EP3353465A1 - Flashlight having a light source - Google Patents

Flashlight having a light source

Info

Publication number
EP3353465A1
EP3353465A1 EP16784387.9A EP16784387A EP3353465A1 EP 3353465 A1 EP3353465 A1 EP 3353465A1 EP 16784387 A EP16784387 A EP 16784387A EP 3353465 A1 EP3353465 A1 EP 3353465A1
Authority
EP
European Patent Office
Prior art keywords
light
luminescent substance
laser
optics
flashlight according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16784387.9A
Other languages
German (de)
French (fr)
Other versions
EP3353465B1 (en
Inventor
Gerolf Kloppenburg
Alexander Wolf
Philipp Robert Gottwald
René Bastian Lippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ledlenser GmbH and Co KG
Original Assignee
Ledlenser GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledlenser GmbH and Co KG filed Critical Ledlenser GmbH and Co KG
Publication of EP3353465A1 publication Critical patent/EP3353465A1/en
Application granted granted Critical
Publication of EP3353465B1 publication Critical patent/EP3353465B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21LLIGHTING DEVICES OR SYSTEMS THEREOF, BEING PORTABLE OR SPECIALLY ADAPTED FOR TRANSPORTATION
    • F21L4/00Electric lighting devices with self-contained electric batteries or cells
    • F21L4/005Electric lighting devices with self-contained electric batteries or cells the device being a pocket lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/003Controlling the distribution of the light emitted by adjustment of elements by interposition of elements with electrically controlled variable light transmissivity, e.g. liquid crystal elements or electrochromic devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/02Controlling the distribution of the light emitted by adjustment of elements by movement of light sources
    • F21V14/025Controlling the distribution of the light emitted by adjustment of elements by movement of light sources in portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • F21V14/085Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters in portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/006Refractors for light sources applied to portable lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a flashlight with an optic and a light source, which consists of at least one converter region with a luminescent substance which is irradiated in the operating state by a laser such that the luminescent substance emits incoherent light which is emitted by the optics as a cone of light ,
  • Flashlights have been known for several decades, and in particular the light sources used were inferior to a continuous change.
  • a disadvantage of such flashlights with laser-based light sources is that they produce a fixed and non-adjustable light cone, which greatly limits the scope of the flashlights. It is therefore the object of the present invention to increase the field of use of such flashlights and to enable a focusing of the light cone.
  • This object is achieved by the flashlight according to claim 1, which is provided according to the invention that an adjustable positioning of the converter area relative to the optics allows focusing of the light cone, which significantly increases the range of use of flashlights according to the invention, as well as near and far areas optimally illuminated by the user can be.
  • the light-emitting surface of the luminescent substance or the area of the converter area is almost punctiform and much smaller compared to today's LEDs, which provides advantages in focusing the emitted light cone. Due to the small areal extent aberrations are minimized, especially in the edge region of the light cone, which limits the light cone sharply, so that a nearly homogeneous illumination is achieved both in the near and far range. In addition, there are advantages in the removal of the heat generated in this light source, since the light source with the semiconductor laser and the converter area has two spatially separate heat source, so that only a fraction of the heat usually incurred must be dissipated. Furthermore, the
  • Phosphor is not heated by the waste heat of the semiconductor laser.
  • a semiconductor laser is used as the laser which emits a laser beam having a wavelength of (450 + 50) nm.
  • the use of blue semiconductor lasers has proved to be advantageous. Due to the systemic large radiation angle of semiconductor lasers primary optics are used, which deform the laser beam into a parallel light beam with a small cross-section.
  • the optics and the converter region are adjustable relative to each other.
  • the shaping optics may be longitudinally axially displaceable within the flashlight or the converter area is slidably mounted within the flashlight housing or the flashlight head.
  • the flashlight may have an application of two or more lens elements, which optically neutralize in the case of exact positioning, in particular in direct contact, and generate a larger scattering angle as the distance increases.
  • LC glass liquid crystal glass
  • a plurality of differently positioned luminescent substances or converter regions are arranged, so that their different positioning relative to the optics allows the generation of different light images. It is also possible to arrange different luminescent substances at different positions of the converter regions, which are selectively excited by the laser and emit different light colors.
  • the luminescent substance is irradiated by the laser and how incoherent light is emitted by a luminescent substance.
  • the luminescent substance may be designed to be transmissive according to a first embodiment of the invention. This means that by a direct or indirect backward irradiation of the luminescent substance by the laser, a forward emission of the incoherent light takes place, whereby the light is almost completely absorbed by the luminescent substance. dig passes. The incoherent light emitted by the luminescent substance is then deflected by the optics in the desired manner, ie focused or defocused.
  • the luminescent substance may be present in the form of a sintered ceramic, so that the luminescent substance is self-supporting.
  • the luminescent substance can be deposited on a transparent support, such as sapphire glass.
  • reflective luminescent substances can be used, which generate a front-facing direct irradiation of the incoherent light by a front-side direct or indirect irradiation with the laser.
  • luminescent substance can likewise be present as a sintered ceramic whose rear side has a reflective aluminum layer.
  • the ceramic whose rear side has a reflective aluminum layer.
  • Luminescent be deposited directly on an aluminum support or it is used rear mirrored sapphire crystal as a carrier for the luminescent.
  • FIGS. 1 to 13 show different variants of focusable lamps.
  • the change between the desired light distributions, in particular between focused (focused) and scattered (defocused) light is carried out in different ways, the different concepts being schematically illustrated in FIGS. 1a to 1h.
  • the optics 1 provision is made for the optics 1 to be steplessly adjustable or latched relative to the luminescent substance 2 and the laser 3, or to be displaceable in the direction of the arrow A, which produces light cones with different apertures. ing angles ⁇ , ⁇ 'generated (see Figure 1 a, 1 b).
  • a TIR lens is preferably used as optics 1, which has a rear recess 4 and within which the luminescent substance is arranged displaceably.
  • FIG. 1 c Another example of focusing and defocusing of the emitted light cone is shown in FIG. 1 c.
  • a primary optics 6 a variable defocusing of the laser beam 5 on the luminescent substance 2, so that a selectable surface of the luminescent substance 2 is irradiated by the laser 3.
  • FIGS. 1 d and 1 e show a further alternative for changing the geometry, in particular the aperture angle of a radiated beam of light, by arranging an application 7 consisting of 2 lens elements 8, 8 'with a corresponding positive-negative geometry in the light beam. If the lens elements 8, 8 'abut one another (see FIG. 1 d), the geometries neutralize and the cone of light leaves the application 7 unchanged. With a spaced positioning of the lens elements 8, 8' (see FIG. 1 e), the scattering angle of the light cone is changed ,
  • LC glass 10 is provided ( Figure 1 f, 1 g), which may be arranged for example as a cover plate on the front side of a flashlight and their optical properties is changed by an applied voltage.
  • such an LC glass 10 can be converted by applying a voltage from a transparent (Figure 1 f) in an opaque state ( Figure 1 g), which generates a different scattering of the light cone.
  • FIG. 1 h shows by way of example that a laser beam 5 either directly onto a first luminescent substance 2, which subsequently emits incoherent light, or is directed via an array of adjustable mirrors 11, 11 'or prisms onto a second luminescent substance 2' which is in relation to a (not shown) ) Optics is positioned differently. This results, if necessary, different light distributions.
  • different luminescent substances 2, 2 ' it is also possible to produce different light colors, so that a change of the luminous colors is possible.
  • FIG. 2 shows a hollow reflector 21 as optics, which has a rear recess 22.
  • the luminescent substance is deposited on a (translucent) carrier 23, so that the laser beam 5 emitted by the laser diode 3 hits the luminescent substance backwards.
  • the luminescent substance emits as a nearly punctiform light source with Lambertian characteristic a forwardly directed cone of light, which is reflected by the reflector 21 and deflected.
  • the semiconductor laser is displaceable in the direction of arrow C and thus perpendicular to the optical axis.
  • the position of the carrier of the luminescent substance within the optics is adjustable by a fine thread. The change in the light distribution itself is caused by a displacement of the hollow reflector 21 relative to the luminescent substance.
  • FIG. 3 shows a further embodiment in which the luminescent substance is deposited on translucent carriers 31, 31 ', wherein two differently positioned carriers 31, 31' are provided, which are arranged one behind the other on the optical axis.
  • a hollow reflector 32 is used in this embodiment.
  • the laser beam 5 is aligned with a first luminescent substance which has a first light cone with a specific light color and / or a certain opening angle emitted.
  • the laser beam 5 is selectively aligned via an array of two mirrors 33, 33 'or prisms on the second luminescent material, which is also formed transmissive and generates a cone of light, the optical system of the first is reflected.
  • the first mirror 33 is pivotally mounted, rotatable or displaceable and can be moved into the laser beam 5.
  • the second mirror 33 ' is fixedly connected to the optics 1 or the hollow reflector 32 and adjustable together with the first mirror 33.
  • FIG. 4 Another embodiment of a focusable laser-based flashlight is shown in FIG. 4, which essentially corresponds to the embodiment variant according to FIG. 2.
  • a lens or lens 41 is provided to redirect the cone of light to its desired geometry.
  • Fig. 5 shows a comparable embodiment, in which the optical system 1 according to the embodiment of FIG. 2 by a TIR lens 51 with a rear recess, which is formed in the illustrated case as a blind hole 52, and a collecting lens part 53 is replaced, which also along the optical axis is displaceable.
  • the emission point on the luminescent substance is adjusted by translation of the laser light source, the position of the luminescent substance in the optic through a fine thread.
  • the change between the light distributions then takes place by a shift of the optics in the direction of the arrow.
  • the light emission of the (transmissive) luminescent substance according to the embodiment according to FIG. 6 takes place to the rear into a reflector 61, which is embodied, for example, as a paraboloid of revolution.
  • the reflector 61 has a recess 62 spaced from the optical axis and a front end lens 63, which is formed in a partial region as a reflector 64.
  • the semiconductor laser 3 is arranged in such a way that the laser beam 5 is aligned directly on the mirror 64 through the recess 62, so that the laser beam 5 strikes a (transmissive) luminescent substance 2 in the operating state and is arranged within the reflector 61.
  • the luminescent zenzstoff 2 or the carrier on which the luminescent substance 2 is deposited can be moved along the optical axis, so that the emission point is adjustable via a fine thread and a change of the radiation pattern is effected as soon as the emission point of the luminescent substance 2 from the focal point of Reflector 61 is moved out.
  • FIGS. 7 to 12 show embodiments of focusable arrangements in which the luminescent substances are reflective and emit light in the direction from which the laser is aligned with the luminescent substance.
  • FIG. 7 A first embodiment is shown in FIG. 7, in which the optics is a TIR lens 71, on whose front side two mutually aligned mirror surfaces 72, 72 'or prisms are arranged.
  • the semiconductor laser 3 is arranged so that it is preferably aligned parallel or at a small angle to the optical axis but spaced therefrom on the first mirror 72.
  • the semiconductor laser 3 is displaced and tilted for adjustment. From the semiconductor laser 3, in the operating state, the laser beam 5 is directed to the second mirror 72 '(or the prism), which reflects the laser beam 5 onto the reflective luminescent substance.
  • the luminescent substance 2 or its carrier is likewise rotatably mounted within the depression or the blind bore 52 of the TIR lens, wherein the focusing and defocusing can also take place via a displacement of the TIR lens.
  • a LC glass is provided as the cover plate 73, which can change from a transparent to an opaque state depending on an applied voltage in order to influence the spread of the system.
  • the embodiment according to FIG. 7 has the particular advantage that, in the event of damage to the lens or the lens, unhindered leakage of the laser beam 5 is prevented by the flashlight housing 74, which surrounds the lens 73 or the TIR lens in an annular manner and forms a front lens. has side annular surface 75, which is arranged in extension of the laser beam 5.
  • FIG. 8 A similar to Fig. 7 embodiment shows the embodiment of FIG. 8, where also a TIR lens 81 is used as optics, which has a rear blind hole 82 and a collecting lens part 83. Furthermore, the TIR lens is partially formed as a reflecting mirror 84 or as a reflective prism, wherein the mirror 84 is preferably located on the front periphery of the TIR lens.
  • the laser beam 5 emitted by the semiconductor laser 3 is directed via the mirror 84 to the front side of the luminescent substance 2, wherein to avoid unwanted reflections within the TIR lens 81 at the transition point between the TIR lens 81 and the rear blind hole 82 a light exit surface 85 is located, which is aligned perpendicular to the laser beam 5.
  • the luminescent substance 2 emits a cone of light due to the laser irradiation, which is deformed by the TIR lens.
  • the luminescent substance 2 is essentially immovable relative to the optics in this exemplary embodiment and is mounted so as to be capable of sliding movement for adjustment purposes.
  • a front lens element 86 is provided, which together with the TIR lens 81 has a suitable positive-negative geometry. With exact positioning, the geometries neutralize, while a displacement of the front lens element 86 leads to a variation of the scattering angle.
  • Fig. 9 shows an embodiment of the invention, which uses a hollow reflector 91 as optics, which has a front-side lens 92 with a collecting lens part 93.
  • the (reflective) luminescent substance 2 is arranged on a carrier, which is arranged displaceably within the hollow reflector along the optical axis.
  • the semiconductor laser 3 is fastened laterally to the cover disk and is aligned essentially perpendicular to the optical axis.
  • the laser beam 5 impinges through a light entry surface 94 in the lens and is deflected at the level of the optical axis by a mirror 95 or a prism on the luminescent substance.
  • the focusing and defocusing is preferably carried out by a displacement of the luminescent substance 2 in the direction of arrow D.
  • FIG. 10 shows a further embodiment, according to which the optics is formed as a paraboloid of revolution 101, on the optical axis of the luminescent substance 2 is deposited on a support.
  • a rear recess 102 allows the semiconductor laser 3 to directly irradiate the (reflective) luminescent substance 2 with the laser beam 5, so that the luminescent substance 2 emits incoherent light emitted from the paraboloid of revolution as a cone of light.
  • the focusing / defocusing takes place via a shift of the optics relative to the luminescent substance 2 in the direction of the arrow E.
  • Fig. 1 an embodiment is shown, which is formed substantially analogously to the embodiment of FIG.
  • the laser beam 5 can be variably projected onto the luminescent substance 2 by an optical system 1 1 1, which varies the light distribution.
  • a further optical system 1 12 is additionally and optionally arranged, which closes the hollow reflector 1 13 front side and determines the shape of the light cone.
  • FIGS. 12 and 13 each show a concrete embodiment of a flashlight housing 121, 131, in which an optic for a laser-based focusable flashlight is arranged.
  • a hollow reflector 122, 132 is provided with a rear opening 123, 133 for the laser beam in each case.
  • the holder 134 for the (in the present case reflective) luminescent substance is connected via three arms 135, 135 ', 135 "to an annular sleeve 136, which is mounted longitudinally moveable relative to the flashlight housing, so that the distance is variably adjustable between the holder 134 and the hollow reflector 132.
  • the arms 135, 135 ', 135 "each pass through a groove 137, 137', 137" and are displaceable therein.
  • the holder 125 according to the embodiment of FIG. 12 is fixedly connected to the flashlight housing 121, wherein the reflector is guided longitudinally axially displaceable guided in grooves 124, to allow a focusing / defocusing of the emitted light cone.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The invention relates to a flashlight having an optics (1) and a light source, which consists of at least one converter area having a luminescent substance (2), which in the operating state is irradiated by a laser (3) in such a way that the luminescent substance (2) emits incoherent light that is radiated by the optical component (1) as a light cone. In order to expand the application range of such flashlights, according to the invention, a selectable positioning of the converter area with respect to the optics (1) allows a focusing or defocusing of the light cone.

Description

Taschenlampe mit einer Lichtquelle  Flashlight with a light source
Die vorliegende Erfindung bezieht sich auf eine Taschenlampe mit einer Optik und einer Lichtquelle, die aus mindestens einem Konverterbereich mit einem Lumineszenzstoff besteht, der im Betriebszustand derart von einem Laser bestrahlt wird, dass der Lumineszenzstoff inkohärentes Licht emittiert, das von der Optik als Lichtkegel abgestrahlt wird. The present invention relates to a flashlight with an optic and a light source, which consists of at least one converter region with a luminescent substance which is irradiated in the operating state by a laser such that the luminescent substance emits incoherent light which is emitted by the optics as a cone of light ,
Taschenlampen sind bereits seit etlichen Jahrzehnten bekannt, wobei insbesondere die eingesetzten Lichtquellen einem fortlaufenden Wandel unterlegen waren. Flashlights have been known for several decades, and in particular the light sources used were inferior to a continuous change.
Zunächst sind als Lichtquelle herkömmliche Glühlampen eingesetzt worden, die sich aufgrund der relativ hohen Wärmeentwicklung und der Stoßempfindlichkeit als nachteilbehaftet erwiesen haben. Später wurden Glühlampen überwiegend durch kleine Halogenstrahler ersetzt, die auch aufgrund der geringen Wärmeverluste energieeffizienter als herkömmliche Glühlampen waren. Ende der 1990er-Jahre wurden sparsame und robuste Leuchtdioden mit einer solchen Lichtstärke entwickelt, dass sie die in den vorherigen Jahren verwendeten Glühlampen und Halogenstrahler nahezu komplett verdrängt haben. First, conventional light bulbs have been used as the light source, which have proved to be disadvantageous due to the relatively high heat generation and shock sensitivity. Later, incandescent bulbs were mainly replaced by small halogen lamps, which were also more energy efficient than conventional incandescent lamps due to their low heat losses. At the end of the 1990s, economical and robust light-emitting diodes with such a light intensity were developed that they almost completely displaced the incandescent and halogen lamps used in previous years.
Auch wenn die Leuchtstärke von modernen LED-Taschenlampen in Anbetracht des bereits geringen Energieverbrauches durchaus beachtlich ist, sind dennoch ein höherer Wirkungsgrad der Taschenlampe und eine Steigerung der Leuchtstärke wünschenswert, weshalb auch laserbasierte Lichtquellen verwendet werden. Bei solchen Lichtquellen wird ein Lumineszenzstoff durch die Bestrahlung eines Lasers angeregt und strahlt inkohärentes weißes oder farbiges Licht aus, das von einer Optik als Lichtkegel mit einem variablen Öffnungswinkel abgestrahlt wird. Although the luminosity of modern LED flashlights is quite remarkable in view of the already low energy consumption, a higher efficiency of the flashlight and an increase in luminosity are still desirable, which is why laser-based light sources are used. In such light sources, a luminescent substance is excited by the irradiation of a laser and emits incoherent white or colored light which is emitted by an optical system as a light cone with a variable opening angle.
Nachteilig an solchen Taschenlampen mit laserbasierten Lichtquellen ist, dass diese einen festen und nicht verstellbaren Lichtkegel erzeugen, was den Anwendungsbereich der Taschenlampen stark einschränkt. Es ist daher die Aufgabe der vorliegenden Erfindung, den Einsatzbereich solcher Taschenlampen zu erhöhen und eine Fokussierung des Lichtkegels zu ermöglichen. Diese Aufgabe wird durch die Taschenlampe nach Anspruch 1 gelöst, wonach erfindungsgemäß vorgesehen ist, dass eine einstellbare Positionierung des Konverterbereiches gegenüber der Optik eine Fokussierung des Lichtkegels erlaubt, was den Einsatzbereich der erfindungsgemäßen Taschenlampen deutlich erhöht, da auch nahe und ferne Bereiche vom Benutzer optimal ausgeleuchtet werden können. Ferner lassen sich im Vergleich zu herkömmlichen LED-Taschenlampen wesentlich größere Lichtstärken und mithin wesentlich größere Leuchtweiten erzeugen A disadvantage of such flashlights with laser-based light sources is that they produce a fixed and non-adjustable light cone, which greatly limits the scope of the flashlights. It is therefore the object of the present invention to increase the field of use of such flashlights and to enable a focusing of the light cone. This object is achieved by the flashlight according to claim 1, which is provided according to the invention that an adjustable positioning of the converter area relative to the optics allows focusing of the light cone, which significantly increases the range of use of flashlights according to the invention, as well as near and far areas optimally illuminated by the user can be. Furthermore, in comparison to conventional LED flashlights, it is possible to generate significantly greater light intensities and consequently considerably greater headlight ranges
(1500 m, 0,25 Ix). Darüber hinaus ist die lichtemittierende Fläche des Lumineszenzstoffes bzw. die Fläche des Konverterbereiches nahezu punktförmig und im Vergleich zu heutigen LED's deutlich kleiner, was Vorteile bei der Fokussierung des abgestrahlten Lichtkegels liefert. Aufgrund der geringen flächenhaften Ausdehnung werden Abbildungsfehler insbesondere im Randbereich des Lichtkegels minimiert, was den Lichtkegel scharf begrenzt, so dass eine nahezu homogene Ausleuchtung sowohl im Nah- als auch im Fernbereich erreicht wird. Darüber hinaus ergeben sich Vorteile bei der Abführung der auch bei dieser Lichtquelle erzeugten Wärme, da die Lichtquelle mit dem Halbleiterlaser und dem Konverterbereich zwei räumlich voneinander getrennte Wärmequelle besitzt, so dass jeweils nur ein Bruchteil der üblicherweise anfallenden Wärme abgeführt werden muss. Ferner wird der (1500 m, 0.25 lx). In addition, the light-emitting surface of the luminescent substance or the area of the converter area is almost punctiform and much smaller compared to today's LEDs, which provides advantages in focusing the emitted light cone. Due to the small areal extent aberrations are minimized, especially in the edge region of the light cone, which limits the light cone sharply, so that a nearly homogeneous illumination is achieved both in the near and far range. In addition, there are advantages in the removal of the heat generated in this light source, since the light source with the semiconductor laser and the converter area has two spatially separate heat source, so that only a fraction of the heat usually incurred must be dissipated. Furthermore, the
Leuchtstoff nicht durch die Abwärme des Halbleiterlasers erhitzt. Phosphor is not heated by the waste heat of the semiconductor laser.
Weitere bevorzugte Ausgestaltungen der Erfindung werden nachfolgend sowie in den Unteransprüchen wiedergegeben. Further preferred embodiments of the invention are given below and in the subclaims.
Nach einer ersten bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass als Laser ein Halbleiterlaser verwendet wird, der einen Laserstrahl mit einer Wellenlänge von (450 + 50) nm emittiert. Insbesondere zusammen mit den bevorzugt eingesetzten Lumineszenzstoffen, beispielsweise YAG:Ce oder (Ba,Sr,Ca)2 Sis N8:Eu, hat sich die Verwendung von blauen Halbleiterlasern als vorteilhaft erwiesen. Aufgrund der systembedingten großen Abstrahlwinkel von Halbleiterlasern werden Primäroptiken eingesetzt, die den Laserstrahl in ein paralleles Lichtbündel mit einem geringen Querschnitt verformen. Zur Veränderung des abgestrahlten Lichtkegels ist nach einer bevorzugten Ausgestaltung der Erfindung vorgesehen, dass die Optik und der Konverterbereich relativ zueinander verstellbar sind. Hierzu kann die formgebende Optik längsaxial innerhalb der Taschenlampe verschiebbar sein oder der Konverterbereich ist verschiebbar innerhalb des Taschenlampengehäuses oder des Taschenlampenkopfes befestigt. According to a first preferred embodiment of the invention it is provided that a semiconductor laser is used as the laser which emits a laser beam having a wavelength of (450 + 50) nm. In particular, together with the preferably used luminescent substances, for example YAG: Ce or (Ba, Sr, Ca) 2SisN 8 : Eu, the use of blue semiconductor lasers has proved to be advantageous. Due to the systemic large radiation angle of semiconductor lasers primary optics are used, which deform the laser beam into a parallel light beam with a small cross-section. In order to change the emitted light cone, it is provided according to a preferred embodiment of the invention that the optics and the converter region are adjustable relative to each other. For this purpose, the shaping optics may be longitudinally axially displaceable within the flashlight or the converter area is slidably mounted within the flashlight housing or the flashlight head.
Alternativ kann die Taschenlampe eine Applikation von zwei oder mehr Linsenelementen aufweisen, die sich bei exakter Positionierung, insbesondere in unmittelbarer Anlage, optisch neutralisieren und bei zunehmendem Abstand einen größeren Streuwinkel erzeugen. Alternatively, the flashlight may have an application of two or more lens elements, which optically neutralize in the case of exact positioning, in particular in direct contact, and generate a larger scattering angle as the distance increases.
Auch die Verwendung eines„Liquid-Crystal-Glases" (LC-Glases) ist beispielsweise als Abschlussscheibe des Systems vorgesehen, welches spannungsabhängig zwischen einem transparenten und einem opaken Zustand wechseln kann, um die Streubreite des Systems zu beeinflussen. The use of a "liquid crystal glass" (LC glass) is also provided, for example, as a lens of the system, which can change voltage-dependent between a transparent and an opaque state in order to influence the spread of the system.
Darüber hinaus ist nach einer vorteilhaften Ausgestaltung der Erfindung vorgesehen, dass mehrere unterschiedlich positionierte Lumineszenzstoffe bzw. Konverterbereiche angeordnet sind, so dass deren unterschiedliche Positionierung gegenüber der Optik die Erzeugung unterschiedlicher Lichtbilder erlaubt. Es ist auch möglich, an unterschiedlichen Positionen der Konverterbereiche unterschiedliche Lumineszenzstoffe anzuordnen, die wahlweise von dem Laser angeregt werden und unterschiedliche Lichtfarben emittieren. In addition, according to an advantageous embodiment of the invention, it is provided that a plurality of differently positioned luminescent substances or converter regions are arranged, so that their different positioning relative to the optics allows the generation of different light images. It is also possible to arrange different luminescent substances at different positions of the converter regions, which are selectively excited by the laser and emit different light colors.
In der Praxis haben sich im Wesentlichen zwei verschiedene Varianten durchgesetzt, wie der Lumineszenzstoff von dem Laser angestrahlt wird und wie inkohärentes Licht von einem Lumineszenzstoff emittiert wird. Hierzu kann der Lumineszenzstoff nach einer ersten Ausgestaltung der Erfindung transmissiv ausgebildet sein. Das bedeutet, dass durch eine rückwärtige direkte oder indirekte Bestrahlung des Lumineszenzstoffes durch den Laser eine nach vorne gerichtete Abstrahlung des inkohärenten Lichtes erfolgt, womit das Licht durch den Lumineszenzstoff nahezu vollstän- dig hindurchtritt. Das von dem Lumineszenzstoff emittierte inkohärente Licht wird anschließend von der Optik in der gewünschten Weise umgelenkt, also fokussiert oder defokussiert. Der Lumineszenzstoff kann hierzu in Form einer gesinterten Keramik vorliegen, so dass der Lumineszenzstoff selbsttragend ausgebildet ist. In practice, essentially two different variants have prevailed, as the luminescent substance is irradiated by the laser and how incoherent light is emitted by a luminescent substance. For this purpose, the luminescent substance may be designed to be transmissive according to a first embodiment of the invention. This means that by a direct or indirect backward irradiation of the luminescent substance by the laser, a forward emission of the incoherent light takes place, whereby the light is almost completely absorbed by the luminescent substance. dig passes. The incoherent light emitted by the luminescent substance is then deflected by the optics in the desired manner, ie focused or defocused. For this purpose, the luminescent substance may be present in the form of a sintered ceramic, so that the luminescent substance is self-supporting.
Alternativ lässt sich der Lumineszenzstoff auf einem transparenten Träger, wie beispielsweise Saphirglas, abscheiden. Alternatively, the luminescent substance can be deposited on a transparent support, such as sapphire glass.
Nach einer zweiten Variante können reflektive Lumineszenzstoffe verwendet werden, die durch eine frontseitige direkte oder indirekte Bestrahlung mit dem Laser eine nach vorne gerichtete Abstrahlung des inkohärenten Lichtes erzeugen. Der According to a second variant, reflective luminescent substances can be used, which generate a front-facing direct irradiation of the incoherent light by a front-side direct or indirect irradiation with the laser. Of the
Lumineszenzstoff kann hierzu ebenfalls als gesinterte Keramik vorliegen, deren Rückseite eine reflektierende Aluminiumschicht aufweist. Alternativ kann der For this purpose, luminescent substance can likewise be present as a sintered ceramic whose rear side has a reflective aluminum layer. Alternatively, the
Lumineszenzstoff unmittelbar auf einem Aluminiumträger abgeschieden werden oder es wird rückwärtig verspiegeltes Saphirglas als Träger für den Lumineszenzstoff verwendet. Luminescent be deposited directly on an aluminum support or it is used rear mirrored sapphire crystal as a carrier for the luminescent.
In beiden Fällen ist vorgesehen, eine mittelbare Bestrahlung des Lumineszenzstoffes dadurch zu ermöglichen, dass der Laserstrahl über einen oder mehrere Spiegel oder über einen oder mehrere Prismen auf den Lumineszenzstoff gerichtet wird. In both cases it is provided to allow indirect irradiation of the luminescent substance by directing the laser beam over one or more mirrors or via one or more prisms onto the luminescent substance.
Konkrete Ausgestaltungen der vorliegenden Erfindung werden nachfolgend anhand der Figuren 1 bis 13 erläutert, die unterschiedliche Varianten von fokussierbaren Lampen zeigen. Concrete embodiments of the present invention will be explained below with reference to FIGS. 1 to 13, which show different variants of focusable lamps.
Der Wechsel zwischen den gewünschten Lichtverteilungen, insbesondere zwischen gebündeltem (fokussiertem) und gestreutem (defokussiertem) Licht, wird in unterschiedlicher Weise durchgeführt, wobei die verschiedenen Konzepte in den Figuren 1 a bis 1 h schematisch dargestellt sind. The change between the desired light distributions, in particular between focused (focused) and scattered (defocused) light, is carried out in different ways, the different concepts being schematically illustrated in FIGS. 1a to 1h.
Nach einer ersten konkreten Ausgestaltung ist vorgesehen, dass die Optik 1 gegenüber dem Lumineszenzstoff 2 und dem Laser 3 stufenlos oder gerastet einstellbar bzw. in Pfeilrichtung A verschiebbar ist, was Lichtkegel mit unterschiedlichen Öff- nungswinkeln α, α' erzeugt (siehe Figur 1 a, 1 b). Hierbei wird vorzugsweise als Optik 1 eine TIR-Linse verwendet, die eine rückwärtige Ausnehmung 4 besitzt und innerhalb der der Lumineszenzstoff verschiebbar angeordnet ist. According to a first specific embodiment, provision is made for the optics 1 to be steplessly adjustable or latched relative to the luminescent substance 2 and the laser 3, or to be displaceable in the direction of the arrow A, which produces light cones with different apertures. ing angles α, α 'generated (see Figure 1 a, 1 b). In this case, a TIR lens is preferably used as optics 1, which has a rear recess 4 and within which the luminescent substance is arranged displaceably.
Ein weiteres Beispiel für eine Fokussierung und Defokussierung des abgestrahlten Lichtkegels ist in Figur 1 c gezeigt. Hiernach erfolgt mittels einer Primäroptik 6 eine variable Defokussierung des Laserstrahls 5 auf den Lumineszenzstoff 2, so dass eine wählbare Fläche des Lumineszenzstoffes 2 von dem Laser 3 bestrahlt wird. Ergänzend erfolgt die Justage des Lumineszenzstoffes 2 indem entweder die Optik 1 , die im dargestellten Ausführungsbeispiel als Hohlreflektor ausgebildet ist, oder der Lumineszenzstoff 2 selbst in Pfeilrichtung B verschiebbar auf einer vorzugsweise dreibeinigen Halterung (nicht dargestellt) befestigt ist. Another example of focusing and defocusing of the emitted light cone is shown in FIG. 1 c. Thereafter, by means of a primary optics 6 a variable defocusing of the laser beam 5 on the luminescent substance 2, so that a selectable surface of the luminescent substance 2 is irradiated by the laser 3. In addition, the adjustment of the luminescent substance 2 by either the optics 1, which is formed in the illustrated embodiment as a hollow reflector, or the luminescent material 2 itself in the direction of arrow B slidably mounted on a preferably three-legged holder (not shown).
Figur 1 d und 1 e zeigen eine weitere Alternative, die Geometrie, insbesondere den Öffnungswinkel eines abgestrahlten Lichtkegels, zu verändern, indem eine Applikation 7 bestehend aus 2 Linsenelementen 8, 8' mit einer korrespondierenden Positiv- Negativ-Geometrie in dem Lichtstrahl angeordnet ist. Liegen die Linsenelemente 8, 8' aneinander an (siehe Figur 1 d) neutralisieren sich die Geometrien und der Lichtkegel verlässt unverändert die Applikation 7. Bei einer beabstandeten Positionierung der Linsenelemente 8, 8' (siehe Figur 1 e) wird der Streuwinkel des Lichtkegels verändert. FIGS. 1 d and 1 e show a further alternative for changing the geometry, in particular the aperture angle of a radiated beam of light, by arranging an application 7 consisting of 2 lens elements 8, 8 'with a corresponding positive-negative geometry in the light beam. If the lens elements 8, 8 'abut one another (see FIG. 1 d), the geometries neutralize and the cone of light leaves the application 7 unchanged. With a spaced positioning of the lens elements 8, 8' (see FIG. 1 e), the scattering angle of the light cone is changed ,
Darüber hinaus ist die Verwendung von LC-Glas 10 vorgesehen (Figur 1 f, 1 g), das beispielsweise als Abschlussscheibe an der Stirnseite einer Taschenlampe angeordnet sein kann und deren optische Eigenschaften durch eine angelegte Spannung verändert wird. Insbesondere kann ein solches LC-Glas 10 durch Anlegen einer Spannung von einem transparenten (Figur 1 f) in einem opaken Zustand (Figur 1 g) überführt werden, der eine andere Streuung des Lichtkegels erzeugt. In addition, the use of LC glass 10 is provided (Figure 1 f, 1 g), which may be arranged for example as a cover plate on the front side of a flashlight and their optical properties is changed by an applied voltage. In particular, such an LC glass 10 can be converted by applying a voltage from a transparent (Figure 1 f) in an opaque state (Figure 1 g), which generates a different scattering of the light cone.
Schließlich ist nach einer weiteren konkreten Ausführungsform der Erfindung vorgesehen, dass mehrere unterschiedlich positionierte Lumineszenzstoffe 2, 2' unterschiedliche Lichtverteilungen erzeugen. Figur 1 h zeigt beispielhaft, dass ein Laser- strahl 5 entweder direkt auf einen ersten Lumineszenzstoff 2 gestrahlt wird, der anschließend inkohärentes Licht emittiert, oder über eine Anordnung von justierbaren Spiegeln 1 1 , 1 1 ' oder Prismen auf einen zweiten Lumineszenzstoff 2' gelenkt wird, der in Bezug auf eine (nicht dargestellte) Optik anders positioniert ist. Hierdurch ergeben sich erforderlichenfalls unterschiedliche Lichtverteilungen. Durch die Verwendung von unterschiedlichen Lumineszenzstoffen 2, 2' lassen sich auch unterschiedliche Lichtfarben erzeugen, so dass ein Wechsel der Leuchtfarben möglich ist. Finally, according to a further concrete embodiment of the invention, it is provided that a plurality of differently positioned luminescent substances 2, 2 'produce different light distributions. FIG. 1 h shows by way of example that a laser beam 5 either directly onto a first luminescent substance 2, which subsequently emits incoherent light, or is directed via an array of adjustable mirrors 11, 11 'or prisms onto a second luminescent substance 2' which is in relation to a (not shown) ) Optics is positioned differently. This results, if necessary, different light distributions. By using different luminescent substances 2, 2 ', it is also possible to produce different light colors, so that a change of the luminous colors is possible.
Die vorbeschriebenen Konzepte zur Veränderung eines Lichtkegels einer laserbasierten Taschenlampe werden in den nachfolgend erläuterten Ausführungsformen umgesetzt, wobei in den Fig. 2 bis 6 transmissive und in den Fig. 7 bis 1 1 reflektive Lumineszenzstoffe verwendet werden. The above-described concepts for changing a light cone of a laser-based flashlight are implemented in the embodiments explained below, in which FIGS. 2 to 6 transmissive and in FIGS. 7 to 1 1 reflective luminescent substances are used.
Das Ausführungsbeispiel nach Fig. 2 zeigt einen Hohlreflektor 21 als Optik, der eine rückwärtige Ausnehmung 22 besitzt. Der Lumineszenzstoff ist auf einem (translu- zenten) Träger 23 abgeschieden, so dass der Laserstrahl 5, der von der Laserdiode 3 emittiert wird, rückwärtig auf den Lumineszenzstoff trifft. Der Lumineszenzstoff emittiert als nahezu punktförmige Lichtquelle mit lambertscher Charakteristik einen nach vorne gerichteten Lichtkegel, der von dem Reflektor 21 reflektiert und umgelenkt wird. Um den Emissionspunkt auf dem Lumineszenzstoff zu justieren, ist der Halbleiterlaser in Pfeilrichtung C und mithin senkrecht zur optischen Achse verschiebbar. Ebenso ist die Position des Trägers des Lumineszenzstoffes innerhalb der Optik durch ein Feingewinde justierbar. Die Änderung der Lichtverteilung selbst wird durch eine Verschiebung des Hohlreflektors 21 gegenüber dem Lumineszenzstoff bewirkt. The embodiment of FIG. 2 shows a hollow reflector 21 as optics, which has a rear recess 22. The luminescent substance is deposited on a (translucent) carrier 23, so that the laser beam 5 emitted by the laser diode 3 hits the luminescent substance backwards. The luminescent substance emits as a nearly punctiform light source with Lambertian characteristic a forwardly directed cone of light, which is reflected by the reflector 21 and deflected. In order to adjust the emission point on the luminescent substance, the semiconductor laser is displaceable in the direction of arrow C and thus perpendicular to the optical axis. Likewise, the position of the carrier of the luminescent substance within the optics is adjustable by a fine thread. The change in the light distribution itself is caused by a displacement of the hollow reflector 21 relative to the luminescent substance.
Fig. 3 zeigt ein weiteres Ausführungsbeispiel, bei dem der Lumineszenzstoff auf transluzenten Trägern 31 , 31 ' abgeschieden ist, wobei zwei unterschiedlich positionierte Träger 31 , 31 ' vorgesehen sind, die auf der optischen Achse hintereinander angeordnet sind. Als Optik wird bei diesem Ausführungsbeispiel ein Hohlreflektor 32 verwendet. In einer ersten Position ist der Laserstrahl 5 auf einen ersten Lumineszenzstoff ausgerichtet, der einen ersten Lichtkegel mit einer bestimmten Lichtfarbe und/oder einem bestimmten Öffnungswinkel emittiert. Um eine andere Lichtverteilung und/oder eine andere Lichtfarbe zu erzeugen, wird der Laserstrahl 5 wahlweise über eine Anordnung zweier Spiegel 33, 33' oder Prismen auf den zweiten Lumineszenzstoff ausgerichtet, der ebenfalls transmissiv ausgebildet ist und einen Lichtkegel erzeugt, der von der Optik 1 reflektiert wird. Der erste Spiegel 33 ist verschwenkbar, verdrehbar oder verschiebbar gelagert und lässt sich in den Laserstrahl 5 verschieben. Der zweite Spiegel 33' ist fest mit der Optik 1 oder dem Hohlreflektor 32 verbunden und zusammen mit dem ersten Spiegel 33 justierbar. FIG. 3 shows a further embodiment in which the luminescent substance is deposited on translucent carriers 31, 31 ', wherein two differently positioned carriers 31, 31' are provided, which are arranged one behind the other on the optical axis. As optics, a hollow reflector 32 is used in this embodiment. In a first position, the laser beam 5 is aligned with a first luminescent substance which has a first light cone with a specific light color and / or a certain opening angle emitted. In order to produce a different light distribution and / or a different light color, the laser beam 5 is selectively aligned via an array of two mirrors 33, 33 'or prisms on the second luminescent material, which is also formed transmissive and generates a cone of light, the optical system of the first is reflected. The first mirror 33 is pivotally mounted, rotatable or displaceable and can be moved into the laser beam 5. The second mirror 33 'is fixedly connected to the optics 1 or the hollow reflector 32 and adjustable together with the first mirror 33.
Eine weitere Ausführungsform einer fokussierbaren laserbasierten Taschenlampe ist in Fig. 4 dargestellt, die im Wesentlichen der Ausführungsvariante nach Fig. 2 entspricht. Ergänzend ist eine Linse oder Abschlussscheibe 41 vorgesehen, um den Lichtkegel in seine gewünschte Geometrie umzulenken. Another embodiment of a focusable laser-based flashlight is shown in FIG. 4, which essentially corresponds to the embodiment variant according to FIG. 2. In addition, a lens or lens 41 is provided to redirect the cone of light to its desired geometry.
Fig. 5 zeigt eine vergleichbare Ausgestaltung, bei der die Optik 1 gemäß der Ausführungsform nach Fig. 2 durch eine TIR-Linse 51 mit einer rückwärtigen Vertiefung, die im dargestellten Fall als Sacklochbohrung 52 ausgebildet ist, und einem Sammellinsenteil 53 ersetzt wird, die ebenfalls entlang der optischen Achse verschiebbar ist. Der Emissionspunkt auf dem Lumineszenzstoff wird durch Translation der Laserlichtquelle justiert, die Position des Lumineszenzstoffes in der Optik durch ein Feingewinde. Der Wechsel zwischen den Lichtverteilungen erfolgt anschließend durch eine Verschiebung der Optik in Pfeilrichtung. Fig. 5 shows a comparable embodiment, in which the optical system 1 according to the embodiment of FIG. 2 by a TIR lens 51 with a rear recess, which is formed in the illustrated case as a blind hole 52, and a collecting lens part 53 is replaced, which also along the optical axis is displaceable. The emission point on the luminescent substance is adjusted by translation of the laser light source, the position of the luminescent substance in the optic through a fine thread. The change between the light distributions then takes place by a shift of the optics in the direction of the arrow.
Im Gegensatz zu den Ausführungsformen nach den Fig. 2 bis 5 erfolgt die Lichtemission des (transmissiven) Lumineszenzstoffes gemäß der Ausführungsform nach Fig. 6 nach hinten in einen Reflektor 61 , der beispielsweise als Rotationsparaboloid ausgebildet ist. Der Reflektor 61 besitzt eine von der optischen Achse beabstandete Ausnehmung 62 und eine frontseitige Abschlussscheibe 63, die in einem Teilbereich als Reflektor 64 ausgebildet ist. Der Halbleiterlaser 3 ist derart angeordnet, dass der Laserstrahl 5 durch die Ausnehmung 62 unmittelbar auf den Spiegel 64 ausgerichtet ist, so dass der Laserstrahl 5 im Betriebszustand auf einen (transmissiven) Lumineszenzstoff 2 trifft und innerhalb des Reflektors 61 angeordnet ist. Der Lumines- zenzstoff 2 bzw. der Träger, auf dem der Lumineszenzstoff 2 abgeschieden ist, lässt sich entlang der optischen Achse verschieben, so dass der Emissionspunkt über ein Feingewinde justierbar ist und ein Wechsel der Abstrahlcharakteristik bewirkt wird, sobald der Emissionspunkt des Lumineszenzstoffes 2 aus dem Brennpunkt des Reflektors 61 heraus bewegt wird. In contrast to the embodiments according to FIGS. 2 to 5, the light emission of the (transmissive) luminescent substance according to the embodiment according to FIG. 6 takes place to the rear into a reflector 61, which is embodied, for example, as a paraboloid of revolution. The reflector 61 has a recess 62 spaced from the optical axis and a front end lens 63, which is formed in a partial region as a reflector 64. The semiconductor laser 3 is arranged in such a way that the laser beam 5 is aligned directly on the mirror 64 through the recess 62, so that the laser beam 5 strikes a (transmissive) luminescent substance 2 in the operating state and is arranged within the reflector 61. The luminescent zenzstoff 2 or the carrier on which the luminescent substance 2 is deposited, can be moved along the optical axis, so that the emission point is adjustable via a fine thread and a change of the radiation pattern is effected as soon as the emission point of the luminescent substance 2 from the focal point of Reflector 61 is moved out.
Im Gegensatz zu den Fig. 2 bis 6 zeigen die Fig. 7 bis 12 Ausführungsbeispiele von fokussierbaren Anordnungen, bei dem die Lumineszenzstoffe reflektiv ausgebildet sind und Licht in die Richtung emittieren, von der aus der Laser auf den Lumineszenzstoff ausgerichtet ist. In contrast to FIGS. 2 to 6, FIGS. 7 to 12 show embodiments of focusable arrangements in which the luminescent substances are reflective and emit light in the direction from which the laser is aligned with the luminescent substance.
Eine erste Ausgestaltung ist in Fig. 7 dargestellt, bei der die Optik eine TIR-Linse 71 ist, an deren Stirnseite zwei zueinander ausgerichtete Spiegelflächen 72, 72' oder Prismen angeordnet sind. Der Halbleiterlaser 3 ist derart angeordnet, dass er vorzugsweise parallel oder mit einem kleinen Winkel zur optischen Achse aber beabstandet hierzu auf den ersten Spiegel 72 ausgerichtet ist. Der Halbleiterlaser 3 ist zur Justage verschieb- und verkippbar gelagert. Von dem Halbleiterlaser 3 aus wird im Betriebszustand der Laserstrahl 5 auf den zweiten Spiegel 72' (oder das Prisma) gelenkt, der den Laserstrahl 5 auf den reflektiven Lumineszenzstoff reflektiert. Der Lumineszenzstoff 2 bzw. dessen Träger ist ebenfalls verdrehbar innerhalb der Vertiefung oder der Sacklochbohrung 52 der TIR-Linse gelagert, wobei die Fokussierung und Defokussierung auch über eine Verschiebung der TIR-Linse erfolgen kann. Nach einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass als Abschlussscheibe 73 ein LC-Glas vorgesehen ist, welches in Abhängigkeit einer angelegten Spannung von einem transparenten in einen opaken Zustand wechseln kann, um die Streubreite des Systems zu beeinflussen. A first embodiment is shown in FIG. 7, in which the optics is a TIR lens 71, on whose front side two mutually aligned mirror surfaces 72, 72 'or prisms are arranged. The semiconductor laser 3 is arranged so that it is preferably aligned parallel or at a small angle to the optical axis but spaced therefrom on the first mirror 72. The semiconductor laser 3 is displaced and tilted for adjustment. From the semiconductor laser 3, in the operating state, the laser beam 5 is directed to the second mirror 72 '(or the prism), which reflects the laser beam 5 onto the reflective luminescent substance. The luminescent substance 2 or its carrier is likewise rotatably mounted within the depression or the blind bore 52 of the TIR lens, wherein the focusing and defocusing can also take place via a displacement of the TIR lens. According to a particular embodiment of the invention, it is provided that a LC glass is provided as the cover plate 73, which can change from a transparent to an opaque state depending on an applied voltage in order to influence the spread of the system.
Die Ausführungsform gemäß Abbildung 7 hat insbesondere den Vorteil, dass im Falle einer Beschädigung der Linse bzw. der Abschlussscheibe ein ungehindertes Austreten des Laserstrahls 5 durch das Taschenlampengehäuse 74 verhindert wird, das ringförmig die Abschlussscheibe 73 bzw. die TIR-Linse umgreift und eine front- seitige Ringfläche 75 aufweist, die in Verlängerung des Laserstrahls 5 angeordnet ist. The embodiment according to FIG. 7 has the particular advantage that, in the event of damage to the lens or the lens, unhindered leakage of the laser beam 5 is prevented by the flashlight housing 74, which surrounds the lens 73 or the TIR lens in an annular manner and forms a front lens. has side annular surface 75, which is arranged in extension of the laser beam 5.
Eine zu Fig. 7 ähnliche Ausgestaltung zeigt das Ausführungsbeispiel nach Fig. 8, wo ebenfalls eine TIR-Linse 81 als Optik verwendet wird, die eine rückwärtige Sacklochbohrung 82 und einen Sammellinsenteil 83 besitzt. Ferner ist die TIR-Linse bereichsweise als reflektierender Spiegel 84 bzw. als reflektierendes Prisma ausgebildet, wobei sich der Spiegel 84 vorzugsweise an der vorderen Peripherie der TIR- Linse befindet. Im Betriebszustand wird der von dem Halbleiterlaser 3 emittierte Laserstrahl 5 über den Spiegel 84 auf die Vorderseite des Lumineszenzstoffes 2 gerichtet, wobei sich zur Vermeidung von unerwünschten Reflektionen innerhalb der TIR-Linse 81 an der Übergangsstelle zwischen der TIR-Linse 81 und der rückwärtigen Sacklochbohrung 82 eine Lichtaustrittsfläche 85 befindet, die senkrecht zum Laserstrahl 5 ausgerichtet ist. Der Lumineszenzstoff 2 emittiert infolge der Laserbestrahlung einen Lichtkegel, der von der TIR-Linse verformt wird. Der Lumineszenzstoff 2 ist gegenüber der Optik in diesem Ausführungsbeispiel im Wesentlichen unverschiebbar und geringfügig zu Justagezwecken schiebbeweglich gelagert. Um eine variierbare Fokussierung oder Defokussierung zu ermöglichen ist ein frontseitiges Linsenelement 86 vorgesehen, das zusammen mit der TIR-Linse 81 eine passende positiv-negativ-Geometrie besitzt. Bei exakter Positionierung neutralisieren sich die Geometrien, während eine Verschiebung des vorderen Linsenelementes 86 zu einer Variation des Streuwinkels führt. A similar to Fig. 7 embodiment shows the embodiment of FIG. 8, where also a TIR lens 81 is used as optics, which has a rear blind hole 82 and a collecting lens part 83. Furthermore, the TIR lens is partially formed as a reflecting mirror 84 or as a reflective prism, wherein the mirror 84 is preferably located on the front periphery of the TIR lens. In the operating state, the laser beam 5 emitted by the semiconductor laser 3 is directed via the mirror 84 to the front side of the luminescent substance 2, wherein to avoid unwanted reflections within the TIR lens 81 at the transition point between the TIR lens 81 and the rear blind hole 82 a light exit surface 85 is located, which is aligned perpendicular to the laser beam 5. The luminescent substance 2 emits a cone of light due to the laser irradiation, which is deformed by the TIR lens. The luminescent substance 2 is essentially immovable relative to the optics in this exemplary embodiment and is mounted so as to be capable of sliding movement for adjustment purposes. In order to enable variable focusing or defocusing, a front lens element 86 is provided, which together with the TIR lens 81 has a suitable positive-negative geometry. With exact positioning, the geometries neutralize, while a displacement of the front lens element 86 leads to a variation of the scattering angle.
Fig. 9 zeigt eine Ausgestaltung der Erfindung, die einen Hohlreflektor 91 als Optik verwendet, der eine frontseitige Abschlussscheibe 92 mit einem Sammellinsenteil 93 besitzt. Der (reflektive) Lumineszenzstoff 2 ist auf einem Träger angeordnet, der innerhalb des Hohlreflektors entlang der optischen Achse verschiebbar angeordnet ist. Der Halbleiterlaser 3 ist bei dieser Ausführungsform seitlich an der Abschlussscheibe befestigt und ist im Wesentlichen senkrecht zur optischen Achse ausgerichtet. Der Laserstrahl 5 trifft durch eine Lichteintrittsfläche 94 in die Abschlussscheibe ein und wird auf Höhe der optischen Achse durch einen Spiegel 95 oder ein Prisma auf den Lumineszenzstoff umgelenkt. Dort wird von dem Lumineszenzstoff 2 inkohä- rentes Licht emittiert, das als Lichtkegel von der Optik und der Abschlussscheibe in der gewünschten Geometrie abgestrahlt wird. Die Fokussierung und Defokussierung erfolgt vorzugsweise durch eine Verschiebung des Lumineszenzstoffes 2 in Pfeilrichtung D. Fig. 9 shows an embodiment of the invention, which uses a hollow reflector 91 as optics, which has a front-side lens 92 with a collecting lens part 93. The (reflective) luminescent substance 2 is arranged on a carrier, which is arranged displaceably within the hollow reflector along the optical axis. In this embodiment, the semiconductor laser 3 is fastened laterally to the cover disk and is aligned essentially perpendicular to the optical axis. The laser beam 5 impinges through a light entry surface 94 in the lens and is deflected at the level of the optical axis by a mirror 95 or a prism on the luminescent substance. There is incoherent from the luminescent substance 2 emitted light that is emitted as a cone of light from the optics and the lens in the desired geometry. The focusing and defocusing is preferably carried out by a displacement of the luminescent substance 2 in the direction of arrow D.
Aus Fig. 10 geht ein weiteres Ausführungsbeispiel hervor, nach dem die Optik als Rotationsparaboloid 101 ausgebildet ist, auf dessen optischer Achse der Lumineszenzstoff 2 auf einem Träger abgeschieden ist. Eine rückwärtige Ausnehmung 102 erlaubt es dem Halbleiterlaser 3 unmittelbar den (reflektiven) Lumineszenzstoff 2 mit dem Laserstrahl 5 zu bestrahlen, so dass der Lumineszenzstoff 2 inkohärentes Licht aussendet, das von dem Rotationsparaboloid als Lichtkegel abgegeben wird. Die Fokussierung/Defokussierung erfolgt über eine Verschiebung der Optik gegenüber dem Lumineszenzstoff 2 in Pfeilrichtung E. From Fig. 10 shows a further embodiment, according to which the optics is formed as a paraboloid of revolution 101, on the optical axis of the luminescent substance 2 is deposited on a support. A rear recess 102 allows the semiconductor laser 3 to directly irradiate the (reflective) luminescent substance 2 with the laser beam 5, so that the luminescent substance 2 emits incoherent light emitted from the paraboloid of revolution as a cone of light. The focusing / defocusing takes place via a shift of the optics relative to the luminescent substance 2 in the direction of the arrow E.
Schließlich wird in Fig. 1 1 eine Ausführungsform gezeigt, die im Wesentlichen analog zu der Ausführungsform nach Fig. 10 ausgebildet ist. Allerdings kann der Laserstrahl 5 durch eine Optik 1 1 1 variabel auf den Lumineszenzstoff 2 projiziert werden, was die Lichtverteilung variiert. Ferner ist ergänzend und optional eine weitere Optik 1 12 angeordnet, die den Hohlreflektor 1 13 frontseitig abschließt und die Form des Lichtkegels bestimmt. Finally, in Fig. 1 1, an embodiment is shown, which is formed substantially analogously to the embodiment of FIG. However, the laser beam 5 can be variably projected onto the luminescent substance 2 by an optical system 1 1 1, which varies the light distribution. Furthermore, a further optical system 1 12 is additionally and optionally arranged, which closes the hollow reflector 1 13 front side and determines the shape of the light cone.
Die Fig. 12 und 13 zeigen jeweils eine konkrete Ausführungsform eines Taschenlampengehäuses 121 , 131 , in dem eine Optik für eine laserbasierte fokussierbare Taschenlampe angeordnet ist. Bei den Ausführungsformen ist jeweils ein Hohlreflektor 122, 132 mit einer rückwärtigen Öffnung 123, 133 für den Laserstrahl vorgesehen. Bei der Ausführungsform nach Fig. 13 ist der Halter 134 für den (im vorliegenden Fall reflektiv ausgebildeten) Lumineszenzstoff über drei Arme 135, 135', 135" mit einer Ringhülse 136 verbunden, die längsaxial beweglich gegenüber dem Taschenlampengehäuse gelagert ist, so dass der Abstand zwischen dem Halter 134 und dem Hohlreflektor 132 variabel verstellbar ist. Die Arme 135, 135', 135" durchgreifen jeweils eine Nut 137, 137', 137" und sind hierin verschiebbar. Demgegenüber ist der Halter 125 gemäß der Ausführungsform nach Fig. 12 fest mit dem Taschenlampengehäuse 121 verbunden, wobei der Reflektor in Nuten 124 geführt längsaxial verschiebbar ist, um eine Fokussierung/Defokussierung des abgestrahlten Lichtkegels zu erlauben. FIGS. 12 and 13 each show a concrete embodiment of a flashlight housing 121, 131, in which an optic for a laser-based focusable flashlight is arranged. In the embodiments, a hollow reflector 122, 132 is provided with a rear opening 123, 133 for the laser beam in each case. In the embodiment according to FIG. 13, the holder 134 for the (in the present case reflective) luminescent substance is connected via three arms 135, 135 ', 135 "to an annular sleeve 136, which is mounted longitudinally moveable relative to the flashlight housing, so that the distance is variably adjustable between the holder 134 and the hollow reflector 132. The arms 135, 135 ', 135 "each pass through a groove 137, 137', 137" and are displaceable therein. In contrast, the holder 125 according to the embodiment of FIG. 12 is fixedly connected to the flashlight housing 121, wherein the reflector is guided longitudinally axially displaceable guided in grooves 124, to allow a focusing / defocusing of the emitted light cone.

Claims

Ansprüche claims
1 . Taschenlampe mit einer Optik (1 ) und einer Lichtquelle, die aus mindestens einem Konverterbereich mit einem Lumineszenzstoff (2) besteht, der im Betriebszustand derart von einem Laser (3) bestrahlt wird, dass der Lumineszenzstoff (2) inkohärentes Licht emittiert, das von der Optik (1 ) als Lichtkegel abgestrahlt wird, 1 . Flashlight with an optical system (1) and a light source, which consists of at least one converter region with a luminescent substance (2) which is irradiated in the operating state by a laser (3) in such a way that the luminescent substance (2) emits incoherent light which is emitted by the laser Optics (1) is emitted as a cone of light,
d a d u r c h g e k e n n z e i c h n e t, d a s s  d a d u r c h e s e n c i n e s, d a s s
eine wählbare Positionierung des Konverterbereiches gegenüber der a selectable positioning of the converter area in relation to the
Optik (1 ) eine Fokussierung oder Defokussierung des Lichtkegels erlaubt. Optics (1) allows focusing or defocusing of the light cone.
2. Taschenlampe nach Anspruch 1 , dadurch gekennzeichnet, dass der 2. Flashlight according to claim 1, characterized in that the
Laser (3) ein Halbleiterlaser mit einer Wellenlänge von (450 ± 50) nm ist.  Laser (3) is a semiconductor laser having a wavelength of (450 ± 50) nm.
3. Taschenlampe nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Optik (1 ) und der Konverterbereich relativ zueinander verstellbar sind, wobei die Optik (1 ) vorzugsweise als Freiformreflektor, Sammellinse, TIR-Linse oder aus einer Kombination hieraus ausgebildet ist. 3. Flashlight according to one of claims 1 or 2, characterized in that the optics (1) and the converter region are adjustable relative to each other, wherein the optics (1) is preferably designed as a free-form reflector, condenser lens, TIR lens or a combination thereof ,
4. Taschenlampe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mehrere unterschiedlich positionierte Konverterbereiche mit Lumineszenzstoffen vorgesehen sind, so dass die unterschiedliche Positionierung gegenüber der Optik (1 ) die Erzeugung unterschiedlicher Lichtbilder erlaubt. 4. Flashlight according to one of claims 1 to 3, characterized in that a plurality of differently positioned converter areas are provided with luminescent substances, so that the different positioning relative to the optics (1) allows the generation of different light images.
5. Taschenlampe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass unterschiedliche Lumineszenzstoffe (2, 2') vorgesehen sind, die wahlweise von dem Laser (3) angestrahlt werden und vorzugsweise verschiedene Lichtfarben emittieren. 5. Flashlight according to one of claims 1 to 4, characterized in that different luminescent substances (2, 2 ') are provided, which are selectively illuminated by the laser (3) and preferably emit different light colors.
6. Taschenlampe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Lumineszenzstoff (2, 2') transmissiv ist und durch eine rück- wärtige direkte oder indirekte Bestrahlung durch den Laser (3) eine nach vorne gerichtete Abstrahlung des inkohärenten Lichtes erzeugt. 6. Flashlight according to one of claims 1 to 5, characterized in that the luminescent substance (2, 2 ') is transmissive and by a return Current direct or indirect irradiation by the laser (3) generates a forward-facing radiation of the incoherent light.
7. Taschenlampe nach Anspruch 6, dadurch gekennzeichnet, dass das nach vorne abgestrahlte Licht von der Optik (1 ) umgelenkt wird. 7. Flashlight according to claim 6, characterized in that the light emitted to the front of the optics (1) is deflected.
8. Taschenlampe nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass der Laserstrahl mittelbar über einen oder mehrere Spiegel (1 1 ,8. Flashlight according to one of claims 6 or 7, characterized in that the laser beam indirectly via one or more mirrors (1 1,
1 1 '; 33, 33'; 64) oder über einen oder mehrere Prismen auf den Lumineszenzstoff gerichtet ist. 1 1 '; 33, 33 '; 64) or directed via one or more prisms on the luminescent substance.
9. Taschenlampe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Lumineszenzstoff (2, 2') reflektiv ist und durch eine frontseitige direkte oder indirekte Bestrahlung durch den Laser (3) einen nach vorne gerichtete Abstrahlung des inkohärenten Lichtes erzeugt. 9. Flashlight according to one of claims 1 to 5, characterized in that the luminescent substance (2, 2 ') is reflective and by a front-side direct or indirect irradiation by the laser (3) generates a forward emission of the incoherent light.
10. Taschenlampe nach Anspruch 9, dadurch gekennzeichnet, dass der Laserstrahl (5) mittelbar über einen oder mehrere Spiegel (84, 95) oder über einen oder mehrere Prismen auf den Lumineszenzstoff gerichtet ist. 10. Flashlight according to claim 9, characterized in that the laser beam (5) is indirectly directed via one or more mirrors (84, 95) or via one or more prisms on the luminescent substance.
1 1 . Taschenlampe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Spiegel (1 1 , 1 1 '; 33, 33'; 64, 84, 95) oder die Prismen unmittelbar an dem Freiformreflektor, der TIR-Linse, Abschlussscheibe oder der Sammellinse ausgebildet ist oder hiermit unlösbar, vorzugsweise stoffschlüssig, verbunden ist. 1 1. Flashlight according to one of claims 1 to 10, characterized in that the mirrors (1 1, 1 1 '; 33, 33'; 64, 84, 95) or the prisms directly to the free-form reflector, the TIR lens, lens or the Conveying lens is formed or hereby insoluble, preferably cohesively, is connected.
EP16784387.9A 2015-09-21 2016-09-12 Flashlight having a light source Active EP3353465B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015115863.9A DE102015115863A1 (en) 2015-09-21 2015-09-21 Flashlight with a light source
PCT/DE2016/100423 WO2017050315A1 (en) 2015-09-21 2016-09-12 Flashlight having a light source

Publications (2)

Publication Number Publication Date
EP3353465A1 true EP3353465A1 (en) 2018-08-01
EP3353465B1 EP3353465B1 (en) 2022-10-19

Family

ID=57178176

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16784387.9A Active EP3353465B1 (en) 2015-09-21 2016-09-12 Flashlight having a light source

Country Status (3)

Country Link
EP (1) EP3353465B1 (en)
DE (1) DE102015115863A1 (en)
WO (1) WO2017050315A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203694B4 (en) * 2018-03-12 2021-12-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Irradiation unit with pump radiation source and conversion element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20004105U1 (en) * 2000-03-04 2000-05-31 Zweibrueder Stahlwarenkontor G flashlight
US7178937B2 (en) * 2004-01-23 2007-02-20 Mcdermott Vernon Lighting device and method for lighting
EP2542937A1 (en) * 2010-03-01 2013-01-09 Koninklijke Philips Electronics N.V. Lighting apparatus
TW201248083A (en) * 2011-03-17 2012-12-01 Rambus Inc Adjustable light source, and light bulb with adjustable light source
US20130208478A1 (en) * 2012-02-14 2013-08-15 Xiao Pie Tao Adaptor for converting laser devices to lighting
US9388947B2 (en) * 2012-08-28 2016-07-12 Cree, Inc. Lighting device including spatially segregated lumiphor and reflector arrangement
DE102012220472A1 (en) * 2012-11-09 2014-05-15 Automotive Lighting Reutlingen Gmbh Kfz. lighting device
DE102012224345A1 (en) * 2012-12-21 2014-06-26 Osram Gmbh Vehicle lighting device
KR102114607B1 (en) * 2013-04-01 2020-05-25 엘지전자 주식회사 Laser Light Source

Also Published As

Publication number Publication date
EP3353465B1 (en) 2022-10-19
DE102015115863A1 (en) 2017-03-23
WO2017050315A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
DE102010041096B4 (en) Lighting device
EP1630576B1 (en) Lighting device with a predetermined output beam characteristic and primary optical component for a lighting device
EP2151622B1 (en) Illumination device with changeable emission angle
EP1548358A1 (en) Headlmap with stepped lens and variable distance between light source and reflector
DE102005005860A1 (en) Vehicle light unit
EP1548356A1 (en) Headlamp with stepped lens and variable distance between light source and reflector
EP2789901A2 (en) Light module of a motor vehicle lighting device
DE102013205487A1 (en) Motor vehicle light for dynamic lighting functions
EP1548355B1 (en) Stepped lens headlamp
DE102014221389A1 (en) Light module of a lighting device and lighting device with such a light module
EP1431158B1 (en) Headlamp and signaling lights for a railway vehicle.
DE10361116B4 (en) Fresnels
EP3353465B1 (en) Flashlight having a light source
EP2993390B1 (en) Headlight for a motor vehicle and a motor vehicle
EP2113712A1 (en) Light signal
WO2015043819A1 (en) Lighting device for vehicles
DE202015104987U1 (en) Flashlight with a light source
DE102014204613B4 (en) Lighting device for a motor vehicle
DE102016217323A1 (en) Light module for providing effect light
DE102011087309A1 (en) Lighting device e.g. headlight, for vehicle e.g. ship, has aperture located in inner space of shell reflector for disconnection of reflected lights on upper shell region and on lower shell region
DE102019121507A1 (en) Lighting device with light conversion element
EP2593711B1 (en) Torch with a rotationally symmetrical optical attachment
WO2016096602A1 (en) Lighting device with a luminescent material
WO2021004805A1 (en) Lighting device for a motor vehicle
DE102011081459B4 (en) Illumination arrangement with multiple far fields

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F21K 9/65 20160101ALI20170412BHEP

Ipc: F21L 4/00 20060101AFI20170412BHEP

Ipc: F21V 5/00 20180101ALI20170412BHEP

Ipc: F21V 14/02 20060101ALI20170412BHEP

Ipc: F21V 9/10 20060101ALI20170412BHEP

Ipc: F21V 7/00 20060101ALI20170412BHEP

Ipc: F21V 14/00 20180101ALI20170412BHEP

Ipc: F21K 9/64 20160101ALI20170412BHEP

Ipc: F21V 14/08 20060101ALI20170412BHEP

Ipc: F21Y 115/30 20160101ALI20170412BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: F21Y 115/30 20160101ALI20220329BHEP

Ipc: F21K 9/65 20160101ALI20220329BHEP

Ipc: F21K 9/64 20160101ALI20220329BHEP

Ipc: F21V 14/08 20060101ALI20220329BHEP

Ipc: F21V 14/02 20060101ALI20220329BHEP

Ipc: F21V 14/00 20180101ALI20220329BHEP

Ipc: F21V 9/45 20180101ALI20220329BHEP

Ipc: F21V 7/00 20060101ALI20220329BHEP

Ipc: F21V 5/00 20180101ALI20220329BHEP

Ipc: F21L 4/00 20060101AFI20220329BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015365

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1525751

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016015365

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

26N No opposition filed

Effective date: 20230720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230921

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 8

Ref country code: DE

Payment date: 20230724

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016015365

Country of ref document: DE

Representative=s name: RGTH PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016015365

Country of ref document: DE

Representative=s name: RGTH RICHTER GERBAULET THIELEMANN HOFMANN PATE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 8

Ref country code: CH

Payment date: 20231001

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230912

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221019