EP3307938B1 - Verseileinheit für eine verseilmaschine und korb für eine verseileinheit - Google Patents

Verseileinheit für eine verseilmaschine und korb für eine verseileinheit Download PDF

Info

Publication number
EP3307938B1
EP3307938B1 EP16734562.8A EP16734562A EP3307938B1 EP 3307938 B1 EP3307938 B1 EP 3307938B1 EP 16734562 A EP16734562 A EP 16734562A EP 3307938 B1 EP3307938 B1 EP 3307938B1
Authority
EP
European Patent Office
Prior art keywords
cage
stranding
basket
frame
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16734562.8A
Other languages
English (en)
French (fr)
Other versions
EP3307938A1 (de
Inventor
Daniel DEYERLER
Jörg Wenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leoni Kabel GmbH
Original Assignee
Leoni Kabel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leoni Kabel GmbH filed Critical Leoni Kabel GmbH
Publication of EP3307938A1 publication Critical patent/EP3307938A1/de
Application granted granted Critical
Publication of EP3307938B1 publication Critical patent/EP3307938B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B3/00General-purpose machines or apparatus for producing twisted ropes or cables from component strands of the same or different material
    • D07B3/02General-purpose machines or apparatus for producing twisted ropes or cables from component strands of the same or different material in which the supply reels rotate about the axis of the rope or cable or in which a guide member rotates about the axis of the rope or cable to guide the component strands away from the supply reels in fixed position
    • D07B3/06General-purpose machines or apparatus for producing twisted ropes or cables from component strands of the same or different material in which the supply reels rotate about the axis of the rope or cable or in which a guide member rotates about the axis of the rope or cable to guide the component strands away from the supply reels in fixed position and are spaced radially from the axis of the machine, i.e. basket or planetary-type stranding machine
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/04Devices for imparting reverse rotation to bobbin- or reel cages
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/06Bearing supports or brakes for supply bobbins or reels
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4004Unwinding devices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/40Aspects related to the problem to be solved or advantage related to rope making machines
    • D07B2401/406Increasing speed

Definitions

  • the invention relates to a stranding unit for a stranding machine, with a stranding axis and with a cage, in which at least one basket is arranged, for receiving a reel with strand material wound thereon.
  • a corresponding stranding machine is also referred to as a cage stranding machine.
  • Embodiments are in the EP 0 407 855 A1 and the DE 2 115 249 described.
  • stranding When stranding, several strands are usually stranded together by means of a stranding machine, for example to form a cable or rope. Typically, the strands are twisted with one another around a stranding axis with simultaneous conveyance in the direction of this stranding axis, i.e. in a stranding or production direction along or towards the stranding axis.
  • the strands are provided by a stranding unit which has a number of spools on which the strands are wound as strand material.
  • each coil is inserted into a basket which has a so-called yoke to hold the coil.
  • the basket During unwinding, the basket is typically also moved on a circular path around the stranding axis in order to achieve the required twisting movement.
  • Two rotary movements are thus generated: on the one hand, a rotation of the reel around a reel axis, for unwinding the strand material, and, on the other hand, a rotation of the reel on a circular path around the stranding axis.
  • a cage which is also referred to as a drum
  • the individually unwound strands are finally brought together at a stranding nipple, which is connected downstream of the stranding unit in the stranding direction.
  • the stranding unit is also preceded by an unwinder which provides a core inlet that is fed through the stranding unit to the stranding nipple and around which the individual strands are stranded.
  • stranding units and stranding nipples can also be arranged one behind the other in the stranding direction, in which case the material to be stranded at a stranding nipple is fed to a subsequent stranding unit as a core inlet.
  • the production speed in length per time in the case of stranding machines is essentially limited due to the forces that occur during the various rotary movements. Due to the high weight of the strand material on the spools and the circular movement of the baskets, strong centrifugal forces arise during operation in the radial direction to the stranding axis. The strands conveyed out of the stranding unit and to the stranding nipple are also subject to corresponding centrifugal forces. Furthermore, the rotary movement leads to heavy loads on the baskets and the yokes, especially at high speeds, with the risk of deformation or damage.
  • a cage stranding machine is described, with a support tube running along the stranding axis, on which a plurality of support shields are arranged for holding bobbins.
  • a support tube running along the stranding axis, on which a plurality of support shields are arranged for holding bobbins.
  • Such a stranding machine can then be operated at higher speeds.
  • a device for producing at least two individual lines twisted to form an electrical cable At a spatial distance between two holding devices for the individual lines, a twisting section is provided for the individual lines to form a twisted cable.
  • the device for producing twisted cables is assigned a corresponding number of supply reels in accordance with the number of individual lines.
  • a winding device is locally assigned to the exit side of a winding head.
  • a first holding device is designed as part of the winding device and the first holding device and the winding head are arranged in stationary positions with respect to one another.
  • Each supply reel is arranged and mounted in its own cylinder-shaped housing in the winding head.
  • the stranding unit should be able to be operated at the highest possible speed during stranding and should have the highest possible production speed during the production of parts to be stranded.
  • a stranding unit for a stranding machine having the features according to claim 1.
  • Advantageous configurations, developments and variants are the subject matter of the subclaims.
  • the stranding unit is designed for use in a stranding machine and has a stranding axis, which is in particular also a stranding axis of the stranding machine and along which a production of stranded material takes place.
  • the stranding unit has a cage, in which at least one basket, preferably a plurality of baskets, are arranged, for receiving a spool with a strand material wound thereon. During operation, this strand material is unwound from the reels and stranded to form the stranded material by means of the stranding machine.
  • the stranding unit has a frame with a frame which is designed, in particular, completely encircling the cage in a direction of rotation around the stranding axis, the cage being mounted on the frame by means of a number of frame bearing elements and being rotatable around the stranding axis.
  • the cage is rotatably mounted on the frame and preferably mounted exclusively on the frame, in particular without an additional shaft in the direction of the stranding axis.
  • the cage is with the The frame is fixedly connected and, during operation, the cage rotates in the frame around the stranding axis.
  • Essential advantages of the invention are in particular that centrifugal forces occurring during operation are absorbed and distributed in an improved manner and the risk of deformation of individual components of the stranding unit is avoided or at least reduced during operation.
  • This is achieved in particular by the fact that the cage is not mounted with a central shaft, as is customary, but is shifted out of the center and to the circumference of the cage.
  • the baskets are advantageously arranged in the cage in such a way that they are arranged in approximately the same length position as the frame bearing elements in the direction of the stranding axis.
  • the frame due to its arrangement outside the cage, can be designed to be almost arbitrarily massive and therefore particularly stable, and is expediently designed to absorb particularly high forces.
  • the frame is formed by a number of steel rings encircling the stranding axis, which are further attached to the frame. The frame then completely surrounds the cage and in particular also the baskets arranged therein.
  • the shaft of the stranding unit which is otherwise arranged in the center and running along the stranding axis, can also be dimensioned to be significantly smaller.
  • a shaft with a diameter that is significantly reduced compared to conventional shafts is therefore preferably used.
  • a shaft is preferably even completely dispensed with and the stranding unit then has a drive motor which drives the cage and is arranged outside the frame, in particular to the side thereof. This results in more free space in the center of the cage, so that the baskets can be arranged closer to the stranding axis compared to conventional stranding units and are expediently also arranged, whereby the radius of the circle of rotation of the baskets is reduced during operation. This in turn reduces the centrifugal forces during operation of the stranding unit, so that a higher speed and thus a higher production speed are advantageously possible.
  • the frame and the frame connected to it are fixed and immobile and form a receptacle for the moving parts of the stranding unit.
  • the cage is mounted in the frame and is rotated around the stranding axis during operation in order to realize the twisting movement of the strand material required for stranding.
  • the baskets are connected to the cage in such a way that when the cage rotates, the baskets are moved on one or more rotating circles around the stranding axis.
  • the stranding axis also runs in a stranding or production direction in which the strand material is conveyed and the strand material is generally produced from the strand material.
  • the stranding unit then has a front side which lies behind the stranding unit in the stranding direction and on which the strand material emerges from the stranding unit and is expediently fed to a stranding nipple.
  • the stranding unit In the stranding direction in front of the stranding unit, the stranding unit then accordingly has a rear side on which, for example, a centrally guided core inlet is fed as a core for the material to be stranded.
  • the basket and preferably all the baskets, are mounted in the cage so as to be rotatable about a respective longitudinal axis of the basket which runs parallel to the stranding axis.
  • the spools stored in the baskets can also be rotated about a spool axis which also runs parallel to the stranding axis and in particular also coaxially to the longitudinal axis of the cage. This longitudinal alignment of the various axes of rotation results in a particularly optimal force effect on the individual components of the stranding unit during operation.
  • centrifugal forces occurring during operation act in a particularly suitable manner on any axes, namely the longitudinal axis of the basket and the coil axis only in the radial direction and precisely not in the axial direction, ie along the respective axis. Therefore, the centrifugal forces that occur are distributed particularly evenly during operation, so that the components are subjected to a correspondingly uniform load and deformation or even damage due to changing loads is avoided.
  • a further advantage for a reel inserted in a basket then results from the fact that only radial forces act on the wound-up strand material, thereby preventing the strand material from slipping in the direction of the reel axis in a particularly simple manner.
  • the spool which has a spool core and spool flanges, is also spared because the rope does not slide back and forth on the spool core and, as a result, the dynamic loads on the spool core and the spool flanges in particular are reduced.
  • the frame bearing elements each have a number of frame rollers for mounting the cage. These frame rollers are firmly positioned with respect to the frame, so that the cage rolls over these frame rollers during operation.
  • the cage preferably has a corresponding cage running surface on the outer circumference, on which the frame rollers are seated.
  • the cage running surface is expediently made convex and thus sits particularly securely in correspondingly concavely profiled frame rollers in the axial direction as well.
  • a frame bearing element comprises two frame rollers which are combined by means of an articulated arm to form a roller unit which is then fastened to the frame.
  • the stranding unit preferably also comprises at least two frames with corresponding frame bearing elements, which are in different longitudinal positions are positioned along the stranding axis.
  • Such a frame then forms a cylindrical cage space which extends along the stranding axis and in which the cage is rotatably arranged. The frame thus encloses the cage in particular completely, at least in the radial direction.
  • the frame bearing elements are suitably each fastened to the frame by means of an eccentric bolt.
  • the frame bearing elements can be displaced to a limited extent in a radial plane perpendicular to the stranding axis, so that any manufacturing tolerances of the frame or the cage can be easily compensated for when it is inserted into the frame.
  • the frame is expediently more densely populated with frame bearing elements in a lower area below the stranding axis than in an upper area.
  • the weight forces acting downward are taken into account, which are absorbed by the frame in an improved manner due to the denser occupation with frame bearing elements in this lower area.
  • fewer frame bearing elements are then arranged in the upper area of the frame, since here only centrifugal forces acting during operation have to be absorbed.
  • the stranding takes place regularly with a so-called reverse rotation, i.e. the baskets are rotated in the opposite direction to the cage so that the baskets do not twist relative to the frame, but are only moved on the corresponding rotating circles.
  • the basket is also mounted on the cage by means of a number of cage bearing elements, in particular cage rollers, in particular for realizing such a reverse rotation, which are arranged in the circumferential direction around the basket.
  • the individual baskets are also mounted on the outside circumference of the cage, just as the cage is also mounted on the frame on the outside circumference.
  • the cage bearing elements are expediently designed in the same way as the frame bearing elements and preferably as roller units, which are then attached to the cage accordingly by means of an eccentric bolt.
  • several cage bearing elements are then designed as roller units, each with in particular two cage rollers, against which the basket rolls during operation.
  • the cage expediently has a number of cage disks which are arranged in various longitudinal positions along the stranding axis and perpendicular to it and each have an in particular circular basket recess into which the basket is inserted.
  • the stranding unit preferably comprises as many cage disks as frames, so that exactly one cage disk is assigned to each frame, which is arranged in this frame, so that a cage disk and a frame surrounding it are arranged at different length positions.
  • two cage disks are arranged correspondingly at two length positions, which are then surrounded by two frames.
  • the baskets inserted in the cage then extend in particular at least over the space formed by the cage disks, preferably in such a way that the coils in the baskets are arranged in this space, which then results in optimal power transmission in the radial direction during operation.
  • the cage washers act, in particular, as an intermediary between the cage and the baskets and, in particular, form load or force-transmitting elements.
  • a centrifugal force acts on a respective basket, which is directed outwards with respect to the stranding axis.
  • the cage bearing elements are therefore expediently arranged closer to one another in the outer area of the cage with respect to the stranding axis than in an inner area.
  • the cage bearing elements can advantageously be adjusted individually according to the force and space requirements, i.e. the number of cage bearing elements actually engaging the cage is adjustable, in particular in a particularly simple manner due to the attachment via eccentric bolts. Furthermore, the construction described above with eccentric attachment of the cage bearing elements is also advantageously self-centering. The same applies accordingly to the frame bearing elements.
  • a particularly optimal transmission of centrifugal forces results in an advantageous development in particular in that the frame bearing elements are arranged along the stranding axis at certain longitudinal positions and the cage bearing elements are arranged in essentially the same longitudinal positions.
  • the cage bearing elements and the frame bearing elements are thus arranged, so to speak, at the same height along the stranding axis.
  • This is based on the idea of realizing the shortest possible force flow paths.
  • the forces transmitted from the basket to the cage in the radial direction are then passed on directly in the radial direction to the frame during operation.
  • a mechanical load in the axial direction, ie in the direction of the stranding axis is thereby reduced in a particularly efficient manner. In particular, bending moments which act on the frame are avoided particularly effectively.
  • cage bearing elements and frame bearing elements are then arranged one behind the other in the radial direction.
  • cage bearing elements and frame bearing elements are arranged offset from one another at a certain longitudinal position at most by the width of the frame bearing elements and / or cage bearing elements.
  • the cage in particular its cage disks, preferably additionally have a number of strand feed-throughs for passing a corresponding number of strands, which for example emanate from a further stranding unit upstream of the stranding unit or from a correspondingly upstream unwinder.
  • the basket comprises a tube which extends along and around the longitudinal axis of the basket and into which a yoke is inserted.
  • the yoke is used in particular to accommodate the coil, which is then surrounded by the tube in the inserted state.
  • the tube has a closed jacket surface, as a result of which, during operation, possibly unfavorable air turbulence caused by a rotation of the basket is avoided.
  • the tube does not serve to guide the strand material, but rather forms a stabilizing exoskeleton of the basket.
  • the tube has a front side and a rear side, with the extruded material unwound during operation running out in particular over the front side.
  • the tube is preferably made of a carbon fiber or glass fiber reinforced plastic, also referred to as CFRP or GFRP.
  • CFRP carbon fiber or glass fiber reinforced plastic
  • the tube expediently has a number of bearing tracks along which the cage bearing elements are guided.
  • the bearing tracks thus serve in particular to support the basket on the cage.
  • a particularly secure hold is also ensured in the direction of the longitudinal axis of the basket.
  • the bearing tracks are designed as, in particular, concave roller tracks on the jacket surface of the tube and encircle it, in particular, over the entire circumference, so that correspondingly complementary cage rollers are guided along these roller tracks.
  • the tube then preferably comprises two bearing tracks, which are arranged in the direction of the longitudinal axis of the basket at different length positions, so that the basket is therefore stored in the cage at two length positions overall.
  • the yoke preferably has at least one, but preferably two bearing rings, each with a circumferential, conical contact surface which, when the yoke is inserted, rest positively on the inside conical yoke bearing surfaces of the pipe.
  • the contact surfaces and yoke bearing surfaces thus each form ring-shaped surfaces which are set at a certain angle with respect to the longitudinal axis of the cage, in order in this way to form part of a conical surface.
  • a contact surface and a yoke bearing surface then rest against one another and in this way produce a positioning of the yoke.
  • the basket is then loaded with a coil in particular such that the coil is placed on the yoke and the yoke is then inserted into the tube so that the contact surfaces and the yoke bearing surfaces abut one another in a form-fitting manner.
  • the bearing tracks are preferably arranged in the radial direction, pointing outward from the cage longitudinal axis, behind a respective contact surface, ie in particular arranged without an axial offset and at essentially the same longitudinal positions.
  • a respective contact surface ie in particular arranged without an axial offset and at essentially the same longitudinal positions.
  • the conical contact surfaces are expediently designed to taper in the same direction to the longitudinal axis of the basket.
  • the yoke is then preferably inserted into the tube at the end, for example from the rear of the stranding unit. Particularly in combination with the longitudinal axis of the basket oriented in the direction of the stranding axis, this results in particularly uncomplicated loading of the baskets with strand material.
  • the yoke is preferably secured in the pipe in the axial direction by means of a clamping lever which is then arranged, for example, on the rear of the basket and by means of which the yoke is reversibly clamped in the pipe. Due to the simple rear accessibility, all that is required to change a coil is to release the tensioning lever, remove the yoke from the tube and replace the coil accordingly.
  • the yoke preferably has a coil holder, which is also located in an area between the two contact surfaces for positioning the coil inside the tube.
  • This arrangement of the coil between the contact surfaces in particular, significantly improves the force transmission of centrifugal forces that arise when the coil is unwound via the contact surfaces onto the yoke bearing surfaces.
  • the contact surfaces are therefore arranged in edge areas and on the face of a coil placed on the yoke.
  • the bobbin holder expediently has two conical clamping heads, only one of the clamping heads being displaceable with respect to the yoke and along the longitudinal axis of the basket.
  • the coil is then clamped and fixed axially in the yoke by means of the clamping heads.
  • the conical clamping heads engage in correspondingly suitable recesses on the end faces of the coil.
  • the coil can then be tightened by moving the displaceable clamping head.
  • the displaceable clamping head can be rotated, for example via a thread, in particular a fine thread, and can be displaced along the longitudinal axis of the basket.
  • the displaceable clamping head is expediently accessible in a particularly simple manner via the front side of the basket, in particular from the rear side of the stranding unit.
  • the other clamping head advantageously does not need to be accessible; the spool is expediently locked only by means of the displaceable clamping head.
  • At least one, preferably two pull-out rails are arranged on the tube, which enable the yoke to be pulled in and out reversibly from the tube and in the direction of the longitudinal axis of the basket.
  • the yoke can then be pulled out of the tube towards the rear, i.e. from the rear, and a coil placed on the yoke can then be easily exchanged.
  • a complex dismantling of the yoke and separation from the cage is advantageously not required here. Instead, to change, the tensioning lever is first released, then the yoke is pulled out of the tube, and finally the reel holder is released and the reel is replaced.
  • the basket preferably has a deflection mechanism for the strand material unwound from the spool, which also deflects the strand material in the direction of an end face of the basket, in particular in the direction of the front side of the stranding unit, without counterbending.
  • the strand material is necessarily bent in one or more directions, for example when it is deflected by means of a deflection roller, but the mechanical load on the strand material is advantageously reduced by the fact that bending back, i.e. counterbending, does not take place, i.e. the deflection is counterbending-free is.
  • the deflection mechanism therefore comprises a number of deflection elements, for example deflection rollers, by means of which the strand material is guided and deflected, but takes place in the case of a deflection about a certain deflection axis in a certain deflection direction in the entire deflection mechanism, no further deflection in an opposite direction.
  • deflection elements for example deflection rollers
  • the deflection mechanism suitably comprises a dancer guide with a dancer which can be displaced in the stranding direction.
  • the dancer comprises an adjusting element, by means of which at least one of the deflection elements can be displaced in the stranding direction, and as a result of which a path length difference can be set for the strand material running through the deflection mechanism.
  • a pneumatic cylinder is suitable as an adjusting element of such a dancer position control, which has a particularly well adjustable piston pressure force which is essentially constant over the entire adjustment range of the adjusting element. Due to the high speed of the basket during operation, however, it is difficult to supply such an actuating element with compressed air.
  • the actuating element is therefore designed as a magnetic spring, as a linear motor or as an exchangeable compression spring package. The length fluctuations to be expected when unwinding the strand material are advantageously so small that an adjusting element with a tensile force that is not constant along the adjustment range can and is still used with sufficient accuracy.
  • the basket is coupled to the cage by means of a coupling mechanism, in particular for realizing the above-mentioned reverse rotation, for reverse rotation of the basket when the cage is rotated.
  • the coupling mechanism here has a coupling which in turn has two wheels, namely a frame wheel rolling on the frame and a basket wheel driving the basket.
  • the two wheels are firmly connected to one another via an intermediate shaft.
  • the rotation is translated in this way of the cage relative to the frame to a rotation of the basket within the cage with a particularly fixed translation.
  • the intermediate shaft is in particular guided parallel to the stranding direction and is preferably passed through a wall of the cage and is supported on it.
  • the intermediate shaft is passed through a respective cage disk and is also supported on it, that is, it is rotated together with the cage around the stranding axis during operation.
  • the coupling then comprises two wheels that are non-rotatably connected to one another, one wheel being in operative connection as a frame wheel with the stationary frame and the cage wheel with the basket.
  • the basket is rotated with a gear ratio of one.
  • the two wheels are appropriately dimensioned with regard to their diameter and the ratio of the diameters to one another.
  • the frame wheel is designed as a chain wheel and runs off a chain that is attached to the frame.
  • the chain is attached to the frame on the inside, for example by means of flange lugs.
  • a chain it is also possible to dispense with a toothed profile on the frame that may turn out to be particularly large in accordance with the requirements.
  • the chain is also used as a static component, it is not subject to the usual restrictions in operation, for example with regard to centrifugal forces or maximum speeds.
  • the chain is preferably a particularly inexpensive pin chain.
  • the connection of the coupling to the basket is expediently carried out on its outside, ie on the outer surface of the tube.
  • the basket wheel is then preferably designed as a belt wheel and drives a belt which runs around the basket and engages a tooth contour which is attached to the outside of the basket.
  • the tooth contour is expediently already on when the pipe is manufactured formed this, so made in one piece with the tube.
  • the size ratio of cage wheel to frame wheel is then selected, taking into account the diameter of the cage and the diameter of the cage, in such a way that a preferably vanishing relative rotational movement with respect to the frame results for the cage, i.e. a ratio of one.
  • the stranding unit has at least one guide element for guiding the strand material to the stranding nipple.
  • the guide element is arranged behind the cage in the stranding direction, ie on its front side, and expediently runs with the unwound extruded material during operation in order to achieve the lowest possible relative movement of the extruded material against the guide element.
  • the guide element has a guide surface that is made of a material that generates as little friction as possible in contact with the material of the extruded material.
  • the guide element is, in particular, a preferably moving support element and serves primarily to avoid damage to the extruded material due to its own weight in the event of a centrifugal load.
  • the guide element is therefore in particular not a pre-stranding disk
  • the basket suitably has a tube which extends along and around a longitudinal axis of the basket and in which a yoke is inserted for receiving a reel with strand material wound thereon, a deflection mechanism for the strand material being arranged at the end for unwinding the same in the side Direction with respect to the coil. Due to the frontal arrangement of the deflection mechanism, the basket is particularly built in the radial direction little, whereby the turning circle of the basket can be significantly reduced during operation and the stranding unit equipped with a corresponding basket can be operated at a significantly higher speed.
  • the yoke is inserted into the tube at the end face, in particular on the end face of the tube opposite the deflection mechanism.
  • the coil is accessible and exchangeable in a particularly simple manner via the corresponding end face.
  • the yoke can be pulled out of the tube from the back, for removing or inserting the spool and the deflection mechanism is arranged on the front side so that the rope is unwound at the front during operation and the deflection mechanism is not in the way when changing the spool.
  • the deflecting mechanism is expediently a part of the yoke and can therefore be pulled out of the tube together with it, so that threading the continuous material into the deflecting mechanism when a spool is inserted is significantly simplified.
  • a stranding machine 2 is shown in different views.
  • the Fig. 1a the stranding machine 2 in a perspective rear view, the Figure 1b in a perspective front view, the Figure 1c in a side view and the Fig. 1d again in a perspective rear view and in the extended state.
  • the stranding machine 2 comprises a frame 4 to which a frame 6 is attached, in which a cage 8 is rotatably mounted.
  • a number of here four baskets 10 are again arranged, which are rotatably mounted with respect to the cage 8.
  • the baskets 10 serve to hold spools 12 with strand material 14 wound thereon.
  • the stranding unit 2, more precisely the cage 8, is driven by a drive motor 15 arranged outside and to the side of the frame.
  • the strand material 14 is unwound from the spools 12 by means of the stranding unit 2 and fed in a stranding direction V to a stranding point P at which the strands 14 are stranded to form a stranded product 16.
  • a stranding nipple is arranged at the stranding point P in particular.
  • the stranding unit 2 shown here has a number of strand feed-throughs 17 for the implementation of strands 14 which are unwound in front of the stranding unit 2, e.g. from an upstream further stranding unit 2.
  • One of the strand feed-throughs 17 is guided centrally along the stranding axis VA and is used here in particular the supply of a strand 14 as a core inlet, which is provided, for example, by an upstream unwinder, not shown here.
  • the cage 8 rotates in a direction of rotation UR about a stranding axis VA, which extends in the stranding direction V.
  • the baskets 10 are moved on a turning circle DK about the stranding axis VA.
  • the stranding also takes place with a so-called reverse rotation, in addition to rotating the baskets 10 around the stranding axis VA, each of the baskets 10 is additionally rotated around its own longitudinal axis KA.
  • the rotation of a respective basket 10 about its longitudinal axis KA takes place in particular in the opposite direction to the direction of rotation of the cage 8 in the frame 6.
  • the stranding unit 2 namely firstly the unwinding of the strand material 14 from a respective reel 12, secondly the rotation of a respective basket 10 around its cage longitudinal axis KA and, thirdly, the movement of the cages 10, in particular their cage longitudinal axes KA, to a turning circle DK around the stranding axis VA.
  • all axes of rotation are aligned parallel to one another.
  • the coils 12 each have a coil axis which corresponds to a respective longitudinal cage axis KA.
  • the cage longitudinal axes KA then extend in the stranding direction V and parallel to the stranding axis VA. Due to this arrangement, the centrifugal forces generated during rotation only act as radial forces on the individual components of the stranding machine and not as axial forces.
  • the cage 8 comprises several cage disks 18, which are particularly clear in FIG Figure 1c can be recognized.
  • the cage disks 18 each have basket recesses 20 into which the baskets 10 are inserted.
  • the cage 8 formed in this way is completely surrounded in the circumferential direction UR by the frame 6, which is formed by a number of rings 22 in the exemplary embodiment shown.
  • These rings 22 are designed here in particular as steel rings which are fastened to the frame 4 and are arranged at different length positions L1, L2 along the stranding axis VA and in this way enclose an intermediate space 24 in which the cage 8 is arranged.
  • the baskets 10 are then inserted into the cage 8 in such a way that the coils 14 are arranged in the space 24 between the two outermost length positions L1, L2.
  • the storage of the cage 8 in the frame 6 and the baskets 10 in the cage 8 takes place in the embodiment shown here by means of a number of frame bearing elements 26 or cage bearing elements 28.
  • the frame bearing elements 26 and the cage bearing elements 28 are advantageously designed in the same way, namely as roller units 30 which each have a number of here two rollers 32 which are attached to an articulated arm 34 and via an eccentric bolt 36 to the frame 6 or to the cage 8.
  • the rollers 32 each have a concave running surface which, during operation, rolls on a correspondingly convex counter surface.
  • the outer circumference of the cage disks 18 is correspondingly convex formed cage running surfaces 38, while the baskets 10 each have a number of convex bearing tracks 40 circumferentially.
  • the baskets 10 are supported by means of the cage bearing elements 28 at a number of length positions L3 and the cage 8 on the frame 6 at a number of length positions L4, which essentially correspond to the length positions L3.
  • a respective length position L3 has only a small offset VL with respect to a respective length position L4, which here corresponds to a width B of the bearing elements 26, 28, ie in particular approximately to a width of the rollers 32.
  • This positioning of the bearing elements 26, 28 one behind the other in the radial direction R ensures an optimal flow of force in the radial direction R when the stranding unit 2 is in operation and the load in the axial direction, ie in the stranding direction V, is particularly greatly reduced.
  • the frame bearing elements 26 are arranged more densely in a lower area U of the stranding unit 2 than in an upper area O. This is particularly shown in FIG Fig. 1a recognizable.
  • the cage bearing elements 28 are arranged more densely towards the outside in the radial direction R than towards the stranding axis VA. This is also particularly evident in Fig. 1a but also in Fig. 3 recognizable.
  • a basket 10 which has a tube 42 into which a yoke 44 is inserted, for receiving a coil 12, not shown here.
  • the tube 42 extends along the longitudinal axis KA of the basket and comprises a number of pull-out rails 46, via which the yoke 44 can be pushed into the tube 42 in the direction of the longitudinal axis KA of the basket and can be withdrawn therefrom. This pushing out and in takes place in particular on the rear side of the tube 42, ie on the rear side RS of the stranding unit 2.
  • Fig. 5 the tube 42 with the yoke 44 is shown in the pushed-in state.
  • FIG. 4 the bearing tracks 40 arranged on a jacket surface 45, ie on the outer circumference of the tube 42, for rolling the basket 10 on the cage bearing elements 28.
  • the configuration which is convex in cross section, can also be clearly seen.
  • conical yoke bearing surfaces 48 are formed in front of the bearing tracks 40 on the inside of the tube 42, for the form-fitting mounting of the yoke 44.
  • the yoke 44 has a corresponding number of bearing rings 49, with outwardly pointing conical contact surfaces 50.
  • the positive-locking arrangement is particularly shown in FIG Fig. 5 clearly.
  • the contact surfaces 48, 50 are set at an angle W in order to be correspondingly conical and to enable an optimal form fit.
  • the contact surfaces 48, 50 are positioned in the same direction to the cage longitudinal axis KA, so that a rearward insertion is possible.
  • a clamping lever 52 is arranged for locking it, by means of which the yoke 44 is clamped in the tube 42.
  • the yoke 44 comprises a coil receptacle 54, which here has two conical clamping heads 56 spaced apart in the direction of the cage longitudinal axis KA, between which the coil 14 is then clamped.
  • the coil receptacle 54 is arranged between the contact surfaces 50 in such a way that an inserted coil 14 is positioned between them and thus any centrifugal forces acting radially with respect to the coil 14 in an optimal manner via the contact surfaces 48, 50 initially via the cage bearing elements 28 on the cage 8 and from there finally transferred to the frame 6 via the frame bearing elements 26.
  • Any axial forces, ie forces in the direction of the cage longitudinal axis KA and the stranding axis V are reduced to a minimum.
  • the clamping head 56 on the rear side can also be moved around a spool 14 by means of a thread 57 along the longitudinal axis of the basket to clamp securely. Due to the rear-side arrangement of this adjustable clamping head 56, it is also particularly easily accessible from the rear side RS of the stranding unit 2.
  • the strand material 14 is unwound from a respective spool 12 in the radial direction R and then deflected in the stranding direction V via a deflection mechanism 58 and conveyed out of the basket 10 at the front, i.e. via an end face S of the tube 42.
  • the deflecting mechanism 58 comprises a number of deflecting elements 60, which are designed here as rollers. The deflection of the strand 14 takes place by means of the deflection mechanism 58 without counterbending, in order to avoid excessive mechanical stress on the strand material 14.
  • the deflection elements 60 each have a deflection axis UA around which the extruded material 14 is deflected, with no deflection in different directions around respective deflection axes UA with the same direction in the entire deflection mechanism 58.
  • the deflection mechanism 58 comprises a dancer guide 62 with an adjusting element 64 in order to ensure length compensation of the possibly unevenly unwound continuous material 14 during operation.
  • the adjusting element 64 is designed in particular in such a way that length compensation takes place in the direction of the cage longitudinal axis KA.
  • the stranding unit 2 has a coupling mechanism 66 between the frame 6 and the baskets 10, which is in the Figures 6a-6c is clearly visible.
  • this coupling mechanism 66 By means of this coupling mechanism 66, the rotation of the cage 8 relative to the frame 6 is translated into a rotation of the basket 10 relative to the cage 8.
  • the coupling mechanism 66 has a coupling 67 for each of the baskets 10, with an intermediate shaft 68 which is mounted on the cage 8, more precisely on one of the cage disks 18 and on which two wheels 70, 72 are attached, namely a frame wheel 70 and a basket wheel 72. These wheels 70, 72 are rotatably connected to the intermediate shaft 68, so that a fixed translation results.
  • the basket wheel 70 rolls on the frame 6 during operation, in the embodiment shown here on a chain 74 which is attached to one of the rings 22 of the frame 6.
  • the basket wheel 72 then drives one of the baskets 10 via a belt 76.
  • a tooth contour 78 is formed on the outside of the jacket surface 45 of the associated tube 42.
  • the transmission ratio of the clutch 67 results, among other things, from the ratio of the diameters D1, D2 of the wheels 70, 72. In the exemplary embodiment shown here, the ratio is selected such that the transmission is one and thus a reverse rotation of the basket 10 results in such a way that that a respective basket 10 is only moved on the turning circle DK with respect to the frame 4 of the stranding unit 2, but is not itself rotated relative to the frame 4.

Landscapes

  • Ropes Or Cables (AREA)
  • Unwinding Of Filamentary Materials (AREA)

Description

  • Die Erfindung betrifft eine Verseileinheit für eine Verseilmaschine, mit einer Verseilachse und mit einem Käfig, in welchem zumindest ein Korb angeordnet ist, zur Aufnahme einer Spule mit darauf aufgewickeltem Stranggut.
  • Eine entsprechende Verseilmachine wird auch als Korbverseilmaschine bezeichnet. Ausführungsbeispiele sind in der EP 0 407 855 A1 und der DE 2 115 249 beschrieben.
  • Beim Verseilen werden üblicherweise mehrere Stränge mittels einer Verseilmaschine miteinander verseilt, beispielsweise zu einem Kabel oder einem Seil. Dabei erfolgt typischerweise eine Verdrehung der Stränge miteinander um eine Verseilachse bei gleichzeitiger Förderung in Richtung dieser Verseilachse, d.h. in einer Verseil- oder Produktionsrichtung entlang der Verseilachse oder auf diese zulaufend. Die Stränge werden von einer Verseileinheit bereitgestellt, welche eine Anzahl von Spulen aufweist, auf denen die Stränge als Stranggut aufgewickelt sind. Üblicherweise ist jede Spule in einen Korb eingesetzt, welcher zur Halterung der Spule ein sogenanntes Joch aufweist. Beim Abspulen wird der Korb typischerweise zusätzlich auf einer Kreisbahn um die Verseilachse herum verfahren, um die erforderliche Verdrehbewegung zu erzielen. Es werden also zwei Drehbewegungen erzeugt: zum Einen eine Drehung der Spule um eine Spulenachse, zum Abwickeln des Strangguts, und zum Anderen eine Drehung der Spule auf einer Kreisbahn um die Verseilachse.
  • Weiterhin sind regelmäßig mehrere Körbe in einem Käfig, der auch als Trommel bezeichnet wird, zusammenfasst und in einer Umlaufrichtung um die Verseilachse herum verteilt angeordnet. Die einzeln abgespulten Stränge werden schließlich an einem Verseilnippel zusammengeführt, welcher der Verseileinheit in Verseilrichtung nachgeschaltet ist. Zuweilen ist der Verseileinheit zusätzlich ein Abwickler vorgeschaltet, welcher einen Kerneinlauf bereitstellt, der durch die Verseileinheit hindurch dem Verseilnippel zugeführt wird und um welchen herum die einzelnen Stränge verseilt werden. Je nach Ausführungsform können auch mehrere Verseileinheiten und Verseilnippel in Verseilrichtung hintereinander angeordnet sein, wobei dann das an einem Verseilnippel erzeugte Verseilgut einer nachfolgenden Verseileinheit als Kerneinlauf zugeführt wird.
  • Die Produktionsgeschwindigkeit in Länge pro Zeit ist bei Verseilmaschinen im Wesentlichen aufgrund der bei den diversen Drehbewegungen auftretenden Kräfte begrenzt. Aufgrund des mitunter hohen Gewichtes des Strangguts auf den Spulen und der Kreisbewegung der Körbe entstehen im Betrieb unter Anderem starke Zentrifugalkräfte in radialer Richtung zur Verseilachse. Auch die aus der Verseileinheit heraus und zum Verseilnippel geförderten Stränge unterliegen entsprechenden Zentrifugalkräften. Weiterhin führt die Drehbewegung insbesondere bei hohen Drehzahlen zu starken Belastungen an den Körben und den Jochen, mit der Gefahr einer Verformung oder Beschädigung.
  • In der EP 0 407 855 A2 ist beispielsweise eine Korbverseilmaschine beschrieben, mit einem entlang der Verseilachse verlaufenden Tragrohr, an dem mehrere Tragschilde zur Halterung von Spulenträgern angeordnet sind. Zur Erhöhung der Betriebsgeschwindigkeit wird vorgeschlagen, die Tragschilde über Längsstege fest miteinander zu verbinden und auf diese Weise die Steifigkeit der Gesamtanordnung zu erhöhen. Eine solche Verseilmaschine kann dann mit höheren Drehzahlen betrieben werden.
  • In der DE 2 115 349 ist eine Korbverseilmaschine beschrieben, bei welcher die Drehachsen der Spulen, d.h. die Spulenachsen, parallel zur Verseilsachse ausgerichtet sind. Durch Aufteilen in mehrere Spulenfelder zu je lediglich zwei Spulen, wird weiterhin der Drehkreis der Körbe möglichst gering gehalten. Dadurch sind die auftretenden Zentrifugalkräfte geringer und es ist eine entsprechende Steigerung der Drehzahl und damit der Produktionsgeschwindigkeit möglich.
  • In der DE 198 47 958 A1 ist eine Vorrichtung zur Herstellung von wenigstens zwei zu einem elektrischen Kabel verdrillten Einzelleitungen beschrieben. In einem räumlichen Abstand zwischen zwei Halteeinrichtungen für die Einzelleitungen ist eine Verdrillstrecke für die Einzelleitungen zu einem verdrillten Kabel vorgesehen. Dabei sind der Vorrichtung zur Herstellung von verdrillten Kabeln gemäß der Anzahl der Einzelleitungen eine entsprechende Anzahl von Vorratsspulen zugeordnet. Der Austrittsseite eines Wickelkopfes ist eine Aufspulvorrichtung örtlich zugeordnet. Eine erste Halteeinrichtung ist als Bestandteil der Aufspulvorrichtung ausgebildet und die erste Halteeinrichtung und der Wickelkopf sind in stationären Positionen zueinander angeordnet. Jede Vorratsspule ist jeweils in einem eigenen in Zylinderform ausgebildeten Gehäuse im Wickelkopf angeordnet und montiert.
  • Weitere Verseilmaschinen sind gezeigt in JP S55 8601 U und JP S49 31933 A .
  • Vor diesem Hintergrund ist es eine Aufgabe der Erfindung, eine verbesserte Verseileinheit für eine Verseilmaschine anzugeben. Die Verseileinheit soll beim Verseilen mit einer möglichst hohen Drehzahl betreibbar sein und eine möglichst große Produktionsgeschwindigkeit bei der Produktion von Verseilgut aufweisen.
  • Die Aufgabe wird erfindungsgemäß gelöst durch eine Verseileinheit für eine Verseilmaschine mit den Merkmalen gemäß Anspruch 1. Vorteilhafte Ausgestaltungen, Weiterbildungen und Varianten sind Gegenstand der Unteransprüche.
  • Die Verseileinheit ist zur Verwendung in einer Verseilmaschine ausgebildet und weist eine Verseilachse auf, welche insbesondere auch eine Verseilachse der Verseilmaschine ist und entlang welcher eine Produktion von Verseilgut erfolgt.
  • Die Verseileinheit weist einen Käfig auf, in welchem zumindest ein Korb, vorzugsweise mehrere Körbe, angeordnet sind, zur Aufnahme jeweils einer Spule mit darauf aufgewickeltem Stranggut. Im Betrieb wird dieses Stranggut von den Spulen abgespult und mittels der Verseilmaschine zum Verseilgut verseilt. Erfindungsgemäß weist die Verseileinheit ein Gestell auf mit einem Rahmen, welcher in einer Umlaufrichtung um die Verseilachse herum um den Käfig insbesondere vollständig umlaufend ausgebildet ist, wobei der Käfig am Rahmen mittels einer Anzahl von Rahmenlagerelementen gelagert und um die Verseilachse herum drehbar ist. Mit anderen Worten: Der Käfig ist drehbar am Rahmen gelagert und bevorzugterweise ausschließlich am Rahmen gelagert, wobei insbesondere auf eine zusätzliche Welle in Richtung der Verseilachse verzichtet ist. Der Käfig ist dabei mit dem Gestell fixierend verbunden und im Betrieb rotiert der Käfig im Rahmen um die Verseilachse.
  • Wesentliche Vorteile der Erfindung bestehen insbesondere darin, dass im Betrieb auftretende Zentrifugalkräfte in verbesserter Weise aufgenommen und verteilt werden und die Gefahr von Verformungen einzelner Komponenten der Verseileinheit im Betrieb vermieden oder zumindest verringert wird. Dies wird insbesondere dadurch erreicht, dass die Lagerung des Käfigs nicht wie üblich mit einer zentralen Welle erfolgt, sondern aus dem Zentrum heraus und an den Umfang des Käfigs verlagert ist. Durch die vorteilhaft vollumfängliche Ausgestaltung des Rahmens nimmt dieser im Betrieb in allen Richtungen senkrecht zur Verseilachse gerichtete Zentrifugalkräfte in optimaler Weise auf. Vorteilhafterweise sind dabei die Körbe im Käfig derart angeordnet, dass diese in Richtung der Verseilachse an in etwa gleicher Längenposition wie die Rahmenlagerelemente angeordnet sind. Die bei der Drehung des Käfigs und der Körbe auftretenden Zentrifugalkräfte werden dann in besonders optimaler Weise direkt in radialer Richtung, d.h. senkrecht zur Verseilachse hin über die Rahmenlagerelemente auf den Rahmen übertragen. Ein weiterer Vorteil der Erfindung besteht dann insbesondere darin, dass der Rahmen aufgrund von dessen Anordnung außerhalb des Käfigs nahezu beliebig massiv und damit besonders stabil auslegbar ist und zweckmäßigerweise auch entsprechend zur Aufnahme besonders hoher Kräfte ausgebildet ist. Beispielsweise wird der Rahmen durch eine Anzahl von die Verseilachse umlaufenden Stahlringen gebildet, welche im Weiteren an dem Gestell befestigt sind. Der Rahmen umgibt dann den Käfig und insbesondere auch die darin angeordneten Körbe vollumfänglich. Insgesamt wird also von herkömmlichen Konzepten zum Antrieb des Käfigs und der Körbe sowie zur Anordnung der Körbe abgewichen.
  • Aufgrund der oben beschriebenen äußeren und umfänglichen Lagerung des Käfigs ist auch die ansonsten im Zentrum angeordnete und entlang der Verseilachse verlaufende Welle der Verseileinheit deutlich geringer dimensionierbar. Vorzugsweise wird daher eine Welle mit gegenüber herkömmlichen Wellen deutlich reduziertem Durchmesser verwendet. Bevorzugterweise wird sogar gänzlich auf eine Welle verzichtet und die Verseileinheit weist dann einen Antriebsmotor auf, welcher den Käfig antreibt und außerhalb des Rahmens, insbesondere seitlich davon angeordnet ist. Dadurch ergibt sich im Zentrum des Käfigs mehr Freiraum, so dass die Körbe im Vergleich zu herkömmlichen Verseileinheiten näher an der Verseilachse angeordnet werden können und zweckmäßigerweise auch angeordnet sind, wodurch der Radius des Drehkreises der Körbe im Betrieb verringert wird. Hierdurch sind wiederum die Zentrifugalkräfte im Betrieb der Verseileinheit verringert, so dass auf vorteilhafte Weise eine höhere Drehzahl und somit eine höhere Produktionsgeschwindigkeit möglich ist.
  • Im Betrieb der Verseileinheit sind das Gestell und der mit diesem verbundene Rahmen fest und unbeweglich und bilden eine Aufnahme für die bewegten Teile der Verseileinheit. Der Käfig ist im Rahmen gelagert und wird im Betrieb um die Verseilachse herum gedreht, um die zur Verseilung benötigte Verdrehbewegung des Strangguts zu realisieren. Dabei sind die Körbe mit dem Käfig derart verbunden, dass bei einer Rotation des Käfigs die Körbe auf einem oder mehreren Drehkreisen um die Verseilachse herum verfahren werden. Die Verseilachse verläuft zudem in einer Verseil- oder auch Produktionsrichtung, in welcher das Stranggut gefördert wird und generell die Produktion des Verseilguts aus dem Stranggut erfolgt. Die Verseileinheit weist dann eine Vorderseite auf, welche in Verseilrichtung hinter der Verseileinheit liegt und auf welcher das Stranggut aus der Verseileinheit austritt und zweckmäßigerweise einem Verseilnippel zugeführt wird. In Verseilrichtung vor der Verseileinheit weist die Verseileinheit dann entsprechend eine Rückseite auf, auf welcher beispielsweise ein zentral geführter Kerneinlauf als Kern für das Verseilgut zugeführt wird.
  • Erfindungsgemäß ist der Korb, vorzugsweise sind alle Körbe, in den Käfig um eine jeweilige Korblängsachse drehbar gelagert, welche parallel zur Verseilachse verläuft. Dabei sind auch die in den Körben gelagerten Spulen um eine Spulenachse drehbar, welche ebenfalls parallel zur Verseilachse verläuft und insbesondere auch koaxial zur Korblängsachse. Durch diese Längsausrichtung der verschiedenen Drehachsen ergibt sich im Betrieb eine besonders optimale Krafteinwirkung auf die einzelnen Komponenten der Verseileinheit. In besonders geeigneter Weise wirken hierbei die im Betrieb auftretenden Zentrifugalkräfte auf jegliche Achsen, nämlich die Korblängsachse und die Spulenachse lediglich in radialer Richtung und gerade nicht in axialer Richtung, d.h. entlang der jeweiligen Achse. Daher sind im Betrieb die auftretenden Zentrifugalkräfte besonders gleichmäßig verteilt, so dass auch eine entsprechend gleichmäßige Belastung der Komponenten erfolgt und eine Verformung oder gar Beschädigung aufgrund wechselnder Belastung vermieden wird. Ein weiterer Vorteil ergibt sich für eine in einen Korb eingesetzte Spule dann weiterhin dadurch, dass auch auf das aufgewickelte Stranggut lediglich radiale Kräfte wirken und dadurch ein Verrutschen des Strangguts in Richtung der Spulenachse auf besonders einfache Weise verhindert wird. Auch die Spule, welche einen Spulenkern und Spulenflansche aufweist, wird hierdurch ebenfalls geschont, da das Stranggut nicht auf dem Spulenkern hin und her rutscht und dadurch insbesondere die dynamischen Belastungen auf die den Spulenkern und die Spulenflansche reduziert sind.
  • Zur drehbaren Lagerung des Käfigs im Rahmen sind grundsätzlich verschiedene Ausführungen geeignet, beispielsweise eine Lagerung mittels Kugellager, Gleitlager oder auch Magnetlager, mit entsprechend geeigneten Kugeln oder Magnetspulen als Rahmenlagerelemente. In einer besonders einfachen und geeigneten Ausführungsform weisen die Rahmenlagerelemente jedoch jeweils eine Anzahl von Rahmenrollen auf, zur Lagerung des Käfigs. Diese Rahmenrollen sind bezüglich des Rahmens fest positioniert, so dass also der Käfig im Betrieb über diese Rahmenrollen abrollt. Dazu weist der Käfig vorzugsweise außenumfänglich eine entsprechende Käfiglauffläche auf, an welcher die Rahmenrollen ansitzen. Zweckmäßigerweise ist die Käfiglauffläche dabei konvex ausgeführt und sitzt somit auch in axialer Richtung besonders sicher in entsprechend konkav profilierten Rahmenrollen ein.
  • In einer besonders bevorzugten Ausgestaltung umfasst ein Rahmenlagerelement zwei Rahmenrollen, die mittels eines Gelenkarms zu einer Rolleinheit zusammengefasst sind, welche dann am Rahmen befestigt ist. Mehrere solcher Rolleinheiten sind dann in Umfangsrichtung um den Käfig herum verteilt am Rahmen befestigt. Vorzugsweise umfasst die Verseileinheit zudem zumindest zwei Rahmen mit entsprechenden Rahmenlagerelementen, welche an unterschiedlichen Längspositionen entlang der Verseilachse positioniert sind. Ein solcher Rahmen bildet dann einen sich entlang der Verseilachse erstreckenden zylinderförmigen Käfigraum, in welchem der Käfig drehbar angeordnet ist. Der Rahmen schließt somit den Käfig insbesondere vollständig zumindest in radialer Richtung ein.
  • Um eine besonders einfache sowie genaue Ausrichtung des Käfigs bezüglich des Rahmens zu ermöglichen, sind die Rahmenlagerelemente geeigneterweise jeweils mittels eines Exzenterbolzens am Rahmen befestigt. Dadurch sind die Rahmenlagerelemente in eingeschränkter Weise in einer Radialebene senkrecht zur Verseilachse verschiebbar, so dass eventuelle Fertigungstoleranzen des Rahmens oder des Käfigs beim Einsetzen desselben in den Rahmen auf einfache Weise ausgleichbar sind. Durch entsprechende Justage der Rahmenlagerelemente werden dann ein besonders ruhiger Lauf des Käfigs und somit besonders gleichmäßige Kräfte im Betrieb erzielt.
  • Da der Käfig, die Körbe sowie das darin angeordnete Stranggut üblicherweise ein nicht zu vernachlässigendes Eigengewicht aufweisen, ist der Rahmen in einem unteren Bereich unterhalb der Verseilachse zweckmäßigerweise dichter mit Rahmenlagerelementen besetzt als in einem oberen Bereich. Dadurch wird insbesondere den nach unten wirkenden Gewichtskräften Rechnung getragen, welche aufgrund der dichteren Besetzung mit Rahmenlagerelementen in diesem unteren Bereich in verbesserter Weise vom Rahmen aufgenommen werden. Im oberen Bereich des Rahmens sind dann entsprechend weniger Rahmenlagerelemente angeordnet, da hier lediglich im Betrieb wirkende Zentrifugalkräfte aufgenommen werden müssen.
  • Um Torsionsspannungen im fertigen Verseilgut zu vermeiden, erfolgt die Verseilung regelmäßig mit einer sogenannten Rückdrehung, d.h. dass die Körbe jeweils im Gegendrehsinn zum Käfig gedreht werden, so dass sich die Körbe relativ zum Rahmen gerade nicht verdrehen, sondern lediglich auf den entsprechenden Drehkreisen verfahren werden. In einer besonders bevorzugten Weiterbildung ist insbesondere zur Realisierung einer solchen Rückdrehung auch der Korb am Käfig mittels einer Anzahl von Käfiglagerelementen, insbesondere Käfigrollen, gelagert, welche in Umfangsrichtung um den Korb herum angeordnet sind. Mit anderen Worten: auch die einzelnen Körbe sind bezüglich des Käfigs außenumfänglich gelagert, wie auch der Käfig am Rahmen außenumfänglich gelagert ist. Dadurch ergibt sich auf vorteilhafte Weise eine entsprechend gleichmäßige Verteilung von Zentrifugalkräften bei Drehung, insbesondere Rückdrehung des Korbes bezüglich des Käfigs. Diese Ausgestaltung ist besonders vorteilhaft mit der oben beschriebenen Ausgestaltung mit Korblängsachsen, welche parallel zur Verseilachse verlaufen.
  • Die Käfiglagerelemente sind zweckmäßigerweise gleichartig zu den Rahmenlagerelementen ausgeführt und vorzugsweise als Rolleinheiten, welche dann entsprechend mittels eines Exzenterbolzens am Käfig angebracht sind. In analoger Weise sind dann mehrere Käfiglagerelemente als Rolleinheiten mit jeweils insbesondere zwei Käfigrollen ausgebildet, gegen welche der Korb im Betrieb abrollt.
  • Insbesondere zur Aufnahme der Körbe weist der Käfig zweckmäßigerweise eine Anzahl von Käfigscheiben auf, welche an verschiedenen Längspositionen entlang der Verseilachse und senkrecht zu dieser angeordnet sind und jeweils eine insbesondere kreisförmige Korbausnehmung aufweisen, in welche der Korb eingesetzt ist. Bevorzugterweise umfasst die Verseileinheit genauso viele Käfigscheiben wie Rahmen, so dass jedem Rahmen genau eine Käfigscheibe zugeordnet ist, welche in diesem Rahmen angeordnet ist, so dass an verschiedenen Längenpositionen jeweils eine Käfigscheibe und ein diese umlaufender Rahmen angeordnet sind. Bei einer besonders bevorzugten Ausführungsform der Verseileinheit sind entsprechend an zwei Längenpositionen zwei Käfigscheiben angeordnet, welche dann von zwei Rahmen umgeben werden. Die in den Käfig eingesetzten Körbe erstrecken sich dann insbesondere zumindest über den von den Käfigscheiben gebildeten Zwischenraum, vorzugsweise derart, dass die Spulen in den Körben in diesem Zwischenraum angeordnet sind, wodurch dann im Betrieb ein optimaler Kraftübertrag in radialer Richtung erfolgt. Die Käfigscheiben wirken in Kombination mit den Käfig- und Rahmenlagerelementen insbesondere als Vermittler zwischen dem Käfig und den Körben und bilden dabei insbesondere last- oder kraftübertragende Elemente.
  • Im Betrieb wirkt aufgrund der Drehung des Käfigs auf einen jeweiligen Korb eine Zentrifugalkraft, welche bezüglich der Verseilachse nach außen gerichtet ist. Zur besonders optimalen Aufnahme dieser Zentrifugalkraft im Betrieb sind daher die Käfiglagerelemente zweckmäßigerweise im äußeren Bereich des Käfigs bezüglich der Verseilachse dichter beieinander angeordnet als in einem inneren Bereich. Zusätzlich ergibt sich daraus insbesondere der Vorteil, dass im inneren Bereich entsprechend weniger Käfiglagerelemente angeordnet sind, so dass die Körbe insgesamt näher an die Verseilachse heran gesetzt werden können und zweckmäßigerweise auch sind, sodass deren Drehkreis im Betrieb vorteilhaft verringert ist.
  • Die Käfiglagerelemente können vorteilhafterweise entsprechend den vorliegenden Kraft- und Bauraumanforderungen individuell zugestellt werden, d.h. die Anzahl der tatsächlich am Käfig angreifenden Käfiglagerelemente ist einstellbar, insbesondere aufgrund der Anbringung über Exzenterbolzen auf besonders einfache Weise. Desweiteren ist die oben beschriebene Konstruktion mit exzentrischer Anbringung der Käfiglagerelemente auf vorteilhafte Weise auch selbstzentrierend. Gleiches gilt sinngemäß auch für die Rahmenlagerelemente.
  • Eine besonders optimale Übertragung von Zentrifugalkräften ergibt sich in einer vorteilhaften Weiterbildung insbesondere dadurch, dass die Rahmenlagerelemente entlang der Verseilachse an bestimmten Längspositionen angeordnet sind und die Käfiglagerelemente an im Wesentlichen denselben Längspositionen. Die Käfiglagerelemente und die Rahmenlagerelemente sind somit sozusagen auf gleicher Höhe entlang der Verseilachse angeordnet. Dem liegt die Überlegung zugrunde, möglichst kurze Kraftflusspfade zu realisieren. Dadurch werden dann im Betrieb die vom Korb auf den Käfig in radialer Richtung übertragenen Kräfte direkt in radialer Richtung an den Rahmen weitergereicht. Eine mechanische Belastung in axialer Richtung, d.h. in Richtung der Verseilachse, wird dadurch auf besonders effiziente Weise reduziert. Insbesondere werden Biegemomente, welche auf den Rahmen wirken besonders effektiv vermieden. Dabei werden vorliegend solche Biegemomente insbesondere nicht lediglich kompensiert, sonder aufgrund der speziellen Anordnung von vornherein vermieden. An einer gegebenen Längsposition sind dann Käfiglagerelemente und Rahmenlagerelemente in radialer Richtung hintereinander angeordnet. Dabei wird unter an im Wesentlichen denselben Längspositionen insbesondere verstanden, dass in Richtung der Verseilachse ein höchstens geringer Versatz zwischen Käfiglagerelementen und Rahmenlagerelementen vorliegt, wobei ein höchstens geringer Versatz insbesondere einer Breite der Lagerelemente entspricht. Beispielsweise sind Käfiglagerelemente und Rahmenlagerelemente an einer bestimmten Längsposition höchstens um die Breite der Rahmenlagerelemente und/oder Käfiglagerelemente voneinander versetzt angeordnet.
  • Der Käfig, insbesondere dessen Käfigscheiben, weisen vorzugsweise zusätzlich eine Anzahl von Strangdurchführungen auf zum Hindurchführen einer entsprechenden Anzahl von Strängen, die beispielsweise von einer der Verseileinheit vorgeschalteten weiteren Verseileinheit oder von einem entsprechend vorgeschalteten Abwickler ausgehen.
  • In einer bevorzugten Ausgestaltung umfasst der Korb ein Rohr, welches sich entlang der Korblängsachse sowie um diese herum erstreckt und in welches in Joch eingesetzt ist. Das Joch dient dabei insbesondere zur Aufnahme der Spule, die dann in eingesetztem Zustand von dem Rohr umgeben ist. Das Rohr weist insbesondere eine geschlossene Mantelfläche auf, wodurch im Betrieb möglicherweise ungünstige Luftverwirbelungen durch eine Rotation des Korbes vermieden werden. Das Rohr dient insbesondere gerade nicht der Führung des Strangguts, sondern bildet vielmehr ein stabilisierendes Exoskelett des Korbs. Das Rohr weist wie auch der Käfig eine Vorderseite und eine Rückseite auf, wobei insbesondere über die Vorderseite das im Betrieb abgespulte Stranggut ausläuft. In einer besonders leichten und robusten Ausgestaltung des Korbes ist das Rohr vorzugsweise aus einem kohlefaser- oder glasfaserverstärkten Kunststoff, auch als CFK bzw. GFK bezeichnet, gefertigt. Zum Beladen eines der Körbe mit einer Spule wird diese zunächst auf das Joch und anschließend in das Rohr eingesetzt.
  • Das Rohr weist außenseitig, d.h. auf dessen Mantelfläche, zweckmäßigerweise eine Anzahl von Lagerbahnen auf, entlang derer die Käfiglagerelemente geführt sind. Die Lagerbahnen dienen somit insbesondere zur Lagerung des Korbes am Käfig. Auf diese Weise ist ein besonders sicherer Halt auch in Richtung der Korblängsachse gewährleistet. Beispielsweise sind die Lagerbahnen hierzu als insbesondere konkave Rollbahnen auf der Mantelfläche des Rohres ausgebildet und umlaufen dieses insbesondere vollumfänglich, so dass entsprechend komplementär ausgebildete Käfigrollen entlang dieser Rollbahnen geführt sind. Für eine besonders sichere Lagerung umfasst das Rohr dann vorzugsweise zwei Lagerbahnen, die in Richtung der Korblängsachse an verschiedenen Längenpositionen angeordnet sind, so dass der Korb insgesamt also an zwei Längenpositionen im Käfig gelagert ist.
  • Insbesondere zur Fixierung und Halterung des Jochs im Rohr weist das Joch vorzugsweise zumindest einen, bevorzugterweise jedoch zwei Lagerringe mit jeweils einer umlaufenden, konischen Anlagefläche auf, die in eingesetztem Zustand des Jochs formschlüssig an innenseitigen konischen Jochlagerflächen des Rohres anliegen. Die Anlageflächen und Jochlagerflächen bilden somit jeweils ringförmige Flächen, welche bezüglich der Korblängsachse in einem bestimmten Winkel angestellt sind, um auf diese Weise einen Teil einer Kegelmantelfläche zu bilden. In eingesetztem Zustand des Jochs im Korb liegen dann jeweils eine Anlagefläche und eine Jochlagerfläche aneinander an und erzeugen auf diese Weise eine Positionierung des Jochs. Ein Beladen des Korbes mit einer Spule erfolgt dann insbesondere derart, dass die Spule auf das Joch aufgesetzt wird und das Joch dann in das Rohr eingesetzt wird, so dass die Anlageflächen und die Jochlagerflächen formschlüssig aneinander anliegen.
  • Bevorzugterweise sind die Lagerbahnen in radialer Richtung von der Korblängsachse nach außen weisend hinter einer jeweiligen Anlagefläche angeordnet, d.h. insbesondere ohne axialen Versatz und an im Wesentlichen gleichen Längspositionen angeordnet. In ähnlicher Weise wie oben bereits im Zusammenhang mit den Käfiglagerelementen und den Rahmenlagerelementen beschrieben, ergibt sich auf diese Weise ein besonders optimaler Kraftfluss in radialer Richtung durch die in dieser Richtung direkt hintereinander angeordneten Anlageflächen und Lagerbahnen. Die von den Jochlagerflächen aufgenommenen Kräfte werden direkt in radialer Richtung an die auf der Außenseite des Rohres angebrachten Lagerbahnen weitergegeben und von dort ebenfalls direkt in radialer Richtung an die Käfiglagerelemente. Auf diese Weise wird eine axiale Belastung des Rohres besonders effizient vermieden.
  • Um eine besonders einfache Beladung oder Bestückung des Korbes mit Stranggut zu ermöglichen sind die konischen Anlageflächen zweckmäßigerweise in gleicher Richtung zur Korblängsachse hin zulaufend ausgebildet. Das Joch wird dann vorzugsweise stirnseitig in das Rohr eingesetzt, beispielsweise von der Rückseite der Verseileinheit aus. Insbesondere in Kombination mit der in Richtung der Verseilachse ausgerichteten Korblängsachse ergibt sich dadurch eine besonders unkomplizierte Beladung der Körbe mit Stranggut. Eine Sicherung des Jochs im Rohr in axialer Richtung erfolgt vorzugsweise mittels eines Spannhebels, der dann beispielsweise rückseitig am Korb angeordnet ist und mittels dessen das Joch im Rohr reversibel festgespannt ist. Durch die einfache rückseitige Zugänglichkeit braucht dann zum Wechsel einer Spule lediglich der Spannhebel gelöst, das Joch aus dem Rohr herausgenommen und die Spule entsprechend ausgetauscht zu werden.
  • Zur Aufnahme der Spule weist das Joch vorzugsweise eine Spulenhalterung auf, die auch zur Positionierung der Spule innerhalb des Rohres in einem Bereich zwischen den beiden Anlageflächen liegt. Durch diese Anordnung der Spule zwischen den Anlageflächen ist insbesondere die Kraftübertragung von beim Abwickeln der Spule entstehenden Zentrifugalkräften über die Anlageflächen auf die Jochlagerflächen deutlich verbessert. Die Anlageflächen sind also in Randbereichen und stirnseitig einer auf das Joch aufgesetzten Spule angeordnet.
  • Zum Einspannen der Spule weist die Spulenhalterung zweckmäßigerweise zwei konische Spannköpfe auf, wobei lediglich einer der Spannköpfe bezüglich des Jochs und entlang der Korblängsachse verschiebbar ist. Mittels der Spannköpfe wird dann die Spule axial im Joch eingespannt und fixiert. Die konischen Spannköpfe greifen dabei in entsprechend geeignete Ausnehmungen auf den Stirnseiten der Spule ein. Durch Verschiebung des verschiebbaren Spannkopfes ist dann die Spule festspannbar. Dabei ist der verschiebbare Spannkopf beispielsweise über ein Gewinde, insbesondere ein Feingewinde, drehbar und entlang der Korblängsachse verschiebbar. Zweckmäßigerweise ist der verschiebbare Spannkopf auf besonders einfache Weise über die Stirnseite des Korbes, insbesondere rückseitig der Verseileinheit zugänglich. Der andere Spannkopf braucht dagegen vorteilhafterweise nicht zugänglich zu sein, eine Arretierung der Spule erfolgt zweckmäßig lediglich mittels des verschiebbaren Spannkopfes.
  • Um einen Spulenwechsel besonders einfach zu gestalten, ist am Rohr zumindest eine, vorzugsweise sind zwei Auszugsschienen angeordnet, welche ein reversibles Ein- und Ausziehen des Jochs aus dem Rohr und in Richtung der Korblängsachse ermöglichen. Das Joch ist dann insbesondere nach hinten, d.h. rückseitig aus dem Rohr ausziehbar und eine auf das Joch aufgesetzte Spule dann entsprechend einfach austauschbar. Eine aufwändige Demontage des Jochs und Trennung vom Käfig ist hierbei vorteilhafterweise nicht erforderlich. Stattdessen erfolgt zum Wechseln zunächst ein Lösen des Spannhebels, dann ein Ausziehen des Jochs aus dem Rohr, schließlich ein Lösen der Spulenhalterung und Austauschen der Spule.
  • Aufgrund der Längsausrichtung der Spule ist es insbesondere nicht möglich, das Stranggut im Betrieb direkt in Verseilrichtung abzuspulen. Daher weist der Korb vorzugsweise einen Umlenkmechanismus für das von der Spule abgespulte Stranggut auf, welcher das Stranggut zudem gegenbiegungsfrei in Richtung einer Stirnfläche des Korbes, insbesondere in Richtung der Vorderseite der Verseileinheit umlenkt. Beim Umlenken wird das Stranggut notwendigerweise in eine oder mehrere Richtungen verbogen, beispielsweise beim Umlenken mittels einer Umlenkrolle, wobei auf vorteilhafte Weise jedoch die mechanische Belastung des Strangguts dadurch reduziert wird, dass ein Zurückbiegen, also ein Gegenbiegen, gerade nicht erfolgt, d.h. das Umlenken gegenbiegungsfrei ist. Der Umlenkmechanismus umfasst daher eine Anzahl von Umlenkelementen, beispielsweise Umlenkrollen, mittels welcher das Stranggut geführt und umgelenkt wird, jedoch erfolgt bei einer Umlenkung um eine bestimmte Umlenkachse in einer bestimmten Umlenkrichtung im gesamten Umlenkmechanismus keine weitere Umlenkung in einer entgegengesetzten Richtung. Mit anderen Worten: Im gesamten Umlenkmechanismus wird auf ein Umbiegen des Strangguts in zwei zueinander antiparallelen Richtungen verzichtet.
  • Um auf besonders einfache Weise einen Längenausgleich beim Abspulen des Strangguts zu kompensieren, umfasst der Umlenkmechanismus geeigneterweise eine Tänzerführung, mit einem Tänzer, der in Verseilrichtung verschiebbar ist. Dazu umfasst der Tänzer ein Stellelement, mittels welchem zumindest eines der Umlenkelemente in Verseilrichtung verschiebbar ist, und wodurch ein Weglängenunterschied für das durch den Umlenkmechanismus laufende Stranggut einstellbar ist.
  • Grundsätzlich ist als Stellelement einer solchen Tänzer-Lage-Regelung ein Pneumatikzylinder geeignet, der eine besonders gut einstellbare Kolbendruckkraft aufweist, welche über den gesamten Einstellbereich des Stellelements im Wesentlichen konstant ist. Aufgrund der hohen Drehzahl des Korbes im Betrieb ist allerdings eine Versorgung eines solchen Stellelements mit Druckluft schwierig. In einer geeigneten Alternative ist daher das Stellelement als Magnetfeder, als Linearmotor oder als ein austauschbares Druckfederpaket ausgebildet. Vorteilhafterweise sind die zu erwartenden Längenschwankungen beim Abspulen des Stranggutes derart gering, dass auch ein Stellelement mit entlang des Einstellbereichs nicht konstanter Zugkraft noch mit hinreichender Genauigkeit verwendbar ist und auch verwendet wird.
  • Insbesondere zur Realisierung der oben erwähnten Rückdrehung ist in einer bevorzugten Weiterbildung der Korb mittels eines Kopplungsmechanismus an den Käfig gekoppelt, zur Rückdrehung des Korbes bei einer Drehung des Käfigs. Der Kopplungsmechanismus weist hierbei eine Kupplung auf, die wiederum zwei Räder aufweist, nämlich ein am Rahmen abrollendes Rahmenrad und ein den Korb antreibendes Korbrad. Dabei sind die beiden Räder über eine Zwischenwelle fest miteinander verbunden. Auf diese Weise erfolgt eine Übersetzung der Drehung des Käfigs relativ zum Rahmen auf eine Drehung des Korbes innerhalb des Käfigs mit einer insbesondere festen Übersetzung. Die Zwischenwelle ist dabei insbesondere parallel zur Verseilrichtung geführt und vorzugsweise durch eine Wand des Käfigs hindurchgeführt sowie an diesem gelagert. Insbesondere in Kombination mit der Ausgestaltung des Käfigs mittels einer Anzahl von Käfigscheiben ist die Zwischenwelle durch eine jeweilige Käfigscheibe hindurchgeführt und auch an dieser gelagert, wird also im Betrieb gemeinsam mit dem Käfig um die Verseilachse herum rotiert. Die Kupplung umfasst dann zwei drehfest miteinander verbundene Räder, wobei das eine Rad als Rahmenrad mit dem feststehenden Rahmen in Wirkverbindung steht und das Käfigrad mit dem Korb.
  • Zur vollständigen Vermeidung einer Relativdrehung des Korbes, d.h. zur Realisierung einer optimalen Rückdrehung, erfolgt eine Drehung des Korbes mit einer Übersetzung von eins. Dazu sind die beiden Räder hinsichtlich deren Durchmessers und des Verhältnisses der Durchmesser zueinander entsprechend geeignet dimensioniert.
  • In einer besonders kostengünstigen sowie robusten Ausgestaltung ist das Rahmenrad als Kettenrad ausgebildet und läuft an einer Kette ab, die am Rahmen befestigt ist. Hierbei ist die Kette insbesondere innenseitig am Rahmen angebracht, beispielsweise über Flanschlaschen. Durch Verwendung einer Kette ist es zudem möglich, auf ein entsprechend den Anforderungen möglicherweise besonders groß ausfallendes Verzahnungsprofil am Rahmen zu verzichten. Da die Kette hierbei zudem als statisches Bauteil eingesetzt ist, unterliegt diese im Betrieb auch nicht den üblichen Einschränkungen beispielsweise hinsichtlich Zentrifugalkräften oder maximaler Drehzahlen. Vorzugsweise ist die Kette eine besonders kostengünstige Bolzenkette.
  • Zweckmäßigerweise erfolgt die Anbindung der Kopplung an den Korb an dessen Außenseite, d.h. auf der Mantelfläche des Rohres. Vorzugsweise ist dann das Korbrad als Riemenrad ausgebildet und treibt einen Riemen an, welcher den Korb umläuft und an einer Zahnkontur angreift, die außenseitig am Korb angebracht ist. Zweckmäßigerweise ist die Zahnkontur bereits bei der Fertigung des Rohres an diesem ausgebildet, also einstückig mit dem Rohr hergestellt. Das Größenverhältnis von Korbrad zu Rahmenrad ist dann unter Berücksichtigung des Durchmessers des Korbes und des Durchmessers des Käfigs entsprechend derart gewählt, dass sich für den Käfig eine vorzugsweise verschwindende Relativdrehbewegung bezüglich des Rahmens ergibt, also eine Übersetzung von eins.
  • Beim vorderseitigen Austreten des Strangguts aus der Verseileinheit unterliegt das Stranggut aufgrund der Drehbewegung entsprechenden Zentrifugalkräften. Diese werden in einer bevorzugten Weiterbildung dadurch aufgefangen, dass die Verseileinheit zumindest ein Führungselement aufweist, zur Führung des Strangguts zum Verseilnippel. Dabei ist das Führungselement in Verseilrichtung hinter dem Käfig, also auf dessen Vorderseite angeordnet und läuft zweckmäßigerweise im Betrieb mit dem abgespulten Stranggut mit, um eine möglichst geringe Relativbewegung des Strangguts gegen das Führungselement zu erzielen. Um verbleibende Reibkräfte zu minimieren und entsprechend einen Verschleiß des Stranggutes beim Entlangführen am Führungselement möglichst weit zu reduzieren, weist das Führungselement eine Führungsfläche auf, die aus einem solchen Material gefertigt ist, welches im Kontakt mit dem Material des Strangguts eine möglichst geringe Reibung erzeugt. Das Führungselement ist vorliegend insbesondere ein vorzugsweise mitlaufendes Stützelement und dient vorrangig zur Vermeidung einer Beschädigung des Strangguts durch dessen Eigengewicht bei einer Fliehkraftbelastung. Das Führungselement ist daher insbesondere gerade keine Vorverseilscheibe
    Der Korb weist geeigneterweise ein Rohr auf, welches sich entlang einer Korblängsachse sowie um diese herum erstreckt und in welches ein Joch eingesetzt ist, zur Aufnahme einer Spule mit darauf aufgewickeltem Stranggut, wobei stirnseitig ein Umlenkmechanismus für das Stranggut angeordnet ist, zum Abspulen desselben in seitlicher Richtung bezüglich der Spule. Durch die stirnseitige Anordnung des Umlenkmechanismus baut der Korb in radialer Richtung be-sonders wenig auf, wodurch sich der Drehkreis des Korbes beim Betrieb deutlich Verringern lässt und die mit einem entsprechenden Korb ausgestattete Verseileinheit mit einer deutlich höheren Drehzahl betreibbar ist.
  • Das Joch ist insbesondere stirnseitig in das Rohr eingesetzt, insbesondere auf der dem Umlenkmechanismus gegenüberliegenden Stirnfläche des Rohres. Dadurch ist die Spule auf besonders einfache Weise über die entsprechende Stirnfläche zugänglich und auswechselbar. Vorzugsweise ist das Joch rückseitig aus dem Rohr ausziehbar, zum Herausnehmen oder Einsetzen der Spule und der Umlenkmechanismus ist vorderseitig angeordnet, sodass das Stranggut im Betrieb vorderseitig abgespult wird und der Umlenkmechanismus beim Wechseln der Spule nicht im Wege ist. Zweckmäßigerweise ist der Umlenkmechanismus ein Teil des Jochs und daher zusammen mit diesem aus dem Rohr herausziehbar, wodurch ein Einfädeln des Strangguts in den Umlenkmechanismus bei Einsetzen einer Spule deutlich vereinfacht ist.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen jeweils schematisch:
  • Fig. 1 a - 1
    d eine Verseileinheit für eine Verseilmaschine in verschiedenen Ansichten,
    Fig. 2
    einen Nahansicht der Umfangslagerung der Verseilmaschine,
    Fig. 3
    ausschnittsweise die Verseilmachine und einen Korb in einer Rückansicht,
    Fig. 4
    den Korb mit ausgezogenem Joch in einer perspektivischen Schnittansicht,
    Fig. 5
    das Joch in einer Schnittansicht, und
    Fig. 6a - 6c
    diverse Ansichten eines Kupplungsmechanismus der Verseilmaschine.
  • In den Fig. 1a - 1b ist eine Verseilmaschine 2 in unterschiedlichen Ansichten dargestellt. Dabei zeigt die Fig. 1a die Verseilmaschine 2 in einer perspektivischen Rückansicht, die Fig. 1b in einer perspektivischen Vorderansicht, die Fig. 1c in einer Seitenansicht und die Fig. 1d wiederum in einer perspektivischen Rückansicht und in ausgezogenem Zustand. Die Verseilmaschine 2 umfasst ein Gestell 4, an welchem ein Rahmen 6 befestigt ist, in welchem ein Käfig 8 drehbar gelagert ist. In diesem Käfig 8 ist wiederum eine Anzahl von hier vier Körben 10 angeordnet, welche bezüglich des Käfigs 8 drehbar gelagert sind. Die Körbe 10 dienen dabei zur Aufnahme von Spulen 12 mit darauf aufgewickeltem Stranggut 14. Angetrieben wird die Verseileinheit 2, genauer gesagt der Käfig 8, von einem außerhalb und seitlich des Rahmens angeordneten Antriebsmotor 15.
  • Im Betrieb wird mittels der Verseileinheit 2 das Stranggut 14 von den Spulen 12 abgespult und in einer Verseilrichtung V einem Verseilpunkt P zugeführt, an welchem die Stränge 14 zu einem Verseilgut 16 verseilt werden. Dazu ist am Verseilpunkt P insbesondere ein hier nicht näher dargestellter Verseilnippel angeordnet. Zusätzlich weist die hier gezeigte Verseileinheit 2 eine Anzahl von Strangdurchführungen 17 auf, zur Durchführung von Strängen 14, welche vor der Verseileinheit 2 abgespult werden, z.B. von einer vorgeschalteten weiteren Verseileinheit 2. Eine der Strangdurchführungen 17 ist zentral entlang der Verseilachse VA geführt und dient hier insbesondere der Zuführung eines Strangs 14 als Kerneinlauf, welcher z.B. von einem vorgeschalteten, hier nicht gezeigten Abwickler bereitgestellt wird.
  • Bei der Verseilung der Stränge 14 erfolgt eine Drehung des Käfigs 8 in einer Umlaufrichtung UR um eine Verseilachse VA, welche sich in Verseilrichtung V erstreckt. Durch Drehung des Käfigs 8 werden die Körbe 10 auf einem Drehkreis DK um die Verseilachse VA verfahren. In dem hier gezeigten Ausführungsbeispiel erfolgt die Verseilung zusätzlich mit einer sogenannten Rückdrehung, wobei zusätzlich zur Drehung der Körbe 10 um die Verseilachse VA herum jeder der Körbe 10 zusätzlich um eine jeweils eigene Korblängsachse KA gedreht wird. Dabei erfolgt die Drehung eines jeweiligen Korbes 10 um dessen Korblängsachse KA insbesondere im Gegensinn zur Drehrichtung des Käfigs 8 im Rahmen 6.
  • Insgesamt werden im Betrieb der Verseileinheit 2 daher hier drei unterschiedliche Drehbewegungen ausgeführt, nämlich erstens das Abspulen des Strangguts 14 von einer jeweiligen Spule 12, zweitens die Drehung eines jeweiligen Korbes 10 um dessen Korblängsachse KA und drittens das Verfahren der Körbe 10, insbesondere deren Korblängsachsen KA auf einen Drehkreis DK um die Verseilachse VA. In der hier beschriebenen, bevorzugten Ausführungsform sind dabei sämtliche Drehachsen parallel zueinander ausgerichtet. Insbesondere weisen die Spulen 12 jeweils eine Spulenachse auf, welche einer jeweiligen Korblängsachse KA entspricht. Die Korblängsachsen KA erstrecken sich dann in Verseilrichtung V und parallel zur Verseilachse VA. Aufgrund dieser Anordnung wirken die beim Drehen erzeugten Zentrifugalkräfte lediglich als Radialkräfte auf die einzelnen Bauteile der Verseilmaschine und nicht als Axialkräfte.
  • Der Käfig 8 umfasst mehrere Käfigscheiben 18, welche besonders deutlich in Fig. 1c zu erkennen sind. Die Käfigscheiben 18 weisen jeweils Korbausnehmungen 20 auf, in welche die Körbe 10 eingesetzt sind. Der auf diese Weise gebildete Käfig 8 ist vollumfänglich in Umfangsrichtung UR vom Rahmen 6 umgeben, welcher im gezeigten Ausführungsbeispiel von einer Anzahl von Ringen 22 gebildet wird. Diese Ringe 22 sind hier insbesondere als Stahlringe ausgeführt, die am Gestell 4 befestigt sind und an unterschiedlichen Längenpositionen L1, L2 entlang der Verseilachse VA angeordnet sind und auf diese Weise einen Zwischenraum 24 einschließen, in welchem der Käfig 8 angeordnet ist. Die Körbe 10 sind dann derart in den Käfig 8 eingesetzt, dass die Spulen 14 im Zwischenraum 24 zwischen den beiden äußersten Längenpositionen L1, L2 angeordnet sind.
  • Die Lagerung des Käfigs 8 im Rahmen 6 sowie der Körbe 10 im Käfig 8 erfolgt in der hier gezeigten Ausführungsform mittels einer Anzahl von Rahmenlagerelementen 26 bzw. Käfiglagerelementen 28. Diese sind besonders deutlich in der Fig. 2 bzw. Fig. 3 erkennbar. Die Rahmenlagerelemente 26 und die Käfiglagerelemente 28 sind hier vorteilhaft gleichartig ausgebildet, nämlich als Rolleinheiten 30, welche jeweils eine Anzahl von hier zwei Rollen 32 aufweisen, die an einem Gelenkarm 34 und über einen Exzenterbolzen 36 am Rahmen 6 bzw. am Käfig 8 befestigt sind. Dabei weisen die Rollen 32 hier jeweils eine konkave Lauffläche auf, die im Betrieb auf einer entsprechend konvexen Gegenfläche abrollt. Dazu sind insbesondere an den Käfigscheiben 18 außenumfänglich entsprechend konvex ausgebildete Käfiglaufflächen 38 ausgebildet, während die Körbe 10 jeweils umfänglich eine Anzahl von konvexen Lagerbahnen 40 aufweisen.
  • Wie besonders in Fig. 1c deutlich erkennbar ist, sind die Körbe 10 mittels der Käfiglagerelemente 28 an einer Anzahl von Längenpositionen L3 gelagert und der Käfig 8 am Rahmen 6 an einer Anzahl von Längenpositionen L4, welche im Wesentlichen den Längenpositionen L3 entsprechen. Dabei weist eine jeweilige Längenposition L3 bezüglich einer jeweiligen Längenposition L4 lediglich einen geringen Versatz VL auf, der hier einer Breite B der Lagerelemente 26, 28, d.h. insbesondere in etwa einer Breite der Rollen 32 entspricht. Durch diese Positionierung der Lagerelemente 26, 28 in radialer Richtung R hintereinander, ist im Betrieb der Verseileinheit 2 ein optimaler Kraftfluss in radialer Richtung R gewährleistet und eine Belastung in axialer Richtung, d. h. in Verseilrichtung V besonders stark reduziert.
  • Um zusätzlich in optimaler Weise Gewichtskräfte aufzunehmen, sind die Rahmenlagerelemente 26 in einem unteren Bereich U der Verseileinheit 2 dichter angeordnet als in einem oberen Bereich O. Dies ist insbesondere in Fig. 1a erkennbar. In ähnlicher Weise sind zur besonders optimalen Aufnahme der nach außen wirkenden Zentrifugalkräfte die Korblagerelemente 28 in radialer Richtung R nach außen hin dichter angeordnet als zur Verseilachse VA hin. Auch dies ist besonders deutlich in Fig. 1a aber auch in Fig. 3 erkennbar. Durch die reduzierte Verwendung von Käfiglagerelementen 28 nahe der Verseilachse VA ist es zudem möglich, die Körbe 10 besonders dicht zur Verseilachse VA hin anzuordnen und dadurch den Radius des Drehkreises DK und somit auch die im Betrieb entstehenden Zentrifugalkräfte vorteilhaft zu reduzieren.
  • In Fig. 4 ist in einer perspektivischen Schnittansicht ein Korb 10 gezeigt, welcher ein Rohr 42 aufweist, in welches ein Joch 44 eingesetzt ist, zur Aufnahme einer hier nicht dargestellten Spule 12. Das Rohr 42 erstreckt sich entlang der Korblängsachse KA und umfasst eine Anzahl von Auszugsschienen 46, über welche das Joch 44 in Richtung der Korblängsachse KA in das Rohr 42 hineinschiebbar und aus diesem herausziehbar ist. Dieses Heraus- und Hineinschieben erfolgt insbesondere rückseitig des Rohres 42, d. h. auf der Rückseite RS der Verseileinheit 2. In Fig. 5 ist das Rohr 42 mit dem Joch 44 in eingeschobenem Zustand dargestellt.
  • Deutlich erkennbar sind in Fig. 4 die auf einer Mantelfläche 45, d.h. außenumfänglich des Rohres 42 angeordneten Lagerbahnen 40, zum Abrollen des Korbes 10 an den Käfiglagerelementen 28. Ebenfalls deutlich erkennbar ist die im Querschnitt konvexe Ausgestaltung. Ausgehend von der Korblängsachse KA und in radialer Richtung R nach außen hin sind vor den Lagerbahnen 40 innenseitig des Rohres 42 an diesem jeweils konische Jochlagerflächen 48 ausgebildet, zur formschlüssigen Lagerung des Jochs 44. Dazu weist das Joch 44 eine entsprechende Anzahl von Lagerringen 49 auf, mit nach außen weisenden konischen Anlageflächen 50. Die formschlüssige Anordnung ist insbesondere in Fig. 5 deutlich erkennbar. Die Anlageflächen 48, 50 sind dabei in einem Winkel W angestellt, um entsprechend konisch ausgebildet zu sein und einen optimalen Formschluss zu ermöglichen. Insbesondere sind die Anlageflächen 48, 50 in gleicher Richtung zur Korblängsachse KA hin angestellt, so dass ein rückwärtiges Einsetzen möglich ist. Um ein ungewolltes Herausfallen des Jochs 44 im Betrieb zu vermeiden, ist zur Arretierung desselben ein Spannhebel 52 angeordnet, mittels dessen das Joch 44 im Rohr 42 festgespannt wird.
  • Zur Aufnahme einer Spule 14 umfasst das Joch 44 eine Spulenaufnahme 54, welche hier zwei in Richtung der Korblängsachse KA beabstandete konische Spannköpfe 56 aufweist, zwischen denen die Spule 14 dann eingespannt wird. Die Spulenaufnahme 54 ist dabei derart zwischen den Anlageflächen 50 angeordnet, dass eine eingesetzte Spule 14 zwischen diesen positioniert ist und somit jegliche auch bezüglich der Spule 14 radial wirkenden Zentrifugalkräfte in optimaler Weise über die Anlageflächen 48, 50 zunächst über die Käfiglagerelemente 28 auf den Käfig 8 und von dort über die Rahmenlagerelemente 26 schließlich auf den Rahmen 6 übertragen werden. Jegliche axialen Kräfte, d. h. Kräfte in Richtung der Korblängsachse KA sowie der Verseilachse V werden dabei auf ein Minimum reduziert. Der rückseitige Spannkopf 56 ist hier zudem mittels eines Gewindes 57 entlang der Korblängsachse verfahrbar um eine Spule 14 besonders sicher einzuspannen. Durch die rückseitige Anordnung dieses einstellbaren Spannkopfs 56 ist dieser zudem besonders leicht von der Rückseite RS der Verseileinheit 2 zugänglich.
  • Im Betrieb wird das Stranggut 14 von einer jeweiligen Spule 12 in radialer Richtung R abgespult und anschließend über einen Umlenkmechanismus 58 in Verseilrichtung V umgelenkt und vorderseitig, d.h. über eine Stirnseite S des Rohres 42 aus dem Korb 10 herausgefördert. Dazu umfasst der Umlenkmechanismus 58 eine Anzahl von Umlenkelementen 60, welche hier als Rollen ausgebildet sind. Die Umlenkung des Strangs 14 erfolgt dabei mittels des Umlenkmechanismus 58 gegenbiegungsfrei, um eine zu starke mechanische Belastung des Strangguts 14 zu vermeiden. Mit anderen Worten: die Umlenkelemente 60 weisen jeweils eine Umlenkachse UA auf, um welche herum das Stranggut 14 jeweils abgelenkt wird, wobei im gesamten Umlenkmechanismus 58 kein Umlenken in unterschiedlichen Richtungen um jeweilige Umlenkachsen UA mit gleicher Richtung herum erfolgt. Zusätzlich umfasst der Umlenkmechanismus 58 eine Tänzerführung 62 mit einem Stellelement 64, um im Betrieb einen Längenausgleich des möglicherweise ungleichmäßig abgespulten Strangguts 14 zu gewährleisten. Das Stellelement 64 ist dabei insbesondere derart ausgebildet, dass ein Längenausgleich in Richtung der Korblängsachse KA erfolgt.
  • Zur Realisierung einer zusätzlichen Drehung des Korbes 10 und insbesondere einer Rückdrehung wie eingangs beschrieben, weist die Verseileinheit 2 einen Kopplungsmechanismus 66 zwischen dem Rahmen 6 und den Körben 10 auf, welcher in den Fig. 6a - 6c deutlich erkennbar ist. Mittels dieses Kopplungsmechanismus 66 wird die Drehung des Käfigs 8 relativ zum Rahmen 6 in eine Drehung des Korbes 10 relativ zum Käfig 8 übersetzt. Dazu weist der Kopplungsmechanismus 66 für hier jeden der Körbe 10 eine Kupplung 67 auf, mit einer Zwischenwelle 68, welche am Käfig 8, genauer an einer der Käfigscheiben 18 gelagert ist und an welcher zwei Räder 70, 72 angebracht sind, nämlich ein Rahmenrad 70 und ein Korbrad 72. Diese Räder 70, 72 sind drehfest mit der Zwischenwelle 68 verbunden, so dass sich eine feste Übersetzung ergibt.
  • Das Korbrad 70 rollt im Betrieb am Rahmen 6 ab, in der hier gezeigten Ausgestaltung an einer Kette 74, welche an einem der Ringe 22 des Rahmens 6 befestigt ist. Das Korbrad 72 treibt dann über einen Riemen 76 einen der Körbe 10 an. Dazu ist auf der Mantelfläche 45 des zugehörigen Rohrs 42 außenseitig eine Zahnkontur 78 ausgebildet. Das Übersetzungsverhältnis der Kupplung 67 ergibt sich unter Anderem aus dem Verhältnis der Durchmesser D1, D2 der Räder 70, 72. In dem hier gezeigten Ausführungsbeispiel ist das Verhältnis derart gewählt, dass die Übersetzung eins ist und sich somit eine Rückdrehung des Korbes 10 derart ergibt, dass ein jeweiliger Korb 10 bezüglich des Gestells 4 der Verseileinheit 2 lediglich auf dem Drehkreis DK verfahren wird, jedoch selbst nicht relativ zum Gestell 4 gedreht wird.

Claims (15)

  1. Verseileinheit (2) für eine Verseilmaschine, mit einer Verseilachse (VA) und mit einem Käfig (8), in welchem zumindest ein Korb (10) angeordnet ist, zur Aufnahme einer Spule (12) mit darauf aufgewickeltem Stranggut (14), wobei ein Gestell (4) angeordnet ist, mit einem Rahmen (6), welcher in einer Umlaufrichtung (UR) um die Verseilachse (VA) herum und um den Käfig (8) umlaufend angeordnet ist,
    wobei der Käfig (8) am Rahmen (6) mittels einer Anzahl von Rahmenlagerelementen (26) gelagert und um die Verseilachse (VA) herum drehbar ist, wobei der Korb (10) in dem Käfig (8) um eine Korblängsachse (KA) drehbar gelagert ist, welche parallel zur Verseilachse (VA) verläuft, und
    wobei eine in dem Korb (10) gelagerte Spule (12) um eine Spulenachse drehbar ist, welche parallel zur Verseilachse (VA) verläuft.
  2. Verseileinheit (2) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Rahmenlagerelemente (26) jeweils mittels eines Exzenterbolzens (36) am Rahmen (6) befestigt sind.
  3. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Rahmenlagerelemente (26) jeweils eine Anzahl von Rahmenrollen (32) aufweisen, zur Lagerung des Käfigs (8),
    und/oder
    dass ein unterer Bereich (U) des Rahmens (6) unterhalb der Verseilachse (VA) dichter mit Rahmenlagerelementen (26) besetzt ist, als ein oberer Bereich (O), zur Aufnahme von Gewichtskräften.
  4. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Korb (10) am Käfig (8) mittels einer Anzahl von Käfiglagerelementen (28), insbesondere Käfigrollen (32), gelagert ist, welche in Umfangsrichtung (UR) um den Korb (10) herum angeordnet sind,
    dass die Käfiglagerelemente (28) in einem äußeren Bereich bezüglich der Verseilachse (VA) des Käfigs (10) dichter beieinander angeordnet sind, als in einem inneren Bereich, zur Aufnahme von Zentrifugalkräften im Betrieb.
  5. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Korb (10) am Käfig (8) mittels einer Anzahl von Käfiglagerelementen (28), insbesondere Käfigrollen (32), gelagert ist, welche in Umfangsrichtung (UR) um den Korb (10) herum angeordnet sind,
    dass die Rahmenlagerelemente (26) entlang der Verseilachse (VA) an bestimmten Längspositionen (L4) angeordnet sind und die Käfiglagerelemente (28) an im Wesentlichen denselben Längspositionen (L3).
  6. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Korb (10) ein Rohr (42) umfasst, welches sich entlang der Korblängsachse (KA) sowie um diese herum erstreckt und in welches ein Joch (44) eingesetzt ist, zur Aufnahme der Spule (12).
  7. Verseileinheit (2) nach Anspruch 6,
    dadurch gekennzeichnet,
    dass das Joch (44) zumindest einen, vorzugsweise zwei Lagerringe (49) mit jeweils einer umlaufenden, konischen Anlagefläche (50) aufweist, die in eingesetztem Zustand formschlüssig an innenseitigen, konischen Jochlagerflächen (48) des Rohrs (42) anliegen.
  8. Verseileinheit (2) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass das Joch (44) eine Spulenhalterung (54) aufweist, zur Aufnahme der Spule (12) und zu deren Positionierung innerhalb des Rohrs (42) in einem Bereich zwischen den beiden Anlageflächen (50),
  9. Verseileinheit (2) nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die Spulenhalterung (54) zwei konische Spannköpfe (56) aufweist, zum Einspannen der Spule (12), wobei lediglich einer der Spannköpfe (56) bezüglich des Jochs (44) und entlang der Korblängsachse (KA) verschiebbar ist.
  10. Verseileinheit (2) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass der Korb (10) am Käfig (8) mittels einer Anzahl von Käfiglagerelementen (28), insbesondere Käfigrollen (32), gelagert ist, welche in Umfangsrichtung (UR) um den Korb (10) herum angeordnet sind,
    dass das Rohr (42) außenseitig eine Anzahl von Lagerbahnen (40) aufweist, entlang derer die Käfiglagerelemente (28) geführt sind, zum Lagern des Korbs (10) am Käfig (8), und
    dass die Lagerbahnen (40) in radialer Richtung (R) von der Korblängsachse (KA) nach außen weisend hinter einer jeweiligen Anlagefläche (50) angeordnet sind.
  11. Verseileinheit (2) nach einem der Ansprüche 6 bis 10,
    dadurch gekennzeichnet,
    dass am Rohr (42) zumindest eine Auszugsschiene (46) angeordnet ist, zum reversiblen Ein- und Ausziehen des Jochs (44) aus dem Rohr (42) und in Richtung der Korblängsachse (KA).
  12. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Korb (10) einen Umlenkmechanismus (58) für das von der Spule (12) abgespulte Stranggut (14) aufweist, welcher das Stranggut (14) gegenbiegungsfrei in Richtung einer Stirnfläche (S) umlenkt,
    und/oder
    dass der Käfig (8) eine Anzahl von Käfigscheiben (18) aufweist, die senkrecht zur Verseilachse (VA) angeordnet sind und jeweils eine Korbausnehmung (20) aufweisen, in welche der Korb (10) eingesetzt ist.
  13. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Korb (10) mittels eines Kopplungsmechanismus (66) an den Käfig (8) gekoppelt ist, zur Rückdrehung des Korbes (10) bei einer Drehung des Käfigs (8), mit einer Kupplung (67), die zwei Räder (70, 72) aufweist, nämlich ein am Rahmen (6) abrollendes Rahmenrad (70) und ein den Korb (10) antreibendes Korbrad (72), wobei die beiden Räder (70, 72) über eine Zwischenwelle (68) fest miteinander verbunden sind, und
    dass vorzugsweise das Rahmenrad (70) als Kettenrad ausgebildet ist und an einer Kette (74) abläuft, die am Rahmen (6) befestigt ist.
  14. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass diese zumindest ein Führungselement, insbesondere Stützelement, aufweist, zur Führung des Strangguts (14) zu einem Verseilnippel.
  15. Verseileinheit (2) nach einem der vorhergehenden Ansprüche,
    wobei die Spulenachse koaxial zur Korblängsachse (KA) verläuft.
EP16734562.8A 2015-06-09 2016-06-08 Verseileinheit für eine verseilmaschine und korb für eine verseileinheit Active EP3307938B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015210572.5A DE102015210572A1 (de) 2015-06-09 2015-06-09 Verseileinheit für eine Verseilmaschine und Korb für eine Verseileinheit
PCT/EP2016/063056 WO2016198464A1 (de) 2015-06-09 2016-06-08 Verseileinheit für eine verseilmaschine und korb für eine verseileinheit

Publications (2)

Publication Number Publication Date
EP3307938A1 EP3307938A1 (de) 2018-04-18
EP3307938B1 true EP3307938B1 (de) 2021-03-17

Family

ID=56345079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16734562.8A Active EP3307938B1 (de) 2015-06-09 2016-06-08 Verseileinheit für eine verseilmaschine und korb für eine verseileinheit

Country Status (7)

Country Link
US (1) US10676864B2 (de)
EP (1) EP3307938B1 (de)
JP (1) JP6590953B2 (de)
KR (1) KR102028748B1 (de)
CN (1) CN107771230B (de)
DE (1) DE102015210572A1 (de)
WO (1) WO2016198464A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124919B2 (en) * 2018-04-04 2021-09-21 Tensor Machinery Ltd. System for fabricating stranded cable and control therefor
CN109577050A (zh) * 2019-01-23 2019-04-05 上海海事大学 卧式绳缆制股机
CN112960167B (zh) * 2021-02-19 2024-06-07 江苏瑞悦医疗器械有限公司 一种壮医药线编织装置
US11796754B2 (en) * 2021-03-12 2023-10-24 Corning Research & Development Corporation System and method of controlling a strander by wireless visual monitoring of a subunit reel
CN113223780B (zh) * 2021-05-07 2022-06-28 合肥神马科技集团有限公司 一种线缆生产用同步绞合支撑装置
CN115522401B (zh) * 2022-06-29 2024-06-18 南通市祥盛新材料有限公司 玻璃纤维纱架机构

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1752115A (en) * 1927-01-14 1930-03-25 Durametallic Corp Machine for manufacturing metallic packing
US1866272A (en) * 1930-03-01 1932-07-05 Western Electric Co Cable forming apparatus
US2147165A (en) * 1937-02-20 1939-02-14 Rca Corp Loaded antenna
US2147065A (en) * 1938-09-26 1939-02-14 William E Somerville High speed stranding or wire rope machine
USRE21939E (en) * 1939-01-07 1941-11-11 Tubular wire strandemg machine
DE1004974B (de) * 1953-09-24 1957-03-21 Paul Wieghardt Dipl Ing Schnellverseilmaschine
CH338383A (de) * 1954-11-22 1959-05-15 Eisen & Stahlind Ag Umlaufkörper für Schnellverseilmaschinen
US2976669A (en) * 1955-07-14 1961-03-28 Celanese Corp Apparatus for the production of cables
US2944378A (en) * 1959-01-30 1960-07-12 Western Electric Co Multi-unit binder
GB935837A (en) * 1960-02-27 1963-09-04 B & F Carter & Company Ltd Improvements in or relating to hoses, to a method of applying a protective cover to a hose, and to core wrapping machines
US3130754A (en) * 1960-11-30 1964-04-28 American Chain & Cable Co Push-pull cable casings
DE1273378B (de) * 1961-12-18 1968-07-18 Kablo Kladno Narodni Podnik Fuehrung und Antrieb eines Spulenkorbes fuer Verseilmaschinen
DE1510106A1 (de) * 1966-04-02 1970-03-26 Kabel Metallwerke Ghh Verseilmaschine
US3448569A (en) * 1968-02-15 1969-06-10 Us Machinery Cabling apparatus
US3651629A (en) * 1970-04-01 1972-03-28 George R Webster Cable forming machine
DE2115249A1 (de) 1971-03-30 1972-10-05 Prym, Fritz, Prym, Uta, 5771 Rum beck Schlitten
DE2115349A1 (en) 1971-03-30 1972-10-12 Kraft, Anton, 5960 Olpe Twisting array - to route rope strands in a course parallel to the machine axis
JPS5217135B2 (de) * 1972-08-05 1977-05-13
GB1445689A (en) * 1972-11-24 1976-08-11 Science Res Council Methods of and apparatus for the manufacture of stranded cables
DE7440528U (de) * 1974-12-05 1976-11-18 Felten & Guilleaume Kabelwerke Ag, 5000 Koeln Vorrichtung zum verseilen von verseilelementen, insbesondere von adern oder adergruppen von kabeln
US3955348A (en) * 1975-02-03 1976-05-11 Belden Corporation Wire cabler
DE2743807A1 (de) * 1977-09-29 1979-04-05 Krupp Gmbh Verseilkorb mit um die drehachse des verseilkorbes angeordneten jochspulen
JPS5745278Y2 (de) * 1978-06-28 1982-10-05
US4253298A (en) * 1979-02-07 1981-03-03 Ceeco Machinery Manufacturing Limited High speed cage fly-off strander
IT1160833B (it) * 1983-03-24 1987-03-11 Pirelli Cavi Spa Perfezionamento a procedimento ed impianto per la riunione di cavi elettrici multipolari
EP0158761B1 (de) 1983-07-26 1989-08-23 Giorgio Targa Verseilmaschine
JPS6189392A (ja) 1984-10-04 1986-05-07 古河電気工業株式会社 撚線機
DE3922862A1 (de) 1989-07-12 1991-01-17 Stolberger Maschf & Co Kg Korbverseilmaschine
US5282353A (en) * 1991-11-01 1994-02-01 Kellstrom Jr Gary E Continuous self-neutralizing strander
US5390481A (en) * 1992-02-19 1995-02-21 Shell Oil Company Carousel assembly of helical tube bundles
US5263309A (en) * 1992-05-11 1993-11-23 Southwire Company Method of and apparatus for balancing the load of a cabling apparatus
US5983617A (en) * 1997-12-31 1999-11-16 Siecor Corporation Stranding machine for use in the manufacture of fiber optic cables
DE19847958C2 (de) * 1998-10-17 2000-11-30 Fraunhofer Ges Forschung Verfahren zur Herstellung von verdrillten Kabeln
CN2718025Y (zh) * 2004-05-12 2005-08-17 赵庭义 多功能制绳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR102028748B1 (ko) 2019-10-04
EP3307938A1 (de) 2018-04-18
CN107771230B (zh) 2021-03-02
US20180320312A1 (en) 2018-11-08
US10676864B2 (en) 2020-06-09
CN107771230A (zh) 2018-03-06
JP6590953B2 (ja) 2019-10-16
KR20180019650A (ko) 2018-02-26
JP2018520271A (ja) 2018-07-26
WO2016198464A1 (de) 2016-12-15
DE102015210572A1 (de) 2016-12-15

Similar Documents

Publication Publication Date Title
EP3307938B1 (de) Verseileinheit für eine verseilmaschine und korb für eine verseileinheit
EP2562113B1 (de) Textilmaschine mit einer Vielzahl von Arbeitsstellen
EP3444931B1 (de) Wickelmaschine
DE102016006148A1 (de) Aufspulmaschine
DE2739066A1 (de) Vorrichtung zum zusammenbringen einer mehrzahl von feinen faeden o.dgl.
EP3325256B1 (de) Vorrichtung und verfahren zur fertigung eines faserverstärkten strangprofils
WO2005115896A1 (de) Aufspulmaschine
EP3626659A1 (de) Hülsenaufnahme für einen spulenrahmen einer spulvorrichtung
EP1727758B1 (de) Verfahren und vorrichtung zum aufwickeln mehrerer fäden
WO1990001083A1 (de) Fadenliefervorrichtung für textilmaschinen
EP3257982A1 (de) Zwirnkopfrotor
DE102015214076B3 (de) Vorrichtung und Verfahren zur Fertigung von faserverstärkten Strangprofilen
WO2016150737A1 (de) Spulspindel
EP3154887B1 (de) Spulvorrichtung zum aufspulen eines garns
DE1024407B (de) Verseilmaschine mit einem drehbar gelagerten Maschinenkoerper
EP0732441A2 (de) Verseilmaschine
DE3541045C2 (de)
DE202014001571U1 (de) Zwirnkopfrotor für Kabliermaschine
EP4389962A2 (de) Abspulvorrichtung, verseilmaschine sowie verwendung einer abspulvorrichtung
WO2018015520A1 (de) Vorrichtung und verfahren zur fertigung eines faserverstärkten strangprofils
DE102017006865A1 (de) Aufspulmaschine
DE2031245B1 (de) Fadenführungsvorrichtung an Aufwärtszwirnmaschinen
DE10300404A1 (de) Aufspulvorrichtung
DE3824437C2 (de)
AT500010B1 (de) Vorrichtung zum spannen einer spulhülse

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190521

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEONI KABEL GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201022

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012611

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372349

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012611

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20211220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210617

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1372349

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317