EP3347584B1 - Procédé de détection pour la détection d'une dimension d'un interstice entre un module de soupape d'injection et un empilement piézoélectrique, ainsi que procédé de commande pour la commande d'une unité d'actionneur dans un empilement piézoélectrique - Google Patents

Procédé de détection pour la détection d'une dimension d'un interstice entre un module de soupape d'injection et un empilement piézoélectrique, ainsi que procédé de commande pour la commande d'une unité d'actionneur dans un empilement piézoélectrique Download PDF

Info

Publication number
EP3347584B1
EP3347584B1 EP16741260.0A EP16741260A EP3347584B1 EP 3347584 B1 EP3347584 B1 EP 3347584B1 EP 16741260 A EP16741260 A EP 16741260A EP 3347584 B1 EP3347584 B1 EP 3347584B1
Authority
EP
European Patent Office
Prior art keywords
valve assembly
gap
actuator unit
injector
injector valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16741260.0A
Other languages
German (de)
English (en)
Other versions
EP3347584B8 (fr
EP3347584A1 (fr
Inventor
Claus Zumstrull
Grit KRÜGER
Thomas Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3347584A1 publication Critical patent/EP3347584A1/fr
Application granted granted Critical
Publication of EP3347584B1 publication Critical patent/EP3347584B1/fr
Publication of EP3347584B8 publication Critical patent/EP3347584B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2044Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using pre-magnetisation or post-magnetisation of the coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/244Force sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/701Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger mechanical
    • F02M2200/702Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger mechanical with actuator and actuated element moving in different directions, e.g. in opposite directions

Definitions

  • Detection method for detecting a gap size of a gap between an injector valve assembly and a piezo stack and driving method for driving an actuator in a piezo stack Detection method for detecting a gap size of a gap between an injector valve assembly and a piezo stack and driving method for driving an actuator in a piezo stack.
  • the invention relates to a detection method for detecting a gap size of a gap between an injector valve assembly and a piezo stack, which is intended to actuate the injector valve assembly. Furthermore, the invention relates to a driving method for driving an actuator unit in the piezo stack, which is used for actuating the Injektorventilbaueria.
  • An actuator unit in a piezo stack used to actuate an injector valve assembly in an internal combustion engine typically includes a stacked device having a plurality of electrode layers and a plurality of material layers responsive to application of an electric field. Each material layer is arranged between two of the electrode layers. When an electric field is applied to the actuator unit via the electrode layers, the material layers react by expanding, so that the actuator unit as a whole extends along an actuator unit longitudinal axis. This deflection can then be transferred to other components, such as an injector valve assembly of an internal combustion engine to lift an injector needle from a needle seat and thereby inject fuel into the combustion chambers of the internal combustion engine.
  • the injector needle in the injector valve assembly is opened and closed by direct or indirect Transmission of the longitudinal extent of the actuator unit to the Injektorventilbauè, wherein for transmitting the longitudinal extent at any point between the piezo stack, which has the actuator unit, and the injector valve assembly is a force closure.
  • the DE 10 2011 005 285 A1 discloses a method for detecting the gap size of a gap (idle stroke) of a piezoelectric injector having a piezoelectric actuator and a directly actuated by the piezoelectric actuator nozzle needle, wherein the piezoelectric actuator, a test pulse is applied, which causes a steady increase of the piezo stroke.
  • the time interval between the start of the test pulse and the time when the idle stroke is overcome is measured.
  • the idle stroke of the piezoelectric actuator is determined from the measured time span. Measured thereby are electrical signals of the piezoelectric actuator, which are caused by mechanical influences.
  • the DE 10 2008 023 373 A1 discloses a method of controlling a piezoelectrically actuated injector.
  • the method is based on the fact that the force exerted by the piezoactuator force depends on the voltage applied to the piezoelectric actuator and the charge shifted by the piezoactuator and the position of the maximum of the force curve is correlated with a point in time at which the closing element actually opens and the injector releases a path for fuel injection.
  • the determination of the position of the maximum of the force curve of the force exerted by the piezoelectric actuator allows a conclusion on the time of the actual opening of the injection valve.
  • the DE 10 2011 004 613 A1 discloses a method for monitoring the state of a piezo injector of a fuel injection system. In a partial stroke, the course of an electrical parameter over time is detected in order to draw conclusions about the state of the piezo injector.
  • the DE 199 01 711 A1 discloses a method of operating a fuel injector with piezoelectric actuator. Depending on a temperature-dependent linear expansion of the actuator is acted upon by a first actuating voltage, which is dimensioned such that a trained in a non-excited state of rest of the actuator in the operating path gap disappears or is reduced. With a second actuation voltage, the fuel injection valve is opened.
  • the object of the invention is therefore to propose a detection method for detecting this gap size.
  • Another object is to propose a driving method for driving the actuator unit, with which the gap size can be compensated.
  • a driving method for driving an actuator unit in a piezo stack is the subject of the independent claim.
  • a second voltage gradient in the voltage signal of the sensor unit is detected in a third point in time in which an injector needle of the injector valve assembly lifts off from a needle seat.
  • a negative voltage gradient is detected in the voltage signal of the sensor unit.
  • a third voltage gradient is detected in the voltage signal of the sensor unit, wherein between the fourth time and the second time is the third time. At the fourth time a positive voltage gradient is detected.
  • the knowledge is used that a frictional connection between the piezo stack and the injector valve assembly leads to a force surge in the piezo stack.
  • the force impulse corresponds to a force gradient, which is a charge in generated, so that, for example, a voltage can be tapped from the outside.
  • the frictional connection and thus the force gradient occur in the moment in which the gap between the piezo stack and Injektorventilbaueria is overcome. Since the voltage with which the actuator unit is subjected to expansion is known, the gap size of the gap can be deduced over a measured period of time until the sensor unit detects the frictional connection with the injector valve assembly.
  • a previously determined characteristic field is advantageously stored which, for predefined voltage pulses, sets a gap size of the gap as a function of a time duration of the voltage pulse application.
  • the modular construction of the piezo stack consisting of an actuator unit and a sensor unit is advantageously used in order to determine the gap size. Therefore, it is not necessary to provide further sensors, via which the gap size is to be determined, since already the existing sensor unit is used.
  • the sensor unit detects an increase in force in the second time point in which the piezo stack reaches a force fit to the injector valve assembly.
  • the signs can be used to detect whether a force gradient in the piezo stack has been caused by the fact that a frictional connection has taken place between the piezo stack and injector valve assembly, or in that the injector needle has lifted off the needle seat.
  • the gap size of the gap between the piezo stack and the injector valve assembly is detected at each actuation cycle of the injector valve assembly.
  • it is possible to record further data on aging phenomena of the elements for example a depolarization of the actuator unit or wear or abrasion phenomena of the elements, which are reflected in the life span of the gap.
  • a positive voltage gradient in the voltage signal of the sensor unit is detected at the second time. Accordingly, if the signal of the sensor unit representing the voltage gradient is positive, it can be immediately recognized that the second time is present.
  • the gap size is now known, it is possible to compensate for the gap by readjusting the actuator unit by applying a pre-voltage pulse to the actuator unit so that it deflects and overcomes the gap.
  • the actuator unit can therefore be operated based on the highly accurate measurement in the detection method with said pre-voltage pulse, so that at the respective time at which the injection is to start, a reproducible gap-free state between the piezo stack and injector valve assembly is reached.
  • the injection control can thus be completely independent of an absolute length of the piezo stack, of closure phenomena, etc.
  • negative disturbance variables such as the absolute change in the length of the piezo stack and signs of wear, in particular at the needle seat, can be eliminated, resulting in a reproducible opening and closing behavior of the injector needle.
  • a signal can be output as a wear indicator to the outside.
  • the pre-voltage pulse is determined from the gap size determined by the detection method, wherein the pre-voltage pulse is redetermined, in particular during each actuation cycle of the injector valve assembly.
  • the gap size which changes over the service life can also be continuously compensated over the life of the arrangement.
  • the detection method is carried out in a first actuation cycle of the injector valve assembly, wherein the actuation of the actuator unit with the pre-voltage pulse is performed at a second actuation cycle of the injector valve assembly that is temporally downstream of the first actuation cycle. Therefore, it is advantageously first detected with the detection method how large the gap size currently is, so that the necessary pre-voltage pulse can be determined. Only in the next cycle of operation, this pre-voltage pulse is used to compensate for the gap.
  • the pre-voltage pulse is given to the actuator unit so early that a voltage pulse for opening the injector needle can be output as intended to the actuator unit without any time delay.
  • the pre-voltage pulse can also be given immediately after the detection process has been carried out, even if the actual subsequent injection should take place much later in time.
  • first actuation cycle and the second actuation cycle follow one another directly in time.
  • a total injector comprises an actuator, a valve assembly with a valve seat and a valve piston, and a nozzle with a nozzle seat and a needle.
  • An injector unit for injecting fuel into a combustion chamber of an internal combustion engine has an injector valve assembly with an injector needle, wherein the injector needle forms an injector valve with a needle seat. Furthermore, the injector unit has a piezo stack with an actuator unit and a sensor unit, which are coupled to one another in a force-locking manner. The sensor unit is designed to detect force gradients acting on the actuator unit, and the actuator unit is designed to actuate the injector valve assembly. Between the piezo stack and the Injektorventilbauzy a gap with an unknown gap size is formed. Furthermore, a control unit is provided, which is designed to detect a voltage signal of the sensor unit and to act on the actuator unit with a voltage pulse. The control unit is designed to carry out the detection method described above or to carry out the drive method described above.
  • control unit has, for example, the two named maps, as well as means for detecting voltage gradients of the voltage signal of the sensor unit.
  • control unit advantageously has elements with which the gap size of the gap and the required size of the pre-voltage pulse for closing the gap can be determined from various parameters.
  • control unit advantageously has an output device in order to output voltage pulses to the actuator unit so that they can vary in their length along the actuator unit longitudinal axis.
  • Fig. 1 and Fig. 2 show in each case schematic representations of an injector unit 10, which is used for injecting fuel into a combustion chamber of an internal combustion engine.
  • the injector unit 10 has an injector valve assembly 12 and a piezo stack 14 with which the injector valve assembly 12 can be actuated.
  • an injector needle 16 is arranged, which cooperates with a needle seat 18 so that an injector valve 20 is formed. If the injector needle 16 is lifted off the needle seat 18, the injector valve 20 is opened and fuel can be injected into the respective combustion chamber connected to the injector unit 10. However, if the injector needle 16 again comes into frictional connection with the needle seat 18, the injector valve 20 is closed, and the injection of fuel is terminated.
  • the piezo stack 14 has, as later with reference to Fig. 3 will be explained in more detail, an actuator unit 22 and a sensor unit 24. These are arranged one above the other in the piezo stack 14 along an actuator unit longitudinal axis 26, the sensor unit 24 being arranged above the actuator unit 22 (cf. Fig. 3 ) or under the actuator unit 22 may be arranged.
  • the piezo stack 14 is connected to a control unit 28, which on the one hand can detect voltage signals from the sensor unit 24, but on the other hand can also output voltage pulses to the actuator unit 22 so that it expands along the actuator unit longitudinal axis 26.
  • Fig. 1 In this case, a directly operated functional system is shown, in which the operating unit 36 lifts the injector needle 16 out of the needle seat 18 during a force application from the piezo stack 14 via lever 38.
  • Fig. 2 shows an alternative embodiment in which the injector 10 operates via a servo operation, wherein the operating unit 36 has a liquid-filled control chamber 40, which exerts a closing force by the existing in the control chamber 40 fluid pressure on the Injektornadel 16, and holds them in the needle seat 18 , Upon contact of the piezo stack 14 via the pin 30 with a valve element 42 of the operating unit 36, a fluid pressure in the control chamber 40 is reduced, so that the injector needle 16 can lift out of the needle seat 18.
  • Fig. 3 shows a schematic longitudinal sectional view of the piezo stack 14 from Fig. 1 and Fig. 2 in greater detail.
  • the piezo stack 14 has the actuator unit 22 and the sensor unit 24, which along the Aktoriserlticiansachse 26 in the in Fig. 3 shown embodiment are arranged one above the other, in such a way that the sensor unit 24 is arranged on the side of the actuator unit 22, which faces away from the injector valve assembly 12.
  • actuator unit 22 and sensor unit 24 it is also possible a reverse arrangement of actuator unit 22 and sensor unit 24.
  • the actuator unit 22 includes a plurality of electrode layers and a plurality of reacting on application of an electric field material layers, which are arranged alternately stacked along the actuator unit longitudinal axis 26.
  • the electrode layers and the material layers are in Fig. 3 not shown for reasons of clarity.
  • the electrical contacting of the electrode layers takes place via external electrodes 44, which are electrically connected to the electrode layers via electrical conductors 46. However, a contacting of the outer electrode 44 can also be done differently.
  • the outer electrodes 44 are connected to the control unit 28, which can deliver voltage pulses to the actuator unit 22 via the outer electrodes 44, so that it expands along the Aktortechniklticiansachse 26.
  • the actuator unit 22 is non-positively connected to the sensor unit 24.
  • the sensor unit 24 also advantageously has a sensor body 48, which is formed, for example, from the same material that also forms the material layers of the actuator unit 22.
  • a sensor body 48 On the sensor body 48 electrode layers 50 are arranged, in particular on two opposite side surfaces 52, which are arranged along the Aktoriserlticiansachse 26.
  • the electrode layers 50 are connected to a voltage measuring device 54, which forwards a voltage signal of the sensor unit 24 to the control unit 28.
  • control unit 28 can detect voltage signals of the sensor unit 24, mediated via the voltage measuring device 54, all power gradients occurring within the piezo stack 14 can be detected by the control unit 28.
  • FIG Fig. 4 A flow chart for detecting this gap size 34 is shown in FIG Fig. 4 shown.
  • first time t 1 is detected, at which the charging of the actuator unit 22 is effected with a voltage pulse from the control unit 24th Thereafter, it is detected when a voltage gradient dU occurs at a second time t 2 in a voltage signal, which is reported by the sensor unit 24 to the control unit 28. From the two time points t1, t2 may be the length of time .DELTA.t are detected, the elapsed before the occurrence of the voltage gradient dU. Using a first characteristic diagram K 1 , which sets the gap size 34 as a function of the time duration ⁇ t, the gap size 34 present at the present time can then be determined.
  • the voltage signal of the sensor unit 24 is further detected by the control unit 28, so that a third time t 3 can be determined, to which a further voltage gradient dU occurs, namely when the injector needle 16 lifts off from the needle seat 18.
  • the sign of the voltage gradient is used, which is positive at time t 2 and negative at time t 3 .
  • a further voltage gradient dU detected in a fourth time t4 which has a positive sign, which is due to a closing of the Injektornadel 16.
  • a flow chart is shown, which shows a driving method schematically, with which the actuator unit 22 can be controlled via the control unit 28.
  • the gap size 34 of the gap 32 between the Injektorventilbaueria 12 and the piezo stack 14 determined.
  • the size of the pre-voltage pulse is determined, which is necessary to close the gap 32.
  • the actuator unit 22 is then subjected to this pre-voltage pulse. Subsequently, the actuator unit 22 is then subjected to an opening pulse in order to lift the injector needle 16 from the needle seat 18.
  • the control unit 28 is configured both in Fig. 4 presented preliminary investigation as well as in Fig. 5 to perform illustrated driving method.
  • the control unit 28, as in Fig. 6 is shown schematically, the maps K 1 and K 2 on.
  • detecting means 56 for detecting a voltage gradient dU in the voltage signal from the sensor unit 24 is provided.
  • the control unit 28 comprises a time measuring device 58 and an output device 60, which comprises an opening pulse output device 62, from which an opening pulse is output to the actuator unit 22 for opening the injector needle 16.
  • the opening pulse output device 62 gives a signal to the time measuring device 58 when it receives an opening pulse to the time Actuator 22 has issued.
  • the detection device 56 sends a signal to the time measuring device 58 when a voltage gradient dU has been determined via the sensor unit 24. From this, the time measuring device 58 can determine the time duration ⁇ t.
  • a determination unit 64 is further provided, which can determine the gap size 34. For this purpose, it is supplied from the time measuring device 58, the detected time duration .DELTA.t and the map K 1 and the size of the opening pulse. From this data it is possible to determine the gap size 34, since the map K 1 sets the gap size 34 in dependence on the time duration ⁇ t and the size of the opening pulse.
  • a determination unit 66 is provided to determine the size of the pre-voltage pulse, namely on the basis of the determined gap size 34 and the second map K 2 , which sets the necessary pre-voltage pulse for closing the gap 32 in dependence the determined gap size 34.
  • the output device 60 also includes a pre-voltage pulse output device 68, to which the determined pre-voltage pulse from the determination unit 66 is supplied. The pre-voltage pulse output device 68 then outputs a signal to the actuator unit 22, which corresponds to the specific pre-voltage pulse, so that the actuator unit 22 can extend along the Aktoriserlticiansachse 26 such that the gap 32 disappears.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (8)

  1. Procédé de détection pour la détection d'une dimension d'interstice d'un interstice entre un module de soupape d'injection (12) d'un moteur à combustion interne et un empilement piézoélectrique (14) destiné à l'actionnement d'un module de soupape d'injection (12), comprenant les étapes consistant à :
    - fournir un empilement piézoélectrique (14) comportant une unité d'actionneur (22) et une unité de capteur (24) qui sont couplées l'une à l'autre par complémentarité de force, dans lequel l'unité de capteur (24) est conçue pour détecter des gradients de force agissant sur l'unité d'actionneur (22) ;
    - fournir un module de soupape d'injection (12) qui est actionné pendant le fonctionnement par l'intermédiaire de l'unité d'actionneur (22), dans lequel le module de soupape d'injection (12) et l'empilement piézoélectrique (14) sont disposés de manière espacée l'un de l'autre par un interstice (32) ayant une dimension d'interstice (34) inconnue ;
    - détecter un signal de tension de l'unité de capteur (24) ;
    - appliquer une impulsion de tension définie à l'unité d'actionneur (22) de manière à ce que l'unité d'actionneur (22) s'écarte le long d'un axe longitudinal (26) de l'unité d'actionneur tout en réduisant l'interstice (32) ;
    - détecter une durée (Δt) de l'application de l'impulsion de tension à l'unité d'actionneur depuis un premier instant (t1) où l'application de l'impulsion de tension commence jusqu'à un deuxième instant (t2) où un gradient de tension (dU) apparaît dans le signal de tension détecté de l'unité de capteur (24) ;
    - déterminer la dimension d'interstice (34) de l'interstice (32) à partir de la durée (Δt) détectée et de l'impulsion de tension définie ;
    caractérisé en ce que
    - à un troisième instant (t3) où un pointeau d'injecteur (16) du module de soupape d'injection (12) se soulève par rapport à un siège de pointeau (18), un deuxième gradient de tension (dU) est détecté dans le signal de tension de l'unité de capteur (24), dans lequel un gradient de tension négatif (dU) est détecté dans le signal de tension de l'unité de capteur (24), et
    - à un quatrième instant (t4) où le pointeau d'injecteur (16) s'engage par frottement sur le siège de pointeau (18), un troisième gradient de tension (dU) est détecté dans le signal de tension de l'unité de capteur (24), dans lequel le troisième instant (t3) se situe entre le quatrième instant (t4) et le deuxième instant (t2), dans lequel un gradient de tension positif (dU) est détecté au quatrième instant (t4) dans le signal de tension de l'unité de capteur (24).
  2. Procédé de détection selon la revendication 1, caractérisé en ce que la dimension d'interstice (34) de l'interstice (32) entre l'empilement piézoélectrique (14) et le module de soupape d'injection (12) est déterminée lors de chaque cycle d'actionnement du module de soupape d'injection (12).
  3. Procédé de détection selon l'une des revendications 1 ou 2, caractérisé en ce qu'un gradient de tension positif (dU) est détecté au second instant (t2) dans le signal de tension de l'unité de capteur (24).
  4. Procédé de commande pour la commande d'une unité d'actionneur (22) dans un empilement piézoélectrique (14) destiné à l'actionnement d'un module de soupape d'injection (12) dans un moteur à combustion interne, dans lequel une impulsion de tension d'ouverture prédéterminée est appliquée à l'unité d'actionneur (22) pour soulever un pointeau d'injecteur (16) du module de soupape d'injection (12) par rapport à un siège de pointeau (18), dans lequel les étapes suivantes sont effectuées avant que l'impulsion de tension d'ouverture soit appliquée à l'unité d'actionneur (22) :
    - mettre en oeuvre le procédé de détection selon l'une des revendications 1 à 3 pour détecter une dimension d'interstice (34) d'un interstice (32) entre l'empilement piézoélectrique (14) et le module de soupape d'injection (12) ;
    - appliquer une pré-impulsion de tension à l'unité d'actionneur (22) pour fermer l'interstice (32) entre l'unité d'actionneur (22) et le module de soupape d'injection (12).
  5. Procédé de commande selon la revendication 4, caractérisé en ce que la pré-impulsion de tension est déterminée à partir de la dimension d'interstice (34) déterminée au moyen du procédé de détection, dans lequel la pré-impulsion de tension est déterminée à nouveau, en particulier lors de chaque cycle d'actionnement du module de soupape d'injection (12).
  6. Procédé de commande selon l'une des revendications 4 ou 5, caractérisé en ce que le procédé de détection est mis en oeuvre au cours d'un premier cycle d'actionnement du module de soupape d'injection (12), et en ce que l'application de la pré-impulsion de tension à l'unité d'actionneur (22) est effectuée lors d'un deuxième cycle d'actionnement du module de soupape d'injection (12) qui suit dans le temps le premier cycle d'actionnement.
  7. Procédé de commande selon la revendication 6, caractérisé en ce que le premier cycle d'actionnement et le deuxième cycle d'actionnement se suivent immédiatement dans le temps.
  8. Unité d'injection (10) pour l'injection de carburant dans une chambre de combustion d'un moteur à combustion interne, comprenant :
    - un module de soupape d'injection (12) comportant un pointeau d'injecteur (16), dans laquelle le pointeau d'injecteur (16) forme une soupape d'injection (20) avec un siège de pointeau (18) ;
    - un empilement piézoélectrique (14) comportant une unité d'actionneur (22) et une unité de capteur (24) qui sont couplées l'une à l'autre par complémentarité de force, dans laquelle l'unité de capteur (24) est conçue pour détecter des gradients de force agissant sur l'unité d'actionneur (22) et dans laquelle l'unité d'actionneur (22) est conçue pour actionner le module de soupape d'injection (12) ;
    dans laquelle un interstice (32) ayant une dimension d'interstice (34) inconnue est formé entre l'empilement piézoélectrique (14) et le module de soupape d'injection (12) ;
    - une unité de commande (28) qui est conçue pour détecter un signal de tension de l'unité de capteur (24) et pour appliquer une impulsion de tension à l'unité de commande (22), dans laquelle l'unité de commande (28) est conçue pour mettre en oeuvre le procédé de détection selon l'une des revendications 1 à 3 et/ou pour mettre en oeuvre le procédé de commande selon l'une des revendications 4 à 7.
EP16741260.0A 2015-09-09 2016-07-06 Procédé de détection pour la détection d'une dimension d'un interstice entre un module de soupape d'injection et un empilement piézoélectrique, ainsi que procédé de commande pour la commande d'une unité d'actionneur dans un empilement piézoélectrique Active EP3347584B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015217193.0A DE102015217193A1 (de) 2015-09-09 2015-09-09 Erfassungsverfahren zum Erfassen einer Spaltgröße eines Spaltes zwischen einer Injektorventilbaugruppe und einem Piezostapel sowie Ansteuerungsverfahren zum Ansteuern einer Aktoreinheit in einem Piezostapel.
PCT/EP2016/066021 WO2017041923A1 (fr) 2015-09-09 2016-07-06 Procédé de détection pour la détection d'une dimension d'un interstice entre un module de soupape d'injection et un empilement piézoélectrique, ainsi que procédé de commande pour la commande d'une unité d'actionneur dans un empilement piézoélectrique

Publications (3)

Publication Number Publication Date
EP3347584A1 EP3347584A1 (fr) 2018-07-18
EP3347584B1 true EP3347584B1 (fr) 2019-09-11
EP3347584B8 EP3347584B8 (fr) 2019-12-18

Family

ID=56497728

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16741260.0A Active EP3347584B8 (fr) 2015-09-09 2016-07-06 Procédé de détection pour la détection d'une dimension d'un interstice entre un module de soupape d'injection et un empilement piézoélectrique, ainsi que procédé de commande pour la commande d'une unité d'actionneur dans un empilement piézoélectrique

Country Status (6)

Country Link
EP (1) EP3347584B8 (fr)
JP (1) JP6667619B2 (fr)
KR (1) KR102027076B1 (fr)
CN (1) CN107923334B (fr)
DE (1) DE102015217193A1 (fr)
WO (1) WO2017041923A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209235B3 (de) * 2017-05-31 2018-05-30 Continental Automotive Gmbh Verfahren zum Betreiben eines Common-Rail-Einspritzsystems und Common-Rail-Einspritzsystem

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901711A1 (de) * 1999-01-18 2000-07-20 Bosch Gmbh Robert Brennstoffeinspritzventil und Verfahren zum Betreiben eines Brennstoffeinspritzventils
DE10319530B4 (de) * 2003-04-30 2007-01-25 Siemens Ag Verfahren und Vorrichtung zur Überwachung eines elektromechanischen Aktors
JP2006226137A (ja) * 2005-02-15 2006-08-31 Denso Corp 燃料噴射装置
DE102005046933B4 (de) * 2005-09-30 2015-10-15 Continental Automotive Gmbh Verfahren zum Ansteuern eines piezobetätigten Einspritzventils
DE102008020931A1 (de) * 2008-04-25 2009-11-19 Continental Automotive Gmbh Verfahren zur Ansteuerung eines Piezoaktors in einem Kraftstoffinjektor
JP4715864B2 (ja) * 2008-05-07 2011-07-06 株式会社デンソー 圧電アクチュエータの検査方法及び検査装置。
DE102008023373B4 (de) * 2008-05-13 2010-04-08 Continental Automotive Gmbh Verfahren zum Steuern eines Einspritzventils, Kraftstoff-Einspritzanlage und Verbrennungsmotor
CN102933836B (zh) * 2010-05-20 2015-06-03 康明斯知识产权公司 压电燃料喷射器***、估计燃料喷射事件的定时特性的方法
DE102011003751B4 (de) * 2011-02-08 2021-06-10 Vitesco Technologies GmbH Einspritzvorrichtung
DE102011004613A1 (de) * 2011-02-23 2012-08-23 Continental Automotive Gmbh Verfahren zur Überwachung des Zustandes eines Piezoinjektors eines Kraftstoffeinspritzsystems
DE102011005285B4 (de) * 2011-03-09 2015-08-20 Continental Automotive Gmbh Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
DE102013206933A1 (de) 2013-04-17 2014-10-23 Continental Automotive Gmbh Modulare Aktuatoreinheit für ein Einspritzventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3347584B8 (fr) 2019-12-18
KR102027076B1 (ko) 2019-09-30
CN107923334A (zh) 2018-04-17
JP6667619B2 (ja) 2020-03-18
JP2018527512A (ja) 2018-09-20
WO2017041923A1 (fr) 2017-03-16
DE102015217193A1 (de) 2017-03-09
KR20180037049A (ko) 2018-04-10
EP3347584A1 (fr) 2018-07-18
CN107923334B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
EP2478200B1 (fr) Procédé et système de détection de mouvement d'une aiguille d'un injecteur de carburant
EP2681434B1 (fr) Procédé pour déterminer une caractéristique d'un carburant
DE102008023373B4 (de) Verfahren zum Steuern eines Einspritzventils, Kraftstoff-Einspritzanlage und Verbrennungsmotor
DE102011005285B4 (de) Verfahren zur Bestimmung des Leerhubes eines Piezoinjektors mit direkt betätigter Düsennadel
DE102011075732A1 (de) Regelverfahren für ein Einspritzventil und Einspritzsystem
EP1999359B1 (fr) Procede de determination de la tension d'ouverture d'un injecteur piezoelectrique
WO2011069717A1 (fr) Système d'injection de carburant avec détermination de la position de l'aiguille
DE102011005934A1 (de) Verfahren zur Ermittlung der Kraftverhältnisse an der Düsennadel eines direkt getriebenen Piezoinjektors
WO2012113796A1 (fr) Procédé pour surveiller l'état d'un injecteur piézoélectrique d'un système d'injection de carburant
EP1423594B1 (fr) Procede et dispositif de commande pour soupapes d'injection de carburant a actionnement piezo
DE102012204251B4 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems und Kraftstoffeinspritzsystem mit Einspritzventilen mit Piezo-Direktantrieb
EP2635783A1 (fr) Procédé pour faire fonctionner un organe de commutation magnétique
DE10319530B4 (de) Verfahren und Vorrichtung zur Überwachung eines elektromechanischen Aktors
EP1613851B1 (fr) Procede pour determiner la tension d'amorcage individuelle d'un element piezo-electrique
EP3347584B1 (fr) Procédé de détection pour la détection d'une dimension d'un interstice entre un module de soupape d'injection et un empilement piézoélectrique, ainsi que procédé de commande pour la commande d'une unité d'actionneur dans un empilement piézoélectrique
WO2019101518A1 (fr) Procédé et dispositif servant à déterminer le moment d'ouverture de la servovalve d'un injecteur piézoélectrique
DE102005046933B4 (de) Verfahren zum Ansteuern eines piezobetätigten Einspritzventils
DE102011075947B4 (de) Verfahren zum Bestimmen eines Kraftstoffdrucks in einem Hochdruckspeicher und Einspritzsystem
DE10349307B3 (de) Diagnoseverfahren für einen elektromechanischen Aktor
WO2007104770A1 (fr) Procédé et dispositif d'étalonnage d'un actionneur piézo-électrique
EP2771968B1 (fr) Dispositif de commande
DE10140550A1 (de) Verfahren zur Funktionsüberwachung schnellschaltender Einspritzventile
DE102012204278A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems und Kraftstoffeinspritzsystem mit Einspritzventil mit Regelung der Bewegung des Verschlusselementes
DE102012212242A1 (de) Verfahren zur Ansteuerung eines Aktuators
DE102012204253B4 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems mit Einspritzventil mit Piezo-Servobetrieb mit Raildruckermittlung und Kraftstoffeinspritzsystem

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1178760

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006584

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CPT GROUP GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016006584

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006584

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200706

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502016006584

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230721

Year of fee payment: 8

Ref country code: AT

Payment date: 20230720

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230731

Year of fee payment: 8