EP3376039B1 - Kreiselpumpenaggregat - Google Patents

Kreiselpumpenaggregat Download PDF

Info

Publication number
EP3376039B1
EP3376039B1 EP17160841.7A EP17160841A EP3376039B1 EP 3376039 B1 EP3376039 B1 EP 3376039B1 EP 17160841 A EP17160841 A EP 17160841A EP 3376039 B1 EP3376039 B1 EP 3376039B1
Authority
EP
European Patent Office
Prior art keywords
valve element
centrifugal pump
pump assembly
assembly according
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17160841.7A
Other languages
English (en)
French (fr)
Other versions
EP3376039A1 (de
Inventor
Thomas Blad
Peter Peter Mønster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos Holdings AS
Original Assignee
Grundfos Holdings AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundfos Holdings AS filed Critical Grundfos Holdings AS
Priority to EP17160841.7A priority Critical patent/EP3376039B1/de
Priority to PCT/EP2018/056099 priority patent/WO2018166979A1/de
Publication of EP3376039A1 publication Critical patent/EP3376039A1/de
Application granted granted Critical
Publication of EP3376039B1 publication Critical patent/EP3376039B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0686Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0016Control, e.g. regulation, of pumps, pumping installations or systems by using valves mixing-reversing- or deviation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/086Sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/106Shaft sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4293Details of fluid inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/48Fluid-guiding means, e.g. diffusers adjustable for unidirectional fluid flow in reversible pumps
    • F04D29/486Fluid-guiding means, e.g. diffusers adjustable for unidirectional fluid flow in reversible pumps especially adapted for liquid pumps

Definitions

  • the invention relates to a centrifugal pump unit with an electric drive motor, an impeller driven by this and a rotatable valve element integrated into the centrifugal pump unit.
  • Centrifugal pump units which have a movable, in particular pivotable valve element in the pump housing in order to selectively direct the liquid flow conveyed by the centrifugal pump unit into two different pressure-side flow paths, in particular depending on the direction of rotation of the drive motor.
  • Arrangements are also known in which a switching device between two suction-side flow paths is integrated into the centrifugal pump unit.
  • Such an arrangement is, for example, off DE 90 139 92 U1 famous.
  • This known switching device has an inflow element located on the pressure side of the impeller which, depending on the direction of rotation, switches the valve device on the suction side. This requires a relatively complex mechanism.
  • a similar device is out U.S. 5,924,432 known, which shows a direction of rotation movable valve element inside a pump housing. This valve element is rotatably mounted on a screw inside the pump housing.
  • the centrifugal pump assembly has an electric drive motor, by means of which at least one impeller can be driven in rotation.
  • the impeller is rotatably connected to the magnet rotor of the drive motor, either directly or z. B. over a wave.
  • the drive motor is preferably designed as a wet-running electric drive motor, d. H. it preferably has a can or a can between the stator and rotor, so that the rotor rotates in the liquid to be conveyed by the impeller.
  • the impeller is arranged in a pump housing which defines the flow paths to and from the impeller.
  • a valve element is also arranged, which is rotatable between at least two switching positions. This can, for example, be a valve element of a switchover valve or mixing valve, as will be described below.
  • the valve element is rotatably held on a bearing in the interior of the pump housing.
  • the storage of the valve element in the interior of the pump housing avoids shaft seals in the pump housing, which would be necessary if the bearing were arranged outside the pump housing.
  • the bearing is arranged in a storage space which is separated by at least one seal from the rest of the interior space of the pump housing, which receives a fluid to be pumped or a liquid to be pumped.
  • the pump unit is preferably designed for water as the fluid to be conveyed. So the centrifugal pump unit is suitable for. B. for use as a circulation pump in a heating and / or air conditioning system.
  • the seal of the storage room compared to the interior of the pump housing has the advantage that impurities in the fluid to be conveyed are essentially kept away from the storage. At the same time, however, no absolutely hermetic seal is required, which would be required if the bearing were arranged outside the pump housing. According to the invention, a certain amount of leakage is tolerated in the bearing. Nevertheless, liquid cannot escape to the outside of the pump housing. Because impurities are kept away from the bearing, a smooth mounting of the valve element can be ensured. The smooth mounting is advantageous if the valve element is to be moved by the drive motor without an additional drive, in particular by hydraulic coupling via the fluid to be conveyed.
  • the storage space can preferably be formed in one piece with the valve element.
  • at least one section of a wall which delimits the storage space is formed in one piece with at least one wall of the valve element.
  • the storage space is particularly preferably formed by an indentation on a wall of the valve element, in particular an end face of the valve element.
  • the storage space preferably has a tubular or blind hole shape.
  • the at least one bearing in the interior of the storage space can be lubricated by a lubricant, preferably at the factory.
  • the lubricant can be, for example, a grease or another suitable lubricant.
  • the lubricant is preferably introduced at the factory, ie the lubricant is already arranged in the storage room when the centrifugal pump unit is delivered. Since the seal of the storage room is not absolutely tight, but allows a certain amount of the liquid to be pumped through, it is possible to that in the course of time the lubricant is diluted and replaced by the liquid to be pumped or the fluid to be pumped during operation of the centrifugal pump unit.
  • the bearing is preferably designed in such a way that the fluid to be conveyed or the liquid to be conveyed can serve as a lubricant.
  • the bearing is particularly preferably designed as a slide bearing. This enables a very simple storage structure. Furthermore, such a bearing can also be lubricated by the liquid to be conveyed.
  • the seal is not completely tight for that fluid or the liquid which the centrifugal pump assembly is designed to convey.
  • the fluid to be conveyed is preferably water, so that the seal is adjusted accordingly so that it allows a certain amount of liquid or water to pass through.
  • This has the advantage that the seal can be made simpler and, moreover, the friction in the area of the seal can be reduced.
  • permanent lubrication of the bearing can advantageously be ensured if the penetrating liquid, in particular the penetrating water, takes on the function of a lubricant over time.
  • the seal is advantageously designed in such a way that it retains particles located in the fluid to be conveyed by the impeller. In this way, impurities are kept away from the bearing, so that the ease of movement of the at least one bearing in the storage room is ensured in the long term.
  • the storage space can be designed in such a way that it is only open on one side to the interior of the pump housing, so that a seal is arranged on only one side of the bearing. It is however, it is also conceivable that the storage space is designed in such a way that a seal is arranged on each of two sides of the bearing, which seal seals the storage space in the manner described from the rest of the interior of the pump housing.
  • the at least one bearing is particularly preferably arranged centrally on the valve element. That is, the bearing centrally surrounds the axis of rotation of the valve element. This has the advantage that the bearing can be made very small in diameter, so that the friction in the bearing is reduced.
  • the valve element preferably projects in the radial direction over the bearing, so that in this area there are favorable lever ratios for rotating the valve element about the at least one bearing.
  • the diameter of the bearing is preferably less than a quarter of the diameter of the valve element.
  • the at least one bearing is located in an area of the pump housing located on the suction side of the impeller. This means that at least one bearing is located in the area of the pump housing through which the liquid sucked in by the impeller flows. This has the advantage that the mounting of the valve element does not collide with the impeller and the drive motor.
  • the at least one valve element is mechanically, magnetically and / or hydraulically coupled to the drive motor for its movement between the switching positions.
  • a coupling can be provided between the drive motor and the valve element, for example between a rotor shaft or the impeller on one side and the valve element on the other.
  • the clutch can be designed to be non-positive and / or frictional. More preferably, the coupling can be releasable so that it can be brought out of engagement in a targeted manner. This can be done, for example, depending on the speed of the Drive motor and / or the pressure in the pressure side area of the pump housing happen.
  • the valve element can also be moved between the switching positions in a targeted manner by the drive motor, without a separate drive for the valve element being required.
  • the drive motor is hydraulically coupled to the valve element, this hydraulic coupling preferably takes place via the fluid set in motion by the impeller.
  • the fluid or the liquid in the pump housing can be set in a rotary movement by the impeller, which is transmitted to the valve element by friction, so that the valve element is rotated by the flow and can thus be moved between the switching positions.
  • the drive motor and thus the impeller can preferably be driven in two opposite directions of rotation, so that the rotating flow in the pump housing also optionally runs in different directions of rotation.
  • the hydraulic coupling has the advantage that it can easily disengage due to slippage. That is, when the valve element reaches a predetermined switching position and is fixed in this position, the flow can continue in the pump housing without moving the valve element any further. The flow then causes friction on the surface of the valve element, which, however, essentially corresponds to the usual hydraulic friction on the inside of the pump housing.
  • the axis of rotation of the valve element is aligned with the axis of rotation of the drive motor.
  • At least one force generating means can be present which exerts a force on the at least one valve element in the direction of one of the at least two switching positions, the force preferably being a spring force, a magnetic force and / or the force of gravity.
  • the valve element can be automatically moved back into a starting position, which preferably corresponds to one of the switching positions, by the force generating means when the drive motor is switched off. That is, in this embodiment, no reversal of the direction of rotation of the drive motor is required in order to move the valve element back into its starting position.
  • the valve element can be moved from the starting position into the other switching position due to a coupling with the drive motor by its rotation.
  • a second clutch in order to keep the valve element in the starting position when the drive motor is in operation, a second clutch can be provided which fixes the valve element in this position, in particular with a friction fit.
  • This coupling can, for example, be pressed into a coupled and thus holding position by the pressure in the interior of the pump housing, which is caused by the impeller.
  • the drive motor is preferably provided with a control device which makes it possible to regulate the speed and / or acceleration of the drive motor.
  • the drive motor is accelerated very quickly, this can lead to a pressure building up very quickly in the pump chamber, which can be used to quickly engage a coupling that fixes the valve element before the valve element is in the other switch position is moved. In this way, the valve element can be held in its starting position. If, on the other hand, the drive motor is accelerated slowly, a rotating flow can develop in the pump housing before the pressure is so high that the valve element is fixed. The valve element can then be moved into the other switching position by the flow.
  • the at least one bearing preferably allows an axial movement of the valve element between a first and a second position.
  • This configuration makes it possible to move the valve element axially to make it z. B. in the second position in a sealing and holding system with the pump housing or a contact surface connected to the pump housing.
  • the valve element can then, for example, bear against at least one valve seat in a sealing manner.
  • the system can take over the function of the above-described second coupling for fixing the valve element.
  • the valve element is preferably spaced from the contact surfaces so that it can preferably rotate freely about the at least one bearing.
  • the first position and / or the second position are preferably limited by a stop, with at least one of the stops preferably being located within the storage space.
  • the stop can be formed, for example, by a contact surface in which the valve element comes to rest.
  • a second stop is preferably provided in the opposite direction so that the valve element cannot move further than a predetermined amount away from the contact surface or the pump housing.
  • At least one restoring element in particular a restoring spring, is also preferably provided, which exerts a restoring force on the valve element in the axial direction.
  • the restoring element is preferably arranged in such a way that it moves the valve element into a position in which it is spaced from an abutment and / or sealing surface and is freely rotatable about the at least one bearing.
  • the valve element is preferably pressed against the restoring element by a pressure force generated in the pump housing.
  • the valve element preferably has a pressure surface, which is a pressure chamber facing inside the pump housing and on which the liquid pressure generated by the impeller inside the pump housing acts. If the force generated by the restoring element is exceeded by this pressure force, the valve element moves against the restoring element into a holding and / or sealing position, as has been described above.
  • the restoring element is preferably arranged within the storage space. It is protected from contamination by the at least one seal.
  • the valve element is arranged in the pump housing in such a way that it separates a suction chamber connected to a suction side of the impeller from a pressure chamber connected to the pressure side of the impeller.
  • the differential pressure between suction chamber and pressure chamber can be used to press the valve element against a sealing or contact surface, on the one hand to seal the suction side against the pressure side and on the other hand to seal valve openings in the desired manner.
  • a coupling can be created which fixes the valve element in a desired switching position when it rests on the contact surface.
  • the valve element facing the pressure chamber, the valve element preferably has a pressure surface in the manner described, on which the pressure on the output side of the impeller acts.
  • the centrifugal pump assembly further preferably has two alternative flow paths, the at least one valve element being arranged in these flow paths in such a way that the flow paths are opened differently in the at least two switching positions.
  • the valve element can be designed as a pure switchover valve in such a way that in a first switching position it opens a first flow path and closes a second flow path and vice versa in one second switching position closes the first flow path and opens the second flow path.
  • a valve element in the context of this invention is also to be understood as a coupled arrangement of two valve elements which are moved coupled with one another.
  • the valve element can provide a mixing function in that it can, for example, also assume intermediate positions between the two switching positions described, in which both flow paths are open to a certain extent.
  • valve element By shifting the valve element in these intermediate positions, the flow paths can be opened to different degrees, so that a mixing ratio of the flows through the two flow paths can be changed.
  • the valve element is preferably designed and arranged in such a way that, when it moves, it opens one of the flow paths by the same amount by which the other flow path is closed at the same time.
  • the two flow paths are particularly preferably located on the suction side of the impeller. That is, depending on the position of the valve element, the impeller sucks in from one of the two flow paths or from both flow paths, whereby the mixture of the flows from the two flow paths can then be changed by shifting the valve element.
  • the valve element can also be located on the pressure side of the impeller or cause it to switch the flow between two pressure-side flow paths or, if configured as a mixing valve, mix it.
  • centrifugal pump assembly according to the invention described in the following description relate to applications in heating and / or air conditioning systems in which a liquid heat transfer medium, in particular water, is circulated by the centrifugal pump assembly.
  • the centrifugal pump unit has a motor housing 2 in which an electric drive motor is arranged.
  • This has, in a known manner, a stator 4 and a rotor 6 which is arranged on a rotor shaft 8.
  • the rotor 6 rotates in a rotor space which is separated from the stator space in which the stator 4 is arranged by a can or a can 10. This means that it is a wet-running electric drive motor.
  • the motor housing 2 is connected to a pump housing 12, in which an impeller 14 that is non-rotatably connected to the rotor shaft 8 rotates.
  • an electronics housing 16 is arranged, which contains control electronics or control device 17 for controlling the electric drive motor in the pump housing 2.
  • the electronics housing 16 could also be arranged in a corresponding manner on another side of the stator housing 2.
  • a movable valve element 18 is also arranged in the pump housing 12.
  • This valve element 18 is rotatably mounted on an axis 20 in the interior of the pump housing 12, namely so that the axis of rotation of the valve element 18 is aligned with the axis of rotation X of the impeller 14.
  • the axis 20 is fixed in a rotationally fixed manner on the bottom of the pump housing 12.
  • the valve element 18 is not only rotatable about the axis 20, but can also be moved to a certain extent in the longitudinal direction X. This linear mobility is limited in one direction by the pump housing 12, against which the valve element 18 strikes with its outer circumference.
  • the valve element 18 separates a suction chamber 24 from a pressure chamber 26 in the pump housing 12.
  • the impeller 14 rotates in the pressure chamber 26.
  • the pressure chamber 26 is connected to the pressure connection or pressure port 27 of the centrifugal pump unit, which forms the outlet of the centrifugal pump unit.
  • a mechanical coupling is provided between the drive motor and the valve element, and in these embodiments the drive motor can be controlled by the control device 17 in two different operating modes or operating modes.
  • a first operating mode which corresponds to normal operation of the circulating pump assembly
  • the drive motor rotates in a conventional manner at a desired speed, in particular adjustable by the control device 17.
  • the second operating mode the drive motor is controlled in open-loop mode, so that the rotor can be rotated step by step in individual angular steps specified by the control device 17, which are smaller than 360 °.
  • the drive motor can thus be moved in individual steps in the manner of a stepping motor, which is used in these exemplary embodiments to move the valve element into a defined position in a targeted manner in small angular steps, as will be described below.
  • a mixing valve is integrated in the pump housing 2, as can be used, for example, to set the temperature for underfloor heating.
  • the motor housing 2 with the electronics housing 16 corresponds to the configuration described above.
  • the pump housing 12 has two suction-side connections 32 and 34 which open into inlets 28 and 30 at the bottom of the pump housing 12, which are located in a plane transverse to the axis of rotation X.
  • the valve element 18 is drum-shaped and consists of a cup-shaped lower part 76 which is closed by a cover 78 on its side facing the impeller 14.
  • a suction opening 36 is formed in the central region of the cover 78.
  • the suction opening 36 is in engagement with the suction mouth 38 of the impeller 14.
  • the valve element 18 is rotatably mounted on a shaft 20 which is arranged in the bottom of the pump housing 12.
  • the axis of rotation of the valve element 18 corresponds to the axis of rotation X of the rotor shaft 8.
  • the valve element 18 is also axially displaceable along the axis X and is moved by a spring 48 into the position shown in FIG Fig.
  • the rest position shown is pressed, in which the valve element 18 is in a released position in which the lower part 76 does not lie against the bottom of the pump housing 12, so that the valve element 18 is essentially freely rotatable about the axis 20.
  • the coupling 108 engages with a mating coupling 110 which is arranged non-rotatably on the valve element 18.
  • the coupling 108 has beveled coupling surfaces which essentially describe a sawtooth profile along a circumferential line in such a way that torque transmission from the coupling 108 to the mating coupling 110 is only possible in one direction of rotation is, namely in the direction of rotation A in Fig. 3 .
  • the clutch slips, causing the valve element 18 to move axially.
  • the direction of rotation B is that direction of rotation in which the pump unit is driven in normal operation.
  • the direction of rotation A is used for the targeted adjustment of the valve element 18. This means that a coupling that is dependent on the direction of rotation is formed here.
  • the mating clutch 110 disengages from the clutch 108 due to the pressure in the pressure chamber 26. If the pressure in the pressure chamber 26 increases, a pressure force acts on the cover 78 which opposes and exceeds the spring force of the spring 48, so that the valve element 18 is pressed into the adjacent position, which in Fig. 4 is shown. In this, the lower part 76 rests against the bottom side of the pump housing 12, so that on the one hand the valve element 18 is held in a force-locking manner and on the other hand a tight contact is achieved which seals the pressure and suction sides from one another in the manner described below.
  • the suction connection 32 opens out at the inlet 28 and the suction connection 34 opens out at the inlet 30 in the bottom of the pump housing 12 in the interior thereof, that is to say in the suction space 24.
  • the lower part 76 of the valve element 18 has in its bottom an arcuate opening 112 which extends essentially over 90 °.
  • Fig. 6 shows a first switching position in which the opening 112 only covers the inlet 30, so that a flow path is only given from the suction connection 34 to the suction opening 36 and thus to the suction mouth 38 of the impeller 14.
  • the second inlet 28 is tightly closed by the base of the valve element 18 resting in its circumferential area.
  • Fig. 8 shows the second switching position in which the opening 112 only covers the inlet 28, while the inlet 30 is closed.
  • FIG. 7 now shows an intermediate position in which the opening 112 covers both inlets 28 and 30, the inlet 30 being only partially released.
  • a mixing ratio between the flows from the inlets 28 and 30 can be changed.
  • the valve element 18 can also be adjusted in small steps in order to change the mixing ratio.
  • the centrifugal pump unit with the integrated valve is indicated by the dashed line 1.
  • the hydraulic circuit has a heat source 114 in the form of, for example, a gas boiler, the outlet of which opens into, for example, the suction connection 34 of the pump housing 12.
  • an underfloor heating circuit 116 connects to the pressure connection 27 of the centrifugal pump unit 1, the return of which is connected both to the inlet of the heat source 114 and to the suction connection 32 of the centrifugal pump unit.
  • a further heating circuit 120 can be supplied with a heat transfer medium, which has the temperature of the heat source 114 on the outlet side, via a second circulating pump assembly 118.
  • the flow temperature of the underfloor heating circuit 116 can be regulated in such a way that cold water from the return is mixed with the hot water on the outlet side of the heat source 114, with the mixing ratio being changed by changing the opening ratios of the inlets 28 and 30 in the manner described above Rotation of the valve element 18h can be changed.
  • the second embodiment according to Figures 10 to 19 shows a centrifugal pump unit which, in addition to the mixer functionality described above, also has a switchover functionality for has additional supply of a secondary heat exchanger for domestic water heating.
  • valve element 18i has, in addition to the opening 112, a through-channel 122 which extends from an opening 124 in the cover 78i to an opening in the bottom of the lower part 76i and thus connects the two axial ends of the valve element 18i with one another. Furthermore, an arcuate bridging opening 126 is formed in the valve element 18i only to the underside, that is to say to the bottom of the lower part 76i and thus to the suction chamber 24, which is closed to the pressure chamber 26 by the cover 78i.
  • the pump housing 12 has a further connection 128.
  • the connection 128 opens into an inlet 130 in the bottom of the circulation pump assembly 12 in addition to the inlets 28 and 30 into the suction chamber 24.
  • the cover 78i of the valve element 18i being shown partially open in these figures in order to clarify the position of the openings below.
  • Fig. 15 shows a first switching position in which the opening 112 is opposite the inlet 30, so that a flow connection is established from the suction connection 34 to the suction mouth 38 of the impeller 14. In the switch position according to Fig.
  • the opening 112 lies above the inlet 130, so that a flow connection is created from the connection 128 to the suction opening 36 and via this into the suction mouth 38 of the impeller 14.
  • the opening 112 lies above the inlet 30, so that in turn a flow connection from the suction connection 34 is given to the suction mouth 38 of the impeller 14.
  • the bridging opening 126 simultaneously covers the input 130 and part of the input 28, so that a connection is also created from the connection 128 via the input 130, the bridging opening 126 and the input 28 to the connection 32.
  • Fig. 18 shows a fourth switching position in which the through-channel 122 completely covers the inlet 28, so that the connection 32 is connected to the pressure chamber 26 via the through-channel 122 and the opening 124. At the same time, the bridging opening 126 only covers the input 130. The opening 112 continues to cover the input 30.
  • Such a centrifugal pump unit can, for example, be used in a heating system as shown in Fig. 19 is shown to find use. There, the dashed line delimits the centrifugal pump unit 1, as it is based on the Figures 10 to 18 has been described.
  • the heating system in turn has a primary heat exchanger or a heat source 114, which can be a gas boiler, for example.
  • a first heating circuit 120 which can be formed, for example, by conventional heating elements or radiators.
  • a flow path branches off to a secondary heat exchanger 56 for heating domestic water.
  • the heating system also has an underfloor heating circuit 116.
  • the returns of the heating circuit 120 and the underfloor heating circuit 116 open into the suction connection 34 on the pump housing 12.
  • the return from the secondary heat exchanger 56 opens into the connection 128, which, as will be described below, offers two functionalities.
  • the connection 32 of the pump housing 12 is connected to the flow of the underfloor heating circuit 116.
  • the impeller 14 conveys liquid from the suction connection 34 via the pressure connection 27 through the heat source 140 and the heating circuit 120 and back to the suction connection 34. If the valve element 18i is in the second switching position, which is shown in FIG Fig. 16 is shown, the system is switched to domestic water operation, in this state the pump unit or the impeller 14 pumps liquid from the connection 128, which serves as a suction connection, through the pressure connection 27, via the heat source 114 through the secondary heat exchanger 56 and back to the connection 128. If the valve element 18i is in the third switching position, which is shown in Fig. 17 is shown, the underfloor heating circuit 116 is also supplied.
  • the water flows through the suction connection 34 into the suction mouth 38 of the impeller 14 and is conveyed through the first heating circuit 120 via the pressure connection 27 via the heat source 114 in the manner described.
  • the liquid exits the pressure chamber 26 into the opening 124 and through the passage 122 and thus flows to the connection 32 and via this into the underfloor heating circuit 116.
  • Fig. 17 The switching position shown flows simultaneously via the bridging opening 126 via the connection 128 and the inlet 130 into the connection 32. That is, here water flows via the heat source 114 through the secondary heat exchanger 26 and the connection 128 to the connection 32 Secondary heat exchanger 56, if essentially no heat is removed, hot water is added to the connection 32 in addition to the cold water which flows from the pressure chamber 26 via the through-channel 122 to the connection 32.
  • Fig. 18 shows a switching position in which the admixture is switched off and the connection 32 is only in direct connection with the pressure chamber 26.
  • the rotor 6 is preferably first positioned in such a way that the control device 17 moves the rotor 6 by controlling the stator 4 accordingly, it does not rotate all the way into the stored angular position, but rather preferably stops shortly before.
  • the rotor 6 is rotated into a previously stored angular position or in an angular position which is slightly before the last angular position stored in the direction of rotation.
  • the rotor can then be rotated together with the valve element 18, 18i into a desired second angular position, the control device 17 controlling the stator 6 in such a way that the rotor 6 rotates precisely by the desired angle in this second operating mode.
  • the mating coupling 110 is taken along via the coupling 108, so that the valve element 18, 18i is then rotated into the desired angular position.
  • the rotor 6 is stopped and the control device 17 switches back to the first operating mode or the first operating mode and starts the rotor 6 in the opposite direction of rotation, so that the clutch 108 can disengage from the mating clutch 110 and otherwise through the axial Displacement of the valve element 18, 18i due to the pressure generated in the pressure chamber 26, the clutch 108 and the mating clutch 110 completely disengage and the valve element 18, 18i is held in the switch position reached by resting on the bottom of the pump housing 12.
  • the coupling 108 has two bevels or wedge surfaces 132 which extend starting from two end edges 134 which run essentially in a diametrical direction with respect to the axis of rotation X.
  • engagement surfaces 136 extend, which essentially run in a plane which is spanned by the axis of rotation X and a diameter line to this axis of rotation X.
  • the mating coupling 110 has a web-shaped projection 138 extending in the diameter direction with respect to the axis of rotation X, which protrudes in the axial direction and has two substantially parallel side surfaces, which in turn extend in planes which in the Essentially spanned by the diameter line and the axis of rotation X or axes parallel to these.
  • the side surfaces of the projection 138 abut the engagement surfaces 136 when the clutch is engaged.
  • the projection 138 slides on the wedge surfaces 137 with axial displacement.
  • this embodiment of the coupling 108 and the mating coupling 110 there are exactly two positions offset by 180 ° in relation to one another, in which the rotor 6 and the valve element 18, 18i can be coupled to one another.
  • a stationary axis extends in the direction of the axis of rotation X into the interior of the pump housing 12.
  • the valve element 18, 18i is rotatably mounted on this axis.
  • the axle 20 engages in a blind hole 140 in the bottom of the valve element 18, 18i, which is remote from the impeller 14.
  • a seal 142 is arranged, which is in sliding contact with the outer circumference of the axle 20. The seal 142 seals the interior of the blind hole 140 from the outside.
  • a lubricant can be arranged in the blind hole 140 in order to permanently lubricate or prelubricate the sliding bearing.
  • the seal 142 allows a small amount of leakage, so that, in the long term, liquid from the pump housing 12, in particular water, can penetrate the interior of the blind hole 140 and is used there for lubrication between the valve element 18, 18i and the axis 20.
  • the seal 142 is designed in such a way that particles and contaminants are retained so that permanent ease of movement is ensured.
  • the radial bearing of the valve element 18, 18i takes place on the outer circumference of the spring 48. It should be understood, however, that the radial bearing could alternatively also take place directly on the outer circumference of the axle 20, for example in the section of the storage space or blind hole adjoining the seal 142 140
  • the axle 20 also has a circumferential shoulder 144 facing the impeller 14, at which the axle 20 tapers.
  • the spring 48 the function of which has already been described above, is supported between this shoulder 144 and the bottom of the blind hole 140, which is located at the end facing the impeller 14. In this way, the spring 48 is also located completely inside the blind hole 140, which defines the storage space, so that the spring 48 is also protected from contamination from the fluid conveyed by the pump assembly.
  • valve element 18, 18i could also be used together with the valve element 18, 18i if this were hydraulically coupled instead of via the mechanical coupling 108, 110 described. If the aforementioned coupling 108, 110 is omitted, the valve element could instead be rotated by the flow set in rotation by the impeller 14 in the pressure chamber 26, in that the flow acts on the cover 78, 78i. In addition, in such an embodiment, stops could be present which define the switching positions of the valve element 18, 18i. The movement between these switching positions could then be achieved by reversing the direction of rotation of the impeller 14.
  • the pump housing 12 which at the same time serves as a valve housing, is designed in one piece. It is to be understood, however, that the pump housing 12 could also be composed of several individual parts or could be designed in several parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft ein Kreiselpumpenaggregat mit einem elektrischen Antriebsmotor, einem von diesem angetriebenen Laufrad sowie ein in das Kreiselpumpenaggregat integriertes drehbares Ventilelement.
  • Es sind Kreiselpumpenaggregate bekannt, welche im Pumpengehäuse ein bewegliches, insbesondere schwenkbares Ventilelement aufweisen, um die von dem Kreiselpumpenaggregat geförderte Flüssigkeitsströmung wahlweise, insbesondere abhängig von der Drehrichtung des Antriebsmotors in zwei verschiedene druckseitige Strömungswege zu lenken. Es sind auch Anordnungen bekannt, bei denen eine Umschalteinrichtung zwischen zwei saugseitigen Strömungswegen in das Kreiselpumpenaggregat integriert ist. Eine solche Anordnung ist beispielsweise aus DE 90 139 92 U1 bekannt. Diese bekannte Umschalteinrichtung weist ein auf der Druckseite des Laufrades gelegenes Anströmelement auf, welches je nach Drehrichtung die Ventileinrichtung an der Saugseite umschaltet. Dies erfordert eine relativ aufwändige Mechanik.
    Eine ähnliche Vorrichtung ist aus US 5,924,432 bekannt, welche ein drehrichtungsabhängig bewegbares Ventilelement im Inneren eines Pumpengehäuses zeigt. Dieses Ventilelement ist drehbar auf einer Schraube im Inneren des Pumpengehäuses gelagert.
  • Im Hinblick auf diesen Stand der Technik ist es Aufgabe der Erfindung, ein Kreiselpumpenaggregat mit einem integrierten Ventilelement dahingehend zu verbessern, dass ein einfacherer Aufbau des Kreiselpumpenaggregates bei gleichzeitig erhöhter Zuverlässigkeit der Schaltfunktion des Ventilelementes erreicht wird.
  • Diese Aufgabe wird durch ein Kreiselpumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
  • Das erfindungsgemäße Kreiselpumpenaggregat weist einen elektrischen Antriebsmotor auf, durch den zumindest ein Laufrad drehend antreibbar ist. Dazu ist das Laufrad mit dem Magnetrotor des Antriebsmotors drehfest verbunden, entweder direkt oder z. B. über eine Welle. Der Antriebsmotor ist vorzugsweise als nasslaufender elektrischer Antriebsmotor ausgebildet, d. h. er weist vorzugsweise ein Spaltrohr bzw. einen Spalttopf zwischen Stator und Rotor auf, sodass der Rotor in der von dem Laufrad zu fördernden Flüssigkeit rotiert. Das Laufrad ist in einem Pumpengehäuse angeordnet, welches die Strömungswege zu dem Laufrad hin und von dem Laufrad weg definiert. In dem Pumpengehäuse ist ferner ein Ventilelement angeordnet, welches zwischen zumindest zwei Schaltstellungen drehbar ist. Dies kann beispielsweise ein Ventilelement eines Umschaltventils oder Mischventils sein, wie es unten beschrieben wird.
  • Erfindungsgemäß ist das Ventilelement im Innenraum des Pumpengehäuses an einem Lager drehbar gehalten. Durch die Lagerung des Ventilelementes im Inneren des Pumpengehäuses werden Wellendichtungen im Pumpengehäuse vermieden, welche erforderlich wären, falls die Lagerung außerhalb des Pumpengehäuses angeordnet wäre. Erfindungsgemäß ist das Lager in einem Lagerungsraum angeordnet, welcher von dem übrigen Innenraum des Pumpengehäuses, welcher ein zu förderndes Fluid bzw. eine zu fördernde Flüssigkeit aufnimmt, durch zumindest eine Dichtung getrennt ist. Vorzugsweise ist das Pumpenaggregat für Wasser als zu förderndes Fluid ausgelegt. So eignet das Kreiselpumpenaggregat z. B. zur Verwendung als Umwälzpumpe in einer Heizungs- und/oder Klimaanlage. Die Dichtung des Lagerungsraumes gegenüber dem Innenraum des Pumpengehäuses hat den Vorteil, dass Verunreinigungen in dem zu fördernden Fluid von der Lagerung im Wesentlichen ferngehalten werden. Gleichzeitig ist jedoch keine absolut hermetische Dichtung erforderlich, welche erforderlich wäre, falls die Lagerung außerhalb des Pumpengehäuses angeordnet wäre. Erfindungsgemäß wird eine gewisse Leckage im Lager toleriert. Dennoch kann Flüssigkeit nicht nach außen aus dem Pumpengehäuse austreten. Dadurch, dass Verunreinigungen von dem Lager ferngehalten werden, kann eine leichtgängige Lagerung des Ventilelementes sichergestellt werden. Die leichtgängige Lagerung ist vorteilhaft, wenn das Ventilelement von dem Antriebsmotor ohne einen zusätzlichen Antrieb bewegt werden soll, insbesondere durch hydraulische Kopplung über das zu fördernde Fluid.
  • Vorzugsweise kann der Lagerungsraum einstückig mit dem Ventilelement ausgebildet sein. D. h. zumindest ein Abschnitt einer Wandung, welche den Lagerungsraum begrenzt, ist einstückig mit zumindest einer Wandung des Ventilelementes ausgebildet. Besonders bevorzugt ist der Lagerungsraum durch eine Einbuchtung an einer Wandung des Ventilelementes, insbesondere einer Stirnseite des Ventilelementes ausgebildet. Dabei hat der Lagerungsraum vorzugsweise eine rohrförmige oder sacklochförmige Gestalt.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung kann das zumindest eine Lager im Inneren des Lagerungsraums durch ein Schmiermittel, vorzugsweise werkseitig, geschmiert sein. Bei dem Schmiermittel kann es sich beispielsweise um ein Fett oder ein anderes geeignetes Schmiermittel handeln. Das Schmiermittel ist bevorzugt werkseitig eingebracht, d. h. das Schmiermittel ist bei Auslieferung des Kreiselpumpenaggregates bereits im Lagerungsraum angeordnet. Da die Dichtung des Lagerungsraumes nicht absolut dicht ist, sondern eine gewisse Menge der zu fördernden Flüssigkeit durchlässt, ist es möglich, dass im Laufe der Zeit das Schmiermittel beim Betrieb des Kreiselpumpenaggregates durch die zu fördernde Flüssigkeit bzw. das zu fördernde Fluid verdünnt und ersetzt wird. Dann kann im Laufe der Zeit die zu fördernde Flüssigkeit die Funktion des Schmiermittels übernehmen. Das heißt, das Lager ist vorzugsweise so ausgebildet, dass das zu fördernde Fluid bzw. die zu fördernde Flüssigkeit als Schmiermittel dienen kann.
  • Besonders bevorzugt ist das Lager als Gleitlager ausgebildet. Dies ermöglicht einen sehr einfachen Lageraufbau. Ferner kann ein solches Lager auch durch die zu fördernde Flüssigkeit geschmiert werden.
  • Erfindungsgemäß ist die Dichtung für dasjenige Fluid bzw. die Flüssigkeit, zu deren Förderung das Kreiselpumpenaggregat ausgebildet ist, nicht vollständig dicht. Bevorzugt ist das zu fördernde Fluid Wasser, sodass die Dichtung entsprechend so abgestimmt ist, dass sie eine gewisse Flüssigkeitsmenge bzw. Wasser durchlässt. Dies hat den Vorteil, dass die Dichtung einfacher ausgebildet werden kann und darüber hinaus die Reibung im Bereich der Dichtung reduziert werden kann. Darüber hinaus kann vorteilhaft eine dauerhafte Schmierung des Lagers sichergestellt werden, wenn die eindringende Flüssigkeit, insbesondere das eindringende Wasser im Laufe der Zeit die Funktion eines Schmiermittels übernimmt. Vorteilhaft ist die Dichtung jedoch derart ausgebildet, dass sie in dem von dem Laufrad zu fördernden Fluid befindliche Partikel zurückhält. So werden Verunreinigungen von dem Lager ferngehalten, sodass langfristig die Leichtgängigkeit des zumindest einen Lagers in dem Lagerungsraum sichergestellt ist.
  • Der Lagerungsraum kann so ausgestaltet sein, dass er nur an einer Seite zu dem Innenraum des Pumpengehäuses hin geöffnet ist, sodass nur an einer Seite des Lagers eine Dichtung angeordnet ist. Es ist jedoch auch denkbar, dass der Lagerungsraum so ausgebildet ist, dass an zwei Seiten des Lagers jeweils eine Dichtung angeordnet ist, welche den Lagerungsraum in der beschriebenen Weise gegenüber dem übrigen Innenraum des Pumpengehäuses abdichtet.
  • Besonders bevorzugt ist das zumindest eine Lager zentral an dem Ventilelement angeordnet. Das heißt das Lager umgibt zentral die Drehachse des Ventilelementes. Dies hat den Vorteil, dass das Lager im Durchmesser sehr klein ausgebildet werden kann, sodass die Reibung im Lager reduziert wird. Darüber hinaus kragt das Ventilelement vorzugsweise in radialer Richtung über das Lager aus, sodass in diesem Bereich günstige Hebelverhältnisse zur Drehung des Ventilelementes um das zumindest eine Lager bestehen. Der Durchmesser des Lagers ist vorzugsweise kleiner als ein Viertel des Durchmessers des Ventilelementes.
  • Weiter bevorzugt liegt das zumindest eine Lager in einem an der Saugseite des Laufrades gelegenen Bereich des Pumpengehäuses. Das heißt das zumindest eine Lager liegt in dem Bereich des Pumpengehäuses, durch welche die von dem Laufrad angesaugte Flüssigkeit strömt. Dies hat den Vorteil, dass die Lagerung des Ventilelementes nicht mit dem Laufrad und dem Antriebsmotor kollidiert.
  • Gemäß einer besonders bevorzugten Ausführungsform ist das zumindest eine Ventilelement zu seiner Bewegung zwischen den Schaltstellungen mit dem Antriebsmotor mechanisch, magnetisch und/oder hydraulisch gekoppelt. Hierzu kann eine Kupplung zwischen dem Antriebsmotor und dem Ventilelement vorgesehen sein, beispielsweise zwischen einer Rotorwelle oder dem Laufrad auf der einen Seite und dem Ventilelement auf der anderen Seite. Die Kupplung kann dabei kraft- und/oder reibschlüssig ausgebildet sein. Weiter bevorzugt kann die Kupplung lösbar sein, sodass sie gezielt außer Eingriff gebracht werden kann. Dies kann beispielsweise in Abhängigkeit der Drehzahl des Antriebsmotors und/oder des Druckes im druckseitigen Bereich des Pumpengehäuses geschehen. So kann durch den Antriebsmotor auch das Ventilelement zwischen den Schaltstellungen gezielt bewegt werden, ohne dass ein separater Antrieb für das Ventilelement erforderlich wäre. Wenn der Antriebsmotor mit dem Ventilelement hydraulisch gekoppelt ist, erfolgt diese hydraulische Kopplung vorzugsweise über das von dem Laufrad in Bewegung versetzte Fluid. Insbesondere kann das Fluid bzw. die Flüssigkeit in dem Pumpengehäuse von dem Laufrad in eine Drehbewegung versetzt werden, welche durch Reibung auf das Ventilelement übertragen wird, sodass das Ventilelement von der Strömung mitgedreht wird und so zwischen den Schaltstellungen bewegt werden kann. Um eine wechselseitige Bewegung zwischen zwei Schaltstellungen zu ermöglichen, können der Antriebsmotor und damit das Laufrad vorzugsweise in zwei entgegengesetzten Drehrichtungen antreibbar sein, sodass auch die rotierende Strömung im Pumpengehäuse wahlweise in unterschiedlichen Drehrichtungen verläuft. Die hydraulische Kopplung hat den Vorteil, dass sie leicht durch Schlupf außer Eingriff treten kann. Das heißt, wenn das Ventilelement eine vorgegebene Schaltstellung erreicht und in dieser fixiert ist, kann die Strömung in dem Pumpengehäuse weiterverlaufen ohne das Ventilelement weiter zu bewegen. Dabei verursacht die Strömung dann eine Reibung an der Oberfläche des Ventilelementes, welche jedoch im Wesentlichen der üblichen hydraulischen Reibung an der Innenseite des Pumpengehäuses entspricht. Insbesondere für die hydraulische als auch für die mechanische Kupplung ist es ferner vorteilhaft, wenn die Drehachse des Ventilelementes fluchtens zu der Drehachse des Antriebsmotors liegt.
  • Gemäß einer weiteren bevorzugten Ausführungsform kann zumindest ein Krafterzeugungsmittel vorhanden sein, welches auf das zumindest eine Ventilelement eine Kraft in Richtung einer der zumindest zwei Schaltstellungen ausübt, wobei die Kraft vorzugsweise eine Federkraft, eine magnetische Kraft und/oder die Schwerkraft ist. Bei einer solchen Ausgestaltung kann das Ventilelement durch das Krafterzeugungsmittel beim Abschalten des Antriebsmotors selbsttätig in eine Ausgangslage, welche bevorzugt einer der Schaltstellungen entspricht, zurückbewegt werden. Das heißt bei dieser Ausführungsform ist keine Drehrichtungsumkehr des Antriebsmotors erforderlich, um das Ventilelement zurück in seine Ausgangslage zu bewegen. Aus der Ausgangslage in die andere Schaltstellung kann das Ventilelement aufgrund einer Kopplung mit dem Antriebsmotor durch dessen Drehung bewegt werden. Insbesondere um das Ventilelement in der Ausgangslage im Betrieb des Antriebsmotors zu halten, kann eine zweite Kupplung vorgesehen sein, welche das Ventilelement in dieser Lage insbesondere reibschlüssig fixiert. Diese Kupplung kann beispielsweise durch den Druck im Innenraum des Pumpengehäuses, welcher von dem Laufrad verursacht wird, in eine gekuppelte und damit haltende Position gedrückt werden. Ob das Ventilelement aus der Ausgangslage bewegt wird oder nicht kann bei einer solchen Ausgestaltung durch entsprechende Ansteuerung des Antriebsmotors erreicht werden. Der Antriebsmotor ist vorzugsweise mit einer Steuereinrichtung versehen, welche es ermöglicht die Drehzahl und/oder Beschleunigung des Antriebsmotors zu regulieren. Wenn beispielsweise der Antriebsmotor sehr schnell beschleunigt wird, kann dies dazu führen, dass sich im Pumpenraum sehr schnell ein Druck aufbaut, welcher dazu genutzt werden kann, eine Kupplung, welche das Ventilelement fixiert schnell in Eingriff zu bringen, bevor das Ventilelement durch eine Strömung in die andere Schaltstellung bewegt wird. So kann das Ventilelement in seiner Ausgangslage gehalten werden. Wenn hingegen der Antriebsmotor langsam beschleunigt wird, kann sich eine rotierende Strömung im Pumpengehäuse ausbilden, bevor der Druck so hoch ist, dass das Ventilelement fixiert wird. So kann das Ventilelement dann durch die Strömung in die andere Schaltstellung bewegt werden.
  • Das zumindest eine Lager lässt vorzugsweise eine axiale Bewegung des Ventilelementes zwischen einer ersten und einer zweiten Position zu. Diese Ausgestaltung ermöglicht es, das Ventilelement axial zu bewegen, um es z. B. in der zweiten Position in eine dichtende und haltende Anlage mit dem Pumpengehäuse oder einer mit dem Pumpengehäuse verbundenen Anlagefläche zu bringen. In dieser Position kann das Ventilelement dann beispielsweise dichtend an zumindest einem Ventilsitz anliegen. Gleichzeitig kann die Anlage die Funktion der oben beschriebenen zweiten Kupplung zur Fixierung des Ventilelementes übernehmen. In der ersten Position hingegen ist das Ventilelement vorzugsweise von den Anlageflächen beabstandet, sodass es sich vorzugsweise frei um das zumindest eine Lager drehen kann.
  • Die erste Position und/oder die zweite Position sind vorzugsweise durch einen Anschlag begrenzt, wobei vorzugsweise zumindest einer der Anschläge innerhalb des Lagerungsraumes gelegen ist. In der zweiten Position kann der Anschlag beispielsweise durch eine Anlagefläche gebildet sein, in welcher das Ventilelement zur Anlage kommt. Ein zweiter Anschlag ist vorzugsweise in entgegengesetzter Richtung vorhanden, damit das Ventilelement sich nicht weiter als ein vorbestimmtes Maß von der Anlagefläche oder dem Pumpengehäuse wegbewegen kann.
  • Weiter bevorzugt ist zumindest ein Rückstellelement, insbesondere eine Rückstellfeder vorgesehen, welches auf das Ventilelement eine Rückstellkraft in axialer Richtung ausübt. Vorzugsweise ist das Rückstellelement so angeordnet, dass es das Ventilelement in eine Position bewegt, in welcher es von einer Anlager- und/oder Dichtfläche beabstandet ist und frei um das zumindest eine Lager drehbar ist. Gegen das Rückstellelement wird das Ventilelement vorzugsweise durch eine im Pumpengehäuse erzeugte Druckkraft gedrückt. Dazu weist das Ventilelement vorzugsweise eine Druckfläche auf, welche einem Druckraum im Inneren des Pumpengehäuses zugewandt ist und auf welcher der Flüssigkeitsdruck, welcher von dem Laufrad im Inneren des Pumpengehäuses erzeugt wird, wirkt. Wenn die von dem Rückstellelement erzeugte Kraft von dieser Druckkraft überschritten wird, bewegt sich das Ventilelement gegen das Rückstellelement in eine haltende und/oder dichtende Position, wie sie oben beschrieben wurde.
  • Vorzugsweise ist das Rückstellelement innerhalb des Lagerungsraumes angeordnet. So ist es vor Verunreinigungen durch die zumindest eine Dichtung geschützt. Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfindung ist das Ventilelement derart in dem Pumpengehäuse angeordnet, dass es einen mit einer Saugseite des Laufrades verbundenen Saugraum von einem mit der Druckseite des Laufrades verbundenen Druckraum trennt. Bei dieser Anordnung kann der Differenzdruck zwischen Saugraum und Druckraum dazu genutzt werden, das Ventilelement gegen eine Dicht- bzw. Anlagefläche zu drücken, um zum einen die Saugseite gegen die Druckseite abzudichten und zum anderen auch um Ventilöffnungen in gewünschter Weise abzudichten. Gleichzeitig kann eine Kupplung geschaffen werden, welche das Ventilelement bei Anlage an der Anlagefläche in einer gewünschten Schaltstellung fixiert. Dem Druckraum zugewandt weist das Ventilelement dazu in der beschriebenen Weise vorzugsweise eine Druckfläche auf, auf welche der ausgangsseitige Druck des Laufrades wirkt.
  • Weiter bevorzugt weist das Kreiselpumpenaggregat zwei alternative Strömungswege auf, wobei das zumindest eine Ventilelement in diesen Strömungswegen derart angeordnet ist, dass in den zumindest zwei Schaltstellungen die Strömungswege unterschiedlich geöffnet sind. Das Ventilelement kann als reines Umschaltventil so ausgebildet sein, dass es in einer ersten Schaltstellung einen ersten Strömungsweg öffnet und einen zweiten Strömungsweg verschießt und umgekehrt in einer zweiten Schaltstellung den ersten Strömungsweg verschließt und den zweiten Strömungsweg öffnet. Unter einem Ventilelement im Sinne dieser Erfindung ist auch eine gekoppelte Anordnung zweier Ventilelemente, welche gekoppelt miteinander bewegt werden, zu verstehen. Alternativ oder zusätzlich kann das Ventilelement eine Mischfunktion bereitstellen, indem es beispielsweise auch Zwischenpositionen zwischen den beschriebenen zwei Schaltstellungen einnehmen kann, in welchen beide Strömungswege um ein gewisses Maß geöffnet sind. Durch Verlagerung des Ventilelementes in diesen Zwischenstellungen können die Strömungswege unterschiedlich weit geöffnet werden, sodass ein Mischungsverhältnis der Strömungen durch die beiden Strömungswege geändert werden kann. Vorzugsweise ist das Ventilelement so ausgebildet und angeordnet, dass es bei seiner Bewegung einen der Strömungswege um dasselbe Maß öffnet, um welches gleichzeitig der andere Strömungsweg geschlossen wird.
  • Die beiden Strömungswege sind besonders bevorzugt saugseitig des Laufrades gelegen. Das heißt das Laufrad saugt je nach Stellung des Ventilelementes aus einem der beiden Strömungswege oder auch aus beiden Strömungswegen an, wobei dann durch Verlagerung des Ventilelementes die Mischung der Strömungen aus den beiden Strömungswegen verändert werden kann. Alternativ kann das Ventilelement auch an der Druckseite des Laufrades gelegen sein bzw. bewirken, sodass es die Strömung zwischen zwei druckseitigen Strömungswegen umschaltet oder bei Ausgestaltung als Mischventil mischt.
  • Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
  • Fig. 1
    eine Explosionsansicht des Kreiselpumpenaggregates gemäß einer neunten Ausführungsform der Erfindung,
    Fig. 2
    eine perspektivische Ansicht des Kreiselpumpenaggregates gemäß Fig. 1 mit abgenommenem Pumpengehäuse und Ventilelement,
    Fig. 3
    eine perspektivische Ansicht der Motorwelle des Kreiselpumpenaggregates gemäß Fig. 1 und 2 sowie des Kupplungsteils des Ventilelementes,
    Fig. 4
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 1 mit dem Ventilelement in einer ersten Position,
    Fig. 5
    eine Schnittansicht gemäß Fig. 4 mit dem Ventilelement in einer zweiten Position,
    Fig. 6
    eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß Fig. 1 bis 3 mit dem Ventilelement in einer ersten Schaltstellung,
    Fig. 7
    eine Ansicht gemäß Fig. 6 mit dem Ventilelement in einer zweiten Schaltstellung,
    Fig. 8
    eine Ansicht gemäß Fig. 6 und 7 mit dem Ventilelement in einer dritten Schaltstellung,
    Fig. 9
    schematisch den hydraulischen Aufbau einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 1 bis 8,
    Fig. 10
    eine Explosionsansicht eines Kreiselpumpenaggregates gemäß einer zweiten Ausführungsform der Erfindung,
    Fig. 11
    eine perspektivische Ansicht des geöffneten Ventilelementes des Kreiselpumpenaggregates gemäß Fig. 10,
    Fig. 12
    eine perspektivische Ansicht des geschlossenen Ventilelementes gemäß Fig. 11,
    Fig. 13
    eine Schnittansicht des Kreiselpumpenaggregates gemäß Fig. 10 mit dem Ventilelement in einer ersten Position,
    Fig. 14
    eine Schnittansicht gemäß Fig. 13 mit dem Ventilelement in einer zweiten Position,
    Fig. 15
    eine Draufsicht auf das geöffnete Pumpengehäuse des Kreiselpumpenaggregates gemäß Fig. 10 bis 14 mit dem Ventilelement in einer ersten Schaltstellung,
    Fig. 16
    eine Ansicht gemäß Fig. 15 mit dem Ventilelement in einer zweiten Schaltstellung,
    Fig. 17
    eine Ansicht gemäß Fig. 15 und 16 mit dem Ventilelement in einer dritten Schaltstellung,
    Fig. 18
    eine Ansicht gemäß Fig. 15 bis 17 mit dem Ventilelement in einer vierten Schaltstellung und
    Fig. 19
    schematisch den hydraulischen Aufbau einer Heizungsanlage mit einem Kreiselpumpenaggregat gemäß Fig. 10 bis 18,
    Fig.20
    vergrößert eine Darstellung der Lagerung des Ventilelementes 18, 18i in den Ausführungsbeispielen gemäß Fig. 1 bis 19.
  • Die in der nachfolgenden Beschreibung beschriebenen Ausführungsbeispiele des erfindungsgemäßen Kreiselpumpenaggregates betreffen Anwendungen in Heizungs- und/oder Klimasystemen, in welchen von dem Kreiselpumpenaggregat ein flüssiger Wärmeträger, insbesondere Wasser, umgewälzt wird.
  • Das Kreiselpumpenaggregat gemäß beider Ausführungsformen der Erfindung weist ein Motorgehäuse 2 auf, in welchem ein elektrischer Antriebsmotor angeordnet ist. Dieser weist in bekannter Weise einen Stator 4 sowie einen Rotor 6 auf, welcher auf einer Rotorwelle 8 angeordnet ist. Der Rotor 6 dreht in einem Rotorraum, welcher von dem Statorraum, in welchem der Stator 4 angeordnet ist, durch ein Spaltrohr bzw. einen Spalttopf 10 getrennt ist. Das heißt, es handelt sich hierbei um einen nasslaufenden elektrischen Antriebsmotor. An einem Axialende ist das Motorgehäuse 2 mit einem Pumpengehäuse 12 verbunden, in welchem ein mit der Rotorwelle 8 drehfest verbundenes Laufrad 14 rotiert.
  • An dem dem Pumpengehäuse 12 entgegengesetzten Axialende des Motorgehäuses 2 ist ein Elektronikgehäuse 16 angeordnet, welches eine Steuerelektronik bzw. Steuereinrichtung 17 zur Ansteuerung des elektrischen Antriebsmotors in dem Pumpengehäuse 2 beinhaltet. Das Elektronikgehäuse 16 könnte in entsprechender Weise auch an einer anderen Seite des Statorgehäuses 2 angeordnet sein.
  • In dem Pumpengehäuse 12 ist darüber hinaus ein bewegliches Ventilelement 18 angeordnet. Dieses Ventilelement 18 ist auf einer Achse 20 im Inneren des Pumpengehäuses 12 drehbar gelagert, und zwar so, dass die Drehachse des Ventilelementes 18 mit der Drehachse X des Laufrades 14 fluchtet. Die Achse 20 ist am Boden des Pumpengehäuses 12 drehfest fixiert. Das Ventilelement 18 ist nicht nur um die Achse 20 drehbar, sondern um ein gewisses Maß in Längsrichtung X bewegbar. In einer Richtung wird diese lineare Bewegbarkeit durch das Pumpengehäuse 12, an welches das Ventilelement 18 mit seinem Außenumfang anschlägt, begrenzt.
  • Das Ventilelement 18 trennt in dem Pumpengehäuse 12 einen Saugraum 24 von einem Druckraum 26. In dem Druckraum 26 rotiert das Laufrad 14. Der Druckraum 26 ist mit dem Druckanschluss bzw. Druckstutzen 27 des Kreiselpumpenaggregates verbunden, welcher den Auslass des Kreiselpumpenaggregates bildet.
  • Bei beiden gezeigten Ausführungsformen ist eine mechanische Kupplung zwischen dem Antriebsmotor und dem Ventilelement vorgesehen, wobei bei diesen Ausführungsformen der Antriebsmotor von der Steuereinrichtung 17 in zwei verschiedenen Betriebsarten bzw. Betriebsmodi ansteuerbar ist. In einer ersten Betriebsart, welche dem Normalbetrieb des Umwälzpumpenaggregates entspricht, rotiert der Antriebsmotor in herkömmlicher Weise mit einer gewünschten, insbesondere von der Steuereinrichtung 17 einstellbaren, Drehzahl. In der zweiten Betriebsart wird der Antriebsmotor im Open-Loop-Betrieb angesteuert, sodass der Rotor schrittweise in einzelnen von der Steuereinrichtung 17 vorgegebenen Winkelschritten, welche kleiner als 360° sind, gedreht werden kann. So kann der Antriebsmotor nach Art eines Schrittmotors in einzelnen Schritten bewegt werden, was bei diesen Ausführungsbeispielen dazu genutzt wird, das Ventilelement gezielt in kleinen Winkelschritten in eine definierte Position zu bewegen, wie es nachfolgend beschrieben wird.
  • Bei der ersten Ausführungsform gemäß Fig. 19 ist in dem Pumpengehäuse 2 ein Mischventil integriert, wie es beispielsweise zur Temperatureinstellung für eine Fußbodenheizung genutzt werden kann.
  • Das Motorgehäuse 2 mit dem Elektronikgehäuse 16 entspricht der vorangehend beschriebenen Ausgestaltung. Das Pumpengehäuse 12 weist neben dem Druckanschluss 27 zwei saugseitige Anschlüsse 32 und 34 auf, welche am Boden des Pumpengehäuses 12 in Eingängen 28 und 30 münden, welche in einer Ebene quer zu der Drehachse X gelegen sind.
  • Das Ventilelement 18 ist trommelförmig ausgebildet und besteht aus einem topfförmigen Unterteil 76, welches an seiner dem Laufrad 14 zugewandten Seite durch einen Deckel 78 verschlossen ist. Im Zentralbereich des Deckels 78 ist eine Saugöffnung 36 ausgebildet. Die Saugöffnung 36 ist mit dem Saugmund 38 des Laufrades 14 in Eingriff. Das Ventilelement 18 ist auf einer Achse 20, welche im Boden des Pumpengehäuses 12 angeordnet ist, drehbar gelagert. Dabei entspricht die Drehachse des Ventilelementes 18 der Drehachse X der Rotorwelle 8. Das Ventilelement 18 ist ebenfalls entlang der Achse X axial verschiebbar und wird durch eine Feder 48 in die in Fig. 5 gezeigte Ruhelage gedrückt, in welcher sich das Ventilelement 18 in einer gelösten Position befindet, in welcher das Unterteil 76 nicht am Boden des Pumpengehäuses 12 anliegt, sodass das Ventilelement 18 im Wesentlichen frei um die Achse 20 drehbar ist. Als axialer Anschlag fungiert in der gelösten Position das Stirnende der Rotorwelle 8, welches als Kupplung 108 ausgebildet ist. Die Kupplung 108 tritt mit einer Gegenkupplung 110, welche drehfest an dem Ventilelement 18 angeordnet ist, in Eingriff. Die Kupplung 108 weist angeschrägte Kupplungsflächen auf, welche entlang einer Umfangslinie im Wesentlichen ein Sägezahnprofil in der Weise beschreiben, dass lediglich in einer Drehrichtung eine Drehmomentübertragung von der Kupplung 108 auf die Gegenkupplung 110 möglich ist, nämlich in der Drehrichtung A in Fig. 3. In der entgegengesetzten Drehrichtung B rutscht die Kupplung hingegen durch, wobei es zu einer Axialbewegung des Ventilelementes 18 kommt. Die Drehrichtung B ist diejenige Drehrichtung, in welcher das Pumpenaggregat im Normalbetrieb angetrieben wird. Die Drehrichtung A hingegen wird zur gezielten Verstellung des Ventilelementes 18 genutzt. Das heißt hier ist eine drehrichtungsabhängige Kupplung ausgebildet. Zusätzlich jedoch tritt die Gegenkupplung 110 von der Kupplung 108 durch den Druck im Druckraum 26 außer Eingriff. Steigt der Druck im Druckraum 26 an, wirkt auf den Deckel 78 eine Druckkraft, welche der Federkraft der Feder 48 entgegengesetzt ist und diese übersteigt, sodass das Ventilelement 18 in die anliegende Position gedrückt wird, welche in Fig. 4 gezeigt ist. In dieser liegt das Unterteil 76 an der Bodenseite des Pumpengehäuses 12 an, sodass zum einen das Ventilelement 18 kraftschlüssig gehalten wird und zum anderen eine dichte Anlage erreicht wird, welche die Druck- und die Saugseite in der nachfolgend beschriebenen Weise gegeneinander abdichtet.
  • Der Sauganschluss 32 mündet an dem Eingang 28 und der Sauganschluss 34 mündet an dem Eingang 30 im Boden des Pumpengehäuses 12 in dessen Innenraum, das heißt, den Saugraum 24 hinein. Das Unterteil 76 des Ventilelementes 18 weist in seinem Boden eine bogenförmige Öffnung 112 auf, welche sich im Wesentlichen über 90° erstreckt. Fig. 6 zeigt eine erste Schaltstellung, in welcher die Öffnung 112 lediglich den Eingang 30 überdeckt, sodass ein Strömungsweg nur von dem Sauganschluss 34 zu der Saugöffnung 36 und damit zum Saugmund 38 des Laufrades 14 gegeben ist. Der zweite Eingang 28 wird durch den in seinem Umfangsbereich anliegenden Boden des Ventilelementes 18 dicht verschlossen. Fig. 8 zeigt die zweite Schaltstellung, in welcher die Öffnung 112 lediglich den Eingang 28 überdeckt, während der Eingang 30 verschlossen ist. In dieser Schaltstellung ist lediglich ein Strömungsweg von dem Sauganschluss 32 zum Saugmund 38 hin geöffnet. Fig. 7 zeigt nun eine Zwischenstellung, in welcher die Öffnung 112 beide Eingänge 28 und 30 überdeckt, wobei der Eingang 30 nur teilweise freigegeben ist. Durch Änderung des Grades der Freigabe des Anschlusses 30 kann ein Mischungsverhältnis zwischen den Strömungen aus den Eingängen 28 und 30 geändert werden. Über die schrittweise Verstellung der Rotorwelle 8 kann auch das Ventilelement 18 in kleinen Schritten verstellt werden, um das Mischungsverhältnis zu ändern.
  • Eine solche Funktionalität kann beispielsweise in einem hydraulischen System, wie es in Fig. 9 gezeigt ist, zur Anwendung kommen. Dort ist das Kreiselpumpenaggregat mit dem integrierten Ventil, wie es vorangehend beschrieben wurde, durch die gestrichelte Linie 1 gekennzeichnet. Der hydraulische Kreis weist eine Wärmequelle 114 in Form beispielsweise eines Gasheizkessels auf, dessen Ausgang in beispielsweise den Sauganschluss 34 des Pumpengehäuses 12 mündet. An den Druckanschluss 27 des Kreiselpumpenaggregates 1 schließt sich in diesem Beispiel ein Fußbodenheizkreis 116 an, dessen Rücklauf sowohl mit dem Eingang der Wärmequelle 114 als auch mit dem Sauganschluss 32 des Kreiselpumpenaggregates verbunden ist. Über ein zweites Umwälzpumpenaggregat 118 kann ein weiterer Heizkreis 120 mit einem Wärmeträger versorgt werden, welcher die ausgangsseitige Temperatur der Wärmequelle 114 aufweist. Der Fußboden-Heizkreis 116 hingegen kann in seiner Vorlauftemperatur in der Weise geregelt werden, dass kaltes Wasser aus dem Rücklauf dem heißen Wasser ausgangsseitig der Wärmequelle 114 zugemischt wird, wobei durch Veränderung der Öffnungsverhältnisse der Eingänge 28 und 30 in der oben beschriebenen Weise das Mischungsverhältnis durch Drehung des Ventilelementes 18h verändert werden kann.
  • Das zweite Ausführungsbeispiel gemäß Fig. 10 bis 19 zeigt ein Kreiselpumpenaggregat, welches zusätzlich zu der vorangehend beschriebenen Mischerfunktionalität noch eine Umschaltfunktionalität zur zusätzlichen Versorgung eines Sekundärwärmetauschers zur Brauchwassererwärmung aufweist.
  • Die Lagerung und der Antrieb des Ventilelementes 18i erfolgt bei dieser Ausführungsform genauso wie bei der neunten Ausführungsform. Im Unterschied zu dem Ventilelement 18 weist das Ventilelement 18i zusätzlich zu der Öffnung 112 einen Durchgangskanal 122 auf, welcher sich von einer Öffnung 124 in den Deckel 78i zu einer Öffnung im Boden des Unterteils 76i erstreckt und somit die beiden Axialenden des Ventilelementes 18i miteinander verbindet. Ferner ist in dem Ventilelement 18i noch eine lediglich zur Unterseite, das heißt, zum Boden des Unterteils 76i und damit zum Saugraum 24 hin geöffnete bogenförmige Überbrückungsöffnung 126 ausgebildet, welche zum Druckraum 26 hin durch den Deckel 78i verschlossen ist.
  • Das Pumpengehäuse 12 weist neben dem Druckanschluss 27 und den beiden zuvor beschriebenen Sauganschlüssen 34 und 32 einen weiteren Anschluss 128 auf. Der Anschluss 128 mündet in einem Eingang 130 im Boden des Umwälzpumpenaggregates 12 zusätzlich zu den Eingängen 28 und 30 in den Saugraum 24 hinein. Anhand der Fig. 15 bis 18 werden die verschiedenen Schaltstellungen erläutert, wobei in diesen Figuren der Deckel 78i des Ventilelementes 18i teilweise geöffnet gezeigt ist, um die Stellung der darunter liegenden Öffnungen zu verdeutlichen. Fig. 15 zeigt eine erste Schaltstellung, in welcher die Öffnung 112 dem Eingang 30 gegenüberliegt, sodass eine Strömungsverbindung von dem Sauganschluss 34 zum Saugmund 38 des Laufrades 14 hergestellt wird. In der Schaltstellung gemäß Fig. 16 liegt die Öffnung 112 über dem Eingang 130, sodass eine Strömungsverbindung von dem Anschluss 128 zu der Saugöffnung 36 und über diese in den Saugmund 38 des Laufrades 14 geschaffen wird. In einer weiteren Schaltstellung, welche Fig. 17 zeigt, liegt die Öffnung 112 über dem Eingang 30, sodass wiederum eine Strömungsverbindung von dem Sauganschluss 34 zum Saugmund 38 des Laufrades 14 gegeben ist. Gleichzeitig findet eine teilweise Überdeckung der Öffnung 124 und des Durchgangsloches 122 mit dem Eingang 28 statt, sodass eine Verbindung zwischen dem Druckraum 26 und dem Sauganschluss 32 hergestellt ist, welcher hier als Druckanschluss fungiert. Gleichzeitig überdeckt die Überbrückungsöffnung 126 gleichzeitig den Eingang 130 und einen Teil des Einganges 28, sodass ebenfalls eine Verbindung von dem Anschluss 128 über den Eingang 130, die Überbrückungsöffnung 126 und den Eingang 28 zu dem Anschluss 32 geschaffen wird.
  • Fig. 18 zeigt eine vierte Schaltstellung, in welcher der Durchgangskanal 122 den Eingang 28 vollständig überdeckt, sodass der Anschluss 32 über den Durchgangskanal 122 und die Öffnung 124 mit dem Druckraum 26 verbunden ist. Gleichzeitig überdeckt die Überbrückungsöffnung 126 nur noch den Eingang 130. Die Öffnung 112 überdeckt weiterhin den Eingang 30.
  • Ein solches Kreiselpumpenaggregat kann beispielsweise in einem Heizungssystem, wie es in Fig. 19 gezeigt ist, Verwendung finden. Dort begrenzt die gestrichelte Linie das Kreiselpumpenaggregat 1, wie es gerade anhand der Fig. 10 bis 18 beschrieben wurde. Das Heizungssystem weist wiederum einen Primärwärmetauscher bzw. eine Wärmequelle 114 auf, welche beispielsweise ein Gasheizkessel sein kann. Ausgangsseitig verläuft der Strömungsweg in einen ersten Heizkreis 120, welcher beispielsweise von herkömmlichen Heizkörpern bzw. Radiatoren gebildet sein kann. Gleichzeitig zweigt ein Strömungsweg zu einem Sekundärwärmetauscher 56 zur Erwärmung von Brauchwasser ab. Das Heizungssystem weist ferner einen Fußbodenheizkreis 116 auf. Die Rückläufe des Heizkreises 120 und des Fußbodenheizkreises 116 münden in den Sauganschluss 34 am Pumpengehäuse 12. Der Rücklauf aus dem Sekundärwärmetauscher 56 mündet in den Anschluss 128, welcher, wie nachfolgend beschrieben wird, zwei Funktionalitäten bietet. Der Anschluss 32 des Pumpengehäuses 12 ist mit dem Vorlauf des Fußbodenheizkreises 116 verbunden.
  • Wenn sich das Ventilelement 18i in der ersten in Fig. 15 gezeigten Schaltstellung befindet, fördert das Laufrad 14 Flüssigkeit aus dem Sauganschluss 34 über den Druckanschluss 27 durch die Wärmequelle 140 und dem Heizkreis 120 und zurück zu dem Sauganschluss 34. Befindet sich das Ventilelement 18i in der zweiten Schaltstellung, welche in Fig. 16 gezeigt ist, ist die Anlage auf Brauchwasserbetrieb umgeschaltet, in diesem Zustand fördert das Pumpenaggregat bzw. das Laufrad 14 Flüssigkeit von dem Anschluss 128, welcher als Sauganschluss dient, durch den Druckanschluss 27, über die Wärmequelle 114 durch den Sekundärwärmetauscher 56 und zurück zu dem Anschluss 128. Befindet sich das Ventilelement 18i in der dritten Schaltstellung, welche in Fig. 17 gezeigt ist, wird zusätzlich der Fußbodenheizkreis 116 versorgt. Über den Sauganschluss 34 strömt das Wasser in den Saugmund 38 des Laufrades 14 und wird über den Druckanschluss 27 über die Wärmequelle 114 in der beschriebenen Weise durch den ersten Heizkreis 120 gefördert. Gleichzeitig tritt die Flüssigkeit ausgangsseitig des Laufrades 14 aus dem Druckraum 26 in die Öffnung 124 und durch den Durchgangskanal 122 hindurch und fließt so zu dem Anschluss 32 und über diesen in den Fußbodenheizkreis 116.
  • In der in Fig. 17 gezeigten Schaltstellung fließt gleichzeitig über die Überbrückungsöffnung 126 Flüssigkeit über den Anschluss 128 und den Eingang 130 in den Anschluss 32. Das heißt, hier strömt Wasser über die Wärmequelle 114 durch den Sekundärwärmetauscher 26 und den Anschluss 128 zu dem Anschluss 32. Da in diesem Heizbetrieb am Sekundärwärmetauscher 56 im Wesentlichen keine Wärme abgenommen wird, wird so dem Anschluss 32 heißes Wasser zusätzlich zu dem kalten Wasser, welches aus dem Druckraum 26 über den Durchgangskanal 122 zu dem Anschluss 32 strömt, zugemischt. Durch Veränderung des Öffnungsgrades über die Ventilstellung 18i kann die Menge des zugemischten warmen Wassers am Anschluss 32 variiert werden. Fig. 18 zeigt eine Schaltstellung, in welcher die Zumischung abgeschaltet ist und der Anschluss 32 ausschließlich mit dem Druckraum 26 direkt in Verbindung ist. In diesem Zustand wird das Wasser im Fußbodenkreis 116 ohne Wärmezufuhr im Kreis gefördert. Es ist zu erkennen, dass durch die Veränderung der Schaltstellungen des Ventilelementes 18i bei dieser Ausführungsform sowohl eine Umschaltung zwischen Heizung und Brauchwassererwärmung erreicht werden kann als auch gleichzeitig die Versorgung von zwei Heizkreisen mit unterschiedlichen Temperaturen, nämlich eines ersten Heizkreises 120 mit der Ausgangstemperatur der Wärmequelle 114 und eines Fußbodenheizkreises 116 mit einer über eine Mischfunktion reduzierte Temperatur.
  • Aufgrund der Tatsache, dass die Kupplung 108 und die Gegenkupplung 110 in der ersten Betriebsart im Normalbetrieb des Umwälzpumpenaggregates, wenn das Laufrad 14 Flüssigkeit fördert, außer Eingriff treten, stellt sich das Problem, beim Wechsel in die zweite Betriebsart, was eine Drehrichtungsumkehr erfordert, den Rotor 6 und das Ventilelement 18, 18i wieder in definierte Ausrichtung bezüglich ihrer Winkellagen zu bringen. Das Ventilelement 18, 18i sollte im Wesentlichen in der Position gehalten sein, in welcher es war, als das Pumpenaggregat durch die Steuereinrichtung 17 zum letzten Mal von der zweiten Betriebsart in die erste Betriebsart gewechselt ist. Gleichzeitig ist der Steuereinrichtung 17 die Position des Rotors 6 bekannt und die Steuereinrichtung 17 ist so ausgebildet, dass sie die Rotorposition speichert. Da jedoch nicht ganz ausgeschlossen werden kann, dass sich das Ventilelement 18, 18i möglicherweise um ein geringes Maß verlagert hat, wird beim erneuten Wechsel in die zweite Betriebsart bevorzugt zunächst eine Positionierung des Rotors 6 in der Weise vorgenommen, dass die Steuereinrichtung 17 den Rotor 6 durch entsprechende Ansteuerung des Stators 4 nicht ganz bis in die gespeicherte Winkellage dreht, sondem vorzugsweise kurz vorher anhält. D. h. in einem ersten Schritt wird bei der Inbetriebnahme des zweiten Betriebsmodus der Rotor 6 in eine zuvor gespeicherte Winkellage gedreht oder in eine Winkellage, welche in Drehrichtung geringfügig vor der zuletzt gespeicherten Winkellage liegt. Anschließend kann der Rotor gemeinsam mit dem Ventilelement 18, 18i in eine gewünschte zweite Winkelposition gedreht werden, wobei die Steuereinrichtung 17 den Stator 6 so ansteuert, dass der Rotor 6 in dieser zweiten Betriebsart sich genau um den gewünschten Winkel dreht. Bei dieser Drehung wird über die Kupplung 108 die Gegenkupplung 110 mitgenommen, sodass das Ventilelement 18, 18i dann in die gewünschte Winkelstellung gedreht wird. In dieser wird der Rotor 6 angehalten und die Steuereinrichtung 17 schaltet wieder in die erste Betriebsart bzw. den ersten Betriebsmodus um und startet den Rotor 6 in entgegengesetzter Drehrichtung, sodass die Kupplung 108 von der Gegenkupplung 110 außer Eingriff treten kann und im Übrigen durch die axiale Verlagerung des Ventilelementes 18, 18i durch den im Druckraum 26 erzeugten Druck die Kupplung 108 und die Gegenkupplung 110 vollständig außer Eingriff treten und das Ventilelement 18, 18i durch Anlage am Boden des Pumpengehäuses 12 in der erreichten Schaltstellung gehalten wird.
  • Die Kupplung 108 weist zwei Schrägen bzw. Keilflächen 132 auf, welche sich ausgehend von zwei Stirnkanten 134 erstrecken, welche im Wesentlichen in diametraler Richtung bezüglich der Drehachse X verlaufen. An der den Keilflächen 132 abgewandten Seite der Stirnkanten 134 erstrecken sich Eingriffsflächen 136, welche im Wesentlichen in einer Ebene verlaufen, welche von der Drehachse X und einer Durchmesserlinie zu dieser Drehachse X aufgespannt wird. Die Gegenkupplung 110 weist einen sich in Durchmesserrichtung bezüglich der Drehachse X erstreckenden stegförmigen Vorsprung 138 auf, welcher in axialer Richtung vorsteht und zwei im Wesentlichen zueinander parallele Seitenflächen aufweist, welche sich wiederum in Ebenen erstrecken, welche im Wesentlichen von der Durchmesserlinie und der Drehachse X oder zu diesen parallele Achsen aufgespannt werden. Die Seitenflächen des Vorsprungs 138 kommen an den Eingriffsflächen 136 zur Anlage, wenn die Kupplung in Eingriff ist. In der umgekehrten Drehrichtung D gleitet der Vorsprung 138 auf den Keilflächen 137 unter axialer Verlagerung ab. Bei dieser Ausgestaltung der Kupplung 108 und der Gegenkupplung 110 gibt es genau zwei um 180° zueinander versetzte Positionen, in welchen der Rotor 6 und das Ventilelement 18, 18i miteinander gekoppelt werden können.
  • Anhand der Fig. 20 wird noch einmal die Lagerung des Ventilelementes 18, 18i in den vorangehend beschriebenen Ausführungsbeispielen in Detail beschrieben. Die Lagerung ist in beiden Ausführungsformen identisch ausgebildet. Ausgehend vom Boden des Pumpengehäuses 12 erstreckt sich eine feststehende Achse in Richtung der Drehachse X in das Innere des Pumpengehäuses 12. Auf dieser Achse ist das Ventilelement 18, 18i drehbar gelagert. Die Achse 20 greift in ein Sackloch 140 im Boden des Ventilelementes 18, 18i, welcher dem Laufrad 14 abgewandt ist, ein. Im Bereich der Öffnung des Sackloches 140 ist eine Dichtung 142 angeordnet, welche am Außenumfang der Achse 20 gleitend in Anlage ist. Die Dichtung 142 dichtet den Innenraum des Sackloches 140 nach außen ab. So wird verhindert, dass Flüssigkeit aus dem Inneren des Pumpengehäuses 12 in diesen von dem Sackloch 140 gebildeten Lagerungsraum eindringt. In dem Sackloch 140 kann ein Schmiermittel angeordnet werden, um die Gleitlagerung dauerhaft zu schmieren oder vorzuschmieren. Erfindungsgemäß ist es jedoch vorgesehen, dass die Dichtung 142 eine geringe Leckage zulässt, sodass langfristig Flüssigkeit aus dem Pumpengehäuse 12, insbesondere Wasser, in das Innere des Sackloches 140 eindringen kann und dort der Schmierung zwischen Ventilelement 18, 18i und Achse 20 dient. Dabei ist die Dichtung 142 jedoch so ausgebildet, dass Partikel und Verunreinigungen zurückgehalten werden, sodass eine dauerhafte Leichtgängigkeit der Lagerung sichergestellt wird.
  • In der in Fig. 20 gezeigten Ausführungsform erfolgt die Radiallagerung des Ventilelementes 18, 18i am Außenumfang der Feder 48. Es ist jedoch zu verstehen, dass alternativ die Radiallagerung auch direkt am Außenumfang der Achse 20 erfolgen könnte, beispielsweise in dem an die Dichtung 142 angrenzenden Abschnitt des Lagerungsraumes bzw. Sackloches 140.
  • Die Achse 20 weist darüber hinaus noch eine dem Laufrad 14 zugewandte umfängliche Schulter 144 auf, an welcher sich die Achse 20 verjüngt. Zwischen dieser Schulter 144 und den Boden des Sackloches 140, welcher an dem Laufrad 14 zugewandten Ende gelegen ist, stützt sich die Feder 48 ab, deren Funktion bereits oben beschrieben wurde. Auf diese Weise ist auch die Feder 48 vollständig im Inneren des Sackloches 140, welches den Lagerungsraum definiert gelegen, sodass auch die Feder 48 vor Verunreinigungen aus dem von dem Pumpenaggregat geförderten Fluid geschützt wird.
  • Es ist zu verstehen, dass die beschriebene Lagerung auch zusammen mit dem Ventilelement 18, 18i zum Einsatz kommen könnte, wenn dieses statt über die beschriebene mechanische Kupplung 108, 110 hydraulisch gekuppelt wäre. Wenn die genannte Kupplung 108, 110 weggelassen wird, könnte das Ventilelement stattdessen durch die von dem Laufrad 14 in dem Druckraum 26 in Drehung versetzte Strömung mitgedreht werden, indem die Strömung auf den Deckel 78, 78i wirkt. Zusätzlich könnten bei einer solchen Ausführungsform Anschläge vorhanden sein, welche die Schaltstellungen des Ventilelementes 18, 18i definieren. Die Bewegung zwischen diesen Schaltstellungen könnte dann durch Drehrichtungsumkehr des Laufrades 14 erreicht werden.
  • Es ist zu verstehen, dass einzelne Merkmale aus den vorangehend beschriebenen Ausführungsbeispielen auch in anderer Weise miteinander kombiniert werden könnten. Darüber hinaus ist in den Ausführungsbeispielen das Pumpengehäuse 12, welches gleichzeitig als Ventilgehäuse dient, einteilig ausgebildet. Es ist jedoch zu verstehen, dass das Pumpengehäuse 12 auch aus mehreren Einzelteilen zusammengesetzt sein könnte bzw. mehrteilig ausgebildet sein könnte.
  • Bezugszeichenliste
  • 1
    Kreiselpumpenaggregat
    2
    Motorgehäuse
    4
    Stator
    6
    Rotor
    8
    Rotorwelle
    10
    Spaltrohr
    12
    Pumpengehäuse
    14
    Laufrad
    16
    Elektronikgehäuse
    17
    Steuereinrichtung
    18 18i
    Ventilelement
    20
    Achse
    24
    Saugraum
    26
    Druckraum
    27
    Druckanschluss
    28, 30
    Eingänge
    32,34
    Sauganschlüsse
    38
    Saugmund
    48
    Feder
    76 76i
    Unterteil
    78, 78i
    Deckel
    108
    Kupplung
    110
    Gegenkupplung
    112
    Öffnung
    114
    Wärmequelle
    116
    Fußboden-Heizkreis
    118
    Umwälzpumpenaggregat
    120
    Heizkreis
    122
    Durchgangskanal
    124
    Öffnung
    126
    Überbrückungsöffnung
    128
    Anschluss
    130
    Eingang
    132
    Keilflächen
    134
    Stirnkanten
    136
    Eingriffsflächen
    138
    Vorsprung
    140
    Sackloch bzw. Lagerungsraum
    142
    Dichtung
    144
    Schulter
    X
    Drehachse
    A, B
    Drehrichtungen

Claims (17)

  1. Kreiselpumpenaggregat mit einem elektrischen Antriebsmotor, zumindest einem von diesem angetriebenen Laufrad (14) sowie einem das Laufrad (14) umgebenden Pumpengehäuse (12), in welchem zumindest ein zwischen zwei Schaltstellungen drehbares Ventilelement (18, 18i) angeordnet ist,
    wobei das Ventilelement im Innenraum des Pumpengehäuses (12) ar zumindest einem Lager drehbar gehalten ist, wobei das Lager in einem Lagerungsraum (140) angeordnet ist, welcher von dem übrigen Innenraum des Pumpengehäuses (12), welcher ein zu förderndes Fluid aufnimmt, durch zumindest eine Dichtung (142) getrennt ist,
    dadurch gekennzeichnet, dass die zumindest eine Dichtung (142) für dasjenige Fluid, zu dessen Förderung das Kreiselpumpenaggregat ausgebildet ist, nicht vollständig dicht ist.
  2. Kreiselpumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass der Lagerungsraum (140) zumindest in einem Abschnitt durch eine einstückig mit dem Ventilelement (18, 18i) ausgebildete Wandung begrenzt wird.
  3. Kreiselpumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest eine Lager im Inneren des Lagerungsraumes (140) durch ein Schmiermittel, vorzugsweise werkseitig, geschmiert ist.
  4. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Dichtung (142) derart ausgebildet ist, dass sie in dem von dem Laufrad (14) zu fördernden Fluid befindliche Partikel zurückhält.
  5. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass an zwei Seiten des Lagers jeweils eine Dichtung angeordnet ist, zwischen denen der Lagerungsraum (140) gelegen ist.
  6. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es für Wasser als zu förderndes Fluid ausgelegt ist.
  7. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest eine Lager zentral an dem Ventilelement (18, 18i) angeordnet ist.
  8. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest eine Lager in einem an der Saugseite des Laufrades (14) gelegenen Bereich des Pumpengehäuses (12) gelegen ist.
  9. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest eine Ventilelement (18, 18i) zu seiner Bewegung zwischen den Schaltstellungen mit dem Antriebsmotor mechanisch und/oder hydraulisch gekoppelt ist.
  10. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, gekennzeichnet durch ein Krafterzeugungsmittel, welches auf das zumindest eine Ventilelement (18, 18i) eine Kraft in Richtung einer der Schaltstellungen ausübt, wobei die Kraft vorzugsweise eine Federkraft, eine magnetische Kraft und/oder die Schwerkraft ist.
  11. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest eine Lager eine axiale Bewegung (X) des Ventilelementes (18, 18i) zwischen einer ersten Position und einer zweiten Position zulässt.
  12. Kreiselpumpenaggregat nach Anspruch 11, dadurch gekennzeichnet, dass die erste Position und/oder die zweite Position durch einen Anschlag begrenzt sind, wobei vorzugsweise zumindest einer der Anschläge innerhalb des Lagerungsraumes (140) gelegen ist.
  13. Kreiselpumpenaggregat nach Anspruch 11 oder 12, gekennzeichnet durch zumindest ein Rückstellelement (48), insbesondere eine Rückstellfeder (48), welches auf das Ventilelement (18, 18i) eine Rückstellkraft in axialer Richtung ausübt.
  14. Kreiselpumpenaggregat nach Anspruch 13, dadurch gekennzeichnet, dass das Rückstellelement (48) innerhalb des Lagerungsraumes (140) angeordnet ist.
  15. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Ventilelement (18, 18i) derart in dem Pumpengehäuse (12) angeordnet ist, dass es einen mit einer Saugseite des Laufrades (14) verbundenen Saugraum (24) von einem mit der Druckseite des Laufrades (14) verbundenen Druckraum (26) trennt.
  16. Kreiselpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es zwei alternative Strömungswege aufweist, wobei das zumindest eine Ventilelement (18, 18i) in diesen Strömungswegen derart angeordnet ist, dass in den zumindest zwei Schaltstellungen die Strömungswege unterschiedlich geöffnet sind.
  17. Kreiselpumpenaggregat nach Anspruch 16, dadurch gekennzeichnet, dass die beiden Strömungswege saugseitig des Laufrades (14) gelegen sind.
EP17160841.7A 2017-03-14 2017-03-14 Kreiselpumpenaggregat Active EP3376039B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17160841.7A EP3376039B1 (de) 2017-03-14 2017-03-14 Kreiselpumpenaggregat
PCT/EP2018/056099 WO2018166979A1 (de) 2017-03-14 2018-03-12 Kreiselpumpenaggregat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17160841.7A EP3376039B1 (de) 2017-03-14 2017-03-14 Kreiselpumpenaggregat

Publications (2)

Publication Number Publication Date
EP3376039A1 EP3376039A1 (de) 2018-09-19
EP3376039B1 true EP3376039B1 (de) 2021-08-04

Family

ID=58347149

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17160841.7A Active EP3376039B1 (de) 2017-03-14 2017-03-14 Kreiselpumpenaggregat

Country Status (2)

Country Link
EP (1) EP3376039B1 (de)
WO (1) WO2018166979A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394140A1 (de) * 1989-04-21 1990-10-24 I.C.F., S.A.R.L. Fluidumlauf- und -verteilergerät
DE10207653C1 (de) * 2002-02-22 2003-09-25 Gpm Geraete Und Pumpenbau Gmbh Elektrische Kühlmittelpumpe mit integriertem Ventil, sowie Verfahren zu dessen Steuerung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1382168A (fr) * 1963-09-21 1964-12-18 Vanne et pompe mélangeuse automatique
AT289349B (de) * 1968-06-17 1971-04-13 Heinrich Gieselmann Umwälzpumpe
FR2074692A2 (fr) * 1970-01-19 1971-10-08 Materiel Telephonique Pompe-vanne, en particulier pour le chaffage central
DE9013992U1 (de) 1990-10-08 1991-10-24 Grundfos International A/S, Bjerringbro Motorpumpenaggregat für Kreislaufsysteme mit zwei parallelen Kreisläufen
US5924432A (en) * 1995-10-17 1999-07-20 Whirlpool Corporation Dishwasher having a wash liquid recirculation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394140A1 (de) * 1989-04-21 1990-10-24 I.C.F., S.A.R.L. Fluidumlauf- und -verteilergerät
DE10207653C1 (de) * 2002-02-22 2003-09-25 Gpm Geraete Und Pumpenbau Gmbh Elektrische Kühlmittelpumpe mit integriertem Ventil, sowie Verfahren zu dessen Steuerung

Also Published As

Publication number Publication date
EP3376039A1 (de) 2018-09-19
WO2018166979A1 (de) 2018-09-20

Similar Documents

Publication Publication Date Title
DE3324982C2 (de)
WO2018167043A1 (de) Pumpenaggregat
DE3144495C2 (de) Flüssigkeitsreibungskupplung
DE102010050605A1 (de) Vorrichtung zur Regelung eines Kühlmittelstroms sowie Kühlsystem
EP3540233A1 (de) Kreiselpumpenaggregat mit drehbarem ventilelement
WO2018167047A1 (de) Kreiselpumpenaggregat
EP2818726A1 (de) Kreiselpumpe mit axial verschiebbarem Laufrad zur Förderung unterschiedlicher Strömungswege
EP3376037B1 (de) Kreiselpumpenaggregat
DE102020207028A1 (de) Pumpeneinheit
EP3376040B1 (de) Pumpenaggregat
DE102017218864B3 (de) Fluidtechnische Ventileinrichtung sowie Verfahren zum Betreiben einer fluidtechnischen Ventileinrichtung
EP3325859B1 (de) Kühlmittelverteilungsmodul für einen kühlmittelkreislauf
DE112019002879T5 (de) Ventilvorrichtung
EP3376051B1 (de) Pumpenaggregat
EP3376039B1 (de) Kreiselpumpenaggregat
WO2018166971A1 (de) Pumpenaggregat
WO2018166967A1 (de) Kreiselpumpenaggregat
EP3392505B1 (de) Mischventilanordnung für ein hydraulisches system, sowie ölkühlsystem und kompressoranlage mit dieser
EP3953620B1 (de) Drehschieberventil für ein kraftfahrzeug
EP2659169B1 (de) Ventil zur steuerung von volumenströmen
DE102012220450B4 (de) Ventilbaugruppe, Kühlmittelbaugruppe und Motorbaugruppe
DE3006386A1 (de) Drehzahlabhaengig steuerbares rotations-ventil
DE102010049059B4 (de) Drehmomentübertragungseinrichtung
EP3376052A1 (de) Kreiselpumpenaggregat
EP4403839A1 (de) Lüftungseinrichtung für ein gebäude sowie verfahren zum betreiben einer lüftungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190315

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200702

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210315

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011070

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220324

Year of fee payment: 6

Ref country code: DE

Payment date: 20220323

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011070

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220322

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017011070

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220314

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220314

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1417244

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220314

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017011070

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230314

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804