 4') und/oder die Verbindungsstruktur (6, 6') zumindest abschnittsweise aus einem Faser-Kunststoff-Verbund gebildet sind und wobei der Schleif-Grundkörper dadurch gekennzeichnet ist, dass der Innenkörper (4, 4') im Wesentlichen zylinderförmig ausgebildet ist und der Außenkörper (2, 2') eine im Vergleich zum Innenkörper (4, 4') größere axiale Ausdehnung aufweist.
  2. Schleif-Grundkörper nach Anspruch 1,
    wobei die Fasern (30, 32, 34) des Faser-Kunststoff-Verbunds des Außenkörpers (2, 2'), des Innenkörpers (4, 4') und/oder der Verbindungsstruktur (6, 6') als Gelege, Gewebe, Geflecht, Flächengebilde und/oder Wickelstruktur ausgebildet sind.
  3. Schleif-Grundkörper nach einem der Ansprüche 1 oder 2,
    wobei die Fasern (30, 32, 34) des Faser-Kunststoff-Verbunds des Außenkörpers (2, 2') und/oder des Innenkörpers (4, 4') zumindest abschnittsweise in Umfangsrichtung des jeweiligen Körpers orientiert sind.
  4. Schleif-Grundkörper nach einem Ansprüche 1 bis 3,
    wobei die Fasern des Faser-Kunststoff-Verbunds des Außenkörpers (2, 2'), des Innenkörpers (4, 4') und/oder der Verbindungsstruktur (6, 6') zumindest teilweise entlang der Oberfläche des jeweiligen Körpers orientiert sind.
  5. Schleif-Grundkörper nach einem der Ansprüche 1 bis 4,
    wobei der Faser-Kunststoff-Verbund des Außenkörpers (2, 2'), des Innenkörpers (4, 4') und/oder der Verbindungsstruktur (6, 6') ein- oder mehrlagig aufgebaut ist.
  6. Schleif-Grundkörper nach einem der Ansprüche 1 bis 5,
    wobei die Verbindungsstruktur (6, 6') als flächiges Verbindungselement (6') ausgebildet ist.
  7. Schleif-Grundkörper nach einem der Ansprüche 1 bis 6,
    wobei die Verbindungsstruktur (6, 6') einen quasiisotropen Lagenaufbau aufweist.
  8. Schleif-Grundkörper nach einem der Ansprüche 1 bis 5,
    wobei die Verbindungsstruktur (6, 6') mehrere speichenartig angeordnete Elemente (6a, 6b) umfasst.
  9. Schleif-Grundkörper nach Anspruch 8,
    wobei die speichenartig angeordneten Elemente (6a, 6b) jeweils einen Kern aus Schaummaterial aufweisen.
  10. Schleif-Grundkörper nach einem der Ansprüche 1 bis 9,
    wobei der Außenkörper (2, 2'), der Innenkörper (4, 4') und/oder die Verbindungsstruktur (6, 6') aus Preforms aufgebaut sind.
  11. Schleif-Grundkörper nach einem der Ansprüche 1 bis 10,
    wobei die Verbindungsstruktur (6, 6') stoffschlüssig und/oder formschlüssig an den Außenkörper (2, 2') und/oder Innenkörper (4, 4') angebunden ist.
  12. Schleif-Grundkörper nach einem der Ansprüche 1 bis 11,
    wobei die Fasern (30, 32, 34) des Faser-Kunststoff-Verbunds des Außenkörpers (2, 2'), des Innenkörpers (4, 4') und/oder der Verbindungsstruktur (6, 6') anorganische und/oder organische Verstärkungsfasern (30, 32, 34) umfassen.
  13. Schleif-Grundkörper nach einem der Ansprüche 1 bis 12,
    wobei das Matrixmaterial des Faser-Kunststoff-Verbunds des Außenkörpers (2, 2'), des Innenkörpers (4, 4') und/oder der Verbindungsstruktur (6, 6') einen Duroplasten oder einen Thermoplasten umfasst.
  14. Schleif-Grundkörper nach einem der Ansprüche 1 bis 13,
    wobei der Schleif-Grundkörper (1, 1') eine zumindest abschnittsweise innerhalb des Innenkörpers (4, 4') angeordnete metallische Buchse (10, 10') umfasst.
  15. Schleif-Grundkörper nach einem der Ansprüche 1 bis 14,
    wobei der Schleif-Grundkörper (1, 1') weiterhin ein auf den Außenkörper (2, 2') aufgebrachtes Schleifmittel umfasst.
  16. Verwendung eines Schleif-Grundkörpers nach einem der Ansprüche 1 bis 17 zur abrasiven Bearbeitung von metallischen Teilen.
  17. Verfahren zur Herstellung eines Schleif-Grundkörpers, das Verfahren umfassend:
    - Ausbilden eines im Wesentlichen zylinderförmigen Außenkörpers (2, 2') zur Aufnahme eines Schleifmittels,
    - Ausbilden eines im Wesentlichen zylinderförmigen Innenkörpers (4, 4') zur Anbindung des Schleif-Grundkörpers (1, 1') an einen Antrieb, wobei der Außenkörper (2, 2') eine im Vergleich zum Innenkörper (4, 4') größere axiale Ausdehnung aufweist und
    - Ausbilden einer Verbindungsstruktur (6, 6') zur mechanischen Kraftübertragung zwischen dem Außenkörper (2, 2') und dem Innenkörper (4, 4'),
    - wobei der Außenkörper (2, 2'), der Innenkörper (4, 4') und/oder die Verbindungsstruktur (6, 6') zumindest bereichsweise aus einem Faser-Kunststoff-Verbund gebildet werden,
    - wobei der Außenkörper (2, 2'), der Innenkörper (4, 4') und/oder die Verbindungsstruktur (6, 6') dadurch gebildet werden, dass zunächst Fasern (30, 32, 34) auf ein Formwerkzeug (20, 22, 24) gebracht werden und anschließend die Fasern (30, 32, 34) mit Kunststoff infiltriert werden, und
    - wobei das Formwerkzeug (20, 22, 24) separate Formwerkzeugabschnitte (20, 22, 24) für den Außenkörper (2, 2'), den Innenkörper (4, 4') und/oder die Verbindungsstruktur (6, 6') umfasst.
  18. Verfahren nach Anspruch 17,
    wobei der Schleif-Grundkörper (1, 1') nach dem Infiltrieren durch Entfernen des Formwerkzeugs (20, 22, 24) entformt wird.
  19. Verfahren nach einem der Ansprüche 17 oder 18,
    wobei eine metallische Buchse (10, 10') zumindest abschnittsweise innerhalb des Innenkörpers (4, 4') angeordnet und fixiert wird.
EP16810357.0A 2015-12-18 2016-12-13 Massereduzierter schleif-grundkörper Not-in-force EP3389926B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015122233.7A DE102015122233A1 (de) 2015-12-18 2015-12-18 Massereduzierter Schleif-Grundkörper
PCT/EP2016/080761 WO2017102707A1 (de) 2015-12-18 2016-12-13 Massereduzierter schleif-grundkörper

Publications (2)

Publication Number Publication Date
EP3389926A1 EP3389926A1 (de) 2018-10-24
EP3389926B1 true EP3389926B1 (de) 2019-10-02

Family

ID=57544437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16810357.0A Not-in-force EP3389926B1 (de) 2015-12-18 2016-12-13 Massereduzierter schleif-grundkörper

Country Status (6)

Country Link
US (1) US20180304442A1 (de)
EP (1) EP3389926B1 (de)
CN (1) CN108367414A (de)
DE (1) DE102015122233A1 (de)
ES (1) ES2764556T3 (de)
WO (1) WO2017102707A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016105049B4 (de) 2016-03-18 2018-09-06 Thyssenkrupp Ag Verfahren zur Wiederbelegung eines Schleifwerkzeugs sowie wiederbelegbares Schleifwerkzeug hierzu
AT518908B1 (de) * 2016-08-11 2019-04-15 Tyrolit Schleifmittelwerke Swarovski Kg Trägerkörper für Schleifwerkzeuge
CN111823153A (zh) * 2020-08-06 2020-10-27 平湖盛邦科技有限公司 一种碳纤维基体复合结构砂轮及其制造方法
EP4098401A1 (de) * 2021-06-01 2022-12-07 Hilti Aktiengesellschaft Schleifteller für eine schleifscheibe einer schleifmaschine und herstellungsverfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2581934A (en) * 1949-04-04 1952-01-08 Firestone Tire & Rubber Co Abrading roll
US4184854A (en) * 1978-04-24 1980-01-22 Norton Company Magnetic cores for diamond or cubic boron nitride grinding wheels
US4456577A (en) * 1981-09-25 1984-06-26 Osaka Diamond Industrial Company, Ltd. Methods for producing composite rotary dresser
JPH1128668A (ja) 1997-07-04 1999-02-02 Toyoda Mach Works Ltd 高速研削用砥石車及びその取付方法
DE19812515A1 (de) * 1998-03-21 1999-09-23 M & F Entw & Patentverwertungs Lamellenschleifwerkzeug
IT1306145B1 (it) * 1999-05-21 2001-05-30 Quintilio Lupi Utensile rotativo ad azione combinata abrasiva e a frammentazione perla esecuzione di profili o di tagli su lastre di materiale fragile
KR20030091641A (ko) * 2002-05-27 2003-12-03 구레-노튼 가부시키가이샤 연마용 숫돌
AT502377B1 (de) * 2005-09-26 2007-03-15 Asen Norbert Ing Grundkörper für ein rotierendes schleif- bzw. schneidwerkzeug sowie daraus hergestelltes schleif- bzw. schneidwerkzeug
CN201483378U (zh) * 2009-09-01 2010-05-26 杜宝通 快速装卸式金刚石磨轮
DE102012005085A1 (de) * 2012-03-13 2013-09-19 Dr. Müller Diamantmetall AG Werkzeug zum Bearbeiten von Materialien
CN103343868B (zh) * 2013-06-27 2015-04-22 北京卫星制造厂 一种复合材料星敏支架制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017102707A1 (de) 2017-06-22
DE102015122233A1 (de) 2017-06-22
US20180304442A1 (en) 2018-10-25
ES2764556T3 (es) 2020-06-03
CN108367414A (zh) 2018-08-03
EP3389926A1 (de) 2018-10-24

Similar Documents

Publication Publication Date Title
EP3389926B1 (de) Massereduzierter schleif-grundkörper
EP2788174B1 (de) Rad mit radstern und das geeignete herstellungsverfahren
DE102010010513B4 (de) Verfahren zur Herstellung von hohlprofilartigen Bauteilen aus Faserverbundwerkstoffen
EP2363273B1 (de) Verfahren zur Herstellung einer Radfelge
EP1928633B2 (de) Trägerkörper für ein rotierendes schleif- bzw. schneidwerkzeug sowie daraus hergestelltes schleif- bzw. schneidwerkzeug
EP2927908A1 (de) Chopperscheibe sowie Vorrichtung und Verfahren zu deren Herstellung
EP3395591B1 (de) Fahrwerkbauteil und verfahren zu dessen herstellung
DE68913121T2 (de) Fadenaufwickelvorrichtung.
DE69208692T2 (de) Verfahren zur Herstellung einer hundfussformigen Schicht aus Verbundwerkstoff und dafür gebrauchtes (benötigtes) Werkzeug
DE102012101724B4 (de) Faserwerkstoffrohling zur Herstellung eines Faserwerkstoffverbundbauteils
EP2497624A2 (de) Faserhalbzeug mit einem Kernbereich und Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
EP2626218B1 (de) Verfahren zum Herstellen einer Radfelge aus Faserverbundwerkstoff und Radfelge für ein Kraftfahrzeug
DE102013007609A1 (de) Verfahren zur Herstellung eines faserverstärkten Kunststoffbauteils
DE102015216966A1 (de) Achsstrebe und Verfahren zur Herstellung einer Achsstrebe
DE2024939A1 (de) Verfahren zur Herstellung von Gegenstanden mit radialen Vorsprungen bzw. Ansätzen
EP3231631B1 (de) Drahtreifenfelge mit gewickelter innenhülse und flechtaussenhülse sowie verfahren zu deren herstellung
EP3203109B1 (de) Zylinderförmiger rotationskörper und verfahren zur herstellung eines zylinderförmigen rotationskörpers
DE102017123143A1 (de) Radlager mit gewickelter Verbindung der Lastein- und ausleitungselemente
EP3210752B1 (de) Geschnittener rotationskörper und verfahren zur herstellung eines rotationskörpers
DE102019101472A1 (de) Flanschbauteil für ein Radlager eines Kraftfahrzeugs
DE102012211840A1 (de) Faserverstärkte Antriebswelle und Ösenwickelverfahren zur Herstellung
EP4194173A1 (de) Werkzeugeinrichtung, verfahren zur herstellung einer felge und felge
EP4197756A1 (de) Verfahren zur herstellung einer felge, felge und werkzeugeinrichtung
DE102021123457A1 (de) Verfahren zur Herstellung eines Fahrzeuglenkrads und damit hergestelltes Fahrzeuglenkrad
DE102019100770A1 (de) Flanschbauteil für ein Radlager eines Kraftfahrzeugs

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUETTNER, MAXIMILIAN

Inventor name: CICHY, FRANK

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1185672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006944

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: JACOBACCI AND PARTNERS S.P.A., CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191220

Year of fee payment: 4

Ref country code: IT

Payment date: 20191231

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191219

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200203

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200121

Year of fee payment: 4

Ref country code: DE

Payment date: 20191219

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20191227

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2764556

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006944

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

26N No opposition filed

Effective date: 20200703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016006944

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1185672

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213