EP3336049B1 - Industrial truck with a control unit for regulating the movement of a load and corresponding method - Google Patents

Industrial truck with a control unit for regulating the movement of a load and corresponding method Download PDF

Info

Publication number
EP3336049B1
EP3336049B1 EP17207695.2A EP17207695A EP3336049B1 EP 3336049 B1 EP3336049 B1 EP 3336049B1 EP 17207695 A EP17207695 A EP 17207695A EP 3336049 B1 EP3336049 B1 EP 3336049B1
Authority
EP
European Patent Office
Prior art keywords
speed
control unit
industrial truck
reach carriage
lift frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17207695.2A
Other languages
German (de)
French (fr)
Other versions
EP3336049A1 (en
Inventor
Christian Puke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jungheinrich AG
Original Assignee
Jungheinrich AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jungheinrich AG filed Critical Jungheinrich AG
Publication of EP3336049A1 publication Critical patent/EP3336049A1/en
Application granted granted Critical
Publication of EP3336049B1 publication Critical patent/EP3336049B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/07Floor-to-roof stacking devices, e.g. "stacker cranes", "retrievers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/08Masts; Guides; Chains
    • B66F9/10Masts; Guides; Chains movable in a horizontal direction relative to truck

Definitions

  • the invention relates to an industrial truck with a control unit for regulating the movement of a push carriage acting on a lifting frame of an industrial truck, and to such a method.
  • Known industrial trucks usually have a vehicle frame and a lifting mast with a load part.
  • the load section and the individual mast stages of the mast can be extended and retracted, and the mast can be tilted back and forth about a vertical vehicle axis or pushed back and forth using a push slide.
  • Industrial trucks with a push carriage are usually called reach trucks.
  • Known industrial trucks also have a control by means of which a speed specified by an operator can be passed on to a drive as a corresponding manipulated variable.
  • the lift function, the tilt function and the push function of the industrial truck can then be implemented via the drive.
  • it is a hydraulic drive with one or more hydraulic cylinders.
  • the control translates a speed specification according to the characteristic of the hydraulic valve into a manipulated variable.
  • the volume flow of the hydraulic fluid flowing into the hydraulic cylinder is controlled in accordance with this manipulated variable.
  • the pusher carriage is moved via the hydraulic cylinder at the base of the mast, which leads to a movement of the mast and ultimately the load.
  • the speed of the sliding carriage can deviate from the speed specification.
  • the sliding carriage can lead to undesired swinging of the sliding frame and thus the load.
  • Such vibrations can at least be reduced by accelerating or decelerating the push mast particularly gently in predefined operating positions.
  • Such a method is, for example, from WO 2008 006 928 A1 known.
  • the first natural frequency of the mobile scaffold is determined on the basis of different operating parameters of the industrial truck, such as the lifting height and the mass of the transported load.
  • Active mast vibration damping systems are also known, which measure variables proportional to the vibration, such as an acceleration or an expansion of the mast, and regulate the movement of the push mast on the basis of these measured variables.
  • Such active vibration damping is, for example, from DE 10 2007 024 817 A1 is known, in which case regulation takes place in accordance with a movement characteristic of the actuator of the push mast stored in the control device for different operating situations of the industrial truck.
  • Methods for active vibration damping are also out EP 1 975 114 A1 as well as from DE 10 2006 012 982 A1 known.
  • DE 10 2014 115 152 A discloses the preamble of claims 1, 2, 5 and 6.
  • the invention is therefore based on the object of providing an industrial truck which makes it possible to precisely maintain the specified speed of the push carriage. Furthermore, the invention is based on the object of providing a method for regulating the movement of a push slide acting on a lifting frame of an industrial truck, which method enables the speed specification to be maintained.
  • the industrial truck can be, for example, a forklift, in particular a reach truck.
  • the industrial truck comprises a mast with a load part.
  • the mast can have a mast with one or more mast stages and can be connected to a chassis of the industrial truck comprising a drive part.
  • the load part can be a load fork, for example.
  • the load part is used to hold a load to be transported by the industrial truck, for example a pallet.
  • the mast can be moved forwards and backwards using a push carriage, which means a movement in the direction of travel or against the direction of travel of the industrial truck.
  • the push carriage can act on the mast at a base point of the mast, in particular be connected to it.
  • the mast can thus be moved backwards or forwards by retracting or extending the sliding carriage.
  • the push carriage is moved at a predetermined target speed.
  • the desired speed can be specified by an operator of the industrial truck, for example using an operating lever arranged on the industrial truck.
  • the industrial truck also includes a sensor for measuring the speed of the push carriage. Since the push slide acts on the mast, the actual speed of the mast can be determined.
  • the sensor can be arranged on the push slide, for example.
  • the sensor can also be arranged on a hydraulic cylinder acting on the push slide. This actual speed is transmitted to the control unit or queried by it.
  • the control unit compares the specified target speed of the sliding carriage with the actual speed measured by the sensor and thus determines a possible control deviation.
  • the movement speed of the push carriage is adjusted based on this control deviation. For example, a difference between the target speed and the actual speed can be formed for this purpose.
  • the speed sensor can measure the actual speed of the push carriage derive from a distance measurement, for example. When moving the mast back and forth relative to a drive part or chassis of the industrial truck, a certain distance is covered. This distance can have a coding, for example, so that an incremental measuring method can be used for speed measurement.
  • the control unit of the industrial truck not only specifies a target speed for the push carriage, but also adjusts the speed of the push carriage if this should not correspond to the target speed.
  • Such a measurement and readjustment of the actual speed of the push carriage enables reliable compliance with the speed specification that was specified by the operator of the industrial truck.
  • the influence of external disruptive factors such as manufacturing tolerances, fluctuating frictional forces and material wear or other static or dynamic forces can thus be compensated for.
  • a predetermined speed value is often not exactly achieved in known controls due to the interference factors mentioned. Instead, the speed may fall short or be exceeded. If the specification is exceeded, a dangerously high speed may occur, which may even exceed the maximum speed specified by the manufacturer. If the value falls below the specification, the workflow is slowed down.
  • the speed control according to the invention achieves the preset value with high accuracy, which enables a high working speed while at the same time complying with the safety regulations.
  • the industrial truck further comprises at least one deformation sensor, which is designed to measure a deformation of the lifting frame, the control unit being further configured to determine the speed of movement of the push carriage on the basis of the measured Control the deformation of the mast.
  • a deformation of the mast is measured by at least one deformation sensor and either the first control unit, which is also responsible for speed control, or a separate, second control unit controls the movement of the push carriage on the basis of the measured deformation.
  • the deformation sensor of the mast can determine the deformation of the mast, for example, by means of a relative acceleration of an upper end of the mast relative to the base point of the mast.
  • the deformation sensor can be an acceleration sensor which is arranged, for example, at an upper end of the mast.
  • the deformation sensor can also be designed as a strain sensor, for example as a strain gauge.
  • the deformation sensor can then measure an elongation of the mast, wherein the elongation can be caused, for example, by bending of the mast. In particular, a change in the elongation can be measured.
  • Information about the deformation of the mast measured by the deformation sensor is forwarded to the control unit or queried by the latter, which then regulates the speed of the push carriage in such a way that the deformation of the mast is compensated for.
  • two deformation sensors preferably acceleration sensors, can be provided. A first of the two deformation sensors can be arranged on an upper mast end and a second deformation sensor on a lower mast end.
  • At least one second deformation sensor allows a reference acceleration to be determined.
  • active mast damping that is, compensation for undesired mast vibrations, can also be achieved. It is thus ensured that the speed of the push slide specified by the operator can be reliably maintained even when mast vibrations occur.
  • a second control unit can also be provided, which is designed to regulate the speed of movement of the sliding carriage on the basis of the measured deformation of the mast.
  • Two control units can thus be provided, the first control unit processing the actual speed of the push slide measured by the sensor, while the second control unit processes the deformation of the lifting frame measured by the deformation sensor. The first and / or the second control unit can then regulate the speed on the basis of the measurement data of both sensors.
  • the advantage of two separate control units is that they can both be designed independently of one another. However, it is also possible to implement the two control units as independent software modules of a single physical control unit.
  • the industrial truck has a hydraulic unit with at least one hydraulic cylinder acting on the push slide, the control unit being designed to control the speed of movement of the push slide by changing the volume flow of the hydraulic fluid flowing into the hydraulic cylinder.
  • the control unit can control a hydraulic unit of the industrial truck.
  • This hydraulic unit can comprise one or more hydraulic cylinders which act on the push slide.
  • the push slide can therefore be moved by a hydraulic cylinder.
  • the latter By regulating the volume flow into or out of the at least one hydraulic cylinder, the latter can be extended or retracted, which leads to a corresponding movement of the push carriage.
  • the mast and the load on the load part of the mast are then moved by the movement of the push carriage.
  • the hydraulic unit can also comprise further hydraulic cylinders, by means of which, for example, a lifting function and / or a tilting function of the load part or the lifting frame are made possible. If the control unit detects a deviation between the set and actual speeds of the push carriage, this can determine the volume flow of the in readjust the hydraulic fluid flowing in the hydraulic cylinder in such a way that the desired target speed is reached. Provision can be made to arrange the speed sensor according to the invention on the hydraulic cylinder acting on the push slide. For example, the sensor can measure the speed of movement of a piston rod of the hydraulic cylinder in relation to a cylinder housing of the hydraulic cylinder. In particular, an incremental measuring method can be provided for this, the piston rod then having a coding at regular intervals.
  • the hydraulic unit has a hydraulic pump and / or at least one control valve, the volume flow of the hydraulic fluid flowing into the hydraulic cylinder being regulated by the hydraulic pump and / or the at least one control valve.
  • the control unit can then increase or decrease the volume flow via the hydraulic pump in the event of a possible speed deviation of the sliding carriage.
  • the control unit for regulating the volume flow can also open or close the at least one control valve.
  • FIG. 1 An industrial truck 10 is shown with a mast 12, a push carriage 20, a sensor 30 and a control unit 40.
  • the sensor 30 is arranged at a base point of the mast 12.
  • the lifting frame 12 comprises a load part 14 with a load 16 located thereon.
  • a hydraulic unit 18 which comprises a hydraulic pump (not shown) and at least one hydraulic cylinder acting on the push slide.
  • a deformation sensor 50 is arranged at the tip of the mast 12.
  • the industrial truck 10 is a reach truck, the mast 12 of which can be extended via the push carriage 20 in the direction of the arrow marked v carriage and retracted in the opposite direction. Accordingly, the load 16 located on the load part 14 is moved forward or backward at a speed v load .
  • a person operating the reach truck 10 can transmit a speed specification r to the control unit 40 via an operating unit (not shown).
  • the control unit 40 then transmits a manipulated variable u corresponding to the speed specification r to the hydraulic unit 18, in particular to the hydraulic pump or the at least one hydraulic cylinder, and thus to the push slide 20.
  • the push slide 20 is thus moved at the speed v slide . Consequently, the mast 12 and thus the Load 16 moves.
  • Fig. 2 shown.
  • the actual push carriage speed v carriage that is to say the speed of the base point of the mast, can deviate from the speed specification r . As explained, this is due to external influences such as manufacturing tolerances, fluctuating frictional forces and material wear.
  • Fig. 3 a diagram for active mast damping is shown, which suppresses such vibrations.
  • the control system shown here takes into account the operating parameters of the industrial truck and the deformation of the mast 12. Operating variables can be, for example, the mass of the load 16 and the lifting height of the mast 12.
  • the deformation sensor 50 is an acceleration sensor that measures the acceleration of the upper end of the mast 12 relative to the base point of the mast 12.
  • the measured acceleration value and the measured operating variables are received in the control unit 40.
  • a further acceleration sensor 51 is provided at the lower mast end in order to be able to determine a reference acceleration. Its measured value also enters the control unit 40, which is represented by the double line running from the mast 12 to the control unit 40.
  • the control unit 40 then regulates the movement of the push carriage 20 via the hydraulic unit 18 in such a way that the oscillation of the load 16 is compensated for.
  • Fig. 4 the regulation of the speed of the push carriage is shown.
  • a speed specification r of an operator enters the control unit 40, which then controls the hydraulic unit 18 via a manipulated variable u and the push slide 20 above it.
  • the mast 12 and thus the load 16 moves at the speed v load .
  • a sensor 30 measures the actual speed v slide of the sliding carriage 20 and transmits this to the control unit 40.
  • the control unit 40 determines a possible deviation between the target speed, ie the speed specification r, and the actual speed, ie the slide speed v Carriage , and adjusts the manipulated variable u if necessary.
  • the hydraulic drive unit 18 is correspondingly regulated, and consequently the speed of the sliding carriage 20 is adjusted.
  • This measurement and readjustment of the speed of the carriage 20 can be carried out continuously or in steps.
  • Further operating variables of the vehicle are also determined, which are also incorporated into the control unit 40. For example, depending on the lifting height and the mass of the load, the push carriage 20 and thus the lifting frame 12 can be accelerated or decelerated as gently as possible in order to prevent any mast vibration.
  • Fig. 5 is a further development of the design of the Fig. 4 , expanded by active mast damping.
  • active mast damping as is already the case here Fig. 3 explained, a deformation of the mast 12 is determined by two acceleration sensors 50, 51 and passed on to the control unit 40.
  • the speed control according to the invention is combined with active mast damping. While the speed control determines the actual speed of the sliding carriage 20 via the sensor 30 and thus ensures that the actual speed v slide of the sliding carriage 20 corresponds to the speed specification r , the second control loop (the active mast damping) ensures that the speed v load of the mast 12 and thus the moving load 16 corresponds to the speed v slide of the sliding carriage 20.
  • the speed v load is equal to the speed v slide . Also corresponds to the measured Carriage velocity v r of the thrust carriage 20 of the preset speed, it is ensured that the load 16 moves r at the predetermined speed.
  • FIG. 6 A speed control according to the invention is also shown together with vibration damping. In contrast to the design Fig. 5 however, this is a cascaded control.
  • a speed specification r of the control unit 40 is again specified, which then passes on a corresponding controlled variable u 1 to a second control unit 42.
  • the second control unit 42 in turn forwards the specification as a controlled variable u 2 to the hydraulic unit 18 and above it to the push slide 20, which leads to a transmission of the speed v slide to the mast 12 and thus to a movement speed v load of the load 16.
  • the speed is regulated with a first control loop in that a speed sensor 30 determines the actual speed v m, slide of the push slide 20 and the first control unit 40 determines a possible control deviation between the speed specification r and the measured slide speed v m, slide .
  • the control unit 40 transmits a changed manipulated variable u 1 to the second control unit 42.
  • the second control unit 42 also receives the actual acceleration a m, load of the load 16 from the deformation sensors 50, 51 designed as acceleration sensors. However, only one deformation sensor can also be provided.
  • the second control unit 42 transmits a changed manipulated variable u 2 to the hydraulic unit 18, which leads to an adaptation of the speed v slide of the push slide 20.
  • the speed of the push carriage 20 is thus regulated to the speed specification r and, on the other hand, the load speed v load is regulated to the carriage speed v carriage . This ensures that the speed of the load actually corresponds to the speed specification.
  • the design from Fig. 6 has opposite the design Fig. 5 the advantage that the two mutually independent control units 40, 42 can be designed as desired and independently of one another. It is also possible to implement the two control units 40, 42 as independent software modules of a single physical control unit.
  • Fig. 7 shows the behavior of the load speed v load over time.
  • an operator begins to specify a speed.
  • This speed specification corresponds to the curve marked "specification”.
  • the speed increases continuously until time t 1 , after which the preset speed is constant.
  • an undamped system behaves according to the solid line, which is labeled "undamped”. This would correspond to a control system Fig. 2 .
  • the speed of the load initially increases slowly and then faster and faster and, due to a vibration of the lifting frame, shoots above the specified speed.
  • the load speed v load drops again shortly thereafter far below the preset speed, in order to then rise again due to a further swinging forward of the mast.
  • the load speed v load approaches the set speed.
  • Industrial trucks with operating size control or active mast damping, as in the Fig. 3rd or 4, shown have a significantly lower vibration behavior.
  • the load speed can be regulated in the manner explained in such a way that the oscillation of the mast has a substantially lower amplitude and reaches a constant value more quickly.
  • these systems as also explained, have no speed control, the specified speed value is often not exactly reached, but is undercut or exceeded.
  • the curve marked “speed control” can be achieved by the method or industrial truck according to the invention for regulating the speed of the push carriage. This corresponds to that in the Fig. 4th and 5 shown control loops.
  • the load speed is now also regulated to the actually desired target speed within a short time. A high work pace can thus be achieved and at the same time the necessary safety can be guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Description

Die Erfindung betrifft ein Flurförderzeug mit einer Steuereinheit zur Regelung der Bewegung eines auf ein Hubgerüst eines Flurförderzeugs wirkenden Schubschlittens sowie ein solches Verfahren.The invention relates to an industrial truck with a control unit for regulating the movement of a push carriage acting on a lifting frame of an industrial truck, and to such a method.

Bekannte Flurförderzeuge weisen üblicherweise einen Fahrzeugrahmen und einen Hubmast mit einem Lastteil auf. Das Lastteil sowie die einzelnen Maststufen des Hubmastes können aus- und eingefahren sowie der Hubmast um eine senkrechte Fahrzeugachse vor- und zurückgeneigt oder auch über einen Schubschlitten vor- und zurückgeschoben werden. Flurförderzeuge mit einem Schubschlitten werden üblicherweise Schubmaststapler genannt. Bekannte Flurförderzeuge weisen zudem eine Steuerung auf, über die eine von einer Bedienperson vorgegebene Geschwindigkeit als entsprechende Stellgröße an einen Antrieb weitergegeben werden kann. Über den Antrieb können dann beispielsweise die Hubfunktion, die Neigefunktion sowie die Schubfunktion des Flurförderzeugs realisiert werden. Zumeist handelt es sich um einen hydraulischen Antrieb mit einem oder mehreren Hydraulikzylindern. Beispielsweise zur Steuerung der Bewegungsgeschwindigkeit des Schubschlittens des Hubgerüstes übersetzt die Steuerung eine Geschwindigkeitsvorgabe entsprechend der Kennlinie des Hydraulikventils in eine Stellgröße. Entsprechend dieser Stellgröße wird der Volumenstrom der in den Hydraulikzylinder fließenden Hydraulikflüssigkeit gesteuert. Über den Hydraulikzylinder wird der Schubschlitten am Fußpunkt des Hubgerüstes bewegt, was zu einer Bewegung des Hubgerüstes und somit letztlich der Last führt. Aufgrund äußerer Einflüsse, beispielsweise aufgrund von Fertigungstoleranzen, schwankenden Reibungskräften, Materialverschleiß oder sonstigen statischen oder dynamischen Kräften, kann die Geschwindigkeit des Schubschlittens jedoch von der Geschwindigkeitsvorgabe abweichen.Known industrial trucks usually have a vehicle frame and a lifting mast with a load part. The load section and the individual mast stages of the mast can be extended and retracted, and the mast can be tilted back and forth about a vertical vehicle axis or pushed back and forth using a push slide. Industrial trucks with a push carriage are usually called reach trucks. Known industrial trucks also have a control by means of which a speed specified by an operator can be passed on to a drive as a corresponding manipulated variable. The lift function, the tilt function and the push function of the industrial truck can then be implemented via the drive. Mostly it is a hydraulic drive with one or more hydraulic cylinders. For example, to control the speed of movement of the sliding carriage of the mast, the control translates a speed specification according to the characteristic of the hydraulic valve into a manipulated variable. The volume flow of the hydraulic fluid flowing into the hydraulic cylinder is controlled in accordance with this manipulated variable. The pusher carriage is moved via the hydraulic cylinder at the base of the mast, which leads to a movement of the mast and ultimately the load. However, due to external influences, for example due to manufacturing tolerances, fluctuating frictional forces, material wear or other static or dynamic forces, the speed of the sliding carriage can deviate from the speed specification.

Weiterhin kann es durch eine Bewegung des Schubschlittens zu einem unerwünschten Schwingen des Schubgerüstes und somit der Last kommen. Derartige Schwingungen können zumindest verringert werden, indem der Schubmast in vordefinierten Betriebspositionen besonders sanft beschleunigt bzw. verzögert wird. Ein solches Verfahren ist beispielsweise aus WO 2008 006 928 A1 bekannt. Hierbei auf Grundlage unterschiedlicher Betriebsparameter des Flurförderzeugs, wie beispielsweise der Hubhöhe und der Masse der transportierten Last, die erste Eigenfrequenz des Schubgerüstes ermittelt.Furthermore, movement of the sliding carriage can lead to undesired swinging of the sliding frame and thus the load. Such vibrations can at least be reduced by accelerating or decelerating the push mast particularly gently in predefined operating positions. Such a method is, for example, from WO 2008 006 928 A1 known. In doing so, the first natural frequency of the mobile scaffold is determined on the basis of different operating parameters of the industrial truck, such as the lifting height and the mass of the transported load.

Auch sind aktive Mastschwingungsdämpfungen bekannt, welche zur Schwingung proportionale Größen, wie beispielsweise eine Beschleunigung oder eine Dehnung des Hubgerüstes, messen und auf Grundlage dieser Messgrößen die Bewegung des Schubmastes regeln. Eine solche aktive Schwingungsdämpfung ist beispielsweise aus DE 10 2007 024 817 A1 bekannt, wobei hier eine Regelung gemäß einer in der Steuervorrichtung gespeicherten Bewegungscharakteristik des Stellglieds des Schubmastes für unterschiedliche Betriebssituationen des Flurförderzeugs erfolgt. Methoden zur aktiven Schwingungsdämpfung sind des Weiteren auch aus EP 1 975 114 A1 sowie aus DE 10 2006 012 982 A1 bekannt. DE 10 2014 115152 A offenbart den Oberbegriff der Ansprüche 1, 2, 5 und 6.Active mast vibration damping systems are also known, which measure variables proportional to the vibration, such as an acceleration or an expansion of the mast, and regulate the movement of the push mast on the basis of these measured variables. Such active vibration damping is, for example, from DE 10 2007 024 817 A1 is known, in which case regulation takes place in accordance with a movement characteristic of the actuator of the push mast stored in the control device for different operating situations of the industrial truck. Methods for active vibration damping are also out EP 1 975 114 A1 as well as from DE 10 2006 012 982 A1 known. DE 10 2014 115 152 A discloses the preamble of claims 1, 2, 5 and 6.

Die erläuterten Steuerungen bzw. Regelungen können jedoch nicht sicherstellen, dass der Schubschlitten und somit die auf dem Hubgerüst befindliche Last auch tatsächlich eine durch die Bedienperson vorgegebene Geschwindigkeit erreicht. Der Erfindung liegt daher die Aufgabe zugrunde, ein Flurförderzeug zur Verfügung zu stellen, welches eine genaue Einhaltung der Vorgabegeschwindigkeit des Schubschlittens ermöglicht. Des Weiteren liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Regelung der Bewegung eines auf ein Hubgerüst eines Flurförderzeugs wirkenden Schubschlittens zur Verfügung zu stellen, welches die Einhaltung der Geschwindigkeitsvorgabe ermöglicht.However, the controls or regulations explained cannot ensure that the push slide and thus the load on the mast actually reaches a speed specified by the operator. The invention is therefore based on the object of providing an industrial truck which makes it possible to precisely maintain the specified speed of the push carriage. Furthermore, the invention is based on the object of providing a method for regulating the movement of a push slide acting on a lifting frame of an industrial truck, which method enables the speed specification to be maintained.

Die Aufgabe wird gelöst durch ein Flurförderzeug gemäß Anspruch 1 oder 2. Weiterhin wird die Erfindung gelöst durch ein Verfahren nach Anspruch 5 oder 6. Vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen, der Beschreibung sowie den Figuren.The object is achieved by an industrial truck according to claim 1 or 2. Furthermore, the invention is achieved by a method according to claim 5 or 6. Advantageous refinements can be found in the subclaims, the description and the figures.

Das erfindungsgemäße Flurförderzeug umfasst

  • ein Hubgerüst mit einem Lastteil zum Tragen einer Last,
  • einen auf das Hubgerüst wirkenden Schubschlitten zum Vorbewegen und Zurückbewegen des Hubgerüsts,
  • mindestens einem Sensor, der dazu ausgebildet ist, eine Ist-Geschwindigkeit des Schubschlittens zu messen, sowie
  • eine Steuereinheit, die dazu ausgebildet ist, eine Soll-Geschwindigkeit für den Schubschlitten vorzugeben, eine Regelabweichung der durch den mindestens einen Sensor gemessenen Ist-Geschwindigkeit von der Soll-Geschwindigkeit zu ermitteln und die Bewegungsgeschwindigkeit des Schubschlittens auf Grundlage der ermittelten Geschwindigkeitsabweichung zu regeln.
The industrial truck according to the invention comprises
  • a mast with a load part for carrying a load,
  • a push slide acting on the mast for moving the mast forward and back,
  • at least one sensor which is designed to measure an actual speed of the push slide, and
  • a control unit which is designed to specify a target speed for the push carriage, to determine a control deviation of the actual speed measured by the at least one sensor from the target speed and to regulate the speed of movement of the push carriage on the basis of the determined speed deviation.

Das erfindungsgemäße Verfahren zur Regelung der Bewegung eines auf ein Hubgerüst eines Flurförderzeugs wirkenden Schubschlittens weist die folgenden Schritte auf:

  • Vorgabe einer Soll-Geschwindigkeit für den Schubschlitten durch eine Steuereinheit des Flurförderzeugs,
  • Messen der Ist-Geschwindigkeit des Schubschlittens durch mindestens einen Sensor des Flurförderzeugs,
  • Ermitteln einer Regelabweichung der Ist-Geschwindigkeit von der Soll-Geschwindigkeit durch die Steuereinheit,
  • Regeln der Bewegungsgeschwindigkeit des Schubschlittens auf Grundlage der ermittelten Geschwindigkeitsabweichung durch die Steuereinheit.
The method according to the invention for regulating the movement of a push slide acting on a lifting frame of an industrial truck has the following steps:
  • Specification of a target speed for the push slide by a control unit of the industrial truck,
  • Measuring the actual speed of the push slide by at least one sensor of the industrial truck,
  • Determining a control deviation of the actual speed from the target speed by the control unit,
  • Regulation of the speed of movement of the push carriage based on the determined speed deviation by the control unit.

Das Flurförderzeug kann beispielsweise ein Gabelstapler, insbesondere ein Schubmaststapler sein. Erfindungsgemäß umfasst das Flurförderzeug ein Hubgerüst mit einem Lastteil. Das Hubgerüst kann einen Hubmast mit einer oder mehreren Maststufen aufweisen und mit einem einen Antriebsteil umfassenden Chassis des Flurförderzeugs verbunden sein. Das Lastteil kann beispielsweise eine Lastgabel sein. Das Lastteil dient der Aufnahme einer durch das Flurförderzeug zu transportierenden Last, beispielsweise einer Palette. Über einen Schubschlitten kann das Hubgerüst vor- und zurückbewegt werden, wobei darunter eine Bewegung in der Fahrtrichtung oder entgegen der Fahrtrichtung des Flurförderzeugs zu verstehen ist. Der Schubschlitten kann dabei an einem Fußpunkt des Hubgerüsts auf das Hubgerüst wirken, insbesondere mit diesem verbunden sein. Durch ein Einfahren bzw. Ausfahren des Schubschlittens kann somit das Hubgerüst nach zurück- bzw. vorbewegt werden. Der Schubschlitten wird dabei mit einer vorgegebenen Soll-Geschwindigkeit bewegt. Die Soll-Geschwindigkeit kann durch eine Bedienperson des Flurförderzeugs vorgeben werden, beispielsweise über einen an dem Flurförderzeug angeordneten Bedienhebel.The industrial truck can be, for example, a forklift, in particular a reach truck. According to the invention, the industrial truck comprises a mast with a load part. The mast can have a mast with one or more mast stages and can be connected to a chassis of the industrial truck comprising a drive part. The load part can be a load fork, for example. The load part is used to hold a load to be transported by the industrial truck, for example a pallet. The mast can be moved forwards and backwards using a push carriage, which means a movement in the direction of travel or against the direction of travel of the industrial truck. The push carriage can act on the mast at a base point of the mast, in particular be connected to it. The mast can thus be moved backwards or forwards by retracting or extending the sliding carriage. The push carriage is moved at a predetermined target speed. The desired speed can be specified by an operator of the industrial truck, for example using an operating lever arranged on the industrial truck.

Weiterhin umfasst das Flurförderzeug einen Sensor zur Geschwindigkeitsmessung des Schubschlittens. Da der Schubschlitten auf das Hubgerüst wirkt, kann so die tatsächliche Geschwindigkeit des Hubgerüsts ermittelt werden. Der Sensor kann beispielsweise an dem Schubschlitten angeordnet sein. Auch kann der Sensor an einem auf den Schubschlitten wirkenden Hydraulikzylinder angeordnet sein. Diese Ist-Geschwindigkeit wird an die Steuereinheit übermittelt oder von dieser abgefragt. Die Steuereinheit vergleicht daraufhin die vorgegebene Soll-Geschwindigkeit des Schubschlittens mit der durch den Sensor gemessenen Ist-Geschwindigkeit und ermittelt so eine eventuelle Regelabweichung. Basierend auf dieser Regelabweichung wird die Bewegungsgeschwindigkeit des Schubschlittens nachgeregelt. Beispielsweise kann hierfür eine Differenz zwischen der Soll-Geschwindigkeit und der Ist-Geschwindigkeit gebildet werden. Der Geschwindigkeitssensor kann die Ist-Geschwindigkeit des Schubschlittens beispielsweise aus einer Wegmessung ableiten. Beim Vor- und Zurückbewegen des Hubgerüstes gegenüber einem Antriebsteil bzw. Chassis des Flurförderzeugs wird eine gewisse Wegstrecke zurückgelegt. Diese Wegstrecke kann beispielsweise über eine Kodierung verfügen, sodass ein Inkremente zählendes Messverfahren zur Geschwindigkeitsmessung verwendet werden kann.The industrial truck also includes a sensor for measuring the speed of the push carriage. Since the push slide acts on the mast, the actual speed of the mast can be determined. The sensor can be arranged on the push slide, for example. The sensor can also be arranged on a hydraulic cylinder acting on the push slide. This actual speed is transmitted to the control unit or queried by it. The control unit then compares the specified target speed of the sliding carriage with the actual speed measured by the sensor and thus determines a possible control deviation. The movement speed of the push carriage is adjusted based on this control deviation. For example, a difference between the target speed and the actual speed can be formed for this purpose. The speed sensor can measure the actual speed of the push carriage derive from a distance measurement, for example. When moving the mast back and forth relative to a drive part or chassis of the industrial truck, a certain distance is covered. This distance can have a coding, for example, so that an incremental measuring method can be used for speed measurement.

Erfindungsgemäß gibt die Steuereinheit des Flurförderzeugs also nicht nur eine Soll-Geschwindigkeit für den Schubschlitten vor, sondern regelt die Geschwindigkeit des Schubschlittens nach, falls diese nicht der Soll-Geschwindigkeit entsprechen sollte. Eine derartige Messung und Nachregelung der tatsächlichen Geschwindigkeit des Schubschlittens ermöglicht eine zuverlässige Einhaltung der Geschwindigkeitsvorgabe, die durch den Bediener des Flurförderzeugs vorgegeben wurde. Somit kann der Einfluss äußerer Störfaktoren, wie beispielsweise Fertigungstoleranzen, schwankende Reibungskräfte und Materialverschleiß oder sonstige statische oder dynamische Kräfte, ausgeglichen werden. Wie einleitend erläutert, wird ein vorgegebener Geschwindigkeitswert bei bekannten Steuerungen aufgrund der genannten Störfaktoren häufig nicht exakt erreicht. Stattdessen kann es zu einer Unterschreitung oder einem Übertreffen der Geschwindigkeitsvorgabe kommen. Bei Übertreffen der Vorgabe kann es zu einer gefährlich hohen Geschwindigkeit kommen, die gegebenenfalls sogar die vom Hersteller vorgegebene Maximalgeschwindigkeit überschreiten kann. Bei einem Unterschreiten der Vorgabe unterschritten, wird der Arbeitsablauf verlangsamt. Durch die erfindungsgemäße Geschwindigkeitsregelung hingegen wird der Vorgabewert mit hoher Genauigkeit erreicht, was ein hohes Arbeitstempo bei gleichzeitiger Einhaltung der Sicherheitsbestimmungen ermöglicht.According to the invention, the control unit of the industrial truck not only specifies a target speed for the push carriage, but also adjusts the speed of the push carriage if this should not correspond to the target speed. Such a measurement and readjustment of the actual speed of the push carriage enables reliable compliance with the speed specification that was specified by the operator of the industrial truck. The influence of external disruptive factors such as manufacturing tolerances, fluctuating frictional forces and material wear or other static or dynamic forces can thus be compensated for. As explained in the introduction, a predetermined speed value is often not exactly achieved in known controls due to the interference factors mentioned. Instead, the speed may fall short or be exceeded. If the specification is exceeded, a dangerously high speed may occur, which may even exceed the maximum speed specified by the manufacturer. If the value falls below the specification, the workflow is slowed down. By contrast, the speed control according to the invention achieves the preset value with high accuracy, which enables a high working speed while at the same time complying with the safety regulations.

Erfindungsgemäß umfasst das Flurförderzeug weiterhin mindestens einen Verformungssensor, der dazu ausgebildet ist, eine Verformung des Hubgerüsts zu messen, wobei die Steuereinheit weiterhin dazu ausgebildet ist, die Bewegungsgeschwindigkeit des Schubschlittens auf Grundlage der gemessenen Verformung des Hubgerüsts zu regeln. Nach dieser Ausgestaltung wird also eine Verformung des Hubgerüstes durch mindestens einen Verformungssensor gemessen und entweder durch die erste Steuereinheit, welche auch für die Geschwindigkeitsregelung zuständig ist, oder durch eine separate, zweite Steuereinheit die Bewegung des Schubschlittens auf Basis der gemessenen Verformung geregelt. Der Verformungssensor des Hubgerüstes kann die Verformung des Hubgerüsts beispielsweise über eine relative Beschleunigung eines oberen Endes des Hubgerüsts gegenüber dem Fußpunkt des Hubgerüsts ermitteln. Der Verformungssensor kann ein Beschleunigungssensor sein, der beispielsweise an einem oberen Ende des Hubgerüsts angeordnet ist. Auch kann der Verformungssensor als ein Dehnungssensor, beispielweise als Dehnungsmesstreifen, ausgebildet sein. Der Verformungssensor kann dann eine Dehnung des Hubgerüsts messen, wobei die Dehnung beispielsweise durch eine Verbiegung des Hubgerüsts bedingt sein kann. Insbesondere kann dabei eine Veränderung der Dehnung gemessen werden. Informationen über die durch den Verformungssensor gemessene Verformung des Hubgerüsts werden an die Steuereinheit weitergeben bzw. durch diese abgefragt, welche daraufhin die Geschwindigkeit des Schubschlittens derart regelt, dass die Verformung des Hubmastes ausgeglichen wird. Es können insbesondere zwei Verformungssensoren, bevorzugt Beschleunigungssensoren vorgesehen sein. Ein erster der beiden Verformungssensoren kann dabei an einem oberen Mastende und ein zweiter Verformungssensor an einem unteren Mastende angeordnet sein. Das vorsehen mindestens eines zweiten Verformungssensors erlaubt das Ermitteln einer eine Referenzbeschleunigung. Durch diese Ausgestaltung kann somit zusätzlich eine aktive Mastdämpfung, also ein Ausgleich von unerwünschten Mastschwingungen, erreicht werden. Es wird somit sichergestellt, dass auch bei auftretenden Mastschwingungen die durch die Bedienperson vorgegebene Geschwindigkeit des Schubschlittens zuverlässig eingehalten werden kann.According to the invention, the industrial truck further comprises at least one deformation sensor, which is designed to measure a deformation of the lifting frame, the control unit being further configured to determine the speed of movement of the push carriage on the basis of the measured Control the deformation of the mast. According to this embodiment, a deformation of the mast is measured by at least one deformation sensor and either the first control unit, which is also responsible for speed control, or a separate, second control unit controls the movement of the push carriage on the basis of the measured deformation. The deformation sensor of the mast can determine the deformation of the mast, for example, by means of a relative acceleration of an upper end of the mast relative to the base point of the mast. The deformation sensor can be an acceleration sensor which is arranged, for example, at an upper end of the mast. The deformation sensor can also be designed as a strain sensor, for example as a strain gauge. The deformation sensor can then measure an elongation of the mast, wherein the elongation can be caused, for example, by bending of the mast. In particular, a change in the elongation can be measured. Information about the deformation of the mast measured by the deformation sensor is forwarded to the control unit or queried by the latter, which then regulates the speed of the push carriage in such a way that the deformation of the mast is compensated for. In particular, two deformation sensors, preferably acceleration sensors, can be provided. A first of the two deformation sensors can be arranged on an upper mast end and a second deformation sensor on a lower mast end. The provision of at least one second deformation sensor allows a reference acceleration to be determined. With this configuration, active mast damping, that is, compensation for undesired mast vibrations, can also be achieved. It is thus ensured that the speed of the push slide specified by the operator can be reliably maintained even when mast vibrations occur.

Auch kann eine zweite Steuereinheit vorgesehen sein, die dazu ausgebildet ist, die Bewegungsgeschwindigkeit des Schubschlittens auf Grundlage der gemessenen Verformung des Hubgerüsts zu regeln. Es können also zwei Steuereinheiten vorgesehen sein, wobei die erste Steuereinheit die durch den Sensor gemessene Ist-Geschwindigkeit des Schubschlittens verarbeitet, während die zweite Steuereinheit die durch den Verformungssensor gemessene Verformung des Hubgerüsts verarbeitet. Auf Grundlage der Messdaten beider Sensoren kann dann die erste und/oder die zweite Steuereinheit die Geschwindigkeit regeln. Zwei separate Steuereinheiten haben den Vorteil, dass diese beide unabhängig voneinander ausgelegt werden können. Es ist dabei jedoch auch möglich die beiden Steuereinheiten als unabhängige Softwaremodule einer einzigen physischen Steuereinheit zu realisieren.A second control unit can also be provided, which is designed to regulate the speed of movement of the sliding carriage on the basis of the measured deformation of the mast. Two control units can thus be provided, the first control unit processing the actual speed of the push slide measured by the sensor, while the second control unit processes the deformation of the lifting frame measured by the deformation sensor. The first and / or the second control unit can then regulate the speed on the basis of the measurement data of both sensors. The advantage of two separate control units is that they can both be designed independently of one another. However, it is also possible to implement the two control units as independent software modules of a single physical control unit.

Nach einer weiteren Ausgestaltung weist das Flurförderzeug ein Hydraulikaggregat mit mindestens einem auf den Schubschlitten wirkenden Hydraulikzylinder auf, wobei die Steuereinheit ist dazu ausgebildet, die Bewegungsgeschwindigkeit des Schubschlittens durch Veränderung des Volumenstroms der in den Hydraulikzylinder fließenden Hydraulikflüssigkeit zu steuern. Gemäß dieser Ausgestaltung kann die Steuereinheit ein Hydraulikaggregat des Flurförderzeugs ansteuern. Dieses Hydraulikaggregat kann einen oder mehrere Hydraulikzylinder umfassen, die auf den Schubschlitten wirken. Der Schubschlitten kann also durch einen Hydraulikzylinder bewegt werden. Durch eine Regelung des Volumenstroms in bzw. aus dem mindestens einen Hydraulikzylinder kann dieser ausgefahren bzw. eingefahren werden, was zu einer entsprechenden Bewegung des Schubschlittens führt. Über die Bewegung des Schubschlittens werden dann das Hubgerüst sowie die auf dem Lastteil des Hubgerüstes befindliche Last bewegt. Auch kann das Hydraulikaggregat weitere Hydraulikzylinder umfassen, über welche beispielsweise eine Hubfunktion und/oder eine Neigefunktion des Lastteils bzw. des Hubgerüsts ermöglicht werden. Stellt die Steuereinheit eine Abweichung zwischen Soll- und Ist-Geschwindigkeit des Schubschlittens fest, so kann diese den Volumenstrom der in den Hydraulikzylinder fließenden Hydraulikflüssigkeit derart nachregeln, dass die gewünschte Soll-Geschwindigkeit erreicht wird. Es kann dabei vorgesehen sein, den erfindungsgemäßen Geschwindigkeitssensor an dem auf den Schubschlitten wirkenden Hydraulikzylinder anzuordnen. Beispielsweise kann der Sensor die Bewegungsgeschwindigkeit einer Kolbenstange des Hydraulikzylinders gegenüber einem Zylindergehäuse des Hydraulikzylinders messen. Hierfür kann insbesondere ein inkrementelles Messverfahren vorgesehen sein, wobei die Kolbenstange dann in gleichmäßigen Abständen eine Kodierung aufweist.According to a further embodiment, the industrial truck has a hydraulic unit with at least one hydraulic cylinder acting on the push slide, the control unit being designed to control the speed of movement of the push slide by changing the volume flow of the hydraulic fluid flowing into the hydraulic cylinder. According to this configuration, the control unit can control a hydraulic unit of the industrial truck. This hydraulic unit can comprise one or more hydraulic cylinders which act on the push slide. The push slide can therefore be moved by a hydraulic cylinder. By regulating the volume flow into or out of the at least one hydraulic cylinder, the latter can be extended or retracted, which leads to a corresponding movement of the push carriage. The mast and the load on the load part of the mast are then moved by the movement of the push carriage. The hydraulic unit can also comprise further hydraulic cylinders, by means of which, for example, a lifting function and / or a tilting function of the load part or the lifting frame are made possible. If the control unit detects a deviation between the set and actual speeds of the push carriage, this can determine the volume flow of the in readjust the hydraulic fluid flowing in the hydraulic cylinder in such a way that the desired target speed is reached. Provision can be made to arrange the speed sensor according to the invention on the hydraulic cylinder acting on the push slide. For example, the sensor can measure the speed of movement of a piston rod of the hydraulic cylinder in relation to a cylinder housing of the hydraulic cylinder. In particular, an incremental measuring method can be provided for this, the piston rod then having a coding at regular intervals.

Nach einer weiteren Ausgestaltung weist das Hydraulikaggregat eine Hydraulikpumpe und/oder mindestens ein Steuerventil auf, wobei der Volumenstrom der in den Hydraulikzylinder fließenden Hydraulikflüssigkeit durch die Hydraulikpumpe und/oder das mindestens eine Steuerventil geregelt werden wird. Die Steuereinheit kann dann bei einer eventuellen Geschwindigkeitsabweichung des Schubschlittens den Volumenstrom über die Hydraulikpumpe erhöhen oder verringern. Auch kann die Steuereinheit zur Regelung des Volumenstroms das mindestens eine Steuerventil weiter öffnen oder schließen.According to a further embodiment, the hydraulic unit has a hydraulic pump and / or at least one control valve, the volume flow of the hydraulic fluid flowing into the hydraulic cylinder being regulated by the hydraulic pump and / or the at least one control valve. The control unit can then increase or decrease the volume flow via the hydraulic pump in the event of a possible speed deviation of the sliding carriage. The control unit for regulating the volume flow can also open or close the at least one control valve.

Die Erfindung wird im Folgenden anhand von Figuren näher erläutert. Es zeigen:

Fig. 1
ein erfindungsgemäßes Flurförderzeug,
Fig. 2
ein Schema zur Geschwindigkeitssteuerung des Schubschlittens,
Fig. 3
ein Regelungsschema zum Ausgleich von Mastschwingungen,
Fig. 4
ein Regelungsschema zur Geschwindigkeitsregelung des Schubschlittens,
Fig. 5
das Regelschema aus Fig. 4 in Kombination mit einer aktiven Mastdämpfung,
Fig. 6
eine kaskadierte Kombination der Geschwindigkeitssteuerung einschließlich einer aktiven Mastdämpfung, und
Fig. 7
ein Diagramm des schematisch dargestellten Verhaltens der Lastgeschwindigkeit über der Zeit.
The invention is explained in more detail below with reference to figures. Show it:
Fig. 1
an industrial truck according to the invention,
Fig. 2
a diagram for the speed control of the sliding carriage,
Fig. 3
a control scheme to compensate for mast vibrations,
Fig. 4
a control scheme for speed control of the push slide,
Fig. 5
the control scheme Fig. 4 in combination with active mast damping,
Fig. 6
a cascaded combination of speed control including active mast damping, and
Fig. 7
a diagram of the schematically illustrated behavior of the load speed over time.

In Fig. 1 ist ein Flurförderzeug 10 mit einem Hubgerüst 12, einem Schubschlitten 20, einem Sensor 30 sowie einer Steuereinheit 40 dargestellt. Der Sensor 30 ist an einem Fußpunkt des Hubgerüsts 12 angeordnet. Das Hubgerüst 12 umfasst ein Lastteil 14 mit einer darauf befindlichen Last 16. In dem Fahrzeugrahmen des Flurförderzeugs 10 ist zudem ein Hydraulikaggregat 18 angeordnet, welches eine nicht dargestellte Hydraulikpumpe und zumindest einen auf den Schubschlitten wirkenden Hydraulikzylinder umfasst. An der Spitze des Hubgerüstes 12 ist ein Verformungssensor 50 angeordnet. Bei dem Flurförderzeug 10 handelt es sich um einen Schubmaststapler, dessen Hubgerüst 12 über den Schubschlitten 20 in Richtung des mit vSchlitten gekennzeichneten Pfeils ausgefahren sowie in die entgegengesetzte Richtung eingefahren werden kann. Entsprechend wird die auf dem Lastteil 14 befindliche Last 16 mit einer Geschwindigkeit vLast nach vorne bzw. zurück bewegt.In Fig. 1 An industrial truck 10 is shown with a mast 12, a push carriage 20, a sensor 30 and a control unit 40. The sensor 30 is arranged at a base point of the mast 12. The lifting frame 12 comprises a load part 14 with a load 16 located thereon. In the vehicle frame of the industrial truck 10 there is also a hydraulic unit 18 which comprises a hydraulic pump (not shown) and at least one hydraulic cylinder acting on the push slide. A deformation sensor 50 is arranged at the tip of the mast 12. The industrial truck 10 is a reach truck, the mast 12 of which can be extended via the push carriage 20 in the direction of the arrow marked v carriage and retracted in the opposite direction. Accordingly, the load 16 located on the load part 14 is moved forward or backward at a speed v load .

Eine den Schubmaststapler 10 bedienende Person kann über eine nicht dargestellte Bedieneinheit eine Geschwindigkeitsvorgabe r an die Steuereinheit 40 übermitteln. Die Steuereinheit 40 übermittelt daraufhin eine der Geschwindigkeitsvorgabe r entsprechende Stellgröße u an das Hydraulikaggregat 18, insbesondere an die Hydraulikpumpe bzw. den mindestens einen Hydraulikzylinder, und somit an den Schubschlitten 20. Der Schubschlitten 20 wird so mit der Geschwindigkeit vSchlitten bewegt. Über den Schubschlitten 20 wird folglich das Hubgerüst 12 und somit die Last 16 bewegt. Dies ist in Fig. 2 dargestellt. Hierbei kann die tatsächliche Schubschlittengeschwindigkeit vSchlitten, also die Geschwindigkeit des Fußpunktes des Hubgerüstes, von der Geschwindigkeitsvorgabe r abweichen. Dies ist, wie erläutert, äußeren Einflüsse wie beispielsweise Fertigungstoleranzen, schwankenden Reibungskräften sowie Materialverschleiß geschuldet.A person operating the reach truck 10 can transmit a speed specification r to the control unit 40 via an operating unit (not shown). The control unit 40 then transmits a manipulated variable u corresponding to the speed specification r to the hydraulic unit 18, in particular to the hydraulic pump or the at least one hydraulic cylinder, and thus to the push slide 20. The push slide 20 is thus moved at the speed v slide . Consequently, the mast 12 and thus the Load 16 moves. This is in Fig. 2 shown. In this case, the actual push carriage speed v carriage , that is to say the speed of the base point of the mast, can deviate from the speed specification r . As explained, this is due to external influences such as manufacturing tolerances, fluctuating frictional forces and material wear.

Wie ebenfalls eingangs erwähnt, kann es durch eine Bewegung des Schubschlittens 20 auch zu unerwünschten Schwingungen der auf dem Lastteil 14 befindlichen Last 16 kommen. Hierbei tritt eine Abweichung zwischen der Geschwindigkeit vSchlitten des Schubschlittens 20 und der Geschwindigkeit vLast der Last 16 auf. In Fig. 3 ist ein Schema zur aktiven Mastdämpfung dargestellt, das solche Schwingungen unterdrückt. Gegenüber der in Fig. 2 dargestellten Steuerung werden hier zum einen Betriebsgrößen des Flurförderzeugs und zum anderen eine Verformung des Hubgerüstes 12 berücksichtigt. Betriebsgrößen können beispielsweise die Masse der Last 16 sowie die Hubhöhe des Hubgerüstes 12 sein. Der Verformungssensor 50 ist vorliegend ein Beschleunigungssensor, der die Beschleunigung des oberen Endes des Hubgerüstes 12 gegenüber dem Fußpunkt des Hubgerüstes 12 misst. Der Beschleunigungsmesswert sowie die gemessenen Betriebsgrößen gehen in die Steuereinheit 40 ein. Zudem ist ein weiterer Beschleunigungssensor 51 am unteren Mastende vorgesehen sein, um eine Referenzbeschleunigung ermitteln zu können. Auch dessen Messwert geht in die Steuereinheit 40 ein, was durch die von dem Hubgerüst 12 zu der Steuereinheit 40 verlaufende Doppellinie dargestellt ist. Die Steuereinheit 40 regelt dann über das Hydraulikaggregat 18 die Bewegung des Schubschlittens 20 derart, dass die Schwingung der Last 16 ausgeglichen wird.As also mentioned at the beginning, undesired vibrations of the load 16 located on the load part 14 can also occur as a result of a movement of the push carriage 20. In this case, a deviation occurs between the speed v slide of the push slide 20 and the speed v load of the load 16. In Fig. 3 a diagram for active mast damping is shown, which suppresses such vibrations. Opposite the in Fig. 2 The control system shown here takes into account the operating parameters of the industrial truck and the deformation of the mast 12. Operating variables can be, for example, the mass of the load 16 and the lifting height of the mast 12. In the present case, the deformation sensor 50 is an acceleration sensor that measures the acceleration of the upper end of the mast 12 relative to the base point of the mast 12. The measured acceleration value and the measured operating variables are received in the control unit 40. In addition, a further acceleration sensor 51 is provided at the lower mast end in order to be able to determine a reference acceleration. Its measured value also enters the control unit 40, which is represented by the double line running from the mast 12 to the control unit 40. The control unit 40 then regulates the movement of the push carriage 20 via the hydraulic unit 18 in such a way that the oscillation of the load 16 is compensated for.

In Fig. 4 ist die erfindungsgemäße Regelung der Geschwindigkeit des Schubschlittens gezeigt. Wie bei der Steuerung in Fig. 2 geht eine Geschwindigkeitsvorgabe r einer Bedienperson in die Steuereinheit 40 ein, welche daraufhin über eine Stellgröße u das Hydraulikaggregat 18 und darüber den Schubschlitten 20 ansteuert. Über den Schubschlitten 20 wird das Hubgerüst 12 und somit die Last 16 mit der Geschwindigkeit vLast bewegt. Ein Sensor 30 misst hierbei die tatsächliche Geschwindigkeit vSchlitten des Schubschlittens 20 und übermittelt diese an die Steuereinheit 40. Die Steuereinheit 40 ermittelt daraufhin eine eventuelle Abweichung zwischen der Soll-Geschwindigkeit, also der Geschwindigkeitsvorgabe r, und der Ist-Geschwindigkeit, also der Schlittengeschwindigkeit vSchlitten, und passt gegebenenfalls die Stellgröße u an. Durch das Anpassen der Stellgröße u erfolgt eine entsprechende Regelung der hydraulischen Antriebseinheit 18 folglich eine Anpassung der Geschwindigkeit des Schubschlittens 20. Diese Messung und Nachregelung der Geschwindigkeit des Schlittens 20 kann kontinuierlich oder in Schritten erfolgen. In der Ausgestaltung aus Fig. 4 werden zudem weitere Betriebsgrößen des Fahrzeugs ermittelt, welche ebenso in die Steuereinheit 40 eingehen. So kann beispielsweise abhängig von der Hubhöhe sowie der Masse der Last der Schubschlitten 20 und somit das Hubgerüst 12 möglichst sanft beschleunigt oder verzögert werden, um eine eventuelle Mastschwingung möglichst zu verhindern.In Fig. 4 the regulation of the speed of the push carriage is shown. As with the control in Fig. 2 a speed specification r of an operator enters the control unit 40, which then controls the hydraulic unit 18 via a manipulated variable u and the push slide 20 above it. The mast 12 and thus the load 16 moves at the speed v load . A sensor 30 measures the actual speed v slide of the sliding carriage 20 and transmits this to the control unit 40. The control unit 40 then determines a possible deviation between the target speed, ie the speed specification r, and the actual speed, ie the slide speed v Carriage , and adjusts the manipulated variable u if necessary. By adjusting the manipulated variable u , the hydraulic drive unit 18 is correspondingly regulated, and consequently the speed of the sliding carriage 20 is adjusted. This measurement and readjustment of the speed of the carriage 20 can be carried out continuously or in steps. In the design Fig. 4 Further operating variables of the vehicle are also determined, which are also incorporated into the control unit 40. For example, depending on the lifting height and the mass of the load, the push carriage 20 and thus the lifting frame 12 can be accelerated or decelerated as gently as possible in order to prevent any mast vibration.

Die Ausgestaltung in Fig. 5 ist eine Weiterbildung der Ausgestaltung der Fig. 4, erweitert um eine aktive Mastdämpfung. Zur aktiven Mastdämpfung wird hierbei, wie bereits zu Fig. 3 erläutert, über zwei Beschleunigungssensoren 50, 51 eine Verformung des Hubgerüstes 12 ermittelt und an die Steuereinheit 40 weitergegeben. Nach dieser Ausgestaltung wird also die erfindungsgemäße Geschwindigkeitsregelung mit einer aktiven Mastdämpfung kombiniert. Während die Geschwindigkeitsregelung über den Sensor 30 die Ist-Geschwindigkeit des Schubschlittens 20 ermittelt und so sicherstellt, dass die Ist-Geschwindigkeit vSchlitten des Schubschlittens 20 der Geschwindigkeitsvorgabe r entspricht, sorgt der zweite Regelkreis (die aktive Mastdämpfung) dafür, dass die Geschwindigkeit vLast des Hubgerüsts 12 und damit der bewegten Last 16 der Geschwindigkeit vSchlitten des Schubschlittens 20 entspricht. Wenn die durch die Beschleunigungssensoren 50, 51 gemessene Größe einen konstanten Wert erreicht, ist folglich die Geschwindigkeit vLast gleich der Geschwindigkeit vSchlitten. Entspricht zudem die gemessene Geschwindigkeit vSchlitten des Schubschlittens 20 der Vorgabegeschwindigkeit r, so ist sichergestellt, dass auch die Last 16 sich mit der vorgegebenen Geschwindigkeit r bewegt.The design in Fig. 5 is a further development of the design of the Fig. 4 , expanded by active mast damping. For active mast damping, as is already the case here Fig. 3 explained, a deformation of the mast 12 is determined by two acceleration sensors 50, 51 and passed on to the control unit 40. According to this embodiment, the speed control according to the invention is combined with active mast damping. While the speed control determines the actual speed of the sliding carriage 20 via the sensor 30 and thus ensures that the actual speed v slide of the sliding carriage 20 corresponds to the speed specification r , the second control loop (the active mast damping) ensures that the speed v load of the mast 12 and thus the moving load 16 corresponds to the speed v slide of the sliding carriage 20. Consequently, when the quantity measured by the acceleration sensors 50, 51 reaches a constant value, the speed v load is equal to the speed v slide . Also corresponds to the measured Carriage velocity v r of the thrust carriage 20 of the preset speed, it is ensured that the load 16 moves r at the predetermined speed.

In Fig. 6 ist ebenfalls eine erfindungsgemäße Geschwindigkeitsregelung gemeinsam mit einer Schwingungsdämpfung dargestellt. Im Gegensatz zu der Ausgestaltung aus Fig. 5 handelt es sich hierbei jedoch um eine kaskadierte Regelung. Hierfür wird wiederum eine Geschwindigkeitsvorgabe r der Steuereinheit 40 vorgegeben, welche daraufhin eine entsprechende Regelgröße u1 an eine zweite Steuereinheit 42 weitergibt. Die zweite Steuereinheit 42 gibt die Vorgabe wiederum als Regelgröße u2 an das Hydraulikaggregat 18 und darüber an den Schubschlitten 20 weiter, was zu einer Übertragung der Geschwindigkeit vSchlitten auf das Hubgerüst 12 und somit zu einer Bewegungsgeschwindigkeit vLast der Last 16 führt. Mit einem ersten Regelkreis wird hierbei die Geschwindigkeit geregelt, indem ein Geschwindigkeitssensor 30 die tatsächliche Geschwindigkeit vm,Schlitten des Schubschlittens 20 ermittelt und die erste Steuereinheit 40 eine eventuelle Regelabweichung zwischen der Geschwindigkeitsvorgabe r und der gemessenen Schlittengeschwindigkeit vm,Schlitten ermittelt. Entsprechend der Regelabweichung gibt die Steuereinheit 40 eine veränderte Stellgröße u1 an die zweite Steuereinheit 42 weiter. Die zweite Steuereinheit 42 erhält darüber hinaus von den als Beschleunigungssensoren ausgebildeten Verformungssensoren 50, 51 die tatsächliche Beschleunigung am,Last der Last 16. Es kann jedoch auch nur ein Verformungssensor vorgesehen sein. Entsprechend der Stellgrößen u1 sowie am,Last gibt die zweite Steuereinheit 42 eine veränderte Stellgröße u2 an das Hydraulikaggregat 18 weiter, was zu einer Anpassung der Geschwindigkeit vSchlitten des Schubschlittens 20 führt. Zum einen wird somit die Geschwindigkeit des Schubschlittens 20 auf die Geschwindigkeitsvorgabe r geregelt und zum anderen wird die Lastgeschwindigkeit vLast auf die Schlittengeschwindigkeit vSchlitten geregelt. Somit ist sichergestellt, dass die Geschwindigkeit der Last auch tatsächlich der Geschwindigkeitsvorgabe entspricht. Die Ausgestaltung aus Fig. 6 hat gegenüber der Ausgestaltung aus Fig. 5 den Vorteil, dass die beiden voneinander unabhängigen Steuereinheiten 40, 42 beliebig und unabhängig voneinander ausgelegt werden können. Es ist dabei auch möglich die beiden Steuereinheiten 40, 42 als unabhängige Softwaremodule einer einzigen physischen Steuereinheit zu realisieren.In Fig. 6 A speed control according to the invention is also shown together with vibration damping. In contrast to the design Fig. 5 however, this is a cascaded control. For this purpose, a speed specification r of the control unit 40 is again specified, which then passes on a corresponding controlled variable u 1 to a second control unit 42. The second control unit 42 in turn forwards the specification as a controlled variable u 2 to the hydraulic unit 18 and above it to the push slide 20, which leads to a transmission of the speed v slide to the mast 12 and thus to a movement speed v load of the load 16. The speed is regulated with a first control loop in that a speed sensor 30 determines the actual speed v m, slide of the push slide 20 and the first control unit 40 determines a possible control deviation between the speed specification r and the measured slide speed v m, slide . In accordance with the control deviation, the control unit 40 transmits a changed manipulated variable u 1 to the second control unit 42. The second control unit 42 also receives the actual acceleration a m, load of the load 16 from the deformation sensors 50, 51 designed as acceleration sensors. However, only one deformation sensor can also be provided. Corresponding to the manipulated variables u 1 and a m, load , the second control unit 42 transmits a changed manipulated variable u 2 to the hydraulic unit 18, which leads to an adaptation of the speed v slide of the push slide 20. On the one hand, the speed of the push carriage 20 is thus regulated to the speed specification r and, on the other hand, the load speed v load is regulated to the carriage speed v carriage . This ensures that the speed of the load actually corresponds to the speed specification. The design from Fig. 6 has opposite the design Fig. 5 the advantage that the two mutually independent control units 40, 42 can be designed as desired and independently of one another. It is also possible to implement the two control units 40, 42 as independent software modules of a single physical control unit.

Fig. 7 zeigt das Verhalten der Lastgeschwindigkeit vLast mit der Zeit. Zum Zeitpunkt t0 beginnt eine Bedienperson eine Geschwindigkeit vorzugeben. Diese Geschwindigkeitsvorgabe entspricht der mit "Vorgabe" gekennzeichneten Kurve. Bis zum Zeitpunkt t1 wird steigt die Geschwindigkeit kontinuierlich an, danach ist die Vorgabegeschwindigkeit konstant. Ein ungedämpftes System verhält sich bei einer derartigen Geschwindigkeitsvorgabe entsprechend der durchgezogenen Linie, die mit "ungedämpft" gekennzeichnet ist. Dies entspräche einer Steuerung gemäß Fig. 2. Die Geschwindigkeit der Last steigt dabei zunächst langsam und dann immer schneller an und schießt aufgrund einer Schwingung des Hubgerüstes über die Vorgabegeschwindigkeit hinaus. Durch ein darauf folgendes Zurückschwingen des Hubgerüstes sinkt die Lastgeschwindigkeit vLast kurz danach wiederum weit unterhalb die Vorgabegeschwindigkeit, um anschließend aufgrund eines erneuten Nachvorneschwingens des Hubmastes wieder anzusteigen. In einer lang andauernden Schwingung nähert sich somit die Lastgeschwindigkeit vLast der Vorgabegeschwindigkeit an. Flurförderzeuge mit einer Betriebsgrößenregelung bzw. einer aktiven Mastdämpfung, wie in den Fign. 3 bzw. 4, gezeigt weisen ein deutlich geringeres Schwingungsverhalten auf. Aufgrund der Rückkopplung der Betriebsgrößen bzw. der Beschleunigung der Last kann die Lastgeschwindigkeit in erläuterter Weise derart geregelt werden, dass die Schwingung des Hubgerüstes eine wesentlich geringere Amplitude aufweist und schneller einen konstanten Wert erreicht. Da diese Systeme jedoch, wie ebenfalls erläutert, keine Geschwindigkeitsregelung aufweisen, wird der vorgegebene Geschwindigkeitswert häufig nicht exakt erreicht, sondern unterschritten oder übertroffen. Wird die Vorgabe übertroffen, so kann es zu einer gefährlich hohen Geschwindigkeit kommen, die gegebenenfalls sogar die vom Hersteller vorgegebene Maximalgeschwindigkeit überschreiten kann. Wird die Vorgabe unterschritten, so wird der Arbeitsablauf verlangsamt. In Fig. 7 pendelt die Lastgeschwindigkeit vLast auf einen Wert geringer als die Vorgabe ein, was zu besagter Verzögerung des Arbeitsablaufes führt. Fig. 7 shows the behavior of the load speed v load over time. At time t 0 , an operator begins to specify a speed. This speed specification corresponds to the curve marked "specification". The speed increases continuously until time t 1 , after which the preset speed is constant. With such a speed specification, an undamped system behaves according to the solid line, which is labeled "undamped". This would correspond to a control system Fig. 2 . The speed of the load initially increases slowly and then faster and faster and, due to a vibration of the lifting frame, shoots above the specified speed. As a result of a subsequent swinging back of the mast, the load speed v load drops again shortly thereafter far below the preset speed, in order to then rise again due to a further swinging forward of the mast. In a long-lasting oscillation, the load speed v load approaches the set speed. Industrial trucks with operating size control or active mast damping, as in the Fig. 3rd or 4, shown have a significantly lower vibration behavior. Due to the feedback of the operating variables or the acceleration of the load, the load speed can be regulated in the manner explained in such a way that the oscillation of the mast has a substantially lower amplitude and reaches a constant value more quickly. However, since these systems, as also explained, have no speed control, the specified speed value is often not exactly reached, but is undercut or exceeded. If the specification is exceeded, a dangerously high speed may occur, which may even be the one specified by the manufacturer Maximum speed can exceed. If the specification falls short, the workflow is slowed down. In Fig. 7 the load speed v Load settles to a value lower than the specification, which leads to the said delay in the workflow.

Durch das erfindungsgemäße Verfahren bzw. Flurförderzeug zur Geschwindigkeitsregelung des Schubschlittens kann jedoch die mit "Geschwindigkeitsregelung" gekennzeichnete Kurve erreicht werden. Dies entspricht den in den Fign. 4 und 5 dargestellten Regelkreisen. Zusätzlich zu einer starken Verringerung der Schwingung wird nun auch die Lastgeschwindigkeit innerhalb kurzer Zeit auf die tatsächlich gewünschte Vorgabegeschwindigkeit geregelt. Es kann somit ein hohes Arbeitstempo erreicht und gleichzeitig die erforderliche Sicherheit gewährleistet werden.However, the curve marked “speed control” can be achieved by the method or industrial truck according to the invention for regulating the speed of the push carriage. This corresponds to that in the Fig. 4th and 5 shown control loops. In addition to a strong reduction in the vibration, the load speed is now also regulated to the actually desired target speed within a short time. A high work pace can thus be achieved and at the same time the necessary safety can be guaranteed.

Claims (8)

  1. An industrial truck (10), comprising:
    - a lift frame (12) with a load part (14) for carrying a load (16),
    - a reach carriage (20) acting on the lift frame for moving the lift frame (12) forward and backward,
    - at least one sensor (30) that is designed to measure an actual speed of the reach carriage (20), and
    - a first control unit (40) that is designed to specify a target speed for the reach carriage (20), to determine a control deviation of the actual speed measured by the at least one sensor (30) from the target speed, and on the bases of the determined speed deviation provide a first manipulated variable (u1),
    - characterized by at least one deformation sensor (50) that is designed to measure a deformation of the lift frame (12), and by a second control unit (42), wherein the second control unit (42) is designed to receive the first manipulated variable (u1) from the first control unit and to provide a second manipulated variable (u2) to control the movement speed of the reach carriage on the basis of the first to manipulated variable (u1) and on the basis of the measured deformation of the lift frame (12).
  2. An industrial truck (10), comprising:
    - a lift frame (12) with a load part (14) for carrying a load (16),
    - a reach carriage (20) acting on the lift frame for moving the lift frame (12) forward and backward,
    - at least one sensor (30) that is designed to measure an actual speed of the reach carriage (20), and
    - a control unit (40) that is designed to specify a target speed for the reach carriage (20), to determine a control deviation of the actual speed measured by the at least one sensor (30) from the target speed, and to regulate the movement speed of the reach carriage (20) based on the determined speed deviation,
    - characterized by at least one deformation sensor (50) that is designed to measure a deformation of the lift frame (12), wherein the control unit (40) is moreover designed to regulate the movement speed of the reach carriage (20) on the basis of the measured deformation of the lift frame (12).
  3. The industrial truck according to one of the preceding claims, characterized in that the industrial truck comprises a hydraulic power unit (18) with at least one hydraulic cylinder acting on the reach carriage (20), wherein the control unit is designed to control the movement speed of the reach carriage (20) by changing the volumetric flow of hydraulic fluid flowing in the hydraulic cylinder.
  4. The industrial truck according to claim 3, characterized in that a hydraulic pump and/or at least one control valve is provided, wherein the volumetric flow of hydraulic fluid flowing into the hydraulic cylinder is regulated by the hydraulic pump and/or the at least one control valve.
  5. A method for regulating the movement of a reach carriage (20) acting on a lift frame (12) of an industrial truck (10), wherein the method has the following steps:
    - a control unit (40) of the industrial truck (10) specifies a target speed for the reach carriage (20),
    - at least one sensor (30) of the industrial truck (10) measures the actual speed of the reach carriage (20),
    - the control unit (40) determines a control deviation between the actual speed and target speed,
    - the control unit (40) specifies a first manipulated variable (u1) based on the determined speed deviation,
    - characterized in that the at least one deformation sensor (50) measures a deformation of the lift frame (12), receiving the first manipulated variable (u1) generated by the first control unit (40) by a second control unit (42) and providing a second manipulated variable (u2) on the basis of the first manipulated variable (u1) and on the basis of the measured deformation of the lift frame (12).
  6. A method for regulating the movement of a reach carriage (20) acting on a lift frame (12) of an industrial truck (10), wherein the method has the following steps:
    - a control unit (40) of the industrial truck (10) specifies a target speed for the reach carriage (20),
    - at least one sensor (30) of the industrial truck (10) measures the actual speed of the reach carriage (20),
    - the control unit (40) determines a control deviation between the actual speed and target speed,
    - the control unit (40) regulates the movement speed of the reach carriage (20) based on the determined speed deviation,
    - characterized in that the at least one deformation sensor (50) measures a deformation of the lift frame (12), the control unit (40) or a second control unit (42) regulates the movement of the reach carriage (20) on the basis of the measured deformation of the lift frame (12).
  7. The method according to claim 5 or 6, characterized in that the movement speed of the reach carriage (20) is regulated by changing the volumetric flow of hydraulic fluid flowing in the hydraulic cylinder, wherein the hydraulic cylinder acts on the reach carriage (20).
  8. The method according to one of claims 5 to 8, characterized in that the volumetric flow of hydraulic fluid flowing into the hydraulic cylinder is regulated by a hydraulic pump and/or at least one control valve.
EP17207695.2A 2016-12-15 2017-12-15 Industrial truck with a control unit for regulating the movement of a load and corresponding method Active EP3336049B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016124506.2A DE102016124506A1 (en) 2016-12-15 2016-12-15 Truck with a control unit for controlling the movement of a load and a corresponding method

Publications (2)

Publication Number Publication Date
EP3336049A1 EP3336049A1 (en) 2018-06-20
EP3336049B1 true EP3336049B1 (en) 2020-07-22

Family

ID=60673690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17207695.2A Active EP3336049B1 (en) 2016-12-15 2017-12-15 Industrial truck with a control unit for regulating the movement of a load and corresponding method

Country Status (3)

Country Link
US (1) US10549973B2 (en)
EP (1) EP3336049B1 (en)
DE (1) DE102016124506A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969882B2 (en) 2019-11-21 2024-04-30 The Raymond Corporation Material handling vehicle behavior modification based on task classification
EP3978420B1 (en) * 2020-09-30 2024-03-27 STILL GmbH Method for damping mast torsional vibration in an industrial truck and industrial truck

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024817A1 (en) * 2007-03-30 2008-10-09 Linde Material Handling Gmbh Industrial truck i.e. reach truck, has control element connected with electronic control device for controlling movement of lifting structure, and control device designed such that progress of moving speed of actuating member is controlled

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179198A (en) * 1959-06-08 1965-04-20 Clark Equipment Co Industrial truck
US5586620A (en) * 1995-05-12 1996-12-24 Crown Equipment Corporation Remote viewing apparatus for fork lift trucks
KR20010021568A (en) * 1997-07-09 2001-03-15 추후제출 Capacity data monitor
WO1999016698A1 (en) * 1997-09-30 1999-04-08 Crown Equipment Corporation Productivity package
US6059514A (en) * 1997-10-06 2000-05-09 Mills Pride Method and apparatus for slipsheet palletizing of merchandise units
US6757958B1 (en) * 2000-05-11 2004-07-06 Jlg Omniquip, Inc. Load handler with modular frame assembly
DE10305902B4 (en) * 2003-02-13 2006-11-30 Jungheinrich Aktiengesellschaft Method for operating a reach truck and reach truck for carrying out the method
DE102004005401B4 (en) * 2004-02-03 2006-04-06 Jungheinrich Aktiengesellschaft Method for adjusting the control current of current-controlled hydraulic valves
DE102004011913B4 (en) * 2004-03-11 2005-12-29 Jungheinrich Ag Hydraulic lifting device for battery-operated industrial trucks
US7240771B2 (en) * 2004-05-25 2007-07-10 The Raymond Corporation Mast staging hydraulic circuit
US7600612B2 (en) * 2005-04-14 2009-10-13 Nmhg Oregon, Llc Hydraulic system for an industrial vehicle
US20070080024A1 (en) * 2005-09-27 2007-04-12 David Langenkamp Pulley assembly for a materials handling vehicle mast assembly
DE102006012982A1 (en) 2006-03-21 2007-10-11 Linde Material Handling Gmbh & Co. Kg Reach truck with a mast
WO2008006928A1 (en) 2006-07-12 2008-01-17 Rocla Oyj A method and an arrangement for dampening vibrations in a mast structure
DE102007015488A1 (en) * 2007-03-30 2008-10-02 Still Wagner Gmbh Vibration compensation on the mast of a truck
DE102007058694A1 (en) * 2007-12-06 2009-06-10 Jungheinrich Ag Three-wheeled vehicle, in particular industrial truck with tilt protection
EP2331448B1 (en) * 2008-09-12 2016-11-02 Crown Equipment Corporation Monomast for a materials handling vehicle
DE102009029467A1 (en) * 2009-09-15 2011-03-24 Robert Bosch Gmbh Cargo vehicle with height-adjustable lifting device
CA3001155C (en) * 2011-02-16 2019-04-09 Crown Equipment Corporation Materials handling vehicle estimating a speed of a movable assembly from a lift motor speed
DE202012002445U1 (en) * 2012-03-06 2013-06-07 Jungheinrich Aktiengesellschaft Truck with optionally selectable destacking auxiliary mode
US9302893B2 (en) * 2013-02-07 2016-04-05 The Raymond Corporation Vibration control systems and methods for industrial lift trucks
US9002557B2 (en) * 2013-03-14 2015-04-07 The Raymond Corporation Systems and methods for maintaining an industrial lift truck within defined bounds
US9206024B2 (en) * 2013-03-15 2015-12-08 The Raymond Corporation Systems and methods for sensor controlled reach carriage
EP2857344B1 (en) * 2013-10-07 2016-04-06 Hyster-Yale Group, Inc. Reach truck
EP2857345B1 (en) * 2013-10-07 2017-04-26 Hyster-Yale Group, Inc. Reach truck
AU2014277738B2 (en) * 2013-12-19 2020-04-30 The Raymond Corporation Integrated touch screen display with multi-mode functionality
DE102014115152B4 (en) * 2014-10-17 2023-09-28 Jungheinrich Aktiengesellschaft Reach truck
EP3127858B1 (en) * 2015-08-03 2018-08-01 The Raymond Corporation Oscillation damping for a material handling vehicle
SE541740C2 (en) * 2016-04-19 2019-12-03 Toyota Mat Handling Manufacturing Sweden Ab A fork-lift truck comprising a sensor device for controlling predetermined operational parameters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024817A1 (en) * 2007-03-30 2008-10-09 Linde Material Handling Gmbh Industrial truck i.e. reach truck, has control element connected with electronic control device for controlling movement of lifting structure, and control device designed such that progress of moving speed of actuating member is controlled

Also Published As

Publication number Publication date
DE102016124506A1 (en) 2018-06-21
US10549973B2 (en) 2020-02-04
EP3336049A1 (en) 2018-06-20
US20180170734A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
DE10256923B4 (en) Method and device for motion damping of hydraulic cylinders of mobile machines
DE4030954C2 (en) Method for controlling the movement of a hydraulically movable implement and path control device for carrying out the method
EP0985629B1 (en) Crane
EP3336050B1 (en) Industrial truck with a control unit for regulating the movement of a piston rod of a hydraulic cylinder and such a method
EP1561951B1 (en) Method for adjusting the control current of hydraulic solenoid valves
EP3336049B1 (en) Industrial truck with a control unit for regulating the movement of a load and corresponding method
EP3336051B1 (en) An industrial truck and lifting device for an industrialtruck
EP3839256A1 (en) Method for operating a variable-speed adjustable pump
DE10305900A1 (en) forklifts
DE10021744A1 (en) Device for adjusting the differential pressure in a fluid cylinder
EP1359113B1 (en) Lift truck with a device for moving the lift mast
DE10305901B4 (en) Reach truck
DE102007024817A1 (en) Industrial truck i.e. reach truck, has control element connected with electronic control device for controlling movement of lifting structure, and control device designed such that progress of moving speed of actuating member is controlled
DE4405525C2 (en) Crane with a travel drive for the horizontal movement of a load hanging on a rope
DE2608551A1 (en) PROCESS AND EQUIPMENT FOR MANUFACTURING WEIGHT- OR VOLUME-ACCURATE SEMI-PRODUCTS, IN PARTICULAR BUBBLE SECTIONS, FOR COLD OR HOT FORMING
EP0489230B1 (en) Lifting mast, especially for lift trucks
EP0135652B1 (en) Injection moulding machine with hydraulic control
DE2657986C3 (en) Adjustment device for a sheet leveler to adjust the leveling gap
DE3135048A1 (en) Control system for the level of the molten metal in continuous casting moulds
DE102005005358A1 (en) HMI device for a rack warehouse, in particular a storage and retrieval unit for a high-bay warehouse, and a method for controlling the HMI device
EP2987762B1 (en) Method for controlling a combined rotation-thrust movement
DE102017106559B4 (en) Design or implementation of a movement task of a moving mass in a mechanical system along at least one axis of movement
EP3786104B1 (en) Method for controlling a hydraulic function of an industrial truck
EP0249207A2 (en) Level-adjusting device for motor vehicles
WO2022189197A1 (en) Method and device for controlling a hydraulic lifting drive of a mobile work machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181218

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017006312

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1293206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017006312

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 7

Ref country code: DE

Payment date: 20231214

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1293206

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215