EP3353465B1 - Flashlight having a light source - Google Patents

Flashlight having a light source Download PDF

Info

Publication number
EP3353465B1
EP3353465B1 EP16784387.9A EP16784387A EP3353465B1 EP 3353465 B1 EP3353465 B1 EP 3353465B1 EP 16784387 A EP16784387 A EP 16784387A EP 3353465 B1 EP3353465 B1 EP 3353465B1
Authority
EP
European Patent Office
Prior art keywords
light
laser
optics
luminescent substance
flashlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16784387.9A
Other languages
German (de)
French (fr)
Other versions
EP3353465A1 (en
Inventor
Gerolf Kloppenburg
Alexander Wolf
Philipp Robert Gottwald
René Bastian Lippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ledlenser GmbH and Co KG
Original Assignee
Ledlenser GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledlenser GmbH and Co KG filed Critical Ledlenser GmbH and Co KG
Publication of EP3353465A1 publication Critical patent/EP3353465A1/en
Application granted granted Critical
Publication of EP3353465B1 publication Critical patent/EP3353465B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • F21L4/005Electric lighting devices with self-contained electric batteries or cells the device being a pocket lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/003Controlling the distribution of the light emitted by adjustment of elements by interposition of elements with electrically controlled variable light transmissivity, e.g. liquid crystal elements or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/02Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
    • F21V14/025Controlling the distribution of the light emitted by adjustment of elements by movement of light sources in portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • F21V14/085Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters in portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/006Refractors for light sources applied to portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a flashlight with an optic and a light source, which consists of at least one converter area with a luminescent substance, which is irradiated by a laser in the operating state in such a way that the luminescent substance emits incoherent light, which is emitted by the optics as a light cone .
  • Flashlights have been known for several decades, with the light sources used in particular being subject to continuous change.
  • conventional incandescent lamps were used as the light source, which have proven to be disadvantageous due to the relatively high heat generation and the sensitivity to impact.
  • incandescent lamps were mainly replaced by small halogen lamps, which were also more energy-efficient than conventional incandescent lamps due to the low heat loss.
  • economical and robust light-emitting diodes were developed with such a luminous intensity that they almost completely replaced the incandescent lamps and halogen spotlights used in previous years.
  • laser-based light sources are also used.
  • a luminescent substance is excited by the irradiation of a laser and emits incoherent white or colored light, which is emitted by an optic as a light cone with a variable opening angle.
  • U.S. 2014/063779 A1 discloses a stationary lamp which also has laser light sources and a converter area which can be screwed into the end face of a reflector cover disk by means of a small screw.
  • WO 2014/163269 A1 relates to a light source with lasers and a converter area, the emitted light cone being focused by a lens.
  • the distance between the converter area and the lens cannot be varied in favor of a constant light cone.
  • U.S. 2005/0162845 A1 discloses a lamp with an LED, an incandescent lamp or a fluorescent tube as the light source, the distance of the light source for focusing relative to a reflector being adjustable.
  • the flashlight according to claim 1 according to which it is provided according to the invention that an adjustable positioning of the converter area relative to the optics allows the light cone to be focused, which significantly increases the range of use of the flashlights according to the invention, since both near and far areas are optimally illuminated by the user can become. Furthermore, in comparison to conventional LED flashlights, it is possible to generate significantly greater light intensities and therefore significantly greater lighting ranges (1500 m, 0.25 Ix). In addition, the light-emitting surface of the luminescent substance or the surface of the converter area is almost punctiform and significantly smaller in comparison to today's LEDs, which provides advantages when focusing the emitted light cone.
  • a semiconductor laser is used as the laser, which emits a laser beam with a wavelength of (450 ⁇ 50) nm.
  • the use of blue semiconductor lasers has proven to be advantageous, in particular together with the luminescent substances that are preferably used, for example YAG:Ce or (Ba,Sr,Ca) 2 Si 5 N 8 :Eu. Due to the system-related large emission angle of semiconductor lasers, primary optics are used, which deform the laser beam into a parallel light beam with a small cross-section.
  • the optics and the converter area can be adjusted relative to one another.
  • the shaping optics can be slidable longitudinally within the flashlight or the converter area is slidably fastened within the flashlight housing or the flashlight head.
  • the flashlight can have an application of two or more lens elements, which optically neutralize each other when positioned exactly, in particular in direct contact, and produce a larger scattering angle with increasing distance.
  • LC glass liquid crystal glass
  • the luminescent substance can be designed to be transmissive. This means that direct or indirect rearward irradiation of the luminescent substance by the laser causes the incoherent light to be emitted forwards, with the result that the light almost completely penetrates the luminescent substance passes through.
  • the incoherent light emitted by the luminescent substance is then deflected by the optics in the desired way, that is to say it is focused or defocused.
  • the luminescent substance can be present in the form of a sintered ceramic, so that the luminescent substance is designed to be self-supporting.
  • the luminescent substance can be deposited on a transparent carrier, such as sapphire glass.
  • reflective luminescent substances can be used, which generate a forward-directed emission of the incoherent light by direct or indirect irradiation from the front with the laser.
  • the luminescent substance can likewise be in the form of a sintered ceramic, the back of which has a reflective aluminum layer.
  • the luminescent substance can be deposited directly on an aluminum carrier, or reverse-mirrored sapphire glass is used as the carrier for the luminescent substance.
  • the optics 1 can be adjusted steplessly or in a detented manner relative to the luminescent substance 2 and the laser 3 or can be displaced in the direction of the arrow A, resulting in light cones with different opening angles ⁇ , ⁇ ' generated (see Figure 1a, 1b ).
  • a TIR lens is preferably used as the optics 1, which has a rear recess 4 and within which the luminescent substance is arranged in a displaceable manner.
  • FIG. 1c Another example of focusing and defocusing of the emitted light cone is in Figure 1c shown.
  • the laser beam 5 is variably defocused onto the luminescent substance 2 by means of primary optics 6 , so that a selectable area of the luminescent substance 2 is irradiated by the laser 3 .
  • the adjustment of the luminescent substance 2 is carried out by either the optics 1, which is designed as a hollow reflector in the illustrated embodiment, or the luminescent substance 2 itself is slidably mounted in the direction of arrow B on a preferably three-legged holder (not shown).
  • Figure 1d and 1e show a further alternative for changing the geometry, in particular the opening angle of an emitted light cone, by arranging an application 7 consisting of 2 lens elements 8, 8' with a corresponding positive/negative geometry in the light beam. If the lens elements 8, 8' are in contact with one another (see Figure 1d ) the geometries are neutralized and the light cone leaves the application 7 unchanged. With a spaced positioning of the lens elements 8, 8' (see Figure 1e ) the scattering angle of the light cone is changed.
  • LC glass 10 is planned ( Figure 1f, 1g ), which can be arranged, for example, as a lens on the front of a flashlight and whose optical properties are changed by an applied voltage.
  • such an LC glass 10 can be separated from a transparent ( Figure 1f ) in an opaque state ( Figure 1g ) are transferred, which produces a different scattering of the light cone.
  • FIG. 1h shows an example that a laser beam 5 is either radiated directly onto a first luminescent substance 2, which then emits incoherent light, or is directed via an arrangement of adjustable mirrors 11, 11' or prisms onto a second luminescent substance 2', which is different in relation to an optical system (not shown). is positioned. If necessary, this results in different light distributions.
  • different luminescent substances 2, 2' different light colors can also be generated, so that the light colors can be changed.
  • the embodiment after 2 shows a hollow reflector 21 as optics, which has a rear recess 22.
  • the luminescent substance is deposited on a (translucent) carrier 23, so that the laser beam 5, which is emitted by the laser diode 3, strikes the luminescent substance from the rear.
  • the luminescent substance emits a forward-directed light cone as an almost point-like light source with Lambertian characteristics, which is reflected and deflected by the reflector 21 .
  • the semiconductor laser can be displaced in the direction of the arrow C and therefore perpendicular to the optical axis.
  • the position of the carrier of the luminescent substance can be adjusted within the optics by means of a fine thread. The change in the light distribution itself is brought about by a displacement of the hollow reflector 21 in relation to the luminescent substance.
  • 3 1 shows a further exemplary embodiment in which the luminescent substance is deposited on translucent carriers 31, 31', with two differently positioned carriers 31, 31' being provided, which are arranged one behind the other on the optical axis.
  • a hollow reflector 32 is used as the optics.
  • the laser beam 5 is aligned with a first luminescent substance, which has a first light cone with a specific light color and/or emitted at a certain opening angle.
  • the laser beam 5 is optionally aligned via an arrangement of two mirrors 33, 33' or prisms onto the second luminescent material, which is also designed to be transmissive and generates a light cone which is emitted by the optics 1 is reflected.
  • the first mirror 33 is mounted such that it can pivot, rotate or move and can be moved into the laser beam 5 .
  • the second mirror 33' is firmly connected to the optics 1 or the hollow reflector 32 and can be adjusted together with the first mirror 33.
  • FIG. 4 Another embodiment of a focusable laser-based flashlight is in 4 shown, which essentially according to the embodiment variant 2 is equivalent to.
  • a lens or cover disk 41 is provided in order to deflect the light cone into its desired geometry.
  • figure 5 shows a comparable configuration, in which the optics 1 according to the embodiment 2 replaced by a TIR lens 51 with a rear depression, which in the illustrated case is in the form of a blind hole 52, and a converging lens part 53, which can also be displaced along the optical axis.
  • the emission point on the luminescent substance is adjusted by translation of the laser light source, the position of the luminescent substance in the optics with a fine thread.
  • the change between the light distributions is then carried out by moving the optics in the direction of the arrow.
  • the light emission of the (transmissive) luminescent substance takes place according to the embodiment 6 backwards into a reflector 61, which is designed, for example, as a paraboloid of revolution.
  • the reflector 61 has a recess 62 at a distance from the optical axis and a front cover plate 63 which is designed as a reflector 64 in a partial area.
  • the semiconductor laser 3 is arranged in such a way that the laser beam 5 is aligned directly onto the mirror 64 through the recess 62 so that the laser beam 5 strikes a (transmissive) luminescent substance 2 in the operating state and is arranged inside the reflector 61 .
  • the luminescent substance 2 or the carrier on which the luminescent substance 2 is deposited can be moved along the optical axis so that the emission point can be adjusted via a fine thread and a change in the emission characteristic is brought about as soon as the emission point of the luminescent substance 2 moves out of the focal point of the reflector 61 is moved out.
  • a first embodiment is in 7 shown, in which the optics is a TIR lens 71, on the front side of which two mutually aligned mirror surfaces 72, 72' or prisms are arranged.
  • the semiconductor laser 3 is arranged in such a way that it is aligned with the first mirror 72, preferably parallel or at a small angle to the optical axis but spaced therefrom.
  • the semiconductor laser 3 is slidably and tiltably mounted for adjustment.
  • the laser beam 5 is directed from the semiconductor laser 3 onto the second mirror 72' (or the prism), which reflects the laser beam 5 onto the reflective luminescent substance.
  • the luminescent substance 2 or its carrier is also rotatably mounted within the depression or the blind hole 52 of the TIR lens, with the focusing and defocusing also being able to take place via a displacement of the TIR lens.
  • an LC glass to be provided as cover plate 73, which can change from a transparent to an opaque state depending on an applied voltage, in order to influence the scatter range of the system.
  • the embodiment according to Figure 7 has the particular advantage that in the event of damage to the lens or the lens, an unhindered exit of the laser beam 5 through the flashlight housing 74 is prevented, which surrounds the lens 73 or the TIR lens in a ring and a front Has annular surface 75, which is arranged in the extension of the laser beam 5.
  • a TIR lens 81 is also used as the optics, which has a rear blind hole 82 and a converging lens part 83 .
  • the TIR lens is designed in some areas as a reflecting mirror 84 or as a reflecting prism, with the mirror 84 preferably being located on the front periphery of the TIR lens.
  • the laser beam 5 emitted by the semiconductor laser 3 is directed via the mirror 84 onto the front side of the luminescent substance 2, whereby, in order to avoid undesired reflections within the TIR lens 81, at the transition point between the TIR lens 81 and the rear blind hole 82 a light exit surface 85 is located, which is aligned perpendicular to the laser beam 5.
  • the luminescent substance 2 emits a light cone which is deformed by the TIR lens.
  • the luminescent substance 2 is mounted so that it is essentially immovable relative to the optics and can be pushed slightly for adjustment purposes.
  • a front lens element 86 is provided which, together with the TIR lens 81, has a suitable positive/negative geometry. With exact positioning, the geometries neutralize each other, while a displacement of the front lens element 86 leads to a variation in the scattering angle.
  • FIG. 9 shows an embodiment of the invention that uses a hollow reflector 91 as the optics, which has a front cover plate 92 with a converging lens part 93 .
  • the (reflective) luminescent substance 2 is arranged on a carrier which is arranged to be displaceable along the optical axis within the hollow reflector.
  • the semiconductor laser 3 is fastened to the side of the cover plate and is aligned essentially perpendicularly to the optical axis.
  • the laser beam 5 enters the lens through a light entry surface 94 and is deflected onto the luminescent material by a mirror 95 or a prism at the level of the optical axis.
  • the luminescent substance 2 is incoherent Emits light that is radiated as a light cone from the optics and the cover lens in the desired geometry.
  • the focusing and defocusing is preferably carried out by shifting the luminescent substance 2 in the direction of arrow D.
  • Out of 10 shows a further exemplary embodiment, according to which the optics are designed as a paraboloid of revolution 101, on the optical axis of which the luminescent substance 2 is deposited on a carrier.
  • a rear recess 102 allows the semiconductor laser 3 to directly irradiate the (reflective) luminescent substance 2 with the laser beam 5, so that the luminescent substance 2 emits incoherent light, which is emitted as a light cone by the paraboloid of revolution. Focusing/defocusing takes place by shifting the optics in relation to the luminescent substance 2 in the direction of the arrow E.
  • the laser beam 5 can be variably projected onto the luminescent substance 2 by an optical system 111, which varies the light distribution.
  • a further optical system 112 is additionally and optionally arranged, which closes off the hollow reflector 113 at the front and determines the shape of the light cone.
  • the 12 and 13 each show a concrete embodiment of a flashlight housing 121, 131, in which an optical system for a laser-based focusable flashlight is arranged.
  • a hollow reflector 122, 132 with a rear opening 123, 133 is provided for the laser beam.
  • the holder 134 for the (in the present case reflective) luminescent substance is connected via three arms 135, 135', 135" to an annular sleeve 136, which is mounted so that it can move longitudinally and axially relative to the flashlight housing, so that the distance between the holder 134 and the hollow reflector 132 is variably adjustable.
  • the arms 135, 135', 135" each pass through a groove 137, 137', 137" and can be displaced therein.
  • the holder 125 according to the embodiment is shown in FIG 12 firmly connected to the flashlight housing 121, the reflector being guided in grooves 124 and being displaceable along the longitudinal axis in order to allow the emitted light cone to be focused/defocused.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine Taschenlampe mit einer Optik und einer Lichtquelle, die aus mindestens einem Konverterbereich mit einem Lumineszenzstoff besteht, der im Betriebszustand derart von einem Laser bestrahlt wird, dass der Lumineszenzstoff inkohärentes Licht emittiert, das von der Optik als Lichtkegel abgestrahlt wird.The present invention relates to a flashlight with an optic and a light source, which consists of at least one converter area with a luminescent substance, which is irradiated by a laser in the operating state in such a way that the luminescent substance emits incoherent light, which is emitted by the optics as a light cone .

Taschenlampen sind bereits seit etlichen Jahrzehnten bekannt, wobei insbesondere die eingesetzten Lichtquellen einem fortlaufenden Wandel unterlegen waren. Zunächst sind als Lichtquelle herkömmliche Glühlampen eingesetzt worden, die sich aufgrund der relativ hohen Wärmeentwicklung und der Stoßempfindlichkeit als nachteilbehaftet erwiesen haben. Später wurden Glühlampen überwiegend durch kleine Halogenstrahler ersetzt, die auch aufgrund der geringen Wärmeverluste energieeffizienter als herkömmliche Glühlampen waren. Ende der 1990er-Jahre wurden sparsame und robuste Leuchtdioden mit einer solchen Lichtstärke entwickelt, dass sie die in den vorherigen Jahren verwendeten Glühlampen und Halogenstrahler nahezu komplett verdrängt haben.Flashlights have been known for several decades, with the light sources used in particular being subject to continuous change. Initially, conventional incandescent lamps were used as the light source, which have proven to be disadvantageous due to the relatively high heat generation and the sensitivity to impact. Later, incandescent lamps were mainly replaced by small halogen lamps, which were also more energy-efficient than conventional incandescent lamps due to the low heat loss. At the end of the 1990s, economical and robust light-emitting diodes were developed with such a luminous intensity that they almost completely replaced the incandescent lamps and halogen spotlights used in previous years.

Auch wenn die Leuchtstärke von modernen LED-Taschenlampen in Anbetracht des bereits geringen Energieverbrauches durchaus beachtlich ist, sind dennoch ein höherer Wirkungsgrad der Taschenlampe und eine Steigerung der Leuchtstärke wünschenswert, weshalb auch laserbasierte Lichtquellen verwendet werden. Bei solchen Lichtquellen wird ein Lumineszenzstoff durch die Bestrahlung eines Lasers angeregt und strahlt inkohärentes weißes oder farbiges Licht aus, das von einer Optik als Lichtkegel mit einem variablen Öffnungswinkel abgestrahlt wird.Even if the luminosity of modern LED flashlights is quite remarkable in view of the already low energy consumption, a higher efficiency of the flashlight and an increase in luminosity are still desirable, which is why laser-based light sources are also used. In such light sources, a luminescent substance is excited by the irradiation of a laser and emits incoherent white or colored light, which is emitted by an optic as a light cone with a variable opening angle.

Nachteilig an solchen Taschenlampen mit laserbasierten Lichtquellen ist, dass diese einen festen und nicht verstellbaren Lichtkegel erzeugen, was den Anwendungsbereich der Taschenlampen stark einschränkt.A disadvantage of such flashlights with laser-based light sources is that they produce a fixed and non-adjustable light cone, which severely limits the field of application of the flashlights.

Ferner sind Leuchten mit einem Konverterbereich und einer zugeordneten Laserlichtquelle aus US 2012/320583 A1 bekannt, wobei hierin ein konstanter Abstand zwischen Konverterbereich und einem etwaigen Reflektor und/oder einer Linse vorgesehen ist.Furthermore, lights with a converter area and an associated laser light source are off U.S. 2012/320583 A1 known, in which case a constant distance between the converter area and any reflector and/or a lens is provided.

US 2014/063779 A1 offenbart eine stationäre Leuchte, die ebenfalls Laserlichtquellen und ein Konverterbereich aufweist, der in die Stirnseite einer Reflektorabdeckscheibe mittels eines Schräubchens einschraubbar ist. U.S. 2014/063779 A1 discloses a stationary lamp which also has laser light sources and a converter area which can be screwed into the end face of a reflector cover disk by means of a small screw.

DE 10 2012 220 472 A1 offenbart eine KFZ-Beleuchtungsvorrichtung. DE 10 2012 220 472 A1 discloses an automotive lighting device.

WO 2014/163269 A1 betrifft eine Lichtquelle mit Lasern und einem Konverterbereich, wobei der abgestrahlte Lichtkegel durch eine Linse gebündelt wird. Der Abstand zwischen Konverterbereich und Linse ist zu Gunsten eines konstanten Lichtkegels nicht variierbar. WO 2014/163269 A1 relates to a light source with lasers and a converter area, the emitted light cone being focused by a lens. The distance between the converter area and the lens cannot be varied in favor of a constant light cone.

Eine weitere gattungsgemäße Taschenlampe mit einer Lichtquelle aus einem Konverterbereich mit einem Lumineszenzstoff und einem Laser, der auf den Konverterbereich ausgerichtet ist, wird in US 2013/0208478 A1 offenbart.Another generic flashlight with a light source from a converter area with a luminescent substance and a laser, which is aimed at the converter area, is disclosed in U.S. 2013/0208478 A1 disclosed.

US 2005/0162845 A1 offenbart eine Leuchte mit einer LED, einer Glühlampe oder einer Leuchtstoffröhre als Lichtquelle, wobei der Abstand der Lichtquelle zur Fokussierung gegenüber einem Reflektor einstellbar ist. U.S. 2005/0162845 A1 discloses a lamp with an LED, an incandescent lamp or a fluorescent tube as the light source, the distance of the light source for focusing relative to a reflector being adjustable.

Es ist daher die Aufgabe der vorliegenden Erfindung, den Einsatzbereich solcher Taschenlampen zu erhöhen und eine Fokussierung des Lichtkegels zu ermöglichen.It is therefore the object of the present invention to increase the area of use of such flashlights and to enable the light cone to be focused.

Diese Aufgabe wird durch die Taschenlampe nach Anspruch 1 gelöst, wonach erfindungsgemäß vorgesehen ist, dass eine einstellbare Positionierung des Konverterbereiches gegenüber der Optik eine Fokussierung des Lichtkegels erlaubt, was den Einsatzbereich der erfindungsgemäßen Taschenlampen deutlich erhöht, da auch nahe und ferne Bereiche vom Benutzer optimal ausgeleuchtet werden können. Ferner lassen sich im Vergleich zu herkömmlichen LED-Taschenlampen wesentlich größere Lichtstärken und mithin wesentlich größere Leuchtweiten erzeugen (1500 m, 0,25 Ix). Darüber hinaus ist die lichtemittierende Fläche des Lumineszenzstoffes bzw. die Fläche des Konverterbereiches nahezu punktförmig und im Vergleich zu heutigen LED's deutlich kleiner, was Vorteile bei der Fokussierung des abgestrahlten Lichtkegels liefert. Aufgrund der geringen flächenhaften Ausdehnung werden Abbildungsfehler insbesondere im Randbereich des Lichtkegels minimiert, was den Lichtkegel scharf begrenzt, so dass eine nahezu homogene Ausleuchtung sowohl im Nah- als auch im Fernbereich erreicht wird. Darüber hinaus ergeben sich Vorteile bei der Abführung der auch bei dieser Lichtquelle erzeugten Wärme, da die Lichtquelle mit dem Halbleiterlaser und dem Konverterbereich zwei räumlich voneinander getrennte Wärmequelle besitzt, so dass jeweils nur ein Bruchteil der üblicherweise anfallenden Wärme abgeführt werden muss. Ferner wird der Leuchtstoff nicht durch die Abwärme des Halbleiterlasers erhitzt.This object is achieved by the flashlight according to claim 1, according to which it is provided according to the invention that an adjustable positioning of the converter area relative to the optics allows the light cone to be focused, which significantly increases the range of use of the flashlights according to the invention, since both near and far areas are optimally illuminated by the user can become. Furthermore, in comparison to conventional LED flashlights, it is possible to generate significantly greater light intensities and therefore significantly greater lighting ranges (1500 m, 0.25 Ix). In addition, the light-emitting surface of the luminescent substance or the surface of the converter area is almost punctiform and significantly smaller in comparison to today's LEDs, which provides advantages when focusing the emitted light cone. Due to the small surface area, imaging errors are minimized, especially in the edge area of the light cone, which sharply delimits the light cone so that almost homogeneous illumination is achieved both in the near and in the far range. In addition, there are advantages in dissipating the heat generated by this light source, since the light source with the semiconductor laser and the converter area has two heat sources that are spatially separate from one another, so that only a fraction of the heat that usually occurs has to be dissipated. Furthermore, the phosphor is not heated by the waste heat of the semiconductor laser.

Weitere bevorzugte Ausgestaltungen der Erfindung werden nachfolgend sowie in den Unteransprüchen wiedergegeben.Further preferred configurations of the invention are presented below and in the dependent claims.

Nach einer ersten bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass als Laser ein Halbleiterlaser verwendet wird, der einen Laserstrahl mit einer Wellenlänge von (450 ± 50) nm emittiert. Insbesondere zusammen mit den bevorzugt eingesetzten Lumineszenzstoffen, beispielsweise YAG:Ce oder (Ba,Sr,Ca)2 Si5 N8:Eu, hat sich die Verwendung von blauen Halbleiterlasern als vorteilhaft erwiesen. Aufgrund der systembedingten großen Abstrahlwinkel von Halbleiterlasern werden Primäroptiken eingesetzt, die den Laserstrahl in ein paralleles Lichtbündel mit einem geringen Querschnitt verformen.According to a first preferred embodiment of the invention, it is provided that a semiconductor laser is used as the laser, which emits a laser beam with a wavelength of (450±50) nm. The use of blue semiconductor lasers has proven to be advantageous, in particular together with the luminescent substances that are preferably used, for example YAG:Ce or (Ba,Sr,Ca) 2 Si 5 N 8 :Eu. Due to the system-related large emission angle of semiconductor lasers, primary optics are used, which deform the laser beam into a parallel light beam with a small cross-section.

Zur Veränderung des abgestrahlten Lichtkegels ist nach einer bevorzugten Ausgestaltung der Erfindung vorgesehen, dass die Optik und der Konverterbereich relativ zueinander verstellbar sind. Hierzu kann die formgebende Optik längsaxial innerhalb der Taschenlampe verschiebbar sein oder der Konverterbereich ist verschiebbar innerhalb des Taschenlampengehäuses oder des Taschenlampenkopfes befestigt.In order to change the emitted light cone, according to a preferred embodiment of the invention, it is provided that the optics and the converter area can be adjusted relative to one another. For this purpose, the shaping optics can be slidable longitudinally within the flashlight or the converter area is slidably fastened within the flashlight housing or the flashlight head.

Alternativ kann die Taschenlampe eine Applikation von zwei oder mehr Linsenelementen aufweisen, die sich bei exakter Positionierung, insbesondere in unmittelbarer Anlage, optisch neutralisieren und bei zunehmendem Abstand einen größeren Streuwinkel erzeugen.Alternatively, the flashlight can have an application of two or more lens elements, which optically neutralize each other when positioned exactly, in particular in direct contact, and produce a larger scattering angle with increasing distance.

Auch die Verwendung eines "Liquid-Crystal-Glases" (LC-Glases) ist beispielsweise als Abschlussscheibe des Systems vorgesehen, welches spannungsabhängig zwischen einem transparenten und einem opaken Zustand wechseln kann, um die Streubreite des Systems zu beeinflussen.The use of a "liquid crystal glass" (LC glass) is also provided, for example as the cover plate of the system, which can change between a transparent and an opaque state depending on the voltage in order to influence the scattering range of the system.

Darüber hinaus ist nach einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, dass mehrere unterschiedlich positionierte Lumineszenzstoffe bzw. Konverterbereiche angeordnet sind, so dass deren unterschiedliche Positionierung gegenüber der Optik die Erzeugung unterschiedlicher Lichtbilder erlaubt. Es ist auch möglich, an unterschiedlichen Positionen der Konverterbereiche unterschiedliche Lumineszenzstoffe anzuordnen, die wahlweise von dem Laser angeregt werden und unterschiedliche Lichtfarben emittieren.In addition, according to an advantageous embodiment of the invention, it is provided that several differently positioned luminescent substances or converter areas are arranged, so that their different positioning relative to the optics allows the generation of different light images. It is also possible to arrange different luminescent substances at different positions in the converter areas, which are selectively excited by the laser and emit different colors of light.

In der Praxis haben sich im Wesentlichen zwei verschiedene Varianten durchgesetzt, wie der Lumineszenzstoff von dem Laser angestrahlt wird und wie inkohärentes Licht von einem Lumineszenzstoff emittiert wird. Hierzu kann der Lumineszenzstoff nach einer ersten Ausgestaltung der Erfindung transmissiv ausgebildet sein. Das bedeutet, dass durch eine rückwärtige direkte oder indirekte Bestrahlung des Lumineszenzstoffes durch den Laser eine nach vorne gerichtete Abstrahlung des inkohärenten Lichtes erfolgt, womit das Licht durch den Lumineszenzstoff nahezu vollständig hindurchtritt. Das von dem Lumineszenzstoff emittierte inkohärente Licht wird anschließend von der Optik in der gewünschten Weise umgelenkt, also fokussiert oder defokussiert. Der Lumineszenzstoff kann hierzu in Form einer gesinterten Keramik vorliegen, so dass der Lumineszenzstoff selbsttragend ausgebildet ist. Alternativ lässt sich der Lumineszenzstoff auf einem transparenten Träger, wie beispielsweise Saphirglas, abscheiden.In practice, essentially two different variants have prevailed, how the luminescent substance is irradiated by the laser and how incoherent light is emitted by a luminescent substance. For this purpose, according to a first embodiment of the invention, the luminescent substance can be designed to be transmissive. This means that direct or indirect rearward irradiation of the luminescent substance by the laser causes the incoherent light to be emitted forwards, with the result that the light almost completely penetrates the luminescent substance passes through. The incoherent light emitted by the luminescent substance is then deflected by the optics in the desired way, that is to say it is focused or defocused. For this purpose, the luminescent substance can be present in the form of a sintered ceramic, so that the luminescent substance is designed to be self-supporting. Alternatively, the luminescent substance can be deposited on a transparent carrier, such as sapphire glass.

Nach einer zweiten Variante können reflektive Lumineszenzstoffe verwendet werden, die durch eine frontseitige direkte oder indirekte Bestrahlung mit dem Laser eine nach vorne gerichtete Abstrahlung des inkohärenten Lichtes erzeugen. Der Lumineszenzstoff kann hierzu ebenfalls als gesinterte Keramik vorliegen, deren Rückseite eine reflektierende Aluminiumschicht aufweist. Alternativ kann der Lumineszenzstoff unmittelbar auf einem Aluminiumträger abgeschieden werden oder es wird rückwärtig verspiegeltes Saphirglas als Träger für den Lumineszenzstoff verwendet.According to a second variant, reflective luminescent substances can be used, which generate a forward-directed emission of the incoherent light by direct or indirect irradiation from the front with the laser. For this purpose, the luminescent substance can likewise be in the form of a sintered ceramic, the back of which has a reflective aluminum layer. Alternatively, the luminescent substance can be deposited directly on an aluminum carrier, or reverse-mirrored sapphire glass is used as the carrier for the luminescent substance.

In beiden Fällen ist vorgesehen, eine mittelbare Bestrahlung des Lumineszenzstoffes dadurch zu ermöglichen, dass der Laserstrahl über einen oder mehrere Spiegel oder über einen oder mehrere Prismen auf den Lumineszenzstoff gerichtet wird.In both cases, provision is made for indirect irradiation of the luminescent substance to be made possible by directing the laser beam onto the luminescent substance via one or more mirrors or via one or more prisms.

Konkrete Ausgestaltungen der vorliegenden Erfindung werden nachfolgend anhand der Figuren 1 bis 13 erläutert, die unterschiedliche Varianten von fokussierbaren Lampen zeigen.Concrete configurations of the present invention are described below with reference to Figures 1 to 13 explained, which show different variants of focusable lamps.

Der Wechsel zwischen den gewünschten Lichtverteilungen, insbesondere zwischen gebündeltem (fokussiertem) und gestreutem (defokussiertem) Licht, wird in unterschiedlicher Weise durchgeführt, wobei die verschiedenen Konzepte in den Figuren 1a bis 1h schematisch dargestellt sind.The change between the desired light distributions, in particular between bundled (focused) and scattered (defocused) light is carried out in different ways, with the different concepts in the Figures 1a to 1h are shown schematically.

Nach einer ersten konkreten Ausgestaltung ist vorgesehen, dass die Optik 1 gegenüber dem Lumineszenzstoff 2 und dem Laser 3 stufenlos oder gerastet einstellbar bzw. in Pfeilrichtung A verschiebbar ist, was Lichtkegel mit unterschiedlichen Öffnungswinkeln α, α' erzeugt (siehe Figur 1a, 1b). Hierbei wird vorzugsweise als Optik 1 eine TIR-Linse verwendet, die eine rückwärtige Ausnehmung 4 besitzt und innerhalb der der Lumineszenzstoff verschiebbar angeordnet ist.According to a first specific embodiment, it is provided that the optics 1 can be adjusted steplessly or in a detented manner relative to the luminescent substance 2 and the laser 3 or can be displaced in the direction of the arrow A, resulting in light cones with different opening angles α, α' generated (see Figure 1a, 1b ). In this case, a TIR lens is preferably used as the optics 1, which has a rear recess 4 and within which the luminescent substance is arranged in a displaceable manner.

Ein weiteres Beispiel für eine Fokussierung und Defokussierung des abgestrahlten Lichtkegels ist in Figur 1c gezeigt. Hiernach erfolgt mittels einer Primäroptik 6 eine variable Defokussierung des Laserstrahls 5 auf den Lumineszenzstoff 2, so dass eine wählbare Fläche des Lumineszenzstoffes 2 von dem Laser 3 bestrahlt wird. Ergänzend erfolgt die Justage des Lumineszenzstoffes 2 indem entweder die Optik 1, die im dargestellten Ausführungsbeispiel als Hohlreflektor ausgebildet ist, oder der Lumineszenzstoff 2 selbst in Pfeilrichtung B verschiebbar auf einer vorzugsweise dreibeinigen Halterung (nicht dargestellt) befestigt ist.Another example of focusing and defocusing of the emitted light cone is in Figure 1c shown. After this, the laser beam 5 is variably defocused onto the luminescent substance 2 by means of primary optics 6 , so that a selectable area of the luminescent substance 2 is irradiated by the laser 3 . In addition, the adjustment of the luminescent substance 2 is carried out by either the optics 1, which is designed as a hollow reflector in the illustrated embodiment, or the luminescent substance 2 itself is slidably mounted in the direction of arrow B on a preferably three-legged holder (not shown).

Figur 1d und 1e zeigen eine weitere Alternative, die Geometrie, insbesondere den Öffnungswinkel eines abgestrahlten Lichtkegels, zu verändern, indem eine Applikation 7 bestehend aus 2 Linsenelementen 8, 8' mit einer korrespondierenden Positiv-Negativ-Geometrie in dem Lichtstrahl angeordnet ist. Liegen die Linsenelemente 8, 8' aneinander an (siehe Figur 1d) neutralisieren sich die Geometrien und der Lichtkegel verlässt unverändert die Applikation 7. Bei einer beabstandeten Positionierung der Linsenelemente 8, 8' (siehe Figur 1e) wird der Streuwinkel des Lichtkegels verändert. Figure 1d and 1e show a further alternative for changing the geometry, in particular the opening angle of an emitted light cone, by arranging an application 7 consisting of 2 lens elements 8, 8' with a corresponding positive/negative geometry in the light beam. If the lens elements 8, 8' are in contact with one another (see Figure 1d ) the geometries are neutralized and the light cone leaves the application 7 unchanged. With a spaced positioning of the lens elements 8, 8' (see Figure 1e ) the scattering angle of the light cone is changed.

Darüber hinaus ist die Verwendung von LC-Glas 10 vorgesehen (Figur 1f, 1g), das beispielsweise als Abschlussscheibe an der Stirnseite einer Taschenlampe angeordnet sein kann und deren optische Eigenschaften durch eine angelegte Spannung verändert wird. Insbesondere kann ein solches LC-Glas 10 durch Anlegen einer Spannung von einem transparenten (Figur 1f) in einem opaken Zustand (Figur 1g) überführt werden, der eine andere Streuung des Lichtkegels erzeugt.In addition, the use of LC glass 10 is planned ( Figure 1f, 1g ), which can be arranged, for example, as a lens on the front of a flashlight and whose optical properties are changed by an applied voltage. In particular, such an LC glass 10 can be separated from a transparent ( Figure 1f ) in an opaque state ( Figure 1g ) are transferred, which produces a different scattering of the light cone.

Schließlich ist nach einer weiteren konkreten Ausführungsform der Erfindung vorgesehen, dass mehrere unterschiedlich positionierte Lumineszenzstoffe 2, 2' unterschiedliche Lichtverteilungen erzeugen. Figur 1h zeigt beispielhaft, dass ein Laserstrahl 5 entweder direkt auf einen ersten Lumineszenzstoff 2 gestrahlt wird, der anschließend inkohärentes Licht emittiert, oder über eine Anordnung von justierbaren Spiegeln 11, 11' oder Prismen auf einen zweiten Lumineszenzstoff 2' gelenkt wird, der in Bezug auf eine (nicht dargestellte) Optik anders positioniert ist. Hierdurch ergeben sich erforderlichenfalls unterschiedliche Lichtverteilungen. Durch die Verwendung von unterschiedlichen Lumineszenzstoffen 2, 2' lassen sich auch unterschiedliche Lichtfarben erzeugen, so dass ein Wechsel der Leuchtfarben möglich ist.Finally, according to a further specific embodiment of the invention, it is provided that several differently positioned luminescent substances 2, 2' generate different light distributions. Figure 1h shows an example that a laser beam 5 is either radiated directly onto a first luminescent substance 2, which then emits incoherent light, or is directed via an arrangement of adjustable mirrors 11, 11' or prisms onto a second luminescent substance 2', which is different in relation to an optical system (not shown). is positioned. If necessary, this results in different light distributions. By using different luminescent substances 2, 2', different light colors can also be generated, so that the light colors can be changed.

Die vorbeschriebenen Konzepte zur Veränderung eines Lichtkegels einer laserbasierten Taschenlampe werden in den nachfolgend erläuterten Ausführungsformen umgesetzt, wobei in den Fig. 2 bis 6 transmissive und in den Fig. 7 bis 11 reflektive Lumineszenzstoffe verwendet werden.The concepts described above for changing a light cone of a laser-based flashlight are implemented in the embodiments explained below Figures 2 to 6 transmissive and in the Figures 7 to 11 reflective luminescent materials are used.

Das Ausführungsbeispiel nach Fig. 2 zeigt einen Hohlreflektor 21 als Optik, der eine rückwärtige Ausnehmung 22 besitzt. Der Lumineszenzstoff ist auf einem (transluzenten) Träger 23 abgeschieden, so dass der Laserstrahl 5, der von der Laserdiode 3 emittiert wird, rückwärtig auf den Lumineszenzstoff trifft. Der Lumineszenzstoff emittiert als nahezu punktförmige Lichtquelle mit lambertscher Charakteristik einen nach vorne gerichteten Lichtkegel, der von dem Reflektor 21 reflektiert und umgelenkt wird. Um den Emissionspunkt auf dem Lumineszenzstoff zu justieren, ist der Halbleiterlaser in Pfeilrichtung C und mithin senkrecht zur optischen Achse verschiebbar. Ebenso ist die Position des Trägers des Lumineszenzstoffes innerhalb der Optik durch ein Feingewinde justierbar. Die Änderung der Lichtverteilung selbst wird durch eine Verschiebung des Hohlreflektors 21 gegenüber dem Lumineszenzstoff bewirkt.The embodiment after 2 shows a hollow reflector 21 as optics, which has a rear recess 22. The luminescent substance is deposited on a (translucent) carrier 23, so that the laser beam 5, which is emitted by the laser diode 3, strikes the luminescent substance from the rear. The luminescent substance emits a forward-directed light cone as an almost point-like light source with Lambertian characteristics, which is reflected and deflected by the reflector 21 . In order to adjust the emission point on the luminescent substance, the semiconductor laser can be displaced in the direction of the arrow C and therefore perpendicular to the optical axis. Likewise, the position of the carrier of the luminescent substance can be adjusted within the optics by means of a fine thread. The change in the light distribution itself is brought about by a displacement of the hollow reflector 21 in relation to the luminescent substance.

Fig. 3 zeigt ein weiteres Ausführungsbeispiel, bei dem der Lumineszenzstoff auf transluzenten Trägern 31, 31' abgeschieden ist, wobei zwei unterschiedlich positionierte Träger 31, 31' vorgesehen sind, die auf der optischen Achse hintereinander angeordnet sind. Als Optik wird bei diesem Ausführungsbeispiel ein Hohlreflektor 32 verwendet. In einer ersten Position ist der Laserstrahl 5 auf einen ersten Lumineszenzstoff ausgerichtet, der einen ersten Lichtkegel mit einer bestimmten Lichtfarbe und/oder einem bestimmten Öffnungswinkel emittiert. Um eine andere Lichtverteilung und/oder eine andere Lichtfarbe zu erzeugen, wird der Laserstrahl 5 wahlweise über eine Anordnung zweier Spiegel 33, 33' oder Prismen auf den zweiten Lumineszenzstoff ausgerichtet, der ebenfalls transmissiv ausgebildet ist und einen Lichtkegel erzeugt, der von der Optik 1 reflektiert wird. Der erste Spiegel 33 ist verschwenkbar, verdrehbar oder verschiebbar gelagert und lässt sich in den Laserstrahl 5 verschieben. Der zweite Spiegel 33' ist fest mit der Optik 1 oder dem Hohlreflektor 32 verbunden und zusammen mit dem ersten Spiegel 33 justierbar. 3 1 shows a further exemplary embodiment in which the luminescent substance is deposited on translucent carriers 31, 31', with two differently positioned carriers 31, 31' being provided, which are arranged one behind the other on the optical axis. In this exemplary embodiment, a hollow reflector 32 is used as the optics. In a first position, the laser beam 5 is aligned with a first luminescent substance, which has a first light cone with a specific light color and/or emitted at a certain opening angle. In order to generate a different light distribution and/or a different color of light, the laser beam 5 is optionally aligned via an arrangement of two mirrors 33, 33' or prisms onto the second luminescent material, which is also designed to be transmissive and generates a light cone which is emitted by the optics 1 is reflected. The first mirror 33 is mounted such that it can pivot, rotate or move and can be moved into the laser beam 5 . The second mirror 33' is firmly connected to the optics 1 or the hollow reflector 32 and can be adjusted together with the first mirror 33.

Eine weitere Ausführungsform einer fokussierbaren laserbasierten Taschenlampe ist in Fig. 4 dargestellt, die im Wesentlichen der Ausführungsvariante nach Fig. 2 entspricht. Ergänzend ist eine Linse oder Abschlussscheibe 41 vorgesehen, um den Lichtkegel in seine gewünschte Geometrie umzulenken.Another embodiment of a focusable laser-based flashlight is in 4 shown, which essentially according to the embodiment variant 2 is equivalent to. In addition, a lens or cover disk 41 is provided in order to deflect the light cone into its desired geometry.

Fig. 5 zeigt eine vergleichbare Ausgestaltung, bei der die Optik 1 gemäß der Ausführungsform nach Fig. 2 durch eine TIR-Linse 51 mit einer rückwärtigen Vertiefung, die im dargestellten Fall als Sacklochbohrung 52 ausgebildet ist, und einem Sammellinsenteil 53 ersetzt wird, die ebenfalls entlang der optischen Achse verschiebbar ist. Der Emissionspunkt auf dem Lumineszenzstoff wird durch Translation der Laserlichtquelle justiert, die Position des Lumineszenzstoffes in der Optik durch ein Feingewinde. Der Wechsel zwischen den Lichtverteilungen erfolgt anschließend durch eine Verschiebung der Optik in Pfeilrichtung. figure 5 shows a comparable configuration, in which the optics 1 according to the embodiment 2 replaced by a TIR lens 51 with a rear depression, which in the illustrated case is in the form of a blind hole 52, and a converging lens part 53, which can also be displaced along the optical axis. The emission point on the luminescent substance is adjusted by translation of the laser light source, the position of the luminescent substance in the optics with a fine thread. The change between the light distributions is then carried out by moving the optics in the direction of the arrow.

Im Gegensatz zu den Ausführungsformen nach den Fig. 2 bis 5 erfolgt die Lichtemission des (transmissiven) Lumineszenzstoffes gemäß der Ausführungsform nach Fig. 6 nach hinten in einen Reflektor 61, der beispielsweise als Rotationsparaboloid ausgebildet ist. Der Reflektor 61 besitzt eine von der optischen Achse beabstandete Ausnehmung 62 und eine frontseitige Abschlussscheibe 63, die in einem Teilbereich als Reflektor 64 ausgebildet ist. Der Halbleiterlaser 3 ist derart angeordnet, dass der Laserstrahl 5 durch die Ausnehmung 62 unmittelbar auf den Spiegel 64 ausgerichtet ist, so dass der Laserstrahl 5 im Betriebszustand auf einen (transmissiven) Lumineszenzstoff 2 trifft und innerhalb des Reflektors 61 angeordnet ist. Der Lumineszenzstoff 2 bzw. der Träger, auf dem der Lumineszenzstoff 2 abgeschieden ist, lässt sich entlang der optischen Achse verschieben, so dass der Emissionspunkt über ein Feingewinde justierbar ist und ein Wechsel der Abstrahlcharakteristik bewirkt wird, sobald der Emissionspunkt des Lumineszenzstoffes 2 aus dem Brennpunkt des Reflektors 61 heraus bewegt wird.In contrast to the embodiments according to the Figures 2 to 5 the light emission of the (transmissive) luminescent substance takes place according to the embodiment 6 backwards into a reflector 61, which is designed, for example, as a paraboloid of revolution. The reflector 61 has a recess 62 at a distance from the optical axis and a front cover plate 63 which is designed as a reflector 64 in a partial area. The semiconductor laser 3 is arranged in such a way that the laser beam 5 is aligned directly onto the mirror 64 through the recess 62 so that the laser beam 5 strikes a (transmissive) luminescent substance 2 in the operating state and is arranged inside the reflector 61 . The luminescent substance 2 or the carrier on which the luminescent substance 2 is deposited can be moved along the optical axis so that the emission point can be adjusted via a fine thread and a change in the emission characteristic is brought about as soon as the emission point of the luminescent substance 2 moves out of the focal point of the reflector 61 is moved out.

Im Gegensatz zu den Fig. 2 bis 6 zeigen die Fig. 7 bis 12 Ausführungsbeispiele von fokussierbaren Anordnungen, bei dem die Lumineszenzstoffe reflektiv ausgebildet sind und Licht in die Richtung emittieren, von der aus der Laser auf den Lumineszenzstoff ausgerichtet ist.In contrast to the Figures 2 to 6 show the Figures 7 to 12 Embodiments of focusable arrangements in which the luminescent substances are reflective and emit light in the direction from which the laser is aligned with the luminescent substance.

Eine erste Ausgestaltung ist in Fig. 7 dargestellt, bei der die Optik eine TIR-Linse 71 ist, an deren Stirnseite zwei zueinander ausgerichtete Spiegelflächen 72, 72' oder Prismen angeordnet sind. Der Halbleiterlaser 3 ist derart angeordnet, dass er vorzugsweise parallel oder mit einem kleinen Winkel zur optischen Achse aber beabstandet hierzu auf den ersten Spiegel 72 ausgerichtet ist. Der Halbleiterlaser 3 ist zur Justage verschieb- und verkippbar gelagert. Von dem Halbleiterlaser 3 aus wird im Betriebszustand der Laserstrahl 5 auf den zweiten Spiegel 72' (oder das Prisma) gelenkt, der den Laserstrahl 5 auf den reflektiven Lumineszenzstoff reflektiert. Der Lumineszenzstoff 2 bzw. dessen Träger ist ebenfalls verdrehbar innerhalb der Vertiefung oder der Sacklochbohrung 52 der TIR-Linse gelagert, wobei die Fokussierung und Defokussierung auch über eine Verschiebung der TIR-Linse erfolgen kann. Nach einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass als Abschlussscheibe 73 ein LC-Glas vorgesehen ist, welches in Abhängigkeit einer angelegten Spannung von einem transparenten in einen opaken Zustand wechseln kann, um die Streubreite des Systems zu beeinflussen.A first embodiment is in 7 shown, in which the optics is a TIR lens 71, on the front side of which two mutually aligned mirror surfaces 72, 72' or prisms are arranged. The semiconductor laser 3 is arranged in such a way that it is aligned with the first mirror 72, preferably parallel or at a small angle to the optical axis but spaced therefrom. The semiconductor laser 3 is slidably and tiltably mounted for adjustment. In the operating state, the laser beam 5 is directed from the semiconductor laser 3 onto the second mirror 72' (or the prism), which reflects the laser beam 5 onto the reflective luminescent substance. The luminescent substance 2 or its carrier is also rotatably mounted within the depression or the blind hole 52 of the TIR lens, with the focusing and defocusing also being able to take place via a displacement of the TIR lens. According to a particular embodiment of the invention, provision is made for an LC glass to be provided as cover plate 73, which can change from a transparent to an opaque state depending on an applied voltage, in order to influence the scatter range of the system.

Die Ausführungsform gemäß Abbildung 7 hat insbesondere den Vorteil, dass im Falle einer Beschädigung der Linse bzw. der Abschlussscheibe ein ungehindertes Austreten des Laserstrahls 5 durch das Taschenlampengehäuse 74 verhindert wird, das ringförmig die Abschlussscheibe 73 bzw. die TIR-Linse umgreift und eine frontseitige Ringfläche 75 aufweist, die in Verlängerung des Laserstrahls 5 angeordnet ist.The embodiment according to Figure 7 has the particular advantage that in the event of damage to the lens or the lens, an unhindered exit of the laser beam 5 through the flashlight housing 74 is prevented, which surrounds the lens 73 or the TIR lens in a ring and a front Has annular surface 75, which is arranged in the extension of the laser beam 5.

Eine zu Fig. 7 ähnliche Ausgestaltung zeigt das Ausführungsbeispiel nach Fig. 8, wo ebenfalls eine TIR-Linse 81 als Optik verwendet wird, die eine rückwärtige Sacklochbohrung 82 und einen Sammellinsenteil 83 besitzt. Ferner ist die TIR-Linse bereichsweise als reflektierender Spiegel 84 bzw. als reflektierendes Prisma ausgebildet, wobei sich der Spiegel 84 vorzugsweise an der vorderen Peripherie der TIR-Linse befindet. Im Betriebszustand wird der von dem Halbleiterlaser 3 emittierte Laserstrahl 5 über den Spiegel 84 auf die Vorderseite des Lumineszenzstoffes 2 gerichtet, wobei sich zur Vermeidung von unerwünschten Reflektionen innerhalb der TIR-Linse 81 an der Übergangsstelle zwischen der TIR-Linse 81 und der rückwärtigen Sacklochbohrung 82 eine Lichtaustrittsfläche 85 befindet, die senkrecht zum Laserstrahl 5 ausgerichtet ist. Der Lumineszenzstoff 2 emittiert infolge der Laserbestrahlung einen Lichtkegel, der von der TIR-Linse verformt wird. Der Lumineszenzstoff 2 ist gegenüber der Optik in diesem Ausführungsbeispiel im Wesentlichen unverschiebbar und geringfügig zu Justagezwecken schiebbeweglich gelagert. Um eine variierbare Fokussierung oder Defokussierung zu ermöglichen ist ein frontseitiges Linsenelement 86 vorgesehen, das zusammen mit der TIR-Linse 81 eine passende positiv-negativ-Geometrie besitzt. Bei exakter Positionierung neutralisieren sich die Geometrien, während eine Verschiebung des vorderen Linsenelementes 86 zu einer Variation des Streuwinkels führt.one to 7 similar configuration shows the embodiment 8 , where a TIR lens 81 is also used as the optics, which has a rear blind hole 82 and a converging lens part 83 . Furthermore, the TIR lens is designed in some areas as a reflecting mirror 84 or as a reflecting prism, with the mirror 84 preferably being located on the front periphery of the TIR lens. In the operating state, the laser beam 5 emitted by the semiconductor laser 3 is directed via the mirror 84 onto the front side of the luminescent substance 2, whereby, in order to avoid undesired reflections within the TIR lens 81, at the transition point between the TIR lens 81 and the rear blind hole 82 a light exit surface 85 is located, which is aligned perpendicular to the laser beam 5. As a result of the laser irradiation, the luminescent substance 2 emits a light cone which is deformed by the TIR lens. In this exemplary embodiment, the luminescent substance 2 is mounted so that it is essentially immovable relative to the optics and can be pushed slightly for adjustment purposes. In order to enable variable focusing or defocusing, a front lens element 86 is provided which, together with the TIR lens 81, has a suitable positive/negative geometry. With exact positioning, the geometries neutralize each other, while a displacement of the front lens element 86 leads to a variation in the scattering angle.

Fig. 9 zeigt eine Ausgestaltung der Erfindung, die einen Hohlreflektor 91 als Optik verwendet, der eine frontseitige Abschlussscheibe 92 mit einem Sammellinsenteil 93 besitzt. Der (reflektive) Lumineszenzstoff 2 ist auf einem Träger angeordnet, der innerhalb des Hohlreflektors entlang der optischen Achse verschiebbar angeordnet ist. Der Halbleiterlaser 3 ist bei dieser Ausführungsform seitlich an der Abschlussscheibe befestigt und ist im Wesentlichen senkrecht zur optischen Achse ausgerichtet. Der Laserstrahl 5 trifft durch eine Lichteintrittsfläche 94 in die Abschlussscheibe ein und wird auf Höhe der optischen Achse durch einen Spiegel 95 oder ein Prisma auf den Lumineszenzstoff umgelenkt. Dort wird von dem Lumineszenzstoff 2 inkohärentes Licht emittiert, das als Lichtkegel von der Optik und der Abschlussscheibe in der gewünschten Geometrie abgestrahlt wird. Die Fokussierung und Defokussierung erfolgt vorzugsweise durch eine Verschiebung des Lumineszenzstoffes 2 in Pfeilrichtung D. 9 shows an embodiment of the invention that uses a hollow reflector 91 as the optics, which has a front cover plate 92 with a converging lens part 93 . The (reflective) luminescent substance 2 is arranged on a carrier which is arranged to be displaceable along the optical axis within the hollow reflector. In this embodiment, the semiconductor laser 3 is fastened to the side of the cover plate and is aligned essentially perpendicularly to the optical axis. The laser beam 5 enters the lens through a light entry surface 94 and is deflected onto the luminescent material by a mirror 95 or a prism at the level of the optical axis. There, the luminescent substance 2 is incoherent Emits light that is radiated as a light cone from the optics and the cover lens in the desired geometry. The focusing and defocusing is preferably carried out by shifting the luminescent substance 2 in the direction of arrow D.

Aus Fig. 10 geht ein weiteres Ausführungsbeispiel hervor, nach dem die Optik als Rotationsparaboloid 101 ausgebildet ist, auf dessen optischer Achse der Lumineszenzstoff 2 auf einem Träger abgeschieden ist. Eine rückwärtige Ausnehmung 102 erlaubt es dem Halbleiterlaser 3 unmittelbar den (reflektiven) Lumineszenzstoff 2 mit dem Laserstrahl 5 zu bestrahlen, so dass der Lumineszenzstoff 2 inkohärentes Licht aussendet, das von dem Rotationsparaboloid als Lichtkegel abgegeben wird. Die Fokussierung/Defokussierung erfolgt über eine Verschiebung der Optik gegenüber dem Lumineszenzstoff 2 in Pfeilrichtung E.Out of 10 shows a further exemplary embodiment, according to which the optics are designed as a paraboloid of revolution 101, on the optical axis of which the luminescent substance 2 is deposited on a carrier. A rear recess 102 allows the semiconductor laser 3 to directly irradiate the (reflective) luminescent substance 2 with the laser beam 5, so that the luminescent substance 2 emits incoherent light, which is emitted as a light cone by the paraboloid of revolution. Focusing/defocusing takes place by shifting the optics in relation to the luminescent substance 2 in the direction of the arrow E.

Schließlich wird in Fig. 11 eine Ausführungsform gezeigt, die im Wesentlichen analog zu der Ausführungsform nach Fig. 10 ausgebildet ist. Allerdings kann der Laserstrahl 5 durch eine Optik 111 variabel auf den Lumineszenzstoff 2 projiziert werden, was die Lichtverteilung variiert. Ferner ist ergänzend und optional eine weitere Optik 112 angeordnet, die den Hohlreflektor 113 frontseitig abschließt und die Form des Lichtkegels bestimmt.Finally in 11 an embodiment is shown which is essentially analogous to the embodiment according to FIG 10 is trained. However, the laser beam 5 can be variably projected onto the luminescent substance 2 by an optical system 111, which varies the light distribution. Furthermore, a further optical system 112 is additionally and optionally arranged, which closes off the hollow reflector 113 at the front and determines the shape of the light cone.

Die Fig. 12 und 13 zeigen jeweils eine konkrete Ausführungsform eines Taschenlampengehäuses 121, 131, in dem eine Optik für eine laserbasierte fokussierbare Taschenlampe angeordnet ist. Bei den Ausführungsformen ist jeweils ein Hohlreflektor 122, 132 mit einer rückwärtigen Öffnung 123, 133 für den Laserstrahl vorgesehen. Bei der Ausführungsform nach Fig. 13 ist der Halter 134 für den (im vorliegenden Fall reflektiv ausgebildeten) Lumineszenzstoff über drei Arme 135, 135', 135" mit einer Ringhülse 136 verbunden, die längsaxial beweglich gegenüber dem Taschenlampengehäuse gelagert ist, so dass der Abstand zwischen dem Halter 134 und dem Hohlreflektor 132 variabel verstellbar ist. Die Arme 135, 135', 135" durchgreifen jeweils eine Nut 137, 137', 137" und sind hierin verschiebbar. Demgegenüber ist der Halter 125 gemäß der Ausführungsform nach Fig. 12 fest mit dem Taschenlampengehäuse 121 verbunden, wobei der Reflektor in Nuten 124 geführt längsaxial verschiebbar ist, um eine Fokussierung/Defokussierung des abgestrahlten Lichtkegels zu erlauben.the 12 and 13 each show a concrete embodiment of a flashlight housing 121, 131, in which an optical system for a laser-based focusable flashlight is arranged. In the embodiments, a hollow reflector 122, 132 with a rear opening 123, 133 is provided for the laser beam. In the embodiment according to 13 the holder 134 for the (in the present case reflective) luminescent substance is connected via three arms 135, 135', 135" to an annular sleeve 136, which is mounted so that it can move longitudinally and axially relative to the flashlight housing, so that the distance between the holder 134 and the hollow reflector 132 is variably adjustable. The arms 135, 135', 135" each pass through a groove 137, 137', 137" and can be displaced therein. On the other hand, the holder 125 according to the embodiment is shown in FIG 12 firmly connected to the flashlight housing 121, the reflector being guided in grooves 124 and being displaceable along the longitudinal axis in order to allow the emitted light cone to be focused/defocused.

Claims (11)

  1. Flashlight with an optic (1) and a light source consisting of at least one converter area with a luminescent substance (2), which is irradiated in the operating state by a laser (3) in such a way that the luminescent substance (2) emits incoherent light that is emitted by the optics (1) as a light cone, characterized in that a selectable positioning of the converter area relative to the optics (1) allows focusing or defocusing of the light cone.
  2. Flashlight according to claim 1, characterized in that the laser (3) is a semiconductor laser with a wavelength of (450 ± 50) nm.
  3. Flashlight according to one of claims 1 or 2, characterized in that the optics (1) and the converter area are adjustable relative to one another, the optics (1) preferably being designed as a free-form reflector, converging lens, TIR lens or a combination thereof.
  4. Flashlight according to one of claims 1 to 3, characterized in that several differently positioned converter areas with luminescent substances are provided, so that the different positioning relative to the optics (1) allows the generation of different light images.
  5. Flashlight according to one of claims 1 to 4, characterized in that different luminescent substances (2, 2') are provided, which are selectively illuminated by the laser (3) and preferably emit different colors of light.
  6. Flashlight according to one of claims 1 to 5, characterized in that the luminescent substance (2, 2') is transmissive and generates a forward-directed emission of the incoherent light by direct or indirect rearward irradiation by the laser (3).
  7. Flashlight according to claim 6, characterized in that the light radiated forwards is deflected by the optics (1).
  8. Torch according to one of claims 6 or 7, characterized in that the laser beam is directed onto the luminescent material indirectly via one or more mirrors (11, 11'; 33, 33'; 64) or via one or more prisms.
  9. Flashlight according to one of claims 1 to 5, characterized in that the luminescent material (2, 2') is reflective and, by front-side direct or indirect irradiation by the laser (3), generates a forward-directed emission of the incoherent light.
  10. Flashlight according to claim 9, characterized in that the laser beam (5) is directed indirectly via one or more mirrors (84, 95) or via one or more prisms onto the luminescent material.
  11. Flashlight according to one of claims 1 to 10, characterized in that the mirrors (11, 11'; 33, 33'; 64, 84, 95) or the prisms are formed directly on the free-form reflector, the TIR lens, cover plate or the converging lens or are herewith connected unresolvable, preferably cohesively.
EP16784387.9A 2015-09-21 2016-09-12 Flashlight having a light source Active EP3353465B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015115863.9A DE102015115863A1 (en) 2015-09-21 2015-09-21 Flashlight with a light source
PCT/DE2016/100423 WO2017050315A1 (en) 2015-09-21 2016-09-12 Flashlight having a light source

Publications (2)

Publication Number Publication Date
EP3353465A1 EP3353465A1 (en) 2018-08-01
EP3353465B1 true EP3353465B1 (en) 2022-10-19

Family

ID=57178176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16784387.9A Active EP3353465B1 (en) 2015-09-21 2016-09-12 Flashlight having a light source

Country Status (3)

Country Link
EP (1) EP3353465B1 (en)
DE (1) DE102015115863A1 (en)
WO (1) WO2017050315A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203694B4 (en) * 2018-03-12 2021-12-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Irradiation unit with pump radiation source and conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050162845A1 (en) * 2004-01-23 2005-07-28 Mcdermott Vernon Lighting device and method for lighting
US20130208478A1 (en) * 2012-02-14 2013-08-15 Xiao Pie Tao Adaptor for converting laser devices to lighting

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20004105U1 (en) * 2000-03-04 2000-05-31 Zweibrueder Stahlwarenkontor G flashlight
EP2542937A1 (en) * 2010-03-01 2013-01-09 Koninklijke Philips Electronics N.V. Lighting apparatus
TW201248083A (en) * 2011-03-17 2012-12-01 Rambus Inc Adjustable light source, and light bulb with adjustable light source
US9388947B2 (en) * 2012-08-28 2016-07-12 Cree, Inc. Lighting device including spatially segregated lumiphor and reflector arrangement
DE102012220472A1 (en) * 2012-11-09 2014-05-15 Automotive Lighting Reutlingen Gmbh Kfz. lighting device
DE102012224345A1 (en) * 2012-12-21 2014-06-26 Osram Gmbh Vehicle lighting device
KR102114607B1 (en) * 2013-04-01 2020-05-25 엘지전자 주식회사 Laser Light Source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050162845A1 (en) * 2004-01-23 2005-07-28 Mcdermott Vernon Lighting device and method for lighting
US20130208478A1 (en) * 2012-02-14 2013-08-15 Xiao Pie Tao Adaptor for converting laser devices to lighting

Also Published As

Publication number Publication date
EP3353465A1 (en) 2018-08-01
DE102015115863A1 (en) 2017-03-23
WO2017050315A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
DE102010041096B4 (en) Lighting device
DE4342928C2 (en) Reflector arrangement with a light source arranged therein for a vehicle lamp
EP2948341B1 (en) Light-source assembly for motor vehicle headlamps
DE102011004563B4 (en) Optical element and lighting device
EP1548358A1 (en) Headlmap with stepped lens and variable distance between light source and reflector
DE102011085314B3 (en) Light module for illumination device e.g. headlight of motor car, has primary optics having one lens element that is formed by translation of ellipse portion and light exit surface of another lens element in sectional plane
DE102004013962A1 (en) Fresnel lens spotlight for pocket lamp, has diffusing screen placed in center of fresnel lens to produce scattered light ratio and aperture angle of light to provide mixing ratio of light relative to another light imaged by lens
DE102013205487A1 (en) Motor vehicle light for dynamic lighting functions
DE102010062463A1 (en) Lighting-device i.e. vehicle headlight, has phosphor regions individually illuminatable by respective light sources, and aligned for diffuse radiation of light on downstream optical elements, which exhibit different optical properties
EP1548355B1 (en) Stepped lens headlamp
DE102010039683A1 (en) Projection apparatus and method for operating a projection apparatus
DE102014116983B4 (en) LASER OPTICAL SYSTEM FOR A VEHICLE HEADLIGHT IN WHICH A BEAM LENS FOCUSING A LASER BEAM IS IN DIRECT CONTACT WITH A LUMINOUS BODY EXCITED BY THE LASER BEAM
DE102012214138A1 (en) light module
EP3353465B1 (en) Flashlight having a light source
EP1431158A1 (en) Headlamp and signaling lights for a railway vehicle.
DE10361116B4 (en) Fresnels
DE102015205353A1 (en) lighting device
WO2015043819A1 (en) Lighting device for vehicles
EP2993390B1 (en) Headlight for a motor vehicle and a motor vehicle
EP2113712A1 (en) Light signal
EP2593711B1 (en) Torch with a rotationally symmetrical optical attachment
DE102012201706B4 (en) LED surgical light with monoreflector
DE102019121507A1 (en) Lighting device with light conversion element
DE202015104987U1 (en) Flashlight with a light source
DE102014204613A1 (en) Lighting device for a motor vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 9/65 20160101ALI20170412BHEP

Ipc: F21L 4/00 20060101AFI20170412BHEP

Ipc: F21V 5/00 20180101ALI20170412BHEP

Ipc: F21V 14/02 20060101ALI20170412BHEP

Ipc: F21V 9/10 20060101ALI20170412BHEP

Ipc: F21V 7/00 20060101ALI20170412BHEP

Ipc: F21V 14/00 20180101ALI20170412BHEP

Ipc: F21K 9/64 20160101ALI20170412BHEP

Ipc: F21V 14/08 20060101ALI20170412BHEP

Ipc: F21Y 115/30 20160101ALI20170412BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/30 20160101ALI20220329BHEP

Ipc: F21K 9/65 20160101ALI20220329BHEP

Ipc: F21K 9/64 20160101ALI20220329BHEP

Ipc: F21V 14/08 20060101ALI20220329BHEP

Ipc: F21V 14/02 20060101ALI20220329BHEP

Ipc: F21V 14/00 20180101ALI20220329BHEP

Ipc: F21V 9/45 20180101ALI20220329BHEP

Ipc: F21V 7/00 20060101ALI20220329BHEP

Ipc: F21V 5/00 20180101ALI20220329BHEP

Ipc: F21L 4/00 20060101AFI20220329BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015365

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525751

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015365

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

26N No opposition filed

Effective date: 20230720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230921

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 8

Ref country code: DE

Payment date: 20230724

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016015365

Country of ref document: DE

Representative=s name: RGTH PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016015365

Country of ref document: DE

Representative=s name: RGTH RICHTER GERBAULET THIELEMANN HOFMANN PATE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 8

Ref country code: CH

Payment date: 20231001

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230912

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019