EP3377840B1 - Remotely controllable weapon station and method for operating a remotely controllable weapon station - Google Patents

Remotely controllable weapon station and method for operating a remotely controllable weapon station Download PDF

Info

Publication number
EP3377840B1
EP3377840B1 EP16778410.7A EP16778410A EP3377840B1 EP 3377840 B1 EP3377840 B1 EP 3377840B1 EP 16778410 A EP16778410 A EP 16778410A EP 3377840 B1 EP3377840 B1 EP 3377840B1
Authority
EP
European Patent Office
Prior art keywords
weapon
point
impact
display system
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16778410.7A
Other languages
German (de)
French (fr)
Other versions
EP3377840A1 (en
EP3377840B9 (en
Inventor
Günter KROGMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Electronics GmbH
Original Assignee
Rheinmetall Defence Electronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall Defence Electronics GmbH filed Critical Rheinmetall Defence Electronics GmbH
Publication of EP3377840A1 publication Critical patent/EP3377840A1/en
Application granted granted Critical
Publication of EP3377840B1 publication Critical patent/EP3377840B1/en
Publication of EP3377840B9 publication Critical patent/EP3377840B9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/142Indirect aiming means based on observation of a first shoot; using a simulated shoot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/06Aiming or laying means with rangefinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/16Sighting devices adapted for indirect laying of fire
    • F41G3/165Sighting devices adapted for indirect laying of fire using a TV-monitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G5/00Elevating or traversing control systems for guns
    • F41G5/14Elevating or traversing control systems for guns for vehicle-borne guns
    • F41G5/20Elevating or traversing control systems for guns for vehicle-borne guns for guns on ships
    • F41G5/22Elevating or traversing control systems for guns for vehicle-borne guns for guns on ships to compensate for rolling or pitching

Definitions

  • the present invention relates to a remote-controlled weapon station with a weapon, which is mounted in a carriage so that it can be adjusted in azimuth and elevation, for combating a target object. Furthermore, the present invention relates to a military vehicle with such a remote-controlled weapon station and a method for operating a remote-controlled weapon station.
  • Military vehicles such as ships or land vehicles, are often equipped with a weapon arranged on the outer shell of the vehicle, which is mounted in a mount so that it can be adjusted in azimuth and elevation.
  • Such carriages are often designed as remote-controlled weapon stations, which can be actuated from the ballistic-protected interior of the vehicle.
  • Such remote-controlled weapon stations are, for example, from DE 10 2011 050 277 A1 and from the DE 10 2006 034 689 A1 known. Individual shots or volleys can be fired from the remote-controlled weapon station.
  • a remote-controlled weapon station which comprises a control device with a display device and a memory device.
  • the display device shows a stored view of a target device and the storage device stores the information about the offset between the line of fire (LOF) and the line of sight (LOS).
  • LEF line of fire
  • LOS line of sight
  • a disadvantage of the conventional solutions is that the offset has to be determined and corrected manually by the operator or user of the remote-controlled weapon station.
  • the disadvantage of this is that there is a certain inaccuracy in determining the offset. Furthermore, this is time-consuming and error-prone and offset cannot be determined and corrected in real time.
  • a conventional remotely controllable weapon station with a weapon which is mounted so that it can be directed in azimuth and elevation is known from the document WO 2013/153306 A1 known.
  • a remotely controllable weapon station with a weapon for attacking a target object, which is mounted in a carriage so that it can be adjusted in azimuth and elevation.
  • the remote-controlled weapon station comprises a display system for optically displaying a target area of the weapon, a first unit for determining a pixel displayed on the display system of a target point of impact of a projectile of the weapon, a second unit for determining a pixel displayed on the display system of an actual point of impact in Depending on image data recorded by a recording device of the actual point of impact of the projectile, and a third unit for determining a deflection of the weapon depending on the specific pixel of the target point of impact and the specific pixel of the actual point of impact on the display system.
  • the current location of the weapon can be determined automatically and taken over by the fire control computer for controlling the weapon of the remote-controlled weapon station.
  • the first unit, the second unit and the third unit can together calculate or determine the offset in real time.
  • the parameters set for firing and the data transmitted by the ship via the data interface for firing the shot are used to calculate at which point on the display system or screen the projectile should hit the water surface (target point of impact of the projectile).
  • This theoretical point of impact or target point of impact for example determined by the pixel coordinates on the display system screen, is compared to the actual point of impact of the projectile (actual point of impact) according to the pixel coordinates on the display system screen.
  • the deviation can now preferably be determined by means of a delta calculation of the two pixel coordinates and their conversion into millirads.
  • the resulting result indicates, in particular, which specific repository is present at the present weapon station.
  • the remote-controlled weapon station is arranged in particular on a military vehicle.
  • the military vehicle is, for example, a warship.
  • the command center of the warship includes a fire control computer, by means of which the weapon station can be operated remotely.
  • the target object is, for example, an enemy military vehicle, for example an enemy warship.
  • the weapon is a naval gun.
  • the respective unit for example the first unit, can be implemented in terms of hardware and/or software.
  • the respective unit can be designed as a device or as part of a device, for example as a computer or as a microprocessor or as a fire control computer.
  • the respective unit can be designed as a computer program product, as a function, as a routine, as part of a program code or as an executable object.
  • the display system includes a screen, for example a touchscreen, and a user interface with input means for entering commands for the display system.
  • the display system is connected to a number of cameras which record the surroundings of the weapon.
  • the third unit is set up to determine the placement of the weapon based on a difference between the pixel of the target point of impact and the pixel of the actual point of impact on the display system.
  • the weapon station is mounted on a military vehicle, with the first unit being set up to determine the pixel of the target point of impact on the display system as a function of weapon-specific parameters, vehicle-specific parameters and/or environmental parameters.
  • the weapon-specific parameters include a target distance of the target object, a physical target extension of the target object, a type and/or a dispersion of ammunition used in the weapon, a variance in a mechanism of the weapon and/or at least one maintenance parameter of the weapon.
  • the environment parameters and ship parameters mentioned above are used.
  • the theoretically determined impact distance of the projectiles is preferably used as a base variable.
  • the sea state is preferably not greater than 2, since otherwise the automated, error-free localization of the impact position of calibration shots, ie the resulting water fountains, is not optimal.
  • templates or reference templates of typical water fountains when projectiles hit the water can also be stored in a database and used.
  • the weapon is warmed up with a number of shots. For example, this number is 5.
  • the system is preferably placed in a manual mode and the weapon placed in a predetermined elevation/azimuth position.
  • no stabilization is selected and no target is tracked. Consequently, preferably no dynamic derivative action is calculated either.
  • a spin offset is preferably taken into account.
  • the system is set to fire mode HP (HP; High Precision).
  • the weapon station also includes a laser range finder for determining the target range of the target object.
  • the vehicle-specific parameters include a course of the vehicle, a speed of the vehicle, a parameter relating to heaving, a parameter relating to heaving, a parameter relating to diving, a parameter relating to rolling, a parameter relating to pitching and/or a parameter related to yaw.
  • the recording device comprises a camera, a thermal imaging camera, a radar device and/or a sonar device.
  • the pixel of the target meeting point on the display system comprises a pixel or an area of a plurality of pixels and/or the pixel of the actual meeting point on the display system comprises a pixel or an area of a plurality of pixels.
  • the second unit is set up to determine the pixel of the actual point of impact on the display system based on pattern recognition using the image data recorded by the recording device and reference templates for projectile impacts stored in a database.
  • the water fountains caused by the impact of the bullets on the water have a typical character and can be stored as templates or reference templates in the database for automatic recognition and position determination.
  • the third unit is set up to determine an azimuth offset and an elevation offset based on the determined pixel of the target point of impact and the determined pixel of the actual point of impact on the display system.
  • the third unit for determining the azimuth offset is set up to set the elevation angle to 0° in each case for a plurality M of successive shots by the weapon and to change the azimuth angle in each case by a predetermined number of degrees. determine a respective value for the azimuth offset for each of the successive shots based on the determined target point of impact pixel and on the determined actual point of impact pixel on the display system, and determine the azimuth offset using a referenced to the M To determine values for the azimuth offset applied probabilistic method.
  • the third unit for determining the elevation offset is set up to set the azimuth angle to 270° and increase the elevation angle by a predetermined number of degrees for a plurality M of successive shots by the weapon vary, respectively determine a value for the elevation offset for each of the successive shots based on the determined pixel of the target point of impact and on the determined pixel of the actual point of impact on the display system, and the elevation offset using a on to determine the M values for the elevation offset probabilistic method used.
  • a military vehicle which has a number N of remotely controllable weapon stations according to the first aspect, with N ⁇ 1.
  • the military vehicle is, for example, a warship.
  • the military vehicle can also be a land vehicle, such as a tank, in particular a remote-controlled tank.
  • a computer program product which causes the execution of the method as explained above according to the third aspect on a program-controlled device.
  • a computer program product such as a computer program means
  • FIG. 1 is a schematic block diagram of a first embodiment of a remote-controlled weapon station 1 is shown.
  • the remote-controlled weapon station 1 includes a weapon 2 for combating a target object, which is mounted in a carriage 3 so that it can be adjusted in azimuth and elevation.
  • the remote-controlled weapon station 1 is installed in particular on a military vehicle.
  • the military vehicle can include a plurality of remotely controllable weapon stations 1 .
  • the military vehicle is, for example, a warship.
  • the remote-controlled weapon station 1 includes a display system 4 for the visual display of a target area of the weapon 2.
  • the display system 4 is shown as a screen on which the horizon, a target Z and a bullet impact G are shown.
  • the bullet-impact G is illustrated as a water-fountain by way of example.
  • T1 a pixel of a target point of impact of a projectile of weapon 2
  • T2 a pixel of an actual point of impact of the projectile of weapon 2.
  • the remote-controlled weapon station 1 comprises a first unit 5, a second unit 6, which can be coupled to a receiving device 7, and a third unit 8.
  • the first unit 5, the second unit 6 and the third unit 8 are in particular in a fire control computer 9 integrated into weapon station 1.
  • the first unit 5 is set up to determine the image point T1 of the target point of impact of the projectile of the weapon 2 shown on the display system 4 .
  • the second unit 6 can be coupled to the recording device 7 and is also set up to receive image data BD recorded by the recording device 7 of the actual point of impact of the projectile.
  • the actual meeting point of the projectile corresponds in particular to the projectile impact G of the 1 .
  • the second unit 6 is set up to determine the pixel T2 of the actual meeting point shown on the display system 4 as a function of the image data BD recorded by the recording device 7 .
  • the third unit 8 is set up to display a location, in particular an azimuth location and an elevation location, of the weapon 2 depending on the specific pixel T1 of the target point of impact on the display system 4 and on the specific pixel T2 of the actual point of impact on the display system 4 to be determined.
  • the third unit 8 is set up in particular to determine the placement of the weapon 2 based on a difference between the pixel T1 of the target point of impact and the pixel T2 of the actual point of impact on the display system 4 .
  • the difference can be a difference vector, for example, in particular a two-dimensional or a three-dimensional difference vector.
  • the first unit 5 is set up to to determine the pixel T1 of the target meeting point on the display system 4 as a function of weapon-specific parameters, vehicle-specific parameters and/or environmental parameters.
  • the environmental parameters are meteorological data such as ambient temperature, wind direction and wind speed.
  • weapon-specific parameters are the target distance of the target Z or target object, a physical target extension of the target object, a type and/or a spread of ammunition used in the weapon 2, a variance in a mechanism of the weapon 2 and/or maintenance parameters of the weapon, such as such as maintenance intervals.
  • vehicle-specific parameters examples include a course of the vehicle, e.g /or a parameter related to yaw.
  • the recording device 7, which is coupled to the second unit 6, includes, for example, a camera, a thermal imaging camera, a radar device and/or a sonar device.
  • the pixel T1 of the target meeting point on the display device 4 is, for example, a pixel or an area made up of a plurality of pixels.
  • the image point T2 of the actual meeting point on the display system 4 is also a pixel or an area made up of a plurality of pixels.
  • FIG. 2 shows a schematic block diagram of a second exemplary embodiment of a remote-controlled weapon station 1.
  • the second embodiment of the 2 the remote-controlled weapon station 1 includes all the features of the first embodiment 1 .
  • the weapon station includes 1 of the 2 a database 10 for storing reference templates RT for projectile impacts G.
  • the second unit 6 of 2 is set up to determine the pixel T2 of the actual meeting point on the display system 4 based on pattern recognition using the image data BD recorded by the recording device 7 and the reference templates RT stored in the database 10 for the projectile impacts G.
  • the third unit 8 is set up to determine an azimuth deviation ⁇ A and an elevation deviation ⁇ E based on the determined pixel T1 of the target meeting point and from the determined pixel T2 of the actual meeting point on the display system 4 .
  • the third unit 8 for determining the azimuth offset ⁇ A is set up to set the elevation angle to 0° and to change the azimuth angle to a predetermined number in each case for a plurality M of successive shots by the weapon 2. to determine a value for the azimuth offset ⁇ A for each of the successive shots based on the determined pixel T1 of the target hit point and on the determined pixel T2 of the actual hit point on the display system 4 and the azimuth offset ⁇ A using a probabilistic method applied to the M values for the azimuth offset.
  • the elevation angle is set to 0° and the azimuth angle is set to five different shot angles.
  • the azimuth angles 285°, 275°, 270°, 265° and 255°.
  • a shot is fired at each angular setting of the azimuth angle and the actual hit point according to pixel T2 of the actual hit point is compared with the theoretical hit point according to pixel T1 of the target hit point using the pixel positions present in the display system 4 .
  • the azimuth offset ⁇ A that is statistically most likely to be assumed is taken over by the fire control computer 9 as an offset value from the five available values, in particular converted into millirads.
  • the ship's course for the example of a ship as a military vehicle should preferably be chosen in such a way that the meteorological wind blows either in the direction of the shot or from the direction of the shot (no cross wind).
  • the ship's speed and course should preferably be kept constant throughout the determination of the five values for the azimuth deviation ⁇ A.
  • a speed between 10 and 20 knots is preferably selected as the ship speed.
  • the elevation angle for five consecutive shots is set to the following shot angles: -1°; -0.5°; 0°; +0.5°; and +1°.
  • the azimuth angle is set to 270°, for example.
  • a shot is fired and the actual meeting point according to the pixel T1 is compared with the theoretical meeting point according to the pixel T2 on the display system 4 based on the existing pixel positions. An example of this is shown in the schematic views of the display system 4 according to FIG Figures 8 to 12 .
  • the elevation deviation ⁇ E that is statistically most likely to be assumed is taken over by the fire control computer 9 as an offset value from the five available values, in particular those converted into millirads.
  • the ship's course is to be selected in such a way that the meteorological wind blows transversely to the firing direction (no tailwind or headwind).
  • the ship's speed and course are to be kept constant throughout the determination of the five elevation deviations.
  • a speed of between 10 and 15 knots should preferably be selected as the ship speed.
  • FIGS 1 and 2 show a schematic flow chart of an exemplary embodiment of a method for operating a remotely controllable weapon station 1. Examples of the remotely controllable weapon station 1 are in FIGS 1 and 2 shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Description

Die vorliegende Erfindung betrifft eine fernbedienbare Waffenstation mit einer Waffe, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist, zur Bekämpfung eines Zielobjekts. Des Weiteren betrifft die vorliegende Erfindung ein militärisches Fahrzeug mit einer solchen fernbedienbaren Waffenstation sowie ein Verfahren zum Betreiben einer fernbedienbaren Waffenstation.The present invention relates to a remote-controlled weapon station with a weapon, which is mounted in a carriage so that it can be adjusted in azimuth and elevation, for combating a target object. Furthermore, the present invention relates to a military vehicle with such a remote-controlled weapon station and a method for operating a remote-controlled weapon station.

Militärische Fahrzeuge, wie beispielsweise Schiff oder Landfahrzeuge, sind häufig mit einer an der Außenhülle des Fahrzeugs angeordneten Waffe ausgerüstet, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist. Derartige Lafetten sind häufig als fernbedienbare Waffenstationen ausgebildet, welche aus dem ballistisch geschützten Inneren des Fahrzeugs betätigbar sind.Military vehicles, such as ships or land vehicles, are often equipped with a weapon arranged on the outer shell of the vehicle, which is mounted in a mount so that it can be adjusted in azimuth and elevation. Such carriages are often designed as remote-controlled weapon stations, which can be actuated from the ballistic-protected interior of the vehicle.

Solche fernbedienbaren Waffenstationen sind beispielsweise aus der DE 10 2011 050 277 A1 und aus der DE 10 2006 034 689 A1 bekannt. Dabei können aus der fernbedienbaren Waffenstation einzelne Schüsse oder Salven abgegeben werden.Such remote-controlled weapon stations are, for example, from DE 10 2011 050 277 A1 and from the DE 10 2006 034 689 A1 known. Individual shots or volleys can be fired from the remote-controlled weapon station.

Ferner ist aus der KR 2012 006 44 29 eine fernbedienbare Waffenstation bekannt, welche eine Steuereinrichtung mit einer Anzeigeeinrichtung sowie einer Speichereinrichtung umfasst. Die Anzeigeeinrichtung zeigt eine gespeicherte Ansicht einer Zieleinrichtung und die Speichereinrichtung speichert die Informationen über die Ablage zwischen der Schusslinie (Line of Fire; LOF) und der Sichtlinie (Line of Sight; LOS).Furthermore, from the KR 2012 006 44 29 a remote-controlled weapon station is known, which comprises a control device with a display device and a memory device. The display device shows a stored view of a target device and the storage device stores the information about the offset between the line of fire (LOF) and the line of sight (LOS).

Nachteilig bei den herkömmlichen Lösungen ist, dass die Ablage vom Operator oder Benutzer der fernbedienbaren Waffenstation manuell bestimmt und korrigiert werden muss. Daraus ergibt sich nachteiligerweise eine gewisse Ungenauigkeit bei der Bestimmung der Ablage. Des Weiteren ist dies zeitaufwändig, fehleranfällig und die Ablage kann nicht in Echtzeit bestimmt und korrigiert werden.A disadvantage of the conventional solutions is that the offset has to be determined and corrected manually by the operator or user of the remote-controlled weapon station. The disadvantage of this is that there is a certain inaccuracy in determining the offset. Furthermore, this is time-consuming and error-prone and offset cannot be determined and corrected in real time.

Eine herkömmliche fernbedienbare Waffenstation mit einer Waffe, welche in Azimut und Elevation richtbar gelagert ist, ist aus dem Dokument WO 2013/153306 A1 bekannt.A conventional remotely controllable weapon station with a weapon which is mounted so that it can be directed in azimuth and elevation is known from the document WO 2013/153306 A1 known.

Vor diesem Hintergrund besteht eine Aufgabe der vorliegenden Erfindung darin, eine verbesserte fernbedienbare Waffenstation zu schaffen.Against this background, it is an object of the present invention to provide an improved remotely controllable weapon station.

Gemäß einem ersten Aspekt wird eine fernbedienbare Waffenstation mit einer Waffe zur Bekämpfung eines Zielobjekts vorgeschlagen, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist. Die fernbedienbare Waffenstation umfasst ein Anzeigesystem zur optischen Darstellung eines Zielbereichs der Waffe, eine erste Einheit zum Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Soll-Treffpunkts eines Geschosses der Waffe, eine zweite Einheit zum Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Ist-Treffpunkts in Abhängigkeit von mittels einer Aufnahmeeinrichtung aufgenommenen Bilddaten des Ist-Treffpunkts des Geschosses, und eine dritte Einheit zum Bestimmen einer Ablage der Waffe in Abhängigkeit von dem bestimmten Bildpunkt des Soll-Treffpunkts und von dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem.According to a first aspect, a remotely controllable weapon station is proposed with a weapon for attacking a target object, which is mounted in a carriage so that it can be adjusted in azimuth and elevation. The remote-controlled weapon station comprises a display system for optically displaying a target area of the weapon, a first unit for determining a pixel displayed on the display system of a target point of impact of a projectile of the weapon, a second unit for determining a pixel displayed on the display system of an actual point of impact in Depending on image data recorded by a recording device of the actual point of impact of the projectile, and a third unit for determining a deflection of the weapon depending on the specific pixel of the target point of impact and the specific pixel of the actual point of impact on the display system.

Vorteilhafterweise kann die aktuelle Ablage der Waffe automatisch bestimmt werden und von dem Feuerleitrechner zur Ansteuerung der Waffe der fernbedienbaren Waffenstation übernommen werden. Insbesondere können die erste Einheit, die zweite Einheit und die dritte Einheit zusammen die Ablage in Echtzeit berechnen beziehungsweise bestimmen.Advantageously, the current location of the weapon can be determined automatically and taken over by the fire control computer for controlling the weapon of the remote-controlled weapon station. In particular, the first unit, the second unit and the third unit can together calculate or determine the offset in real time.

Insbesondere können aufgrund von Fertigungstoleranzen nicht vermeidbare, individuelle Ablagen der jeweils auf einem militärischen Fahrzeug installierten Waffenstationen automatisch ermittelt werden.In particular, individual deposits of the weapon stations installed on a military vehicle that are unavoidable due to manufacturing tolerances can be determined automatically.

Neben dieser automatischen Ermittlung der Ablage besteht ein weiterer Vorteil darin, dass keine weiteren Hilfsmittel, wie zum Beispiel eine Zielscheibe, zur Bestimmung der Ablage benötigt werden. Beispielsweise bei einem MLG-27-System (MLG; Marine-Leicht-Geschütz) werden die zur Schussabgabe eingestellten Parameter und die vom Schiff via Datenschnittstelle zur Schussabgabe übermittelten Daten verwendet, um zu berechnen, an welcher Stelle auf dem Anzeigesystem oder Bildschirm das Geschoss auf der Wasseroberfläche auftreten sollte (Soll-Treffpunkt des Geschosses). Dieser theoretische Treffpunkt oder Soll-Treffpunkt, beispielsweise bestimmt durch die Pixelkoordinaten auf dem Bildschirm des Anzeigesystems, wird mit dem tatsächlichen Treffpunkt des Geschosses (Ist-Treffpunkt) gemäß der Pixelkoordinaten auf dem Bildschirm des Anzeigesystems verglichen. Die Ermittlung der Ablage kann nunmehr vorzugsweise mittels einer Delta-Berechnung der beiden Pixelkoordinaten und deren Umrechnung in Millirad erfolgen. Das daraus resultierende Ergebnis gibt insbesondere an, welche spezifische Ablage bei der vorliegenden Waffenstation vorliegt.In addition to this automatic determination of the offset, there is a further advantage in that no further aids, such as a target, are required to determine the offset. For example with an MLG-27 system (MLG; marine light artillery), the parameters set for firing and the data transmitted by the ship via the data interface for firing the shot are used to calculate at which point on the display system or screen the projectile should hit the water surface (target point of impact of the projectile). This theoretical point of impact or target point of impact, for example determined by the pixel coordinates on the display system screen, is compared to the actual point of impact of the projectile (actual point of impact) according to the pixel coordinates on the display system screen. The deviation can now preferably be determined by means of a delta calculation of the two pixel coordinates and their conversion into millirads. The resulting result indicates, in particular, which specific repository is present at the present weapon station.

Die fernbedienbare Waffenstation ist insbesondere auf einem Militärfahrzeug angeordnet. Das Militärfahrzeug ist beispielsweise ein Kriegsschiff. Beispielsweise umfasst die Kommandozentrale des Kriegsschiffes einen Feuerleitrechner, mittels welchem die Waffenstation fernbedienbar ist.The remote-controlled weapon station is arranged in particular on a military vehicle. The military vehicle is, for example, a warship. For example, the command center of the warship includes a fire control computer, by means of which the weapon station can be operated remotely.

Das Zielobjekt ist beispielsweise ein feindliches militärisches Fahrzeug, beispielsweise ein feindliches Kriegsschiff. Die Waffe ist beispielsweise ein Marinegeschütz.The target object is, for example, an enemy military vehicle, for example an enemy warship. For example, the weapon is a naval gun.

Die jeweilige Einheit, zum Beispiel die erste Einheit, kann hardwaretechnisch und/oder softwaretechnisch implementiert sein. Bei einer hardwaretechnischen Implementierung kann die jeweilige Einheit als Vorrichtung oder als Teil einer Vorrichtung, zum Beispiel als Computer oder als Mikroprozessor oder als Feuerleitrechner ausgebildet sein. Bei einer softwaretechnischen Implementierung kann die jeweilige Einheit als Computerprogrammprodukt, als eine Funktion, als eine Routine, als Teil eines Programmcodes oder als ausführbares Objekt ausgebildet sein.The respective unit, for example the first unit, can be implemented in terms of hardware and/or software. In the case of a hardware implementation, the respective unit can be designed as a device or as part of a device, for example as a computer or as a microprocessor or as a fire control computer. In the case of a software implementation, the respective unit can be designed as a computer program product, as a function, as a routine, as part of a program code or as an executable object.

Das Anzeigesystem umfasst insbesondere einen Bildschirm, beispielsweise einen Touchscreen, und eine Benutzerschnittstelle mit Eingabemitteln zum Eingeben von Befehlen für das Anzeigesystem. Das Anzeigesystem ist insbesondere mit einer Anzahl von Kameras verbunden, welche die Umgebung der Waffe aufnehmen.In particular, the display system includes a screen, for example a touchscreen, and a user interface with input means for entering commands for the display system. In particular, the display system is connected to a number of cameras which record the surroundings of the weapon.

Gemäß einer Ausführungsform ist die dritte Einheit dazu eingerichtet, die Ablage der Waffe basierend auf einer Differenz zwischen dem Bildpunkt des Soll-Treffpunkts und dem Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen.According to one embodiment, the third unit is set up to determine the placement of the weapon based on a difference between the pixel of the target point of impact and the pixel of the actual point of impact on the display system.

Gemäß einer weiteren Ausführungsform ist die Waffenstation auf einem militärischen Fahrzeug angebracht, wobei die erste Einheit dazu eingerichtet ist, den Bildpunkt des Soll-Treffpunkts auf dem Anzeigesystem in Abhängigkeit von waffenspezifischen Parametern, von fahrzeugspezifischen Parametern und/oder von Umgebungs-Parametern zu bestimmen.According to a further embodiment, the weapon station is mounted on a military vehicle, with the first unit being set up to determine the pixel of the target point of impact on the display system as a function of weapon-specific parameters, vehicle-specific parameters and/or environmental parameters.

Gemäß einer weiteren Ausführungsform umfassen die waffenspezifischen Parameter eine Zielentfernung des Zielobjekts, eine physikalische Zielausdehnung des Zielobjekts, eine Art und/oder eine Streuung einer in der Waffe verwendeten Munition, eine Varianz in einer Mechanik der Waffe und/oder zumindest einen Wartungsparameter der Waffe.According to a further embodiment, the weapon-specific parameters include a target distance of the target object, a physical target extension of the target object, a type and/or a dispersion of ammunition used in the weapon, a variance in a mechanism of the weapon and/or at least one maintenance parameter of the weapon.

Für das Beispiel eines Schiffes als militärisches Fahrzeug und eines MLG-27-Systems als fernbedienbare Waffenstation werden die Umgebungs-Parameter und oben genannten Schiffsparameter genutzt. Ferner wird vorzugsweise als eine Basisgröße die theoretisch ermittelte Aufschlagsentfernung der Geschosse genutzt. Bei der Durchführung zur Bestimmung der Ablage ist der Seegang vorzugsweise nicht größer 2, da ansonsten die automatisierte fehlerfreie Lokalisierung der Aufschlagposition von Kalibrierschüssen, das heißt die dadurch entstehenden Wasserfontänen, nicht optimal ist.For the example of a ship as a military vehicle and an MLG-27 system as a remote-controlled weapon station, the environment parameters and ship parameters mentioned above are used. Furthermore, the theoretically determined impact distance of the projectiles is preferably used as a base variable. When carrying out the determination of the deviation, the sea state is preferably not greater than 2, since otherwise the automated, error-free localization of the impact position of calibration shots, ie the resulting water fountains, is not optimal.

Wie im Weiteren ausgeführt, können auch Templates oder Referenz-Templates von typischen Wasserfontänen bei Aufschlägen von Geschossen im Wasser in einer Datenbank hinterlegt und verwendet werden. Vorzugsweise wird vor Beginn der Bestimmung der Ablage die Waffe mit einer Anzahl von Schüssen warm geschossen. Diese Anzahl ist beispielsweise 5.As explained below, templates or reference templates of typical water fountains when projectiles hit the water can also be stored in a database and used. Preferably, before starting to determine the offset, the weapon is warmed up with a number of shots. For example, this number is 5.

Zur Parametereinstellung der MLG-27-Waffenstation wird das System vorzugsweise in einen manuellen Modus gestellt und die Waffe in eine vorgegebene Elevations-/Azimut-Position gestellt. Es wird insbesondere keine Stabilisierung angewählt und auch kein Ziel getrackt. Demzufolge wird vorzugsweise auch kein dynamischer Vorhalt berechnet. Bei der Ermittlung des Soll-Treffpunkts wird vorzugsweise eine Drall-Ablage berücksichtigt. Im Folgenden wird das System in den Feuermodus HP (HP; High Precision) gestellt.To parameterize the MLG-27 weapon station, the system is preferably placed in a manual mode and the weapon placed in a predetermined elevation/azimuth position. In particular, no stabilization is selected and no target is tracked. Consequently, preferably no dynamic derivative action is calculated either. When determining the desired point of impact, a spin offset is preferably taken into account. In the following, the system is set to fire mode HP (HP; High Precision).

Gemäß einer weiteren Ausführungsform umfasst die Waffenstation außerdem einen Laserentfernungsmesser zur Bestimmung der Zielentfernung des Zielobjekts.According to a further embodiment, the weapon station also includes a laser range finder for determining the target range of the target object.

Gemäß einer weiteren Ausführungsform umfassen die fahrzeugspezifischen Parameter einen Kurs des Fahrzeuges, eine Geschwindigkeit des Fahrzeuges, einen ein Wogen betreffenden Parameter, einen ein Schwoien betreffenden Parameter, einen ein Tauchen betreffenden Parameter, einen ein Rollen betreffenden Parameter, einen ein Stampfen betreffenden Parameter und/oder einen ein Gieren betreffenden Parameter.According to a further embodiment, the vehicle-specific parameters include a course of the vehicle, a speed of the vehicle, a parameter relating to heaving, a parameter relating to heaving, a parameter relating to diving, a parameter relating to rolling, a parameter relating to pitching and/or a parameter related to yaw.

Gemäß einer weiteren Ausführungsform umfasst die Aufnahmeeinrichtung eine Kamera, eine Wärmebildkamera, ein Radargerät und/oder ein Sonargerät.According to a further embodiment, the recording device comprises a camera, a thermal imaging camera, a radar device and/or a sonar device.

Gemäß einer weiteren Ausführungsform umfasst der Bildpunkt des Soll-Treffpunkts auf dem Anzeigesystem ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln und/oder der Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem umfasst ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln.According to a further embodiment, the pixel of the target meeting point on the display system comprises a pixel or an area of a plurality of pixels and/or the pixel of the actual meeting point on the display system comprises a pixel or an area of a plurality of pixels.

Gemäß einer weiteren Ausführungsform ist die zweite Einheit dazu eingerichtet, den Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem basierend auf einer Mustererkennung unter Verwendung der mittels der Aufnahmeeinrichtung aufgenommenen Bilddaten und von in einer Datenbank hinterlegten Referenz-Templates für Geschoss-Einschläge zu bestimmen.According to a further embodiment, the second unit is set up to determine the pixel of the actual point of impact on the display system based on pattern recognition using the image data recorded by the recording device and reference templates for projectile impacts stored in a database.

Die durch den Einschlag der Geschosse auf dem Wasser entstehenden Wasserfontänen haben einen typischen Charakter und können als Templates oder Referenz-Templates in der Datenbank zur automatischen Erkennung und Positionsbestimmung hinterlegt werden.The water fountains caused by the impact of the bullets on the water have a typical character and can be stored as templates or reference templates in the database for automatic recognition and position determination.

Gemäß einer weiteren Ausführungsform ist die dritte Einheit dazu eingerichtet, eine Azimut-Ablage und eine Elevations-Ablage basierend auf dem bestimmten Bildpunkt des Soll-Treffpunkts und dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen.According to a further embodiment, the third unit is set up to determine an azimuth offset and an elevation offset based on the determined pixel of the target point of impact and the determined pixel of the actual point of impact on the display system.

Gemäß einer weiteren Ausführungsform ist die dritte Einheit zur Bestimmung der Azimut-Ablage dazu eingerichtet, bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe den Elevations-Winkel jeweils auf 0° einzustellen und den Azimut-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Azimut-Ablage zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt des Soll-Treffpunkts und auf dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen, und die Azimut-Ablage unter Verwendung eines auf die M Werte für die Azimut-Ablage angewendeten probabilistischen Verfahrens zu bestimmen.According to a further embodiment, the third unit for determining the azimuth offset is set up to set the elevation angle to 0° in each case for a plurality M of successive shots by the weapon and to change the azimuth angle in each case by a predetermined number of degrees. determine a respective value for the azimuth offset for each of the successive shots based on the determined target point of impact pixel and on the determined actual point of impact pixel on the display system, and determine the azimuth offset using a referenced to the M To determine values for the azimuth offset applied probabilistic method.

Gemäß einer weiteren Ausführungsform ist die dritte Einheit zur Bestimmung der Elevations-Ablage dazu eingerichtet, bei einer Mehrzahl M von aufeinander folgenden Schüssen durch die Waffe den Azimut-Winkel jeweils auf 270° einzustellen und den Elevations-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Elevations-Ablage zu einem jeden der aufeinander folgenden Schüsse basierend auf dem bestimmten Bildpunkt des Soll-Treffpunkts und auf dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem zu bestimmen, und die Elevations-Ablage unter Verwendung eines auf die M Werte für die Elevations-Ablage angewendeten probabilistischen Verfahrens zu bestimmen.According to a further embodiment, the third unit for determining the elevation offset is set up to set the azimuth angle to 270° and increase the elevation angle by a predetermined number of degrees for a plurality M of successive shots by the weapon vary, respectively determine a value for the elevation offset for each of the successive shots based on the determined pixel of the target point of impact and on the determined pixel of the actual point of impact on the display system, and the elevation offset using a on to determine the M values for the elevation offset probabilistic method used.

Gemäß einem zweiten Aspekt wird ein militärisches Fahrzeug vorgeschlagen, welches eine Anzahl N von fernbedienbaren Waffenstationen gemäß dem ersten Aspekt aufweist, mit N ≥ 1.According to a second aspect, a military vehicle is proposed which has a number N of remotely controllable weapon stations according to the first aspect, with N ≥ 1.

Das militärische Fahrzeug ist beispielsweise ein Kriegsschiff. Alternativ kann das militärische Fahrzeug auch ein Landfahrzeug, wie ein Panzer, insbesondere ein fernbedienbarer Panzer, sein.The military vehicle is, for example, a warship. Alternatively, the military vehicle can also be a land vehicle, such as a tank, in particular a remote-controlled tank.

Gemäß einem dritten Aspekt wird ein Verfahren zum Betreiben einer fernbedienbaren Waffenstation mit einer Waffe zur Bekämpfung eines Zielobjekts, welche in einer Lafette in Azimut und Elevation richtbar gelagert ist, und mit einem Anzeigesystem zur optischen Darstellung eines Zielbereichs der Waffe vorgeschlagen. Das Verfahren umfasst die folgenden Schritte:

  • Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Soll-Treffpunkts eines Geschosses der Waffe,
  • Bestimmen eines auf dem Anzeigesystem dargestellten Bildpunkts eines Ist-Treffpunkts in Abhängigkeit von mittels einer Aufnahmeeinrichtung aufgenommenen Bilddaten des Ist-Treffpunkts des Geschosses, und
  • Bestimmen einer Ablage der Waffe in Abhängigkeit von dem bestimmten Bildpunkt des Soll-Treffpunkts und von dem bestimmten Bildpunkt des Ist-Treffpunkts auf dem Anzeigesystem.
According to a third aspect, a method is proposed for operating a remote-controlled weapon station with a weapon for combating a target object, which is mounted in a mount so that it can be adjusted in azimuth and elevation, and with a display system for optically displaying a target area of the weapon. The procedure includes the following steps:
  • Determining a pixel of a target hit point of a projectile of the weapon displayed on the display system,
  • Determining a pixel of an actual impact point displayed on the display system as a function of image data of the actual impact point of the projectile recorded by means of a recording device, and
  • Determining a placement of the weapon as a function of the determined pixel of the target point of impact and of the determined pixel of the actual point of impact on the display system.

Die für die vorgeschlagene Waffenstation beschriebenen Ausführungsformen und Merkmale gelten für das vorgeschlagene Verfahren entsprechend.The embodiments and features described for the proposed weapon station apply accordingly to the proposed method.

Gemäß einem vierten Aspekt wird ein Computerprogrammprodukt vorgeschlagen, welches auf einer programmgesteuerten Einrichtung die Durchführung des wie oben erläuterten Verfahrens gemäß dem dritten Aspekt veranlasst.According to a fourth aspect, a computer program product is proposed which causes the execution of the method as explained above according to the third aspect on a program-controlled device.

Ein Computerprogrammprodukt, wie z.B. ein Computerprogramm-Mittel, kann beispielsweise als Speichermedium, wie z.B. Speicherkarte, USB-Stick, CD-ROM, DVD, oder auch in Form einer herunterladbaren Datei von einem Server in einem Netzwerk bereitgestellt oder geliefert werden. Dies kann zum Beispiel in einem drahtlosen Kommunikationsnetzwerk durch die Übertragung einer entsprechenden Datei mit dem Computerprogrammprodukt oder dem Computerprogramm-Mittel erfolgen.A computer program product, such as a computer program means, can be made available or delivered, for example, as a storage medium such as a memory card, USB stick, CD-ROM, DVD, or in the form of a downloadable file from a server in a network. This can be done, for example, in a wireless communication network by transferring a corresponding file with the computer program product or the computer program means.

Weitere mögliche Implementierungen der Erfindung umfassen auch nicht explizit genannte Kombinationen von zuvor oder im Folgenden bezüglich der Ausführungsbeispiele beschriebenen Merkmale oder Ausführungsformen. Dabei wird der Fachmann auch Einzelaspekte als Verbesserungen oder Ergänzungen zu der jeweiligen Grundform der Erfindung hinzufügen.Further possible implementations of the invention also include combinations of features or embodiments described above or below with regard to the exemplary embodiments that are not explicitly mentioned. The person skilled in the art will also add individual aspects as improvements or additions to the respective basic form of the invention.

Weitere vorteilhafte Ausgestaltungen und Aspekte der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele der Erfindung.Further advantageous refinements and aspects of the invention are the subject matter of the dependent claims and of the exemplary embodiments of the invention described below.

Im Weiteren wird die Erfindung anhand von bevorzugten Ausführungsbeispielen unter Bezugnahme auf die beigelegten Figuren näher erläutert.

Fig. 1
zeigt ein schematisches Blockschaltbild eines ersten Ausführungsbeispiels einer fernbedienbaren Waffenstation;
Fig. 2
zeigt ein schematisches Blockschaltbild eines zweiten Ausführungsbeispiels einer fernbedienbaren Waffenstation;
Fig. 3 bis 7
zeigen schematische Ansichten eines Anzeigesystems bei einer Abfolge von Schüssen zur Bestimmung der Azimut-Ablage;
Fig. 8 bis 12
zeigen schematische Ansichten eines Anzeigesystems bei einer Abfolge von Schüssen zur Bestimmung der Elevations-Ablage; und
Fig. 13
zeigt ein schematisches Ablaufdiagramm eines Ausführungsbeispiels eines Verfahrens zum Betreiben einer fernbedienbaren Waffenstation.
The invention is explained in more detail below on the basis of preferred exemplary embodiments with reference to the enclosed figures.
1
shows a schematic block diagram of a first embodiment of a remote-controlled weapon station;
2
shows a schematic block diagram of a second embodiment of a remote-controlled weapon station;
Figures 3 to 7
show schematic views of a display system in a sequence of shots for determining the azimuth offset;
Figures 8 to 12
show schematic views of a display system in a sequence of shots for determining the elevation offset; and
13
shows a schematic flowchart of an embodiment of a method for operating a remote-controlled weapon station.

In den Figuren sind gleiche oder funktionsgleiche Elemente mit denselben Bezugszeichen versehen worden, sofern nichts anderes angegeben ist.Elements that are the same or have the same function have been provided with the same reference symbols in the figures, unless otherwise stated.

In Fig. 1 ist ein schematisches Blockschaltbild eines ersten Ausführungsbeispiels einer fernbedienbaren Waffenstation 1 dargestellt. Die fernbedienbare Waffenstation 1 umfasst eine Waffe 2 zur Bekämpfung eines Zielobjekts, welche in einer Lafette 3 in Azimut und Elevation richtbar gelagert ist. Die fernbedienbare Waffenstation 1 ist insbesondere auf einem militärischen Fahrzeug installiert. Das militärische Fahrzeug kann eine Mehrzahl von fernbedienbaren Waffenstationen 1 umfassen. Das militärische Fahrzeug ist beispielsweise ein Kriegsschiff.In 1 is a schematic block diagram of a first embodiment of a remote-controlled weapon station 1 is shown. The remote-controlled weapon station 1 includes a weapon 2 for combating a target object, which is mounted in a carriage 3 so that it can be adjusted in azimuth and elevation. The remote-controlled weapon station 1 is installed in particular on a military vehicle. The military vehicle can include a plurality of remotely controllable weapon stations 1 . The military vehicle is, for example, a warship.

Die fernbedienbare Waffenstation 1 umfasst ein Anzeigesystem 4 zur optischen Darstellung eines Zielbereichs der Waffe 2.The remote-controlled weapon station 1 includes a display system 4 for the visual display of a target area of the weapon 2.

In Fig. 1 ist das Anzeigesystem 4 beispielhaft als ein Bildschirm dargestellt, auf welchem der Horizont, ein Ziel Z und ein Geschoss-Einschlag G dargestellt sind. Der Geschoss-Einschlag G ist als eine Wasserfontäne beispielhaft illustriert. Ferner bezeichnet in Fig. 1 T1 einen Bildpunkt eines Soll-Treffpunkts eines Geschosses der Waffe 2 und T2 einen Bildpunkt eines Ist-Treffpunkts des Geschosses der Waffe 2.In 1 For example, the display system 4 is shown as a screen on which the horizon, a target Z and a bullet impact G are shown. The bullet-impact G is illustrated as a water-fountain by way of example. Also referred to in 1 T1 a pixel of a target point of impact of a projectile of weapon 2 and T2 a pixel of an actual point of impact of the projectile of weapon 2.

Ferner umfasst die fernbedienbare Waffenstation 1 eine erste Einheit 5, eine zweite Einheit 6, welche mit einer Aufnahmeeinrichtung 7 koppelbar ist, und eine dritte Einheit 8. Die erste Einheit 5, die zweite Einheit 6 und die dritte Einheit 8 sind insbesondere in einem Feuerleitrechner 9 der Waffenstation 1 integriert.Furthermore, the remote-controlled weapon station 1 comprises a first unit 5, a second unit 6, which can be coupled to a receiving device 7, and a third unit 8. The first unit 5, the second unit 6 and the third unit 8 are in particular in a fire control computer 9 integrated into weapon station 1.

Die erste Einheit 5 ist dazu eingerichtet, den auf dem Anzeigesystem 4 dargestellten Bildpunkt T1 des Soll-Treffpunkts des Geschosses der Waffe 2 zu bestimmen.The first unit 5 is set up to determine the image point T1 of the target point of impact of the projectile of the weapon 2 shown on the display system 4 .

Wie oben bereits ausgeführt, ist die zweite Einheit 6 mit der Aufnahmeeinrichtung 7 koppelbar und ferner dazu eingerichtet, von der Aufnahmeeinrichtung 7 aufgenommene Bilddaten BD des Ist-Treffpunkts des Geschosses zu empfangen. Dabei entspricht der Ist-Treffpunkt des Geschosses insbesondere dem Geschoss-Einschlag G der Fig. 1. Die zweite Einheit 6 ist dabei dazu eingerichtet, den auf dem Anzeigesystem 4 dargestellten Bildpunkt T2 des Ist-Treffpunkts in Abhängigkeit der von der Aufnahmeeinrichtung 7 aufgenommenen Bilddaten BD zu bestimmen.As already explained above, the second unit 6 can be coupled to the recording device 7 and is also set up to receive image data BD recorded by the recording device 7 of the actual point of impact of the projectile. The actual meeting point of the projectile corresponds in particular to the projectile impact G of the 1 . The second unit 6 is set up to determine the pixel T2 of the actual meeting point shown on the display system 4 as a function of the image data BD recorded by the recording device 7 .

Die dritte Einheit 8 ist dazu eingerichtet, eine Ablage, insbesondere eine Azimut-Ablage und eine Elevations-Ablage, der Waffe 2 in Abhängigkeit von dem bestimmten Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigesystem 4 und von dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen. Dabei ist die dritte Einheit 8 insbesondere dazu eingerichtet, die Ablage der Waffe 2 basierend auf einer Differenz zwischen dem Bildpunkt T1 des Soll-Treffpunkts und dem Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen. Die Differenz kann beispielsweise ein Differenzvektor, insbesondere ein zweidimensionaler oder ein dreidimensionaler Differenzvektor sein.The third unit 8 is set up to display a location, in particular an azimuth location and an elevation location, of the weapon 2 depending on the specific pixel T1 of the target point of impact on the display system 4 and on the specific pixel T2 of the actual point of impact on the display system 4 to be determined. The third unit 8 is set up in particular to determine the placement of the weapon 2 based on a difference between the pixel T1 of the target point of impact and the pixel T2 of the actual point of impact on the display system 4 . The difference can be a difference vector, for example, in particular a two-dimensional or a three-dimensional difference vector.

Für das Beispiel, dass die Waffenstation 1 auf einem militärischen Fahrzeug, wie beispielsweise auf einem Schiff, angeordnet ist, ist die erste Einheit 5 dazu eingerichtet, den Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigesystem 4 in Abhängigkeit von waffenspezifischen Parametern, von fahrzeugspezifischen Parametern und/oder von Umgebungs-Parametern zu bestimmen. Beispiele für die Umgebungs-Parameter sind meteorologische Daten, wie Umgebungstemperatur, Windrichtung und Windstärke.For the example that the weapon station 1 is arranged on a military vehicle, such as on a ship, the first unit 5 is set up to to determine the pixel T1 of the target meeting point on the display system 4 as a function of weapon-specific parameters, vehicle-specific parameters and/or environmental parameters. Examples of the environmental parameters are meteorological data such as ambient temperature, wind direction and wind speed.

Beispiele für waffenspezifische Parameter sind die Zielentfernung des Ziels Z oder Zielobjekts, eine physikalische Zielausdehnung des Zielobjekts, eine Art und/oder eine Streuung einer in der Waffe 2 verwendeten Munition, eine Varianz in einer Mechanik der Waffe 2 und/oder Wartungsparameter der Waffe, wie beispielsweise Wartungsintervalle.Examples of weapon-specific parameters are the target distance of the target Z or target object, a physical target extension of the target object, a type and/or a spread of ammunition used in the weapon 2, a variance in a mechanism of the weapon 2 and/or maintenance parameters of the weapon, such as such as maintenance intervals.

Beispiele für die fahrzeugspezifischen Parameter umfassen einen Kurs des Fahrzeugs, beispielsweise einen Schiffskurs, eine Geschwindigkeit des Fahrzeugs, einen ein Wogen betreffenden Parameter, einen ein Schwoien betreffenden Parameter, einen ein Tauchen betreffenden Parameter, einen ein Rollen betreffenden Parameter, einen ein Stampfen betreffenden Parameter und/oder einen ein Gieren betreffenden Parameter.Examples of the vehicle-specific parameters include a course of the vehicle, e.g /or a parameter related to yaw.

Die Aufnahmeeinrichtung 7, welche mit der zweiten Einheit 6 gekoppelt ist, umfasst beispielsweise eine Kamera, eine Wärmebildkamera, ein Radargerät und/oder ein Sonargerät.The recording device 7, which is coupled to the second unit 6, includes, for example, a camera, a thermal imaging camera, a radar device and/or a sonar device.

Der Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigegerät 4 ist beispielsweise ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln. Entsprechend ist auch der Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 ein Pixel oder eine Fläche aus einer Mehrzahl von Pixeln.The pixel T1 of the target meeting point on the display device 4 is, for example, a pixel or an area made up of a plurality of pixels. Correspondingly, the image point T2 of the actual meeting point on the display system 4 is also a pixel or an area made up of a plurality of pixels.

Fig. 2 zeigt ein schematisches Blockschaltbild eines zweiten Ausführungsbeispiels einer fernbedienbaren Waffenstation 1. 2 shows a schematic block diagram of a second exemplary embodiment of a remote-controlled weapon station 1.

Das zweite Ausführungsbeispiel der Fig. 2 der fernbedienbaren Waffenstation 1 umfasst alle Merkmale des ersten Ausführungsbeispiels der Fig. 1. Darüber hinaus umfasst die Waffenstation 1 der Fig. 2 eine Datenbank 10 zur Speicherung von Referenz-Templates RT für Geschoss-Einschläge G.The second embodiment of the 2 the remote-controlled weapon station 1 includes all the features of the first embodiment 1 . In addition, the weapon station includes 1 of the 2 a database 10 for storing reference templates RT for projectile impacts G.

Die zweite Einheit 6 der Fig. 2 ist dazu eingerichtet, den Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 basierend auf einer Mustererkennung unter Verwendung der mittels der Aufnahmeeinrichtung 7 aufgenommenen Bilddaten BD und den in der Datenbank 10 hinterlegten Referenz-Templates RT für die Geschoss-Einschläge G zu bestimmen.The second unit 6 of 2 is set up to determine the pixel T2 of the actual meeting point on the display system 4 based on pattern recognition using the image data BD recorded by the recording device 7 and the reference templates RT stored in the database 10 for the projectile impacts G.

Ferner ist die dritte Einheit 8 dazu eingerichtet, eine Azimut-Ablage ΔA und eine Elevations-Ablage ΔE basierend auf dem bestimmten Bildpunkt T1 des Soll-Treffpunkts und von dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen.Furthermore, the third unit 8 is set up to determine an azimuth deviation ΔA and an elevation deviation ΔE based on the determined pixel T1 of the target meeting point and from the determined pixel T2 of the actual meeting point on the display system 4 .

Insbesondere ist die dritte Einheit 8 für die Bestimmung der Azimut-Ablage ΔA dazu eingerichtet, bei einer Mehrzahl M von aufeinanderfolgenden Schüssen durch die Waffe 2 den Elevations-Winkel jeweils auf 0° einzustellen und den Azimut-Winkel jeweils auf eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Azimut-Ablage ΔA zu einem jeden der aufeinanderfolgenden Schüsse basierend auf dem bestimmten Bildpunkt T1 des Soll-Treffpunkts und auf dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen und die Azimut-Ablage ΔA unter Verwendung eines auf die M Werte für die Azimut-Ablage angewendeten probabilistischen Verfahrens zu bestimmen.In particular, the third unit 8 for determining the azimuth offset ΔA is set up to set the elevation angle to 0° and to change the azimuth angle to a predetermined number in each case for a plurality M of successive shots by the weapon 2. to determine a value for the azimuth offset ΔA for each of the successive shots based on the determined pixel T1 of the target hit point and on the determined pixel T2 of the actual hit point on the display system 4 and the azimuth offset ΔA using a probabilistic method applied to the M values for the azimuth offset.

Hierzu zeigen die Fig. 3 bis 7 schematische Ansichten des Anzeigesystems 4 bei einer Abfolge von fünf Schüssen (M = 5) zur Bestimmung der Azimut-Ablage ΔA. Bei den fünf Schüssen wird der Elevations-Winkel jeweils auf 0° eingestellt und der Azimut-Winkel wird auf fünf verschiedene Schusswinkel eingestellt. In dem Beispiel dargestellt in den Fig. 3 bis 7 sind das die Azimut-Winkel 285°, 275°, 270°, 265° und 255°. Unter jeder Winkeleinstellung des Azimut-Winkels wird ein Schuss abgegeben und der tatsächliche Treffpunkt gemäß dem Bildpunkt T2 des Ist-Treffpunkts mit dem theoretischen Treffpunkt gemäß dem Bildpunkt T1 des Soll-Treffpunkts anhand der in dem Anzeigesystem 4 vorliegenden PixelPositionen verglichen. Nach Abschluss der fünf Schüsse wird aus den fünf, insbesondere in Millirad umgerechneten vorliegenden Werten die statistisch am wahrscheinlichsten anzunehmende Azimut-Ablage ΔA als Offset-Wert von dem Feuerleitrechner 9 übernommen.For this, the Figures 3 to 7 schematic views of the display system 4 in a sequence of five shots (M=5) for determining the azimuth deviation ΔA. For the five shots, the elevation angle is set to 0° and the azimuth angle is set to five different shot angles. In the example shown in the Figures 3 to 7 are these the azimuth angles 285°, 275°, 270°, 265° and 255°. A shot is fired at each angular setting of the azimuth angle and the actual hit point according to pixel T2 of the actual hit point is compared with the theoretical hit point according to pixel T1 of the target hit point using the pixel positions present in the display system 4 . After the five shots have been fired, the azimuth offset ΔA that is statistically most likely to be assumed is taken over by the fire control computer 9 as an offset value from the five available values, in particular converted into millirads.

Bei der Abfolge der fünf Schüsse ist der Schiffskurs für das Beispiel eines Schiffs als militärisches Fahrzeug vorzugsweise derart zu wählen, dass der meteorologische Wind entweder in Schussrichtung oder aus der Schussrichtung weht (kein Querwind). Die Schiffsgeschwindigkeit und der Kurs sind vorzugsweise während der gesamten Ermittlung der fünf Werte für die Azimut-Ablage ΔA konstant zu halten. Als Schiffsgeschwindigkeit wird vorzugsweise eine Geschwindigkeit zwischen 10 und 20 Knoten gewählt.In the sequence of the five shots, the ship's course for the example of a ship as a military vehicle should preferably be chosen in such a way that the meteorological wind blows either in the direction of the shot or from the direction of the shot (no cross wind). The ship's speed and course should preferably be kept constant throughout the determination of the five values for the azimuth deviation ΔA. A speed between 10 and 20 knots is preferably selected as the ship speed.

Des Weiteren ist die dritte Einheit 8 der Fig. 2 für die Bestimmung der Elevations-Ablage ΔE dazu eingerichtet, bei einer Mehrzahl M (beispielsweise M = 5) von aufeinanderfolgenden Schüssen durch die Waffe 2 den Azimut-Winkel jeweils auf 270° einzustellen und den Elevations-Winkel jeweils um eine vorbestimmte Gradzahl zu verändern, jeweils einen Wert für die Elevations-Ablage ΔE zu einem jeden der aufeinanderfolgenden Schüsse basierend auf dem bestimmten Bildpunkt T1 des Soll-Treffpunkts und auf dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 zu bestimmen und die Elevations-Ablage ΔE unter Verwendung eines auf die M Werte für die Elevations-Ablage ΔE angewendeten probabilistischen Verfahrens zu bestimmen.Furthermore, the third unit 8 is the 2 for determining the elevation offset ΔE, set up to set the azimuth angle to 270° in each case for a plurality M (e.g. M=5) of successive shots by the weapon 2 and to change the elevation angle in each case by a predetermined number of degrees, to determine a value for the elevation offset ΔE for each of the consecutive shots based on the determined pixel T1 of the target hit point and on the determined pixel T2 of the actual hit point on the display system 4 and the elevation offset ΔE using a to determine the probabilistic method applied to the M values for the elevation offset ΔE.

Beispielsweise wird der Elevations-Winkel für fünf aufeinanderfolgende Schüsse auf folgende Schusswinkel gestellt: -1°; -0,5°; 0°; +0,5°; und +1°. Während der Ermittlung der Elevations-Ablage wird, wie oben ausgeführt, der Azimut-Winkel beispielsweise auf 270° gestellt. Unter einer jeden Winkeleinstellung für den Elevations-Winkel wird ein Schuss abgegeben und der tatsächliche Treffpunkt gemäß dem Bildpunkt T1 wird mit dem theoretischen Treffpunkt gemäß dem Bildpunkt T2 auf dem Anzeigesystem 4 anhand der vorliegenden Pixelpositionen verglichen. Ein Beispiel hierfür zeigen die schematischen Ansichten des Anzeigesystems 4 gemäß der Fig. 8 bis 12.For example, the elevation angle for five consecutive shots is set to the following shot angles: -1°; -0.5°; 0°; +0.5°; and +1°. As explained above, during the determination of the elevation offset, the azimuth angle is set to 270°, for example. Under any angle setting for the Elevation angle, a shot is fired and the actual meeting point according to the pixel T1 is compared with the theoretical meeting point according to the pixel T2 on the display system 4 based on the existing pixel positions. An example of this is shown in the schematic views of the display system 4 according to FIG Figures 8 to 12 .

Nach Abschluss dieser fünf Schüsse wird aus den fünf vorliegenden, insbesondere in Millirad umgerechneten Werten die statistisch am wahrscheinlichsten anzunehmende Elevations-Ablage ΔE als Offset-Wert von dem Feuerleitrechner 9 übernommen.After these five shots have been fired, the elevation deviation ΔE that is statistically most likely to be assumed is taken over by the fire control computer 9 as an offset value from the five available values, in particular those converted into millirads.

Für das Beispiel eines Schiffs als militärisches Fahrzeug, auf welchem die fernbedienbare Waffenstation 1 installiert ist, ist der Schiffskurs derart zu wählen, dass der meteorologische Wind quer zu der Schussrichtung (kein Rücken- oder Gegenwind) weht. Die Schiffsgeschwindigkeit und der Kurs sind während der gesamten Ermittlung der fünf Elevations-Ablagen konstant zu halten. Als Schiffsgeschwindigkeit ist vorzugsweise eine Geschwindigkeit zwischen 10 bis 15 Knoten zu wählen.For the example of a ship as a military vehicle on which the remote-controlled weapon station 1 is installed, the ship's course is to be selected in such a way that the meteorological wind blows transversely to the firing direction (no tailwind or headwind). The ship's speed and course are to be kept constant throughout the determination of the five elevation deviations. A speed of between 10 and 15 knots should preferably be selected as the ship speed.

Fig. 13 zeigt ein schematisches Ablaufdiagramm eines Ausführungsbeispiels eines Verfahrens zum Betreiben einer fernbedienbaren Waffenstation 1. Beispiele für die fernbedienbare Waffenstation 1 sind in den Fig. 1 und 2 dargestellt. 13 shows a schematic flow chart of an exemplary embodiment of a method for operating a remotely controllable weapon station 1. Examples of the remotely controllable weapon station 1 are in FIGS 1 and 2 shown.

Das Ausführungsbeispiel des Verfahrens gemäß Fig. 13 umfasst die folgenden Schritte 1301, 1302 und 1303:

  • In Schritt 1301 wird ein auf dem Anzeigesystem 4 dargestellter Bildpunkt T1 eines Soll-Treffpunkts eines Geschosses der Waffe 2 bestimmt.
  • In Schritt 1302 wird ein auf dem Anzeigesystem 4 dargestellter Bildpunkt T2 eines Ist-Treffpunkts des Geschosses in Abhängigkeit von mittels einer Aufnahmeeinrichtung 7 aufgenommenen Bilddaten BD des Ist-Treffpunkts des Geschosses bestimmt.
  • In Schritt 1303 wird eine Ablage, insbesondere umfassend eine Azimut-Ablage ΔA und eine Elevations-Ablage ΔE, der Waffe 2 in Abhängigkeit von dem bestimmten Bildpunkt T1 des Soll-Treffpunkts auf dem Anzeigesystem 4 und von dem bestimmten Bildpunkt T2 des Ist-Treffpunkts auf dem Anzeigesystem 4 bestimmt.
The embodiment of the method according to 13 includes the following steps 1301, 1302 and 1303:
  • In step 1301, a pixel T1, displayed on the display system 4, of a target point of impact of a projectile of the weapon 2 is determined.
  • In step 1302, a pixel T2 displayed on the display system 4 of an actual point of impact of the projectile is recorded as a function of by means of a recording device 7 recorded image data BD of the actual point of impact of the projectile.
  • In step 1303, an offset, in particular comprising an azimuth offset ΔA and an elevation offset ΔE, of the weapon 2 is displayed on the display system 4 depending on the specific pixel T1 of the target point of impact and on the specific pixel T2 of the actual point of impact the display system 4 determined.

Obwohl die vorliegende Erfindung anhand von Ausführungsbeispielen beschrieben wurde, ist sie vielfältig modifizierbar.Although the present invention has been described using exemplary embodiments, it can be modified in many ways.

BEZUGSZEICHENLISTEREFERENCE LIST

11
fernbedienbare Waffenstationremote-controlled weapon station
22
Waffeweapon
33
Lafettecarriage
44
Anzeigesystemdisplay system
55
erste Einheitfirst unit
66
zweite Einheitsecond unit
77
Aufnahmeeinrichtungrecording facility
88th
dritte Einheitthird unit
99
Feuerleitrechnerfire control computer
1010
DatenbankDatabase
13011301
Verfahrensschrittprocess step
13021302
Verfahrensschrittprocess step
13031303
Verfahrensschrittprocess step
A1A1
Soll-Azimut-PositionDesired azimuth position
A2A2
Ist-Azimut-PositionActual azimuth position
BDBD
Bilddatenimage data
ΔAΔA
Azimut-Ablageazimuth offset
ΔEΔE
Elevations-Ablageelevation shelf
E1E1
Soll-Elevation-PositionDesired Elevation Position
E2E2
Ist-Elevation-PositionActual Elevation Position
GG
Geschoss-EinschlagBullet Impact
RTrt
Referenz-Templatereference template
T1T1
Bildpunkt des Soll-TreffpunktsPixel of the target meeting point
T2T2
Bildpunkt des Ist-TreffpunktsPixel of the actual meeting point
ZZ
Zielobjekttarget object

Claims (12)

  1. Remotely controllable weapon station (1) including a weapon (2), which is adjustably mounted in a carriage (3) in azimuth and elevation, for combatting a target object, comprising:
    a display system (4) for an optical representation of a target area of the weapon (2),
    a first unit (5) for determining an image point (T1), depicted on the display system (4), of a target point of impact of a projectile of the weapon (2),
    a second unit (6) for determining an image point (T2), depicted on the display system (4), of an actual point of impact according to image data (BD) of the actual point of impact of the projectile, the image data being recorded by means of a recording device (7), and
    a third unit (8) for determining a deviation of the weapon (2) in dependence on the image point (T1) determined for the target point of impact and the image point (T2) determined for the actual point of impact on the display system (4),
    wherein the third unit (8) is configured to determine an azimuth deviation (ΔA) and an elevation deviation (ΔE) based on the determined image point (T1) of the target point of impact and on the determined image point (T2) of the actual point of impact on the display system (4),
    characterized in that
    the third unit (8) for determining the azimuth deviation (ΔA) is configured, for a plurality M of successive shots by the weapon (2), to set the elevation angle in each case to 0°, and to change the azimuth angle in each case by a predetermined number of degrees, to determine a value for the azimuth deviation (ΔA) for each of the successive shots based on the determined image point (T1) of the target point of impact and on the determined image point (T2) of the actual point of impact on the display system (4), respectively, and to determine the azimuth deviation (ΔA) using a probabilistic method applied to the M values for the azimuth deviation, and
    the third unit (8) for determining the elevation deviation (ΔE) is configured, for a plurality M of successive shots by the weapon (2), to set the azimuth angle in each case to 270° and to change the elevation angle in each case by a predetermined number of degrees, to determine a value for the elevation deviation (ΔE) at each of the successive shots based on the determined image point (T1) of the target point of impact and on the determined image point (T2) of the actual point of impact on the display system (4), respectively, and to determine the elevation deviation (ΔE) using a probabilistic method applied to the M values for the elevation deviation, and
    a fire control computer (9) for controlling of the weapon (2) using the determined azimuth deviation (ΔA) and the determined elevation deviation (ΔE) is provided.
  2. Weapon station according to claim 1,
    characterized in that
    the third unit (8) is configured to determine the deviation of the weapon (2) based on a difference between the image point (T1) of the target point of impact and the image point (T2) of the actual point of impact on the display system (4).
  3. Weapon station according to claim 1 or 2,
    characterized in that
    the weapon station (1) is mounted on a military vehicle, in particular on a ship, wherein the first unit (5) is configured to determine the image point (T1) of the target point of impact on the display system (4) in dependence on weapon-specific parameters, of vehicle-specific parameters and/or of environmental parameters.
  4. Weapon station according to claim 3,
    characterized in that
    the weapon-specific parameters comprise a target distance of the target object, a physical target extension of the target object, a type and/or a scattering of an ammunition used in the weapon (2), a variance in a mechanics of the weapon (2) and/or at least one maintenance parameter of the weapon (2).
  5. Weapon station according to claim 3 or 4,
    characterized in that
    the vehicle-specific parameters comprise a course of the vehicle, a speed of the vehicle, a parameter relating to a surging, a parameter relating to a swaying, a parameter relating to a heaving, a parameter relating to a rolling, a parameter relating to a pitching, and/or a parameter relating to a yawing.
  6. Weapon station according to any of claims 1 to 5,
    characterized in that
    the recording device (7) comprises a camera, a thermal imaging camera, a radar device and/or a sonar device.
  7. Weapon station according to any one of claims 1 to 6,
    characterized in that
    the image point (T1) of the target point of impact on the display system (4) comprises a pixel or an area of a plurality of pixels and/or that the image point (T2) of the actual point of impact on the display system (4) comprises a pixel or an area of a plurality of pixels.
  8. Weapon station according to any one of claims 1 to 7,
    characterized in that
    the second unit (6) is configured to determine the image point (T2) of the actual point of impact on the display system (4) based on pattern recognition using the image data (BD) recorded by means of the recording device (7) and reference templates (RT) for projectile impacts (G) stored in a database (10).
  9. Military vehicle comprising a number N of remotely controllable weapon stations (1) according to any of claims 1 to 8, with N ≥ 1.
  10. Military vehicle according to claim 9,
    characterized in that
    the military vehicle is a warship.
  11. Method of operating a remotely controllable weapon station (1) including a weapon (2), which is adjustably mounted in a carriage (3) in azimuth and elevation, for combatting a target object and including a display system (4) for optically displaying a target area of the weapon (2), comprising:
    determining (1301) an image point (T1), depicted on the display system (4), of a target point of impact of a projectile of the weapon (2),
    determining (1302) an image point (T2) of an actual point of impact depicted on the display system (4) in dependance of image data (BD) of the actual point of impact of the projectile recorded by means of a recording device (7), and
    determining (1303) a deviation of the weapon (2) in dependance of the determined image point (T1) of the target point of impact and of the determined image point (T2) of the actual point of impact on the display system (4),
    wherein an azimuth deviation (ΔA) and an elevation deviation (ΔE) are determined based on the determined image point (T1) of the target point of impact and on the determined image point (T2) of the actual point of impact on the display system (4),
    characterized in that
    for determining the azimuth deviation (ΔA) of a plurality M of successive shots by the weapon (2), the elevation angle is in each case set to 0° and the azimuth angle is in each case changed by a predetermined number of degrees, respectively, a value for the azimuth deviation (ΔA) is respectively determined for each of the successive shots based on the determined image point (T1) of the target point of impact and on the determined image point (T2) of the actual point of impact on the display system (4), respectively, and the azimuth deviation (ΔA) is determined using a probabilistic method applied to the M values for the azimuth deviation, and
    for determining the elevation deviation (ΔE) of a plurality M of successive shots by the weapon (2), the azimuth angle is in each case set to 270° and the elevation angle is in each case changed by a predetermined number of degrees, respectively, a value for the elevation deviation (ΔE) is respectively determined for each of the successive shots based on the determined image point (T1) of the target point of impact and on the determined image point (T2) of the actual point of impact on the display system (4), and the elevation deviation (ΔE) is determined using a probabilistic method applied to the M values for the elevation deviation (ΔE), and the weapon (2) is controlled by means of a fire control computer (9) using the determined azimuth deviation (ΔA) and the determined elevation deviation (ΔE).
  12. Computer program product which initiates the implementation of the method on a program-controlled device according to claim 11.
EP16778410.7A 2015-11-19 2016-10-10 Remotely controllable weapon station and method for operating a remotely controllable weapon station Active EP3377840B9 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015120036.8A DE102015120036A1 (en) 2015-11-19 2015-11-19 Remote weapon station and method of operating a remote weapon station
PCT/EP2016/074169 WO2017084806A1 (en) 2015-11-19 2016-10-10 Remotely controllable weapon station and method for operating a remotely controllable weapon station

Publications (3)

Publication Number Publication Date
EP3377840A1 EP3377840A1 (en) 2018-09-26
EP3377840B1 true EP3377840B1 (en) 2022-01-26
EP3377840B9 EP3377840B9 (en) 2022-04-20

Family

ID=57113366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16778410.7A Active EP3377840B9 (en) 2015-11-19 2016-10-10 Remotely controllable weapon station and method for operating a remotely controllable weapon station

Country Status (4)

Country Link
EP (1) EP3377840B9 (en)
DE (1) DE102015120036A1 (en)
HU (1) HUE059023T2 (en)
WO (1) WO2017084806A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716199A1 (en) * 1997-04-18 1998-10-22 Rheinmetall Ind Ag Procedure for aiming the weapon of a weapon system and weapon system for implementing the method
US6125308A (en) * 1997-06-11 2000-09-26 The United States Of America As Represented By The Secretary Of The Army Method of passive determination of projectile miss distance
US20080022575A1 (en) * 2006-05-08 2008-01-31 Honeywell International Inc. Spotter scope
DE102006034689A1 (en) 2006-07-24 2008-01-31 Rheinmetall Landsysteme Gmbh Protective device for a military vehicle, which acts as a support vehicle and can carry out all pioneering and mining work
US8074555B1 (en) * 2008-09-24 2011-12-13 Kevin Michael Sullivan Methodology for bore sight alignment and correcting ballistic aiming points using an optical (strobe) tracer
KR101472445B1 (en) 2010-12-09 2014-12-12 삼성테크윈 주식회사 Firearm system and method for contolling a firearm unit
DE102011050277B4 (en) 2011-05-11 2012-11-29 Krauss-Maffei Wegmann Gmbh & Co. Kg Adapter for attaching a carriage to an object, mount and military vehicle
FR2989456B1 (en) * 2012-04-12 2018-05-04 Philippe Levilly TELEOPERATED TARGET PROCESSING SYSTEM
DE102014019200A1 (en) * 2014-12-19 2016-06-23 Diehl Bgt Defence Gmbh & Co. Kg automatic weapon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017084806A1 (en) 2017-05-26
EP3377840A1 (en) 2018-09-26
EP3377840B9 (en) 2022-04-20
DE102015120036A1 (en) 2017-05-24
HUE059023T2 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
DE102005007910A1 (en) Firearm for long flight duration projectiles has fire guidance system with target data acquisition and adjusters for sight tube on weapon
DE2805903A1 (en) FIRE CONTROL DEVICE FOR AN AIRPLANE DEFENSE WEAPON SYSTEM
DE2936643A1 (en) METHOD AND ARRANGEMENT FOR ESTIMATING THE ACCURACY OF A WEAPON
DE2912587C1 (en) Fire control device, in particular for a mobile anti-aircraft system
DE2658501B2 (en) Method for simulating a moving target
EP3377840B1 (en) Remotely controllable weapon station and method for operating a remotely controllable weapon station
EP3350536B1 (en) Remotely controllable weapon station and method for operating a controllable weapon station
DE1951622A1 (en) Arrangement for simulating firing paths
DE102010052202A1 (en) Method for controlling a combat missile
EP0090323A1 (en) Training device for the firing of guided missiles, particularly of surface-to-surface missiles
DE2143873A1 (en) Device for sighting devices
DE3734758C2 (en)
EP4229352A1 (en) Determination of a fire guidance solution of an artillery weapon
CH656453A5 (en) Device for firing simulation using light pulses
DE102013111644A1 (en) Method for controlling a directable weapon of a vehicle during firing exercises
EP3593081A1 (en) Simulator and method for simulating a deployment of a missile
EP3350534B1 (en) Remotely controllable weapon station and method for operating a controllable weapon station
DE2740655A1 (en) AUTOMATIC SEARCH HEAD INSTRUCTION
EP3367045A1 (en) Method and device for improving the precision of fire guidance solutions
EP3350535B1 (en) Weapon station that can be operated remotely and method for operating a remotely operatable weapon station
DE102018128517A1 (en) Remote-controlled weapon station and method for operating a remote-controlled weapon station
DE19912093A1 (en) Method of simulating a shot
DE102020003080A1 (en) Method and control system for controlling a missile towards a target object
DE19806911C2 (en) Procedure for monitoring the alignment of an artillery weapon
DE102022122842A1 (en) Device for determining an angular deviation, vehicle and method for determining an angular deviation

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180313

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F41G 3/14 20060101AFI20210720BHEP

Ipc: F41G 3/06 20060101ALI20210720BHEP

Ipc: F41G 3/16 20060101ALN20210720BHEP

Ipc: F41G 5/22 20060101ALN20210720BHEP

INTG Intention to grant announced

Effective date: 20210810

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1465591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014465

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014465

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E059023

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231019

Year of fee payment: 8

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1465591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221010

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20231003

Year of fee payment: 8

Ref country code: HU

Payment date: 20231024

Year of fee payment: 8

Ref country code: DE

Payment date: 20231020

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231004

Year of fee payment: 8

Ref country code: BG

Payment date: 20231020

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126