EP3309381B1 - Abgasrückführkühler für eine brennkraftmaschine - Google Patents

Abgasrückführkühler für eine brennkraftmaschine Download PDF

Info

Publication number
EP3309381B1
EP3309381B1 EP17192019.2A EP17192019A EP3309381B1 EP 3309381 B1 EP3309381 B1 EP 3309381B1 EP 17192019 A EP17192019 A EP 17192019A EP 3309381 B1 EP3309381 B1 EP 3309381B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
coolant
gas recirculation
flow
recirculation cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17192019.2A
Other languages
English (en)
French (fr)
Other versions
EP3309381A1 (de
Inventor
Oliver Grill
Helmut Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102017206201.0A external-priority patent/DE102017206201A1/de
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3309381A1 publication Critical patent/EP3309381A1/de
Application granted granted Critical
Publication of EP3309381B1 publication Critical patent/EP3309381B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation

Definitions

  • the invention relates to an exhaust gas recirculation cooler for an internal combustion engine, in particular a motor vehicle according to the preamble of claim 1.
  • the exhaust gas is cooled in an exhaust gas recirculation cooler, which is subsequently fed to combustion chambers of an internal combustion engine again together with the combustion air.
  • the exhaust gas recirculation coolers are used in motor vehicles with diesel engines in order to reduce exhaust gas emissions by returning the cooled exhaust gas to the combustion chambers.
  • cooling tubes are arranged in a row in a housing to form a tube bundle.
  • the cooling tubes are mostly made of stainless steel winglet tubes, in which flow obstacles for better heat transfer are integrally formed - for example by stamping.
  • the exhaust gas flows through the winglet tubes and is cooled by a coolant flowing in the housing.
  • An exhaust gas inlet and an exhaust gas outlet are generally each provided by a diffuser, the respective diffuser being connected to the housing and forming an interface to the customer connection.
  • DE 196 54 366 A1 discloses, for example, cooling pipes with flow obstacles on the wall of the cooling pipe are attached.
  • DE 10 2010 008 176 B4 and DE 11 2013 004 680 T5 disclose turbulence inserts that are arranged around the cooling tubes.
  • DE 199 61 284 A1 discloses a wire wall element that encases a tube and creates a turbulent flow around it.
  • DE 10 2009 038 643 A1 and DE 10 2007 005 370 A1 disclose cooling tubes with integral flow obstacles and inserts that can be arranged between the cooling tubes. Flow obstacles and turbulence inserts can influence the flow in the tube bundle or in the cooling tubes and improve the heat transfer between exhaust gas and coolant.
  • WO 2015/121148 A1 further discloses a deflection element which is arranged in the coolant inlet and specifically directs the coolant to the exhaust gas inlet.
  • DE 32 12 914 A1 discloses deflection elements which are arranged in the tube bundle between two stacks of the respective cooling tubes.
  • DE 10 2010 001 635 A1 discloses a wire deflector. US 2013/0327499 A1 discloses an alternative embodiment of the deflection elements. The deflection elements can prevent the coolant from flowing out of the tube bundle too quickly.
  • US 2015/0260466 A1 JP 2014-194296 A and DE 10 2014 208 259 A1 disclose generic exhaust gas recirculation coolers, each having a flow control structure.
  • the flow guide structure engages from the annular space in the tube block and is additionally fixed to the tube block.
  • a ring structure is provided, on which the flow structure is clamped.
  • the flow control structures direct the coolant between the individual rows of pipes and thereby improve the heat transfer between the exhaust gas and the coolant.
  • Disadvantageous catfish such flow control structures significantly increase the cost of the exhaust gas recirculation cooler and are also not modular.
  • the object of the invention is therefore to provide an exhaust gas recirculation cooler in which a longer and uniform exposure of the tube bundle to the coolant is made possible by an inexpensive and simple flow guide structure, and thereby the heat transfer between the coolant and the exhaust gas is improved.
  • the present invention is based on the general idea of diverting a coolant flowing into an exhaust gas recirculation cooler in the exhaust gas recirculation cooler with as little loss as possible to a so-called exhaust gas inlet floor and thereby achieving an increase in heat transfer in the exhaust gas recirculation cooler between a hot exhaust gas and the colder coolant.
  • the exhaust gas recirculation cooler has a housing in which a plurality of cooling tubes are arranged in columns next to one another to form a row of tubes and at least two rows of tubes one above the other and spaced apart from one another to form a tube block. Exhaust gas can flow through the inside of the respective cooling tube and connects an exhaust gas inlet with an exhaust gas outlet in a gas-conducting manner.
  • Coolant can flow around the respective cooling tube inside the housing, for which purpose the housing has a coolant inlet opening into the housing in an inlet region and a coolant outlet.
  • the exhaust gas recirculation cooler also has an annular space which surrounds the tube block in the circumferential direction and through which the coolant can flow.
  • the exhaust gas recirculation cooler has a flow guide arrangement for guiding the coolant inside the pipe block, which is arranged in the housing, at least in regions, against at least one of the rows of pipes.
  • the flow guide arrangement bears against at least one of the rows of pipes.
  • the flow guide arrangement can be arranged between the adjacent rows of pipes and can have a plurality of guide channels for guiding the coolant, such as water, between the respective adjacent rows of pipes.
  • the guide channels can guide the coolant from the inlet region of the housing between the two rows of pipes essentially in a transverse direction orthogonal to a longitudinal direction of the pipe block and can delay an outflow of the coolant in the longitudinal direction to the coolant outlet. This enables a longer and more uniform application of the coolant to the pipe block, in particular in the hotter inlet area, and consequently also improves the heat transfer between the coolant and the exhaust gas.
  • the flow guide arrangement can, for example, have at least one guide plate with guide channels, which is arranged between the adjacent rows of pipes and enables the coolant to be guided essentially in the transverse direction.
  • the flow-guiding arrangement can rest on one or more rows of pipes on a side of the pipe block facing the annular space and guide the coolant out of the annular space between the adjacent rows of pipes. In this way, the coolant can be prevented from flowing out of the inlet area from the coolant inlet to the coolant outlet around the pipe block, and a longer and uniform application of the coolant to the pipe block is made possible.
  • the flow guide arrangement can advantageously be arranged in the pipe block during the manufacture of the exhaust gas recirculation cooler.
  • the flow control arrangement can also be adapted accordingly.
  • the heat transfer in the exhaust gas recirculation cooler is increased by the flow side arrangement and thereby a mechanical failure of the exhaust gas recirculation cooler due to overheating advantageously prevented.
  • the flow guide arrangement has at least one flow guide structure, the flow guide structure being arranged at least in regions in the inlet region of the housing and engaging the pipe block from the annular space.
  • the flow guide structure can advantageously delay the coolant flowing away around the pipe block from the inlet area and enable the coolant to be guided between the adjacent rows of pipes essentially in the transverse direction.
  • the flow guide arrangement can have a plurality of flow guide structures which engage from the annular space in the tube block on one side or on both sides opposite one another.
  • the flow behavior of the coolant in the annular space and in the tube block can be influenced advantageously by the number, the arrangement of the flow guide structures on the tube block, the dimensions and the configuration of the flow guide structures.
  • the at least one flow guide structure has a plurality of individual wire elements, the respective wire element being provided for one row of tubes or for some of the rows of tubes.
  • the respective wire element according to the invention encompasses at least one of the rows of pipes at least in regions on a side facing the annular space.
  • the respective wire element is thereby arranged in a clamped or form-fitting manner on one of the rows of pipes and engages in spaces between the adjacent rows of pipes from the annular space.
  • the respective wire element can encompass several or individual rows of pipes, thereby influencing the flow pattern of the coolant in the pipe block and in the annular space.
  • the flow guide structure has at least one fixing area for fixing the flow guide structure on the row of pipes and at least one flow guide area for guiding the coolant between the adjacent rows of pipes.
  • the fixing area can, for example, fix the flow guide structure to the row of pipes in a form-fitting or non-positive manner.
  • the coolant is passed through the pipe block through the flow guide area, the flow guide area being arranged in the inlet area of the housing and thus allowing the coolant to be guided in the pipe block from the coolant inlet.
  • the flow pattern of the coolant in the annular space and in the tube block can be advantageously influenced by the number, the arrangement on the tube block, the dimensions and the configuration of the flow guide structures.
  • the fixing area and / or the flow guiding area of the flow guiding structure can be clamped between two adjacent rows of pipes. In this way, an undesired displacement of the flow guide structure within the pipe block can be prevented and a particularly secure fixing of the flow guide structure in the pipe block can be achieved.
  • the flow-guiding region deflects the coolant flowing in from the coolant inlet to the exhaust gas inlet - that is to say to the so-called exhaust gas inlet floor.
  • the exhaust gas to be cooled has the highest temperature and the coolant flowing in from the coolant inlet has the lowest temperature within the housing.
  • the flow guide area can have at least one guide channel, which is arranged essentially transversely to the longitudinal direction of the pipe block and thus enables the coolant to be deflected to the exhaust gas inlet.
  • the guide channel can extend over the entire width or alternatively only partially in the width of the pipe block.
  • the angle of the guide channel to the longitudinal direction or to the transverse direction of the pipe block can also be adjusted in order to influence the flow pattern of the coolant in the pipe block.
  • the flow guide structure has several individual wire elements.
  • the wire element can be, for example, an injection molded part, an injection molded part or a wire molded part.
  • the wire element advantageously has a small volume and only insignificantly reduces the volume of the coolant flowing in the housing. In an advantageous manner, the coolant is guided in the tube block and the volume of the coolant in the housing is retained.
  • the wire element advantageously also has only a slight effect on the pressure loss in the coolant flow. Furthermore, the wire element can be manufactured inexpensively.
  • the fixing area and the flow guiding area are integrally formed on the wire element.
  • the fixing area can be shaped in a meandering shape or in the form of a clamp and enable the flow-guiding structure to be non-positively fixed on the pipe block.
  • the flow area can be shaped in the form of a longer guide channel which extends essentially in the transverse direction.
  • the flow pattern of the coolant in the pipe block can be advantageously influenced by adapting the length of the guide channel or the angle to the transverse direction of the pipe block.
  • the flow guide arrangement has a ring structure.
  • the ring structure is arranged in the ring space around the pipe block and, in a fluid-resistant manner, separates the inlet area within the ring space from the coolant outlet at least in some areas. In an advantageous manner, a drainage of the coolant around the pipe block from the inlet area is inhibited and the heat transfer in the inlet area is improved.
  • the ring structure can, for example, be arranged in a recess in the housing and thus fixed on the housing. Alternatively, the ring structure can be fixed to a recess in the housing.
  • the ring structure has at least one passage opening through which the coolant can flow from the inlet area within the ring space to the coolant outlet.
  • the passage opening can be provided, for example, on a side surface or on an angled region of the ring structure in order to at least partially allow the coolant to flow out of the inlet region. In particular, this can prevent the coolant from accumulating and thus overheating in the inlet area and the coolant pressure in the housing can be maintained.
  • the ring structure can advantageously be fixed resiliently and / or pretensioned on the pipe block and / or on the housing.
  • the ring structure can have, for example, resilient structures formed on the ring structure Have longitudinal direction, which can advantageously protect the ring structure from mechanical loads such as vibrations.
  • the housing has a circulation space, the circulation space enclosing the tube block in the inlet region in the circumferential direction and being formed, for example, by a depression in the housing.
  • the coolant can be collected in the circulation space before it is led into the tube block and the tube block can be additionally cooled in the inlet area.
  • the coolant can then be guided from the circulation space between the rows of pipes in order to cool the exhaust gas. In this way, uniform application of the coolant to the pipe block can be achieved and consequently the heat transfer between the coolant and the exhaust gas in the inlet area can be increased.
  • the flow guide arrangement has the ring structure and at least one flow guide structure and that at least one of the flow guide structures is integrally formed on the ring structure.
  • the flow guide structure integrally formed on the ring structure can be designed in a particularly stable manner and the service life of the flow guide arrangement can thereby be increased.
  • the flow guide arrangement has the ring structure and at least one flow guide structure, the ring structure encompassing at least one of the flow guide structures arranged on the pipe block.
  • the flow guide structures can first be arranged in the pipe block and then the ring structure can be arranged around the pipe block.
  • Fig. 1 shows a partial sectional view of an exhaust gas recirculation cooler 1 according to the invention.
  • the exhaust gas recirculation cooler 1 has a housing 2 in which a plurality of cooling tubes 3 are arranged in columns next to one another to form a row of tubes 4 and at least two rows of tubes 4 one above the other and spaced apart from one another to form a tube block 5.
  • Exhaust gas can flow through the respective cooling tube 3 and connects an exhaust gas inlet 6 to an exhaust gas outlet 7 in a gas-conducting manner.
  • the individual cooling tubes 3 are connected to an exhaust gas inlet floor 6a at the exhaust gas inlet 6 and to an exhaust gas outlet floor 7a at the exhaust gas outlet 7.
  • the respective cooling tube 3 can be flowed around by the coolant within the housing 2, for which purpose the housing 2 has a coolant inlet 9 opening into the housing 2 in an inlet area 8 and a coolant outlet 10.
  • the exhaust gas recirculation cooler 1 also has an annular space 11 which surrounds the tube block 5 in the circumferential direction and through which the coolant can flow.
  • the exhaust gas recirculation cooler 1 has a flow guide arrangement 12 for guiding the coolant inside the tube block 5, which is arranged in the housing 2, at least in regions, against at least one of the tube rows 3.
  • the flow guide arrangement 12 has an annular structure 13 which is arranged in the annular space 11 around the tube block 5.
  • the ring structure 13 fluid-tightly separates the inlet area 8 within the annular space 11 from the coolant outlet 10, so that the coolant does not flow out around the pipe block 5 from the inlet area 8, and the heat transfer in the inlet area 8 is improved.
  • the housing 2 has a circulation space 14 which surrounds the pipe block 5 in the inlet region 8 in the circumferential direction.
  • Fig. 2 shows a partial sectional view of the exhaust gas recirculation cooler 1 with the circulation space 14.
  • the middle cooling tubes 3 in the row of tubes 4 are shown in dashed lines.
  • the coolant is dammed up before leading to the exhaust gas inlet 6 and the pipe block 5 is cooled longer in the inlet area 8. From the circulation space 14, the coolant can then be guided into the tube block 5, as indicated by arrows. In this way, uniform application of the coolant to the pipe block 5 can be achieved and consequently the heat transfer between the coolant and the exhaust gas in the inlet area 8 can be increased.
  • Fig. 3 shows a view and Fig. 4 a plan view of the flow guide arrangement 12, which is arranged on the pipe block 5.
  • the flow guide arrangement 12 has two flow guide structures 15, which are wire elements 16 in this exemplary embodiment.
  • the flow guide structures 15 can be arranged in regions in the inlet region 8 of the housing 2 and can engage in the tube block 5 from the annular space 11.
  • the flow guide structures 15 each have a fixing area 17 for fixing the respective flow guide structure 15 to the respective row of pipes 4 and a flow guide area 18 for guiding the coolant between the adjacent rows of pipes 4.
  • the fixing area 17 encompasses the respective row of tubes 4 and fixes the flow guide structure 15 to the tube block 5 by clamping.
  • the flow guiding region 18 deflects the coolant flowing from the coolant inlet 9 to the exhaust gas inlet 6.
  • the flow area 18 of the respective flow guide structure 15 has two guide channels 19, which essentially extend in a transverse direction 20 to a longitudinal direction 21 of the pipe block 5.
  • the respective guide channel 19 has - as in Fig. 4 to see - an angle to the transverse direction 20 and can deflect the coolant to the exhaust gas inlet 6 and the exhaust gas inlet floor 6a.
  • the angle of the guide channel 19 to the transverse direction 20 or to the longitudinal direction 21 of the tube block 5 and the length of the guide channel 19 can be adjusted in order to influence the flow pattern of the coolant in the tube block 5.
  • the flow guide structure 15 delays the coolant from flowing out of the inlet area 8, so that the heat transfer between the coolant and the exhaust gas can be increased.
  • Fig. 5 is a single wire element 16 of the flow guide structure 15 and in Fig. 6 A total of four wire elements 16 of the flow guide structure 15 are arranged to the flow guide arrangement 12.
  • the respective wire element 16 can be, for example, an injection molded part, an injection molded part or a wire molded part.
  • the fixing area 17 and the flow guiding area 18 are integrally formed on the wire element 16.
  • the wire element 16 can thus be produced inexpensively.
  • the fixing area 17 of the wire element 16 is shaped in a meandering manner and enables the wire element 16 to be non-positively attached to the tube row 4.
  • the flow guiding area 18 of the wire element 16 has two guide channels 19, through which the coolant can be guided between the adjacent tube rows 4.
  • the flow pattern of the coolant in the tube block 5 can be advantageous by changing the length and the width of the guide channel 19 and the angle to the transverse direction 20 can be influenced.
  • Fig. 7 shows a view of the exhaust gas recirculation cooler 1 with the ring structure 13 of the flow guide arrangement 12.
  • the ring structure 13 is arranged in the ring space 11 around the pipe block 5 and separates the inlet area 8 within the ring space 11 from the coolant outlet 10 in a fluid-resistant manner Drainage of the coolant around the tube block 5 from the inlet area 8 is inhibited and the heat transfer in the inlet area 8 is improved.
  • the ring structure 13 has at least one passage opening 22.
  • the passage opening 22 is arranged in an angled area 23 of the ring structure 13 and enables the coolant to flow out of the inlet area 8 within the annular space 11.
  • the ring structure 13 can be several in size and have passage opening 22 different in position.
  • FIG. 8 A view of the exhaust gas recirculation cooler 1 is shown with the flow guide arrangement 12, which has the ring structure 13 and the flow guide structures 15.
  • the ring structure 13 encompasses the flow guide structures 15 arranged on the pipe block 5, as a result of which an additional fixing of the flow guide structures 15 in the pipe block 5 is made possible.
  • the flow guide arrangement 12 can already be arranged in the tube block 5, for example, during the manufacture of the exhaust gas recirculation cooler 1. Depending on the dimensions of the exhaust gas recirculation cooler 1, the flow guide arrangement 12 can also be adapted accordingly.
  • the heat transfer in the exhaust gas recirculation cooler 1 according to the invention is improved by the flow guide arrangement 12 and thereby advantageously both mechanical failure of the exhaust gas recirculation cooler 1 as a result of overheating and also increases the efficiency of the exhaust gas recirculation cooler 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen Abgasrückführkühler für eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs nach dem Oberbegriff des Anspruchs 1 .
  • In einem Abgasrückführkühler wird das Abgas gekühlt, das nachfolgend Brennräumen einer Brennkraftmaschine erneut zusammen mit der Verbrennungsluft zugeführt wird. Insbesondere werden die Abgasrückführkühler bei Kraftfahrzeugen mit Dieselmotoren eingesetzt, um Abgasemissionen durch die Rückführung des abgekühlten Abgases in die Brennräume zu reduzieren.
  • Zum Kühlen des Abgases werden in einem Gehäuse mehrere Kühlrohre in mehreren Reihen zu einem Rohrbündel angeordnet. Die Kühlrohre sind meistens aus Edelstahl geformte Wingletrohre, in denen Strömungshindernisse zur besseren Wärmeübertragung integral - beispielsweise durch ein Einprägen - ausgeformt sind. Durch die Wingletrohre strömt das Abgas und wird durch ein in dem Gehäuse fließendes Kühlmittel gekühlt. Ein Abgaseinlass und ein Abgasauslass werden in der Regel jeweils durch einen Diffusor bewerkstelligt, wobei der jeweilige Diffusor mit dem Gehäuse verbunden ist und eine Schnittstelle zum Kundenanschluss bildet.
  • Um eine bessere Wärmeübertragung zwischen dem Abgas und dem Kühlmittel zu erreichen, wird ein längeres und gleichmäßiges Beaufschlagen des Rohrbündels mit dem Kühlmittel angestrebt. Da jedoch die Menge des zufließenden Kühlmittels begrenzt ist, ist ein längeres sowie gleichmäßiges Beaufschlagen des Rohrbündels mit dem Kühlmittel schwer erreichbar. Aus dem Stand der Technik sind unterschiedliche Lösungen zur Verbesserung der Wärmeübertragung zwischen Abgas und Kühlmittel bereits bekannt. DE 196 54 366 A1 offenbart beispielweise Kühlrohre mit Strömungshindernissen, die an der Wandung des Kühlrohrs befestigt sind. DE 10 2010 008 176 B4 und DE 11 2013 004 680 T5 offenbaren Turbulenzeinlagen, die um die Kühlrohre angeordnet sind.
    DE 199 61 284 A1 offenbart ein Wandelement aus Draht, das ein Rohr ummantelt und eine Turbulenzströmung um dieses erzeugt. Auch
    DE 10 2009 038 643 A1 und DE 10 2007 005 370 A1 offenbaren Kühlrohre mit integralen Strömungshindernissen sowie Einlagen, die zwischen den Kühlrohren angeordnet werden können. Durch Strömungshindernisse und Turbulenzeinlagen kann die Strömung in dem Rohrbündel oder in den Kühlrohren beeinflusst und die Wärmeübertragung zwischen Abgas und Kühlmittel verbessert werden. WO 2015/121148 A1 offenbart des Weiteren ein Umlenkelement, das in dem Kühlmitteleinlass angeordnet ist und das Kühlmittel gezielt zum Abgaseinlass lenkt. DE 32 12 914 A1 offenbart Umlenkelemente, die in dem Rohrbündel zwischen zwei Stapeln aus den jeweiligen Kühlrohren angeordnet sind.
    DE 10 2010 001 635 A1 offenbart ein Umlenkelement aus Draht.
    US 2013/0327499 A1 offenbart eine alternative Ausgestaltung der Umlenkelemente. Die Umlenkelemente können dabei zu schnelles Abfließen des Kühlmittels aus dem Rohrbündel verhindern.
  • US 2015/0260466 A1 , JP 2014-194296 A und DE 10 2014 208 259 A1 offenbaren gattungsgemäße Abgasrückführkühler, die jeweils eine Strömungsleitstruktur aufweisen. Die Strömungsleitstruktur greift dabei aus dem Ringraum in den Rohrblock ein und ist zusätzlich an dem Rohrblock festgelegt. In US 2015/0260466 A1 ist dazu beispielweise eine Ringstruktur vorgesehen, an der die Strömungsstruktur klemmend festgelegt ist. Die Strömungsleitstrukturen leiten das Kühlmittel gezielt zwischen den einzelnen Rohrreihen und verbessern dadurch die Wärmeübertragung zwischen dem Abgas und dem Kühlmittel. Nachteiligerwelse erhöhen derartige Strömungsleitstrukturen erheblich die Kosten des Abgasrückführkühlers und sind zudem nicht modular verwendbar.
  • Die Aufgabe der Erfindung ist es daher, einen Abgasrückführkühler bereitzustellen, in dem ein längeres und gleichmäßiges Beaufschlagen des Rohrbündels mit dem Kühlmittel durch eine kostengünstige und einfache Strömungsleitstruktur ermöglicht wird und dadurch die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas verbessert wird.
  • Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, ein In einen Abgasrückführkühler fließendes Kühlmittel in dem Abgasrückführkühler möglichst verlustarm zu einem sogenannten Abgaseintrittsboden umzuleiten und dadurch eine Steigerung der Wärmeübertragung in dem Abgasrückführkühler zwischen einem heißeren Abgas und dem kälteren Kühlmittel zu erreichen. Der Abgasrückführkühler weist dazu ein Gehäuse auf, in dem mehrere Kühlrohre in Spalten nebeneinander zu einer Rohrreihe und wenigstens zwei Rohrreihen übereinander und beabstandet zueinander zu einem Rohrblock angeordnet sind. Das jeweilige Kühlrohr ist innen vom Abgas durchströmbar und verbindet gasleitend einen Abgaseinlass mit einem Abgasauslass. Außen ist das jeweilige Kühlrohr innerhalb des Gehäuses vom Kühlmittel umströmbar, wozu das Gehäuse einen in das Gehäuse in einem Einlassbereich einmündenden Kühlmitteleinlass und einen Kühlmittelauslass aufweist. Der Abgasrückführkühler weist auch einen den Rohrblock in der Umfangsrichtung umschließenden Ringraum auf, der von dem Kühlmittel durchströmbar ist. Dabei weist der Abgasrückführkühler eine Strömungsleitanordnung zum Führen des Kühlmittels im Inneren des Rohrblocks auf, die in dem Gehäuse zumindest bereichsweise an wenigstens einer der Rohrreihen anliegend angeordnet ist.
  • Die Strömungsleitanordnung liegt an wenigstens einer der Rohrreihen an. So kann die Strömungsleitanordnung beispielsweise zwischen den benachbarten Rohrreihen angeordnet werden und mehrere Führungskanäle zum Führen des Kühlmittels - wie beispielsweise Wasser - zwischen den jeweiligen benachbarten Rohrreihen aufweisen. Die Führungskanäle können das Kühlmittel von dem Einlassbereich des Gehäuses zwischen den beiden Rohrreihen im Wesentlichen in eine einer Längsrichtung des Rohrblocks orthogonale Querrichtung führen und ein Abfließen des Kühlmittels in die Längsrichtung zum Kühlmittelauslass verzögern. So kann ein längeres und gleichmäßiges Beaufschlagen des Rohrblocks insbesondere in dem heißeren Eintrittsbereich mit dem Kühlmittel ermöglicht werden und folglich auch die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas verbessert werden. Die Strömungsleitanordnung kann beispielsweise wenigstens eine Leitplatte mit Führungskanälen aufweisen, die zwischen den benachbarten Rohrreihen angeordnet wird und ein Führen des Kühlmittels im Wesentlichen in die Querrichtung ermöglicht,
  • Alternativ oder zusätzlich kann die Strömungsleitanordnung bekannterweise an einer oder mehreren Rohrreihen an einer dem Ringraum zugewandten Seite des Rohrblocks anliegen und das Kühlmittel aus dem Ringraum zwischen die benachbarten Rohrreihen führen. So kann ein Abfließen des Kühlmittels aus dem Einlassbereich von dem Kühlmitteleinlass zu dem Kühlmittelauslass um den Rohrblock gehemmt werden und ein längeres und gleichmäßiges Beaufschlagen des Rohrblocks mit dem Kühlmittel ermöglicht werden.
  • Die Strömungsleitanordnung kann vorteilhafterweise bereits bei der Herstellung des Abgasrückführkühlers in dem Rohrblock angeordnet werden. Abhängig von den Abmessungen des Abgasrückführkühlers kann auch die Strömungsleitanordnung entsprechend angepasst werden. Durch die Strömungsteitanordnung wird die Wärmeübertragung in dem Abgasrückführkühler erhöht und dadurch ein mechanisches Versagen des Abgasrückführkühlers infolge eines Überhitzens vorteilhaft verhindert.
  • Ferner Ist vorgesehen, dass die Strömungsleitanordnung wenigstens eine Strömungsleitstruktur aufweist, wobei die Strömungsleitstruktur zumindest bereichsweise in dem Einlassbereich des Gehäuses angeordnet ist und aus dem Ringraum in den Rohrblock eingreift. So kann die Strömungsleitstruktur vorteilhaft ein Abfließen des Kühlmittels um den Rohrblock aus dem Einlassbereich verzögern und ein Führen des Kühlmittels zwischen den benachbarten Rohrreihen im Wesentlichen in die Querrichtung ermöglichen. Die Strömungsleitanordnung kann mehrere Strömungsleitstrukturen aufweisen, die aus dem Ringraum in den Rohrblock einseitig oder beidseitig gegenüberliegend eingreifen. Das Fließverhalten des Kühlmittels in dem Ringraum und in dem Rohrblock kann dabei durch die Anzahl, die Anordnung der Strömungsleitstrukturen an dem Rohrblock, die Abmessungen und die Ausgestaltung der Strömungsleitstrukturen vorteilhaft beeinflusst werden.
  • Erfindungsgemäß weist die wenigstens eine Strömungsleitstruktur mehrere einzelne Drahtelemente auf, wobei das jeweilige Drahtelement für jeweils eine Rohrreihe oder für jeweils einige der Rohrreihen vorgesehen ist. Um ein Festlegen des jeweiligen Drahtelements an dem Rohrblock zu erleichtern, umgreift das jeweilige Drahtelement erfindungsgemäß wenigstens eine der Rohrreihen zumindest bereichsweise an einer dem Ringraum zugewandten Seite. Das jeweilige Drahtelement ist dadurch klemmend oder formschlüssig an einer der Rohrreihen angeordnet und greift aus dem Ringraum in Zwischenräume zu den benachbarten Rohrreihen ein. Dabei kann das jeweilige Drahtelement mehrere oder einzelne Rohrreihen umgreifen und dadurch das Fließmuster des Kühlmittels in dem Rohrblock und in dem Ringraum beeinflusst werden.
  • Vorteilhafterweise ist vorgesehen, dass die Strämungsleitstruktur wenigstens einen Festlegbereich zum Festlegen der Strömungsleitstruktur an der Rohrreihe und wenigstens einen Strömungsleitbereich zum Führen des Kühlmittels zwischen den benachbarten Rohrreihen aufweist. Der Festlegbereich kann die Strömungsleitstruktur beispielsweise formschlüssig oder kraftschlüssig an der Rohrreihe festlegen. Dadurch kann insbesondere der Montageaufwand der Strömungsleitstruktur an dem Rohrblock erheblich reduziert werden. Durch den Strömungsleitbereich wird das Kühlmittel durch den Rohrblock geführt, wobei der Strömungsleitbereich In dem Einlassbereich des Gehäuses angeordnet Ist und so ein Führen des Kühlmittels bereits ab dem Kühlmitteleinlass in dem Rohrblock ermöglicht. Durch die Anzahl, die Anordnung an dem Rohrblock, die Abmessungen und die Ausgestaltung der Strömungsleitstrukturen kann das Fließmuster des Kühlmittels in dem Ringraum und in dem Rohrblock vorteilhaft beeinflusst werden.
  • In einer besonders vorteilhaften Weise können der Festlegbereich und/oder der Strömungsleitbereich der Strömungsleitstruktur zwischen zwei benachbarten Rohrreihen eingeklemmt sein. Dadurch kann ein unerwünschtes Verschieben der Strömungsleitstruktur innerhalb des Rohrblocks verhindert und ein besonders sicheres Festlegen der Strömungsleistruktur in dem Rohrblock erreicht werden.
  • Um die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas weiter zu erhöhen, ist vorteilhafterweise vorgesehen, dass der Strömungsleitbereich das aus dem Kühlmitteleinlass zuströmende Kühlmittel zu dem Abgaseinlass - also zu dem sogenannten Abgaseintrittsboden - umlenkt. An dem Abgaseinlass weist das zu kühlende Abgas die höchste Temperatur und das aus dem Kühlmitteleinlass zuströmende Kühlmittel weist die niedrigste Temperatur innerhalb des Gehäuses auf. Durch ein Umlenken des Kühlmittels wird an dem Abgaseinlass ein hoher Temperaturgradient zwischen dem Kühlmittel und dem Abgas erreicht und folglich die Wärmeübertragung vorteilhaft erhöht. Der Strömungsleitbereich kann dazu wenigstens einen Führungskanal aufweisen, der im Wesentlichen quer zu der Längsrichtung des Rohrblocks angeordnet ist und so ein Umlenken des Kühlmittels zu dem Abgaseinlass ermöglicht. Der Führungskanal kann sich dabei über die gesamte Breite oder alternativ nur teilweise in die Breite des Rohrblocks erstrecken. Auch der Winkel des Führungskanals zu der Längsrichtung oder zu der Querrichtung des Rohrblocks kann angepasst werden, um das Fließmuster des Kühlmittels in dem Rohrblock zu beeinflussen.
  • Erfindungsgemäß weist die Strömungsleitstruktur mehrere einzelne Drahtelemente auf. Das Drahtelement kann dabei beispielsweise ein Spritzformteil, ein Spritzgussteil oder ein Drahtausformteil sein. Das Drahtelement weist vorteilhaft ein geringes Volumen auf und vermindert das in dem Gehäuse fließende Volumen des Kühlmittels nur unwesentlich, So wird auf eine vorteilhafte Weise das Kühlmittel in dem Rohrblock geführt und das Volumen des Kühlmittels in dem Gehäuse bleibt erhalten. Das Drahtelement weist vorteilhafterweise auch nur eine geringe Auswirkung auf den Druckverlust in dem Kühlmittelstrom. Des Weiteren kann das Drahtelement kostengünstig hergestellt werden.
  • Vorteilhafterweise ist des Weiteren vorgesehen, dass der Festlegbereich und der Strömungsleitbereich an dem Drahtelement integral ausgeformt sind. So kann der Festlegbereich beispielsweise mäanderförmig oder klammerförmig ausgeformt sein und ein kraftschlüssiges Festlegen der Strömungsleitstruktur an dem Rohrblock ermöglichen. Ein formschlüssiges Festlegen des Festlegbereichs beispielsweise an Einprägungen der Kühlrohre ist ebenfalls möglich. Der Strömungsbereich kann in Form eines längeren Führungskanals ausgeformt sein, der sich im Wesentlichen in die Querrichtung erstreckt. Durch ein Anpassen der Länge des Führungskanals oder des Winkels zu der Querrichtung des Rohrblocks kann das Fließmuster des Kühlmittels in dem Rohrblock vorteilhaft beeinflusst werden.
  • Um den Abgaseinlass möglichst effektiv kühlen zu können, ist vorgesehen, dass die Strömungsleitanordnung eine Ringstruktur aufweist. Dabei ist die Ringstruktur in dem Ringraum um den Rohrblock angeordnet und trennt fluidhemmend den Einlassbereich innerhalb des Ringraumes zumindest bereichsweise von dem Kühlmittelauslass ab. So wird auf eine vorteilhafte Weise ein Abfließen des Kühlmittels um den Rohrblock aus dem Einlassbereich gehemmt und die Wärmeübertragung in dem Einlassbereich verbessert. Die Ringstruktur kann beispielsweise in einer Vertiefung des Gehäuses angeordnet und so an dem Gehäuse festgelegt werden. Alternativ kann die Ringstruktur an einer Vertiefung des Gehäuses festgelegt werden.
  • Vorgesehen ist auch, dass die Ringstruktur wenigstens eine Durchlassöffnung aufweist, durch die das Kühlmittel aus dem Einlassbereich innerhalb des Ringraumes zu dem Kühlmittelauslass fließen kann. Die Durchlassöffnung kann beispielsweise an einer Seitenfläche oder an einem abgewinkelten Bereich der Ringstruktur vorgesehen sein, um zumindest teilweise ein Abfließen des Kühlmittels aus dem Einlassbereich zu ermöglichen. Insbesondere kann dadurch ein Aufstauen des Kühlmittels und so ein Überhitzen in dem Einlassbereich verhindert werden und der Kühlmitteldruck in dem Gehäuse aufrechterhalten werden.
  • Die Ringstruktur kann vorteilhafterweise an dem Rohrblock und/oder an dem Gehäuse federnd und/oder vorgespannt festgelegt sein. Dazu kann die Ringstruktur beispielsweise federnde an der Ringstruktur ausgebildete Strukturen in ihre Längsrichtung aufweisen, die die Ringstruktur von mechanischen Belastungen wie beispielsweise Vibrationen vorteilhaft schützen können.
  • Bei einer Weiterbildung der erfindungsgemäßen Lösung ist vorteilhafterweise vorgesehen, dass das Gehäuse einen Umlaufraum aufweist, wobei der Umlaufraum den Rohrblock in dem Einlassbereich in der Umfangsrichtung umschließt und beispielsweise durch eine Vertiefung in dem Gehäuse ausgeformt ist. In dem Umlaufraum kann das Kühlmittel vor dem Führen in den Rohrblock gesammelt und der Rohrblock in dem Einlassbereich zusätzlich gekühlt werden. Aus dem Umlaufraum kann das Kühlmittel anschließend zwischen die Rohrreihen geführt werden, um das Abgas zu kühlen. Auf diese Weise kann ein gleichmäßiges Beaufschlagen des Rohrblocks mit dem Kühlmittel erreicht werden und folglich die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas in dem Einlassbereich erhöht werden.
  • Vorteilhafterweise ist vorgesehen, dass die Strömungsleitanordnung die Ringstruktur und wenigstens eine Strömungsleitstruktur aufweist und dass wenigstens eine der Strömungsleitstrukturen an der Ringstruktur integral ausgebildet ist. Die integral an der Ringstruktur ausgebildete Strömungsleitstruktur kann auf eine besonders stabile Weise ausgestaltet werden und dadurch die Lebensdauer der Strömungsleitanordnung erhöht werden.
  • Alternativ ist vorgesehen, dass die Strömungsleitanordnung die Ringstruktur und wenigstens eine Strömungsleitstruktur aufweist, wobei die Ringstruktur wenigstens eine der an dem Rohrblock angeordneten Strömungsleitstrukturen umgreift. Hier können die Strömungsleitstrukturen zuerst in dem Rohrblock angeordnet werden und anschließend die Ringstruktur um den Rohrblock angeordnet werden.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch
  • Fig. 1
    eine Teilschnittansicht eines erfindungsgemäßen Abgasrückführkühlers;
    Fig. 2
    eine Teilschnittansicht eines Abgasrückführkühlers mit einem Umlaufraum;
    Fig. 3
    eine Ansicht einer Strömungsleitanordnung, die an einem Rohrblock angeordnet ist;
    Fig. 4
    eine Draufsicht auf eine Strömungsleitanordnung, die an einem Rohrblock angeordnet ist;
    Fig. 5
    eine Ansicht einer Strömungsleitstruktur;
    Fig. 6
    eine Ansicht mehrerer Strömungsleitstrukturen, die zu einer Strömungsleitanordnung angeordnet sind;
    Fig. 7
    eine Ansicht eines Abgasrückführkühlers mit einer Ringstruktur;
    Fig. 8
    eine Ansicht eines Abgasrückführkühlers mit einer Ringstruktur und mit mehreren Strömungsleitstrukturen.
  • Fig. 1 zeigt eine Teilschnittansicht eines erfindungsgemäßen Abgasrückführkühlers 1. Der Abgasrückführkühler 1 weist ein Gehäuse 2 auf, in dem mehrere Kühlrohre 3 in Spalten nebeneinander zu einer Rohrreihe 4 und wenigstens zwei Rohrreihen 4 übereinander und beabstandet zueinander zu einem Rohrblock 5 angeordnet sind. Das jeweilige Kühlrohr 3 ist innen vom Abgas durchströmbar und verbindet gasleitend einen Abgaseinlass 6 mit einem Abgasauslass 7. Die einzelnen Kühlrohre 3 sind an dem Abgaseinlass 6 mit einem Abgaseintrittsboden 6a und an dem Abgasauslass 7 mit einem Abgasaustrittsboden 7a fluiddicht verbunden. Außen ist das jeweilige Kühlrohr 3 innerhalb des Gehäuses 2 vom Kühlmittel umströmbar, wozu das Gehäuse 2 einen in das Gehäuse 2 in einem Einlassbereich 8 einmündenden Kühlmitteleinlass 9 und einen Kühlmittelauslass 10 aufweist. Der Abgasrückführkühler 1 weist auch einen den Rohrblock 5 in der Umfangsrichtung umschließenden Ringraum 11 auf, der von dem Kühlmittel durchströmbar ist. Erfindungsgemäß weist der Abgasrückführkühler 1 eine Strömungsleitanordnung 12 zum Führen des Kühlmittels im Inneren des Rohrblocks 5 auf, die in dem Gehäuse 2 zumindest bereichsweise an wenigstens einer der Rohrreihen 3 anliegend angeordnet ist.
  • In diesem Ausführungsbeispiel weist die Strömungsleitanordnung 12 eine Ringstruktur 13 auf, die in dem Ringraum 11 um den Rohrblock 5 angeordnet ist.
  • Die Ringstruktur 13 trennt fluiddicht den Einlassbereich 8 innerhalb des Ringraumes 11 von dem Kühlmittelauslass 10, so dass ein Abfließen des Kühlmittels um den Rohrblock 5 aus dem Einlassbereich 8 verhindert wird die Wärmeübertragung in dem Einlassbereich 8 verbessert wird. Zu einer weiteren Verbesserung der Wärmeübertragung zwischen dem Abgas und dem Kühlmittel weist das Gehäuse 2 einen Umlaufraum 14 auf, der den Rohrblock 5 in dem Einlassbereich 8 in der Umfangsrichtung umschließt.
  • Fig. 2 zeigt eine Teilschnittansicht des Abgasrückführkühlers 1 mit dem Umlaufraum 14. Zur Übersichtlichkeit sind hier die mittleren Kühlrohre 3 in der Rohrreihe 4 gestrichelt dargestellt. In dem Umlaufraum 14 wird das Kühlmittel vor dem Führen zu dem Abgaseinlass 6 aufgestaut und der Rohrblock 5 wird in dem Einlassbereich 8 länger gekühlt. Aus dem Umlaufraum 14 kann das Kühlmittel anschließend in den Rohrblock 5 - wie durch Pfeile angedeutet - geführt werden. Auf diese Weise kann ein gleichmäßiges Beaufschlagen des Rohrblocks 5 mit dem Kühlmittel erreicht werden und folglich die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas in dem Einlassbereich 8 erhöht werden.
  • Fig. 3 zeigt eine Ansicht und Fig. 4 eine Draufsicht der Strömungsleitanordnung 12, die an dem Rohrblock 5 angeordnet ist. Die Strömungsleitanordnung 12 weist zwei Strömungsleitstrukturen 15 auf, die in diesem Ausführungsbeispiel Drahtelemente 16 sind. Die Strömungsleitstrukturen 15 können bereichsweise in dem Einlassbereich 8 des Gehäuses 2 angeordnet werden und aus dem Ringraum 11 in den Rohrblock 5 eingreifen. Die Strömungsleitstrukturen 15 weisen jeweils einen Festlegbereich 17 zum Festlegen der jeweiligen Strömungsleitstruktur 15 an der jeweiligen Rohrreihe 4 und einen Strömungsleitbereich 18 zum Führen des Kühlmittels zwischen den benachbarten Rohrreihen 4 auf. Der Festlegbereich 17 umgreift die jeweilige Rohrreihe 4 und legt klemmend die Strömungsleitstruktur 15 an dem Rohrblock 5 fest.
  • Um die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas zu erhöhen, lenkt der Strömungsleitbereich 18 das aus dem Kühlmitteleinlass 9 zuströmende Kühlmittel zu dem Abgaseinlass 6 um. Der Strömungsbereich 18 der jeweiligen Strömungsleitstruktur 15 weist dazu zwei Führungskanäle 19 auf, die sich im Wesentlichen in eine Querrichtung 20 zu einer Längsrichtung 21 des Rohrblocks 5 erstrecken. Der jeweilige Führungskanal 19 weist - wie in Fig. 4 zu sehen - einen Winkel zu der Querrichtung 20 auf und kann das Kühlmittel zu dem Abgaseinlass 6 und zu dem Abgaseintrittsboden 6a umlenken. Der Winkel des Führungskanals 19 zu der Querrichtung 20 oder zu der Längsrichtung 21 des Rohrblocks 5 sowie die Länge des Führungskanals 19 kann angepasst werden, um das Fließmuster des Kühlmittels in dem Rohrblock 5 zu beeinflussen. Durch das Umlenken des Kühlmittels verzögert die Strömungsleitstruktur 15 ein Abfließen des Kühlmittels aus dem Einlassbereich 8, so dass die Wärmeübertragung zwischen dem Kühlmittel und dem Abgas erhöht werden kann.
  • In Fig. 5 ist ein einzelnes Drahtelement 16 der Strömungsleitstruktur 15 und in Fig. 6 sind insgesamt vier Drahtelemente 16 der Strömungsleitstruktur 15 zu der Strömungsleitanordnung 12 angeordnet. Das jeweilige Drahtelement 16 kann dabei beispielsweise ein Spritzformteil, ein Spritzgussteil oder ein Drahtausformteil sein. Der Festlegbereich 17 und der Strömungsleitbereich 18 sind an dem Drahtelement 16 integral ausgeformt. So kann das Drahtelement 16 kostengünstig hergestellt werden. Der Festlegbereich 17 des Drahtelements 16 ist mäanderförmig ausgeformt und ermöglicht ein kraftschlüssiges Festlegen des Drahtelements 16 an der Rohrreihe 4. Der Strömungsleitbereich 18 des Drahtelements 16 weist zwei Führungskanäle 19 auf, durch die ein Führen des Kühlmittels jeweils zwischen den benachbarten Rohrreihen 4 ermöglicht wird. Das Fließmuster des Kühlmittels in dem Rohrblock 5 kann vorteilhaft durch die Änderung der Länge und der Breite des Führungskanals 19 sowie des Winkels zu der Querrichtung 20 beeinflusst werden.
  • Fig. 7 zeigt eine Ansicht des Abgasrückführkühlers 1 mit der Ringstruktur 13 der Strömungsleitanordnung 12. Dabei ist die Ringstruktur 13 in dem Ringraum 11 um den Rohrblock 5 angeordnet und trennt fluidhemmend den Einlassbereich 8 innerhalb des Ringraumes 11 von dem Kühlmittelauslass 10. So wird auf eine vorteilhafte Weise ein Abfließen des Kühlmittels um den Rohrblock 5 aus dem Einlassbereich 8 gehemmt und die Wärmeübertragung in dem Einlassbereich 8 verbessert. Um ein Aufstauen des Kühlmittels und so ein Überhitzen in dem Einlassbereich 8 zu verhindern, weist die Ringstruktur 13 wenigstens eine Durchlassöffnung 22 auf. Die Durchlassöffnung 22 ist in einem abgewinkelten Bereich 23 der Ringstruktur 13 angeordnet und ermöglicht ein Abfließen des Kühlmittels aus dem Einlassbereich 8 innerhalb des Ringraumes 11. Um das Abfließen des Kühlmittels aus dem Einlassbereich 8 zu beeinflussen, kann die Ringstruktur 13 mehrere sich in der Größe und in der Position unterscheidende Durchlassöffnung 22 aufweisen.
  • In Fig. 8 ist eine Ansicht des Abgasrückführkühlers 1 mit der Strömungsleitanordnung 12 gezeigt, die die Ringstruktur 13 und die Strömungsleitstrukturen 15 aufweist. Die Ringstruktur 13 umgreift die an dem Rohrblock 5 angeordneten Strömungsleitstrukturen 15, wodurch ein zusätzliches Festlegen der Strömungsleitstrukturen 15 in dem Rohrblock 5 ermöglicht wird. Die Strömungsleitanordnung 12 kann beispielsweise bereits bei der Herstellung des Abgasrückführkühlers 1 in dem Rohrblock 5 angeordnet werden. Abhängig von den Abmessungen des Abgasrückführkühlers 1 kann auch die Strömungsleitanordnung 12 entsprechend angepasst werden. Durch die Strömungsleitanordnung 12 wird die Wärmeübertragung in dem erfindungsgemäßen Abgasrückführkühler 1 verbessert und dadurch vorteilhaft sowohl ein mechanisches Versagen des Abgasrückführkühlers 1 infolge eines Überhitzens verhindert als auch die Effizienz des Abgasrückführkühlers 1 erhöht.

Claims (12)

  1. Abgasrückführkühler (1) für eine Brennkraftmaschine, insbesondere eines Kraftfahrzeugs,
    - wobei der Abgasrückführkühler (1) ein Gehäuse (2) aufweist, in dem mehrere Kühlrohre (3) nebeneinander zu einer Rohrreihe (4) und wenigstens zwei Rohrreihen (4) übereinander und beabstandet zueinander zu einem Rohrblock (5) angeordnet sind,
    - wobei das jeweilige Kühlrohr (3) innen vom Abgas durchströmbar ist und einen Abgaseinlass (6) mit einem Abgasauslass (7) gasleitend verbindet, während es außen innerhalb des Gehäuses (2) vom Kühlmittel umströmbar ist,
    - wobei das Gehäuse (2) einen in einem Einlassbereich (8) in das Gehäuse (2) einmündenden Kühlmitteleinlass (9) und einen Kühlmittelauslass (10) aufweist, und
    - wobei der Abgasrückführkühler (1) einen den Rohrblock (5) in der Umfangsrichtung umschließenden Ringraum (11) aufweist, der von dem Kühlmittel durchströmbar ist,
    - wobei der Abgasrückführkühler (1) eine Strömungsleitanordnung (12) zum Führen des Kühlmittels im Inneren des Rohrblocks (5) aufweist, die in dem Gehäuse (2) zumindest bereichsweise an wenigstens einer der Rohrreihen (4) anliegend angeordnet ist,
    - wobei die Strömungsleitanordnung (12) wenigstens eine Strömungsleitstruktur (15) aufweist, wobei die Strömungsleitstruktur (15) zumindest bereichsweise in dem Einlassbereich (8) des Gehäuses (2) angeordnet ist und aus dem Ringraum (11) in den Rohrblock (5) eingreift,
    dadurch gekennzeichnet,
    - dass die wenigstens eine Strömungsleitstruktur (15) mehrere einzelne Drahtelemente (16) aufweist, wobei das jeweilige Drahtelement (16) für jeweils eine Rohrreihe (4) oder für jeweils einige der Rohrreihen (4) vorgesehen ist, und
    - dass das jeweilige Drahtelement der Strömungsleitstruktur (15) die zugeordnete Rohrreihe (4) oder die zugeordneten Rohrreihen (4) zumindest bereichswelse an einer dem Ringraum (11) zugewandten Seite umgreift und aus dem Ringraum (11) in Zwischenräume zu den benachbarten Rohrreihen (4) eingreift und dadurch das jeweilige Drahtelement (16) klemmend oder formschlüssig an der zugeordneten Rohrreihe (4) oder an den zugeordneten Rohrreihen (4) des Rohrblocks (5) festlegt ist.
  2. Abgasrückführkühler nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Strömungsleitstruktur (15) wenigstens einen Festlegbereich (17) zur Festlegung der Strömungsleitstruktur (15) an der Rohrreihe (4) und wenigstens einen Strömungsleitbereich (18) zum Führen des Kühlmittels zwischen den benachbarten Rohrreihen (4) aufweist.
  3. Abgasrückführkühler nach Anspruch 2,
    dadurch gekennzeichnet,
    dass der Festlegbereich (17) und/oder der Strömungsleitbereich (18) des jeweiligen Drahtelements (16) der Strömungsleitstruktur (15) wischen zwei benachbarten Rohrreihen (4) eingeklemmt sind.
  4. Abgasrückführkühler nach Anspruch 2 oder 3,
    dadurch gekennzeichnet,
    dass der Strömungsleitbereich (18) das aus dem Kühlmitteleinlass (9) zuströmende Kühlmittel zu dem Abgaseinlass (6) umlenkt.
  5. Abgasrückführkühler nach einem der Ansprüche 2-4,
    dadurch gekennzeichnet,
    dass der Festlegbereich (17) und der Strömungsleitbereich (18) an dem Drahtelement (16) integral ausgeformt sind.
  6. Abgasrückführkühler nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das jeweilige Drahtelement (16) ein Spritzformteil, ein Spritzgussteil oder ein Drahtausformteil ist.
  7. Abgasrückführkühler nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Strömungsleitanordnung (12) eine Ringstruktur (13) aufweist, wobei die Ringstruktur (13) in dem Ringraum (11) um den Rohrblock (5) angeordnet ist, und wobei die Ringstruktur (13) den Einlassbereich (8) innerhalb des Ringraumes (11) zumindest bereichsweise von dem Kühlmittelauslass (9) fluiddicht abtrennt.
  8. Abgasrückführkühler nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Ringstruktur (13) wenigstens eine Durchlassöffnung (22) aufweist, durch die das Kühlmittel aus dem Einlassbereich (8) innerhalb des Ringraumes (11) zu dem Kühlmittelauslass (10) fließen kann.
  9. Abgasrückführkühler nach Anspruch 7 oder 8,
    dadurch gekennzeichnet,
    dass die Ringstruktur (13) an dem Rohrblock (5) und/oder an dem Gehäuse (2) federnd und/oder vorgespannt festgelegt ist.
  10. Abgasrückführkühler nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Gehäuse (2) einen Umlaufraum (14) aufweist, wobei der Umlaufraum (14) den Rohrblock (5) in dem Einlassbereich (8) in der Umfangsrichtung umschließt.
  11. Abgasrückführkühler nach einem der Ansprüche 7-9, dadurch gekennzeichnet,
    dass die Strömungsleitanordnung (12) die Ringstruktur (13) und wenigstens eine Strömungsleitstruktur (15) aufweist und dass wenigstens eine der Strömungsleitstrukturen (15) an der Ringstruktur (13) integral ausgebildet ist.
  12. Abgasrückführkühler nach einem der Ansprüche 7-9, dadurch gekennzeichnet,
    dass die Strömungsleitanordnung (12) die Ringstruktur (13) und wenigstens eine Strömungsleitstruktur (15) aufweist, wobei die Ringstruktur (13) wenigstens eine der an dem Rohrblock (5) angeordneten Strömungsleitstrukturen (15) umgreift.
EP17192019.2A 2016-10-13 2017-09-20 Abgasrückführkühler für eine brennkraftmaschine Active EP3309381B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016220017 2016-10-13
DE102017206201.0A DE102017206201A1 (de) 2016-10-13 2017-04-11 Abgasrückführkühler für eine Brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP3309381A1 EP3309381A1 (de) 2018-04-18
EP3309381B1 true EP3309381B1 (de) 2020-03-04

Family

ID=59930198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17192019.2A Active EP3309381B1 (de) 2016-10-13 2017-09-20 Abgasrückführkühler für eine brennkraftmaschine

Country Status (1)

Country Link
EP (1) EP3309381B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810323A (zh) * 2020-06-30 2020-10-23 东风马勒热***有限公司 废气再循环冷却器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212914A1 (de) * 1982-04-06 1983-10-13 Waterkotte Wärmepumpen GmbH, 4690 Herne Roehrenbuendelwaermeaustauscher
DE19654366B4 (de) 1996-12-24 2005-10-20 Behr Gmbh & Co Kg Strömungskanal, insbesondere für einen Abgaswärmeübertrager
DE19961284A1 (de) 1999-12-18 2001-07-12 Bosch Gmbh Robert Wärmeübertrager für Gasheizgeräte, insbesondere Brennwertgeräte
JP5145718B2 (ja) 2006-02-03 2013-02-20 株式会社デンソー 熱交換器
JP2010048536A (ja) 2008-08-25 2010-03-04 Denso Corp 熱交換器
DE102010001635A1 (de) 2010-02-05 2011-08-11 Behr GmbH & Co. KG, 70469 Wärmeübertrager
DE102010008176B4 (de) 2010-02-16 2013-04-11 Thesys Gmbh Wärmeübertrager und Verfahren zum Betreiben eines Wärmeübertragers
US20130327499A1 (en) 2011-02-21 2013-12-12 International Engine Intellectual Property Company, Llc Egr cooler and method
DE112013004695T5 (de) 2012-09-25 2015-09-24 Cummins Inc. Energieerzeugungssystem und Verfahren zur Rückführung von Abwärme
EP2725219A1 (de) 2012-10-25 2014-04-30 BorgWarner Inc. Strömungsleiteinrichtung
JP6143335B2 (ja) * 2013-03-28 2017-06-07 臼井国際産業株式会社 多管式熱交換器
DE102014202447A1 (de) * 2014-02-11 2015-08-13 MAHLE Behr GmbH & Co. KG Abgaswärmeübertrager
DE102014208259A1 (de) 2014-04-30 2015-11-05 Mtu Friedrichshafen Gmbh Kühleinrichtung zur Kühlung eines fluiden Mediums, Abgasrückführsystem für eine Brennkraftmaschine und Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810323A (zh) * 2020-06-30 2020-10-23 东风马勒热***有限公司 废气再循环冷却器
CN111810323B (zh) * 2020-06-30 2022-05-31 东风马勒热***有限公司 废气再循环冷却器

Also Published As

Publication number Publication date
EP3309381A1 (de) 2018-04-18

Similar Documents

Publication Publication Date Title
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
EP3108194B1 (de) Abgaswärmeübertrager
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
DE102005045103B3 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102015200657A1 (de) Brennkraftmaschine
EP3027881B1 (de) Ansaugmodul für eine brennkraftmaschine
DE102017206201A1 (de) Abgasrückführkühler für eine Brennkraftmaschine
EP2048345B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung
EP3309381B1 (de) Abgasrückführkühler für eine brennkraftmaschine
DE112017001679B4 (de) Ladeluftkühler
EP3106820A2 (de) Wärmeübertrager
DE102007041338B3 (de) Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
EP2998684B1 (de) Vorrichtung zur zuführung eines kühlmittels zu einem wärmeübertrager, vorzugsweise für einen abgaskühler eines verbrennungsmotors eines kraftfahrzeuges
EP2402585B1 (de) Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
EP3066407B1 (de) Wärmeübertrager
WO2022022934A1 (de) Wärmeübertrager für eine verbrennungskraftmaschine mit einem versteifungselement an einem fügebereich zweier trennwände und verbrennungskraftmaschine mit einem wärmeübertrager
EP2278149B1 (de) Wärmetauscher und aufladesystem
DE102016113555B4 (de) Abgas-System für eine Verbrennungskraftmaschine
DE202019101397U1 (de) Abgaskühler
WO2019072853A1 (de) Abgaswärmeübertrager
EP2855909B1 (de) Vorrichtung zur abgasführung in einer verbrennungskraftmaschine
EP3203173A1 (de) Abgaswärmeübertrager
DE102007033410B4 (de) Ladeluftkühler und Verbrennungskraftmaschine
WO2013068291A1 (de) Vorrichtung zur wandlung von wärmeenergie in elektrische energie
DE202021100465U1 (de) Abgaswärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181016

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004064

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004064

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201127

Year of fee payment: 4

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200920

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017004064

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210920

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1240650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220920