EP3303642B1 - Method for contactlessly cooling steel sheets and device therefor - Google Patents

Method for contactlessly cooling steel sheets and device therefor Download PDF

Info

Publication number
EP3303642B1
EP3303642B1 EP16724376.5A EP16724376A EP3303642B1 EP 3303642 B1 EP3303642 B1 EP 3303642B1 EP 16724376 A EP16724376 A EP 16724376A EP 3303642 B1 EP3303642 B1 EP 3303642B1
Authority
EP
European Patent Office
Prior art keywords
cooling
nozzle
temperature
cooled
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16724376.5A
Other languages
German (de)
French (fr)
Other versions
EP3303642A1 (en
Inventor
Markus Brummayer
Kurt Etzelsdorfer
Reiner Kelsch
Andreas Sommer
Benedikt TUTEWOHL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Voestalpine Metal Forming GmbH
Original Assignee
Voestalpine Stahl GmbH
Voestalpine Metal Forming GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102015108514.3A external-priority patent/DE102015108514A1/en
Priority claimed from DE102015113056.4A external-priority patent/DE102015113056B4/en
Application filed by Voestalpine Stahl GmbH, Voestalpine Metal Forming GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3303642A1 publication Critical patent/EP3303642A1/en
Application granted granted Critical
Publication of EP3303642B1 publication Critical patent/EP3303642B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein

Definitions

  • the invention relates to a method for contactless cooling of steel sheets and a device therefor.
  • cooling is required in many areas, for example when flat plates have to be cooled, but also when e.g. B. glass surfaces in glass production or processor units or the like must be cooled.
  • Previous cooling systems are either very complex, or kept quite simple, e.g. B. by blowing air or with other fluids, especially water or oil, which has the disadvantage that always unfavorable, uncontrolled flow conditions form on the surface, which become a problem when a specially defined cooling is required.
  • a cooling device for moving steel strips is known in which there are a plurality of cooling strips located transversely to the running direction of the steel strip and the cooling strips via cooling directed towards the steel strip have glands from which a cooling fluid can be jetted onto the moving steel strip.
  • a device for cooling a moving metal strip in which, with the aid of nozzles, a cooling medium leads out of gas boxes through gas channels and out of the strip by means of nozzle strips.
  • press-hardened steel sheet components are used in particular in automobiles.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the body area.
  • high-strength steel components it is possible to reduce the material thickness compared to a normal-strength steel and thus to achieve low body weights.
  • a sheet steel plate is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached.
  • This heated blank is then transferred to a molding tool and shaped in this molding tool in a one-step shaping step to form the finished component and, at the same time, cooled by the cooled molding tool at a speed which is above the critical hardening speed. The hardened component is thus produced.
  • the component is first almost completely finished, possibly in a multi-stage forming process. This deformed component is then also heated to a temperature above the austenitizing temperature heated and optionally maintained at this temperature for a desired required time.
  • This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is thus only cooled in this tool at a speed above the critical hardening speed and is thereby hardened.
  • the direct method is somewhat easier to implement here, but only enables shapes that can actually be realized with a single forming step, i.e. relatively simple profile shapes.
  • the indirect process is somewhat more complex, but it is also able to implement more complex shapes.
  • Zinc As a corrosion protection layer, only aluminum or aluminum alloys, which are used to a minor extent, or the coatings on the basis of zinc, which are required much more frequently, come into question in automobile construction.
  • Zinc has the advantage that zinc not only provides a barrier protective layer like aluminum, but also cathodic corrosion protection.
  • zinc-coated, press-hardened components fit better into the overall corrosion protection concept of the vehicle bodies, since these are full in today's common design are galvanized. In this respect, contact corrosion can be reduced or eliminated.
  • the zinc-iron phase diagram shows that above 782 ° C there is a large area in which liquid zinc-iron phases occur as long as the iron content is low, in particular less than 60%. However, this is also the temperature range in which the austenitized steel is hot formed. However, it is also pointed out that if the forming takes place above 782 ° C, there is a high risk of stress corrosion due to liquid zinc, which presumably penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, with iron contents less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but rather an indirect forming process. This is intended to circumvent the problem described.
  • a method for hot forming a coated steel product wherein the steel material has a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and is hot formed , wherein the coating has an oxide layer mainly composed of zinc oxide before the steel base material is heated with the zinc or zinc alloy layer, in order to then prevent the zinc from evaporating when heated.
  • a special procedure is provided for this.
  • a method for hot-forming a steel in which a component made from a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a manner that the cooling rate to the M S point is at least equal to the critical cooling rate and that the average cooling rate of the molded component from the M S point to 200 ° C is in the range from 25 ° C / s to 150 ° C / s.
  • an oxide skin is formed on the surface of the corrosion protection coating from the oxygen-affine elements during heating, which protects the cathodic corrosion protection layer, in particular the zinc layer.
  • the thermal expansion of the component is taken into account in the process due to the scaling down of the component in terms of its final geometry, so that neither calibration nor reshaping is necessary during the form hardening.
  • From the EP 2 290 133 A1 is a process for producing a metallic coating that protects against corrosion Steel component by forming a flat steel product made of Mn steel, which is provided with a ZnNi alloy coating prior to forming the steel component.
  • the board is heated to a temperature of at least 800 ° C, after which it is coated with the ZiNi alloy coating.
  • a method for producing hardened components is known, here a method for producing a hardened steel component is disclosed which has a coating of zinc or a zinc alloy.
  • a blank is punched out of this sheet and the blank is heated to a temperature ⁇ Ac 3 and, if necessary, held at this temperature for a predetermined time in order to carry out the austenite formation and then transferred to a molding tool, shaped in this and in the Molding tool cooled at a speed that is above the critical hardening speed and thereby hardened.
  • the steel material used is set in such a way that the transformation is delayed such that quench hardening takes place by converting the austenite into martensite at a forming temperature which is in the range from 450 ° C to 700 ° C, but after heating for the purpose of austenitizing but before forming active cooling takes place, so that the board is cooled from an initial heat, which ensures austenitizing, to a temperature between 450 ° C to 700 ° C, so that despite the low temperatures, martensitic hardening takes place. This is to ensure that, as far as possible, no zinc melt comes into contact with austenite during the forming phase, i.e.
  • cooling can take place with air nozzles, but is not limited to air nozzles, but cooled tables or cooled presses can also be used.
  • the object of the invention is to further improve a method for cooling and in particular for intermediate cooling of a steel sheet for the purpose of forming and hardening.
  • cooling is ensured at temperatures of 20 ° C. to 900 ° C., which enables a maximum temperature fluctuation of 30 ° C. within one square meter.
  • the cooling media used are air gases, mixed gases but also water or other fluids. If only one of these fluids is mentioned below, this represents all of these fluids mentioned.
  • a surface to be cooled is moved in the X, Y or Z plane by means of robots or linear drives, any desired specification of the movement trajectories and speeds of the surfaces to be cooled being possible.
  • the oscillation around a rest position in the X and Y planes is preferred. Further oscillation in the Z plane (i.e. the height) is optional.
  • Cooling on one or both sides is also easily possible.
  • the cooling devices according to the invention have nozzles which are spaced apart from one another, the nozzles not only being spaced apart from one another but also being spaced apart from a box, carrier or other surfaces.
  • the cooling devices are designed accordingly so that the medium flowing out of the hot plate finds sufficient space and space between the nozzles and can be effectively removed between the nozzles, and thus no crossflow or cross flows occur on the surface to be cooled.
  • the gaps between the nozzles can be subjected to an additional cross flow in order to increase the cooling rate and thus effectively remove the cooling medium that flows from the hot plate, that is to say, by suction.
  • this cross-flow should not affect the cooling medium flowing from the nozzle to the plate, i.e. the free jet.
  • the cooling device can have cooling blades that extend away from a cooling box and have a row of nozzles at their free ends or free edges.
  • the cooling device can also be formed by individual cooling columns protruding from a carrier surface, these cooling columns each carrying at least one nozzle on their surface or tip pointing away from the carrier surface.
  • the cooling columns can have a cylindrical or other cross-section, wherein the cross-section of the cooling columns can also be adapted to desired cross flows and can be oval, flat, wing-like, polygonal or similar.
  • cooling swords are not continuous, but are formed interrupted or, in the case of cooling columns with a wide oval design, several nozzles emerge at one column tip.
  • the geometry of the nozzle openings or the outflow openings of the nozzles ranges from simple round geometries to complex geometrically defined designs.
  • the nozzles or rows of nozzles are preferably arranged offset from one another, so that the cooling columns or swords are also arranged offset from one another such that the nozzles form an offset or other pattern. This applies in particular to cooling on both sides for the arrangement of the nozzles or rows of nozzles on the top to those on the bottom.
  • the nozzles are preferably designed to be controllable in such a way that the flow through the nozzle can be limited and possibly even switched off.
  • a different cooling effect can also be achieved, for example, by the distance from the nozzle outlet opening to the surface to be cooled, e.g. B is set differently by different cooling column heights.
  • the advantage of this method lies in the constant flow per nozzle and thus in predictable flow conditions, since the flow resistance almost does not change due to the changes in height.
  • the flow pattern to be preferred follows a honeycomb-like structure on the surface to be cooled.
  • the cooling blade is a plate-like element which can additionally taper from a base to an outflow bar, at least one nozzle being introduced in the outflow bar.
  • the sword is hollow, so that the nozzle out of the hollow sword with a cooling fluid can be supplied.
  • the nozzles can be spatially spaced apart from one another with wedge-like elements, wherein the wedge-like elements can also narrow the space for the flowing fluid towards the nozzle.
  • a plurality of swords are preferably arranged next to one another, the swords being offset from one another.
  • the offset arrangement also results in cooling with offset points with respect to one another, the points cooling in a homogeneous manner and the fluid flowing out being sucked in and discharged into the area between two swords.
  • the element to be cooled e.g. B. a plate to be cooled, moved here, so that the movement of the plate on the one hand and the offset arrangement of the nozzles on the other hand ensures that the cooling fluid flows over all areas of the plate, so that homogeneous cooling is achieved.
  • the cooling device 1 has cooling devices 2, 15 which have nozzles 10 which are spaced apart from one another, the nozzles 10 not only being spaced apart from one another, but also spaced apart from a box 16, a carrier or other surfaces which carry the cooling devices 2, 15 are arranged.
  • the cooling devices 2, 15 are accordingly designed in such a way that the medium flowing off the hot plate finds sufficient space and space between the nozzles 10 and can virtually immerse between the nozzles and thus no crossflow or cross flows occur on the surface to be cooled.
  • the gaps between the nozzles 10 can be subjected to an additional transverse flow in order to increase the cooling rate and thus quasi suck off the cooling medium that flows out of the hot plate.
  • this cross-flow should not affect the cooling medium flowing from the nozzle to the plate, i.e. the free jet.
  • the cooling device 1 can have at least one cooling sword 2 as the cooling device 2, which extends from a cooling box 16 and has a row of nozzles 10 at its free ends or its free edge 6.
  • the cooling device can also be formed by individual cooling columns 15 protruding from a surface, these cooling columns 15 each carrying at least one nozzle 10 on their surface or tip 17 pointing away from the surface.
  • the cooling columns 15 can have a cylindrical or other cross section, the cross section of the cooling columns 15 can also be adapted to the desired cross flows and can be oval, flat, wing-like or similar.
  • cooling blades 2 are not continuous but are interrupted or, in the case of cooling columns 15 of wide oval design, several nozzles 10 emerge at a column tip.
  • Another conceivable alternative would be the connection of several cooling columns by baffles in order to enable the cross-flow to be influenced.
  • the geometry of the nozzle openings or the outflow openings of the nozzles ranges from simple round geometries to complex geometrically defined designs.
  • the nozzles 10 or rows of nozzles are preferably arranged offset from one another, so that the cooling columns 15 or swords 2 are also arranged offset from one another such that the nozzles 10 form an offset or other pattern.
  • An exemplary device according to the invention for cooling 1 has at least one cooling sword 2.
  • the cooling sword 2 is of elongated flap-like design and has a cooling sword base 3, two cooling sword broad sides 4 extending away from the cooling sword base, two cooling sword narrow sides 5, which connect the cooling sword broad sides, and a free nozzle edge 6.
  • the cooling sword 2 is hollow with a cooling sword cavity 7, the cavity being enclosed by the cooling sword broad sides 4, the cooling sword narrow sides 5 and the nozzle edge 6, the cooling sword at the base 3 being open.
  • the cooling sword base 3 With the cooling sword base 3, the cooling sword is inserted into a frame 8, wherein the frame 8 can be placed on a hollow fluid supply box 16.
  • a plurality of nozzles 10 or openings are introduced, which extend into the cavity 7 and thus allow fluid to flow out of the cavity to the outside through the nozzles 10.
  • Nozzle channels 11 extend from the nozzles 10 into the cavity 7, which spatially separate the nozzles 10 from one another at least in the region of the nozzle edge 6.
  • the cross-section of the nozzle channels 11 is preferably wedge-shaped, so that the nozzle channels or nozzles are separated from one another by wedge-shaped webs 12.
  • the nozzle channels are preferably designed such that they expand towards the cavity 7, so that an inflowing fluid is accelerated by the narrowing of the nozzle channels.
  • the cooling sword broad sides 4 can be designed to converge from the cooling sword base 3 towards the nozzle edge 6, so that the cavity 7 narrows towards the nozzle edge 6.
  • the narrow sides 5 of the cooling sword can be designed to be convergent or divergent.
  • cooling swords 2 which are arranged parallel to one another with respect to the broad sides, the cooling swords 2 being offset with respect to one another by half a nozzle spacing with respect to the spacing of the nozzles.
  • the nozzles 10 can also be designed to be oblong in alignment with the nozzle edge 6, but the nozzles 10 can also be round, oval in alignment with the nozzle edge 6 or oval across the nozzle edge, hexagonal, octagonal or polygonal .
  • nozzles 10 are also elongated in relation to the longitudinal extent of the nozzle edge, in particular oblong oval or oblong polygonal, there is a rotation of an emerging fluid jet ( Figures 10, 11 ), whereby a staggered arrangement by half a nozzle distance results in a cooling pattern on a plate-like body ( Figure 10 ), which is offset accordingly.
  • a plurality of projecting cooling columns 15 or cylinders 15 are arranged on the frame 8, each of which carries at least one nozzle 10 on its free outer tip 17 or surface 17.
  • This frame 8 is also in a cooler 16 ( Fig. 13 ) used so that fluid flowing into the cooling box 16 exits the respective cooling columns 15 and the nozzles 10.
  • the nozzles 10 are thus quasi isolated in this embodiment, the previously relating to the nozzles 10 and their geometry and with respect to the Nozzle channels 11 statements made also apply to this embodiment.
  • Suitable devices of this type are, for example, pins which have a cross section which corresponds to the cross section of the nozzle in the outlet region, the pins being able to be adapted to a shape of the nozzle channel 11, for example a conical shape.
  • the pins can be individually displaceable in such a way that they reduce the effective nozzle cross section or nozzle channel cross section when they are pushed into the nozzle channel and thus influence the gas flow and the flow rate.
  • the nozzle 10 When a pin is fully inserted, the nozzle 10 is preferably completely closed.
  • the pins of the nozzles 10 can be controlled individually, in rows, by swords or in some other way in groups, which makes it possible to form a certain flow profile in the cooling device in such a way that an object to be cooled is not cooled uniformly, but to different degrees.
  • screens or stencils with any desired configuration can also be provided for this, which ensure the desired flow profile on the object to be cooled.
  • a partial change in the length or height of the cooling blades or cooling column would also be conceivable to influence the cooling rate.
  • TWB tailor-welded blanks
  • TRB tailor-rolled blanks
  • TTB tailored heated blanks
  • the corresponding speed profile also gives a corresponding distribution ( Figure 15 ).
  • a cooling device 1 ( Figure 12 ) has z. B. two arrangements of cooling swords 2 or two rows of cooling columns 15 in a frame 8, wherein the frame 8 with corresponding fluid feeds 14 and in particular on the side facing away from the cooling swords 2 or cooling columns 15 are formed with a fluid box 16, in the pressurized Fluid is present, in particular through the supply of pressurized fluid.
  • a movement device 18 is provided, the movement device 18 being designed such that it can guide a body to be cooled between the opposing cooling sword arrangements in such a way that it points towards the cooling body can be cooling on both sides.
  • the transfer device between the furnace and press can be used, for example, by means of a robot or linear drive.
  • the body to be cooled does not have to be set down by the movement device or does not have to be gripped, ie the cooling takes place in the gripped state of the body to be cooled on the way from the furnace to the press.
  • the distances between the nozzle edges 6 to the body to be cooled are z. B. 5 mm to 250 mm.
  • the cooling pattern moves according to by a relative movement either of the device for cooling 1 to a body to be cooled or vice versa Figure 10 over the surface of the body to be cooled, the medium flowing off the hot body between the cooling blades 2 or cooling columns 15 having sufficient space to flow away and thus no crossflow occurring on the surface to be cooled.
  • the intermediate spaces can be acted upon with an additional transverse flow by means of appropriate fluid in order to suck off the medium flowing onto the hot body between the swords.
  • a conventional boron-manganese steel for example a 22MnB5 or 20MnB8, is used for use as a press-hardening steel material with regard to the transformation of austenite into other phases, in which the transformation shifts to deeper areas and martensite can be formed.
  • Steels of this alloy composition are therefore suitable for the invention (all figures in% by mass): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] B [%] N [%] 0.20 0.18 2.01 0.0062 0.001 0.054 0.03 0.032 0.0030 0.0041 Remainder iron and melting-related impurities, the alloying elements boron, manganese, carbon and optionally chromium and molybdenum being used in particular as retarding agents in such steels.
  • Figure 19 one recognizes a favorable temperature profile for an austenitized steel sheet, it being recognizable that after heating up to a temperature above the austenitizing temperature and bringing it into a cooling device, a certain cooling already takes place. This is followed by a quick intermediate cooling step.
  • the intermediate cooling step is advantageously carried out at cooling rates of at least 15 K / s, preferably at least 30 K / s, more preferably at least 50 K / s. Subsequently the board is transferred to the press and the forming and hardening is carried out.
  • the temperature adjustment is carried out in such a way that there are still differences in the temperatures of the (formerly) hot areas and the (formerly) colder areas, which do not exceed 75 ° C., in particular 50 ° C. in both directions).
  • the intermediate cooling is preferably carried out in such a way that the circuit board is brought into the cooling device and the gasses of the cooling swords flow homogeneously with a gaseous cooling medium and the mixture is cooled to a uniform, lower temperature.
  • the nozzles or the cooling blades are controlled in such a way and in particular the nozzles are controlled by means of the devices or pins such that only the hot areas reach at least the peritectic temperature of the zinc iron -Diagram are cooled and the remaining areas may flow less or not in order to equalize the temperature in the board. This ensures that a board that is homogeneous in terms of temperature is inserted into the forming and quenching device.
  • boards can be processed that are made of different sheets, i.e. Sheets of different steel grades or sheets of different thickness are formed.
  • a composite circuit board which is composed of different sheets of different thicknesses, will also have to be cooled differently, since a thicker sheet of the same temperature must be cooled more than a correspondingly thinner sheet.
  • a plate with different sheet thicknesses regardless of whether it is formed by sheet metal pieces of different thicknesses or welded together or by different roll thicknesses, can thus be rapidly and homogeneously intercooled with the device.
  • An advantage of the invention is that a homogeneous cooling of hot elements is possible, which is inexpensive and has a high variability with regard to the target temperature and possible throughput times.
  • Another advantage of the invention is that a steel sheet blank can be very reliably intercooled over its entire area or in some areas and with high reliability and speed before it is inserted into a forming tool or a form hardening tool.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Temperature (AREA)

Description

Die Erfindung betrifft ein Verfahren zum kontaktlosen Kühlen von Stahlblechen und eine Vorrichtung hierfür.The invention relates to a method for contactless cooling of steel sheets and a device therefor.

Im technischen Bereich werden Kühlungen in vielen Bereichen benötigt, beispielsweise wenn ebene Platten gekühlt werden müssen, aber auch wenn z. B. Glasflächen bei der Glasherstellung oder Prozessoreinheiten o. ä. gekühlt werden müssen.In the technical field, cooling is required in many areas, for example when flat plates have to be cooled, but also when e.g. B. glass surfaces in glass production or processor units or the like must be cooled.

Bisherige Kühlsysteme sind entweder sehr aufwändig, oder recht einfach gehalten, z. B. durch das Anblasen von Luft oder mit anderen Fluiden, insbesondere Wasser oder Öl, wobei hierbei von Nachteil ist, dass sich an der Oberfläche immer ungünstige, unkontrollierte Strömungsbedingungen ausbilden, die dann zum Problem werden, wenn eine besondere definierte Kühlung erforderlich ist.Previous cooling systems are either very complex, or kept quite simple, e.g. B. by blowing air or with other fluids, especially water or oil, which has the disadvantage that always unfavorable, uncontrolled flow conditions form on the surface, which become a problem when a specially defined cooling is required.

Insgesamt ist im Stand der Technik davon auszugehen, dass ungünstige Strömungsbedingungen auf der zu kühlenden ebenen Oberfläche, sogenannter Crossflow, bestehen und diese heterogene Oberflächentemperaturen erzeugen. Dies ist insbesondere dann von Nachteil, wenn im Bereich der Oberfläche zur Erzielung homogener Materialeigenschaften auch homogene Temperaturen notwendig sind. Insbesondere können inhomogene Oberflächentemperaturen auch zu Verzug führen.Overall, it can be assumed in the prior art that unfavorable flow conditions exist on the flat surface to be cooled, so-called crossflow, and that these generate heterogeneous surface temperatures. This is particularly disadvantageous if homogeneous temperatures are also necessary in the area of the surface in order to achieve homogeneous material properties. In particular, inhomogeneous surface temperatures can also lead to warpage.

Aus der US 5,871,686 ist eine Kühlvorrichtung für sich bewegende Stahlbänder bekannt, bei der eine Mehrzahl von quer zur Laufrichtung des Stahlbandes befindliche Kühlleisten vorhanden sind und die Kühlleisten über zum Stahlband gerichtete Kühl drüsen verfügen aus denen ein Kühlfluid auf das sich bewegende Stahlband aufgestrahlt werden kann.From the US 5,871,686 A cooling device for moving steel strips is known in which there are a plurality of cooling strips located transversely to the running direction of the steel strip and the cooling strips via cooling directed towards the steel strip have glands from which a cooling fluid can be jetted onto the moving steel strip.

Aus der US 2011/0018178 A1 ist eine vergleichbare Vorrichtung bekannt, bei der jedoch an Stelle von Kühlleisten mit Düsen, eine Mehrzahl von zum Band gerichteten Kühlzylindern vorhanden sind, an deren freien Ende Außströmöffnungen für ein auf ein sich bewegendes Stahlband zuführendes Fluid vorhanden sind.From the US 2011/0018178 A1 A comparable device is known, in which, however, instead of cooling strips with nozzles, there are a plurality of cooling cylinders directed towards the strip, at the free end of which there are outflow openings for a fluid that feeds onto a moving steel strip.

Aus der DE 69833424 T2 ist eine Vorrichtung bekannt, die über eine Vielzahl von Kühlleisten verfügt, die ebenfalls zu einem sich bewegenden Stahlband hingerichtet sind und in vergleichbarer Weise wie der bereits genannte Stand der Technik auf das Stahlband mit Strahlen aus einem Kühlfluid einwirken, wobei das sich bewegende Stahlband mit Rollen gespannt wird um Bewegungen, die von der unidirektionalen Laufbewegung des Bandes abweichen, zu verhindernFrom the DE 69833424 T2 a device is known which has a plurality of cooling strips, which are also executed to a moving steel strip and act in a manner comparable to the prior art already mentioned on the steel strip with jets from a cooling fluid, the moving steel strip with rollers is tensioned to prevent movements that deviate from the unidirectional running movement of the belt

Aus der WO 2007/014406 A1 ist ebenfalls eine Vorrichtung zum Kühlen eines sich bewegenden Metallbandes bekannt, bei dem mithilfe von Düsen, ein Kühlmedium aus Gaskästen hinaus durch Gaskanäle hindurch und mittels Düsenleisten aus dem Band führt.From the WO 2007/014406 A1 a device for cooling a moving metal strip is also known, in which, with the aid of nozzles, a cooling medium leads out of gas boxes through gas channels and out of the strip by means of nozzle strips.

Darüber hinaus ist mit herkömmlichen Kühlmethoden ein kontrolliertes Erreichen einer vorgegebenen Zieltemperatur ebenso wenig möglich, wie die systematische Einstellung von nahezu beliebigen Kühlraten bis zu einer maximal erreichbaren Kühlrate.In addition, with conventional cooling methods it is not possible to achieve a specified target temperature in a controlled manner, nor is it possible to systematically set almost any cooling rate up to a maximum achievable cooling rate.

Besondere Schwierigkeiten bestehen dann, wenn unterschiedliche Materialdicken oder Ausgangstemperaturen auf einer Kühlfläche vorhanden sind, welche auf homogene Temperaturverhältnisse abgekühlt werden sollen.Particular difficulties arise when there are different material thicknesses or starting temperatures on a cooling surface which are to be cooled to homogeneous temperature conditions.

Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.It is known that so-called press-hardened steel sheet components are used in particular in automobiles. These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the body area. By using these high-strength steel components, it is possible to reduce the material thickness compared to a normal-strength steel and thus to achieve low body weights.

Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.In press hardening, there are basically two different ways of producing such components. A distinction is made between the so-called direct and indirect methods.

Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannte Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.In the direct method, a sheet steel plate is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached. This heated blank is then transferred to a molding tool and shaped in this molding tool in a one-step shaping step to form the finished component and, at the same time, cooled by the cooled molding tool at a speed which is above the critical hardening speed. The hardened component is thus produced.

Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess, das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstemperatur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.With the indirect method, the component is first almost completely finished, possibly in a multi-stage forming process. This deformed component is then also heated to a temperature above the austenitizing temperature heated and optionally maintained at this temperature for a desired required time.

Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils, gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils, besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet.This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is thus only cooled in this tool at a speed above the critical hardening speed and is thereby hardened.

Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.The direct method is somewhat easier to implement here, but only enables shapes that can actually be realized with a single forming step, i.e. relatively simple profile shapes.

Das indirekte Verfahren ist etwas aufwändiger, dafür aber in der Lage auch komplexere Formen zu realisieren.The indirect process is somewhat more complex, but it is also able to implement more complex shapes.

Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen.In addition to the need for press-hardened components, there was a need not to produce such components from uncoated sheet steel, but to provide such components with a corrosion protection layer.

Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendete Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.As a corrosion protection layer, only aluminum or aluminum alloys, which are used to a minor extent, or the coatings on the basis of zinc, which are required much more frequently, come into question in automobile construction. Zinc has the advantage that zinc not only provides a barrier protective layer like aluminum, but also cathodic corrosion protection. In addition, zinc-coated, press-hardened components fit better into the overall corrosion protection concept of the vehicle bodies, since these are full in today's common design are galvanized. In this respect, contact corrosion can be reduced or eliminated.

Bei beiden Verfahren konnten jedoch Nachteile aufgefunden werden, die auch im Stand der Technik diskutiert werden. Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu Mikro- (10 µm bis 100 µm) oder sogar Makrorissen im Material, wobei die Mikrorisse in der Beschichtung erscheinen und die Makrorisse sogar durch den vollständigen Blechquerschnitt reichen. Derartige Bauteile mit Makrorissen sind für die weitere Verwendung ungeeignet.However, disadvantages could be found in both methods, which are also discussed in the prior art. In the direct process, i.e. The hot forming of press-hardening steels with zinc coating leads to micro- (10 µm to 100 µm) or even macro cracks in the material, whereby the micro cracks appear in the coating and the macro cracks even extend through the complete sheet cross-section. Such components with macro cracks are unsuitable for further use.

Beim indirekten Prozess, d.h. der Kaltumformung mit einer anschließenden Härtung und Restformung, kann es ebenfalls zu Mikrorissen in der Beschichtung kommen, welche ebenfalls unerwünscht sind, aber bei weitem nicht so ausgeprägt.In the indirect process, i.e. cold forming with subsequent hardening and residual shaping, there can also be microcracks in the coating, which are also undesirable, but not nearly as pronounced.

Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung, nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.Up to now, zinc-coated steels have been - except for one component in the Asian region - in the direct process, i.e. hot forming, not used. Rather, steels with an aluminum-silicon coating are used here.

Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumformprozess einen aluminierten Bor-Mangan-Stahl gibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbeschichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor GI mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält, und ein sogenannter galvanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.An overview can be found in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In this publication it is stated that there is an aluminized boron-manganese steel for the hot forming process, which is sold commercially under the name Usibor 1500P. In addition, for the purpose of cathodic corrosion protection, zinc-coated steels for the hot-forming process are sold, namely the galvanized Usibor GI with a zinc coating that contains small amounts of aluminum, and a so-called galvanized coated Usibor GA, which contains a zinc layer with 10% iron.

Es wird darauf hingewiesen, dass das Zink-Eisen-Phasendiagramm zeigt, dass oberhalb von 782°C ein großer Bereich entsteht, in dem flüssige Zink-Eisen-Phasen auftreten, solange der Eisengehalt gering, insbesondere geringer als 60 % ist. Dies ist jedoch auch der Temperaturbereich, in dem der austenitisierte Stahl warm umgeformt wird. Es wird aber auch darauf hingewiesen, dass, wenn die Umformung oberhalb von 782°C stattfindet, ein großes Risiko der Spannungskorrosion durch flüssiges Zink besteht, welches vermutlich in die Korngrenzen des Basisstahls eindringt, welche zu Makrorissen im Basisstahl führt. Darüber hinaus ist bei Eisengehalten geringer als 30 % in der Beschichtung die Maximaltemperatur zum Umformen eines sicheren Produkts ohne Makrorisse niedriger als 782°C. Dies ist der Grund, warum hiermit kein direktes Umformverfahren betrieben wird, sondern dass indirekte Umformverfahren. Hiermit soll das geschilderte Problem umgangen werden.It is pointed out that the zinc-iron phase diagram shows that above 782 ° C there is a large area in which liquid zinc-iron phases occur as long as the iron content is low, in particular less than 60%. However, this is also the temperature range in which the austenitized steel is hot formed. However, it is also pointed out that if the forming takes place above 782 ° C, there is a high risk of stress corrosion due to liquid zinc, which presumably penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, with iron contents less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but rather an indirect forming process. This is intended to circumvent the problem described.

Eine weitere Möglichkeit, dieses Problem zu umgehen, soll darin liegen, galvannealed beschichteten Stahl zu verwenden, da der zu Beginn schon bestehende Eisengehalt von 10 % und die Abwesenheit einer Fe2Al5-Sperrschicht zu einer homogeneren Ausbildung der Beschichtung von überwiegend eisenreichen Phasen führt. Dies resultiert in einer Verringerung oder Vermeidung von zinkreichen, flüssigen Phasen.Another possibility to avoid this problem is to use galvannealed coated steel, since the iron content of 10% already existing at the beginning and the absence of an Fe 2 Al 5 barrier layer lead to a more homogeneous formation of the coating of predominantly iron-rich phases . This results in a reduction or avoidance of zinc-rich, liquid phases.

In " 'STUDY OF CRACKS PROPAGATION INSIDE THE STEEL ON PRESS HARDENED STEEL ZINC BASED COATINGS', Pascal Drillet, Raisa Grigorieva, Gregory Leuillier, Thomas Vietoris, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, GALVATECH 2011 - Conference Proceedings, Genova (Italy), 2011 " wird darauf hingewiesen, dass verzinkte Bleche im direkten Verfahren nicht verarbeitbar sind.In " 'STUDY OF CRACKS PROPAGATION INSIDE THE STEEL ON PRESS HARDENED STEEL ZINC BASED COATINGS', Pascal Drillet, Raisa Grigorieva, Gregory Leuillier, Thomas Vietoris, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, GALVATECH 2011 - Conference Proceedings, Genova (Italy ), 2011 " Please note that galvanized sheets cannot be processed in the direct process.

Aus der EP 1 439 240 B1 ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei das Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf eine Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen.From the EP 1 439 240 B1 A method for hot forming a coated steel product is known, wherein the steel material has a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and is hot formed , wherein the coating has an oxide layer mainly composed of zinc oxide before the steel base material is heated with the zinc or zinc alloy layer, in order to then prevent the zinc from evaporating when heated. A special procedure is provided for this.

Aus der EP 1 642 991 B1 ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS-Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet.From the EP 1 642 991 B1 a method for hot-forming a steel is known, in which a component made from a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a manner that the cooling rate to the M S point is at least equal to the critical cooling rate and that the average cooling rate of the molded component from the M S point to 200 ° C is in the range from 25 ° C / s to 150 ° C / s.

Aus der EP 1 651 789 B1 der Anmelderin ist ein Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech bekannt, wobei hierbei Formteile aus einem mit einem kathodischen Korrosionsschutz versehenen Stahlblech kalt umgeformt werden und eine Wärmebehandlung zum Zwecke der Austenitisierung folgt, wobei vor, beim oder nach dem Kaltumformen des Formteils ein Endbeschnitt des Formteils und erforderliche Ausstanzungen oder die Erzeugung eines Lochbildes vorgenommen werden und die Kaltumformung sowie der Beschnitt und die Ausstanzung und Anordnung des Lochbildes auf dem Bauteil 0,5 % bis 2 % kleiner ausgeführt werden als die Dimensionen, die das endgehärtete Bauteil haben soll, wobei das zur Wärmebehandlung kalt umgeformte Formteil anschließend zumindest teilbereichsweise unter Zutritt von Luftsauerstoff auf eine Temperatur erhitzt wird, welche eine Austenitisierung des Stahlwerkstoffes ermöglicht und das erhitzte Bauteil anschließend in ein Werkzeug überführt wird und in diesem Werkzeug eine sogenannte Formhärtung durchgeführt wird, bei der durch das Anlegen und Pressen (Halten) des Bauteils durch die Formhärtewerkzeuge das Bauteil gekühlt und dadurch gehärtet wird und die kathodische Korrosionsschutzbeschichtung aus einer Mischung aus im Wesentlichen Zink besteht und zudem ein oder mehrere sauerstoffaffine Elemente enthält. Hierdurch wird an der Oberfläche der Korrosionsschutzbeschichtung eine Oxidhaut aus den sauerstoffaffinen Elementen während des Aufheizens gebildet, welche die kathodische Korrosionsschutzschicht, insbesondere die Zinkschicht, schützt. Zudem wird bei dem Verfahren durch die maßstäbliche Verkleinerung des Bauteils in Bezug auf seine Endgeometrie die Wärmedehnung des Bauteils berücksichtigt, so dass beim Formhärten weder eine Kalibrierung noch eine Umformung notwendig sind.From the EP 1 651 789 B1 The applicant is aware of a method for producing hardened components from sheet steel, in which case molded parts are cold-formed from a steel sheet provided with a cathodic corrosion protection and a heat treatment for the purpose of austenitization follows, a before, during or after the cold-forming of the molded part Final trimming of the molded part and the necessary punching or the creation of a hole pattern are carried out and the cold forming as well as the trimming and the punching and arrangement of the hole pattern on the component are carried out 0.5% to 2% smaller than the dimensions that the final hardened component should have, wherein the molded part, which has been cold-formed for heat treatment, is then heated, at least in some areas, with the entry of atmospheric oxygen to a temperature which enables the steel material to be austenitized and the heated component is subsequently transferred to a tool and in this tool a so-called form hardening is carried out, in which Applying and pressing (holding) the component by means of the form hardening tools, the component is cooled and thereby hardened and the cathodic corrosion protection coating consists of a mixture of essentially zinc and also contains one or more elements with an affinity for oxygen. As a result, an oxide skin is formed on the surface of the corrosion protection coating from the oxygen-affine elements during heating, which protects the cathodic corrosion protection layer, in particular the zinc layer. In addition, the thermal expansion of the component is taken into account in the process due to the scaling down of the component in terms of its final geometry, so that neither calibration nor reshaping is necessary during the form hardening.

Aus der WO 2010/109012 A1 der Anmelderin ist ein Verfahren zum Herstellen partiell gehärteter Stahlbauteile bekannt, wobei eine Platine aus einem härtbaren Stahlblech einer Temperaturerhöhung unterworfen wird, welche für eine Abschreckhärtung ausreicht, und die Platine nach Erreichen einer gewünschten Temperatur und gegebenenfalls einer gewünschten Haltezeit in ein Umformwerkzeug überführt wird, indem die Platine zu einem Bauteil umgeformt und gleichzeitig abgeschreckt gehärtet wird, oder die Platine kalt umgeformt wird und das durch die kalte Umformung erhaltene Bauteil anschließend einer Temperaturerhöhung unterzogen wird, wobei die Temperaturerhöhung so durchgeführt wird, dass eine Temperatur des Bauteils erreicht wird, die für eine Abschreckhärtung notwendig ist und das Bauteil anschließend in ein Werkzeug überführt wird, in dem das erhitzte Bauteil abgekühlt und dadurch abgeschreckt gehärtet wird, wobei während des Erhitzens der Platine oder des Bauteils zum Zwecke der Temperaturerhöhung auf eine zum Härten notwendige Temperatur in den Bereichen, die eine geringere Härte und/oder eine höhere Duktilität besitzen sollen, Absorptionsmassen anliegen oder mit einem geringen Spalt beabstandet sind, wobei die Absorptionsmasse bezüglich ihrer Ausdehnung und Dicke, ihrer Wärmeleitfähigkeit und ihrer Wärmekapazität und/oder hinsichtlich ihres Emissionsgrades gerade so dimensioniert sind, dass die in dem duktil verbleibendem Bereich auf das Bauteil einwirkende Wärmeenergie durch das Bauteil hin durch in die Absorptionsmasse fließt, sodass diese Bereiche kühler bleiben und insbesondere die zum Härten notwendige Temperatur gerade nicht oder nur teilweise erreichen, sodass diese Bereiche nicht oder nur teilweise gehärtet werden können.From the WO 2010/109012 A1 The applicant is aware of a method for producing partially hardened steel components, a circuit board made from a hardenable steel sheet being subjected to a temperature increase which is sufficient for quench hardening, and the circuit board being transferred to a forming tool after reaching a desired temperature and optionally a desired holding time by the circuit board is formed into a component and hardened quenched at the same time, or the board is cold formed and the component obtained by the cold forming is then subjected to a temperature increase, the temperature increase being carried out in such a way that a temperature of the component is reached which is necessary for quench hardening and the component is subsequently transferred to a tool , in which the heated component is cooled and thereby quenched hardened, absorption masses being heated during the heating of the circuit board or the component for the purpose of raising the temperature to a temperature necessary for the hardening in the regions which are to have a lower hardness and / or a higher ductility abut or are spaced with a small gap, the absorption mass with respect to its expansion and thickness, its thermal conductivity and its heat capacity and / or with regard to its emissivity are dimensioned such that the area remaining in the ductile on the component Thermal energy acting through the component flows through into the absorption mass, so that these areas remain cool and in particular do not or only partially reach the temperature required for hardening, so that these areas cannot or only partially be hardened.

Aus der DE 10 2005 003 551 A1 ist ein Verfahren zur Warmumformung und Härtung eines Stahlblechs bekannt, bei dem ein Stahlblech auf eine Temperatur über den Ac3-Punkt erwärmt wird, danach eine Abkühlung auf eine Temperatur im Bereich von 400°C bis 600°C erfährt und erst nach Erreichen dieses Temperaturbereichs umgeformt wird. Diese Schrift geht allerdings nicht auf die Rissproblematik bzw. eine Beschichtung ein, noch wird eine Martensitbildung beschrieben. Ziel der Erfindung ist die Bildung von Zwischengefüge, sogenanntem Bainit.From the DE 10 2005 003 551 A1 A method for hot forming and hardening a steel sheet is known, in which a steel sheet is heated to a temperature above the Ac 3 point, after which it is cooled to a temperature in the range from 400 ° C. to 600 ° C. and only after this temperature range has been reached is reshaped. However, this document does not deal with the problem of cracks or a coating, nor is martensite formation described. The aim of the invention is the formation of an intermediate structure, so-called bainite.

Aus der EP 2 290 133 A1 ist ein Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils durch Formen eines aus einem Mn-Stahl bestehenden Stahlflachproduktes, das vor dem Formen des Stahlbauteils mit einem ZnNi-Legierungsüberzug versehen wird, bekannt. Bei diesem Verfahren wird die Platine auf eine Temperatur von mind. 800° C erhitzt, wobei sie zuvor mit dem ZiNi-Legierungsüberzug beschichtet wird. Auf die Problematik des "liquid metal embrittlement" geht diese Druckschrift nicht ein.From the EP 2 290 133 A1 is a process for producing a metallic coating that protects against corrosion Steel component by forming a flat steel product made of Mn steel, which is provided with a ZnNi alloy coating prior to forming the steel component. In this process, the board is heated to a temperature of at least 800 ° C, after which it is coated with the ZiNi alloy coating. This publication does not address the problem of "liquid metal embrittlement".

Aus der DE 10 2011 053 941 A1 ist ein ähnliches Verfahren bekannt, bei dem jedoch eine Platine oder eine umgeformte Platine lediglich teilbereichsweise auf eine Temperatur > Ac3 erhitzt und für eine vorbestimmte Zeit bei dieser Temperatur gehalten wird, um die Austenitbildung durchzuführen und anschließend in ein Härtewerkzeug überführt und in dem Härtewerkzeug gehärtet wird, wobei die Platine mit einer Geschwindigkeit abgekühlt wird, die über der kritischen Härtegeschwindigkeit liegt. Auch das dort verwendete Material ist ein umwandlungsverzögertes Material, wobei bei dem Zwischenkühlschritt die heißeren, austenitisierten Bereiche und die weniger heißen, nicht austenitisierten oder nur teilaustenitisierten Bereiche bezüglich der Temperatur angepasst und die Platine oder die umgeformte Platine bezüglich der Temperatur homogenisiert wird.From the DE 10 2011 053 941 A1 A similar method is known in which, however, a blank or a formed blank is only partially heated to a temperature> Ac 3 and held at this temperature for a predetermined time in order to carry out the austenite formation and then transferred to a hardening tool and hardened in the hardening tool is, the board is cooled at a speed which is above the critical hardening speed. The material used there is also a material that is delayed in conversion, with the hotter, austenitized areas and the less hot, non-austenitized or only partially austenitized areas being adapted in terms of temperature in the intermediate cooling step and the board or the reformed board being homogenized in terms of temperature.

Aus der DE 10 2011 053 939 A1 ist ein Verfahren zum Erzeugen gehärteter Bauteile bekannt, wobei hier ein Verfahren zum Herstellen eines gehärteten Stahlbauteils offenbart wird, welches eine Beschichtung aus Zink oder einer Zinklegierung besitzt. Aus diesem Blech wird eine Platine ausgestanzt und die ausgestanzte Platine auf eine Temperatur ≥ Ac3 erhitzt und gegebenenfalls für eine vorbestimmte Zeit bei dieser Temperatur gehalten, um die Austenitbildung durchzuführen und anschließend in ein Formwerkzeug überführt, in diesem umgeformt und in dem Formwerkzeug mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt und dadurch gehärtet. Der verwendete Stahlwerkstoff wird hierbei derart umwandlungsverzögert eingestellt, dass bei einer Umformtemperatur, die im Bereich von 450°C bis 700°C liegt, eine Abschreckhärtung durch Umwandlung des Austenits in Martensit stattfindet, wobei nach dem Erhitzen zum Zwecke der Austenitisierung aber vor dem Umformen ein aktives Kühlen stattfindet, sodass die Platine von einer Ausgangswärme, die das Austenitisieren sicherstellt, auf eine Temperatur zwischen 450°C bis 700°C abgekühlt wird, so dass trotz der niedrigen Temperaturen eine martensitische Härtung stattfindet. Hierdurch soll erzielt werden, dass möglichst keine Zinkschmelze mit Austenit während der Umformphase, also dem Eintrag von Spannungen, in Berührung kommt, denn durch die vorgenommene Zwischenkühlung findet die Umformung unter der peritektischen Temperatur des Systems Eisen-Zink statt. Es wird erwähnt, dass die Kühlung mit Luftdüsen erfolgen kann, jedoch nicht auf Luftdüsen beschränkt ist, sondern auch gekühlte Tische oder gekühlte Pressen verwendet werden können.From the DE 10 2011 053 939 A1 A method for producing hardened components is known, here a method for producing a hardened steel component is disclosed which has a coating of zinc or a zinc alloy. A blank is punched out of this sheet and the blank is heated to a temperature ≥ Ac 3 and, if necessary, held at this temperature for a predetermined time in order to carry out the austenite formation and then transferred to a molding tool, shaped in this and in the Molding tool cooled at a speed that is above the critical hardening speed and thereby hardened. The steel material used is set in such a way that the transformation is delayed such that quench hardening takes place by converting the austenite into martensite at a forming temperature which is in the range from 450 ° C to 700 ° C, but after heating for the purpose of austenitizing but before forming active cooling takes place, so that the board is cooled from an initial heat, which ensures austenitizing, to a temperature between 450 ° C to 700 ° C, so that despite the low temperatures, martensitic hardening takes place. This is to ensure that, as far as possible, no zinc melt comes into contact with austenite during the forming phase, i.e. the introduction of stresses, because the intercooling performed takes place under the peritectic temperature of the iron-zinc system. It is mentioned that cooling can take place with air nozzles, but is not limited to air nozzles, but cooled tables or cooled presses can also be used.

Aufgabe der Erfindung ist es, ein Verfahren zum Kühlen und insbesondere zum Zwischenkühlen eines Stahlblechs zum Zwecke der Umformung und Härtung weiter zu verbessern.The object of the invention is to further improve a method for cooling and in particular for intermediate cooling of a steel sheet for the purpose of forming and hardening.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with a method having the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Es ist eine weitere Aufgabe der Erfindung, eine Vorrichtung zum Durchführen des Verfahrens zu schaffen.It is another object of the invention to provide an apparatus for performing the method.

Die Aufgabe wird mit einer Vorrichtung mit den Merkmalen des Anspruchs 14 gelöst.The object is achieved with a device having the features of claim 14.

Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the dependent claims dependent thereon.

Erfindungsgemäß wird bei Temperaturen von 20°C bis 900°C eine Abkühlung gewährleistet, die eine maximale Temperaturschwankung von 30°C innerhalb eines Quadratmeters ermöglicht. Die verwendeten Kühlmedien sind Luftgase, Mischgase aber auch Wasser oder andere Fluide. Wenn nachfolgend nur eines dieser Fluide erwähnt wird, steht dies stellvertretend für alle diese genannten Fluide.According to the invention, cooling is ensured at temperatures of 20 ° C. to 900 ° C., which enables a maximum temperature fluctuation of 30 ° C. within one square meter. The cooling media used are air gases, mixed gases but also water or other fluids. If only one of these fluids is mentioned below, this represents all of these fluids mentioned.

Erfindungsgemäß soll ein geringer Investitionsaufwand mit geringen Betriebskosten, einer hohen Systemverfügbarkeit, hoher Flexibilität und der einfachen Integration in bestehende Produktionsprozesse erreicht werden.According to the invention, a low investment outlay with low operating costs, high system availability, high flexibility and simple integration into existing production processes is to be achieved.

Erfindungsgemäß wird eine zu kühlende Oberfläche mittels Roboter oder Linearantrieben in der X-, Y- oder Z-Ebene bewegt, wobei eine beliebige Vorgabe der Bewegungstrajektorien und Geschwindigkeiten der zu kühlenden Oberflächen möglich ist. Bevorzugt ist hierbei die Oszillation um eine Ruhelage in der X- und Y-Ebene. Die weitere Oszillation in der Z-Ebene (also der Höhe) ist optional möglich.According to the invention, a surface to be cooled is moved in the X, Y or Z plane by means of robots or linear drives, any desired specification of the movement trajectories and speeds of the surfaces to be cooled being possible. The oscillation around a rest position in the X and Y planes is preferred. Further oscillation in the Z plane (i.e. the height) is optional.

Ebenso ist eine ein- oder beidseitige Kühlung ohne weiteres möglich.Cooling on one or both sides is also easily possible.

Die erfindungsgemäßen Kühleinrichtungen besitzen Düsen, die voneinander beabstandet sind, wobei die Düsen nicht nur voneinander beabstandet sind, sondern auch von einem Kasten, Träger oder sonstigen Oberflächen beabstandet angeordnet sind.The cooling devices according to the invention have nozzles which are spaced apart from one another, the nozzles not only being spaced apart from one another but also being spaced apart from a box, carrier or other surfaces.

Die Kühleinrichtungen sind dabei dementsprechend so ausgeführt, dass das von der heißen Platte abströmende Medium ausreichend Raum und Platz zwischen den Düsen vorfindet und zwischen den Düsen effektiv abgeführt werden kann und somit kein Crossflow bzw. Querströmungen auf der zu kühlenden Oberfläche entstehen.The cooling devices are designed accordingly so that the medium flowing out of the hot plate finds sufficient space and space between the nozzles and can be effectively removed between the nozzles, and thus no crossflow or cross flows occur on the surface to be cooled.

Die Zwischenräume zwischen den Düsen können hierbei mit einer zusätzlichen Querströmung beaufschlagt werden, um die Kühlrate zu erhöhen und damit das Kühlmedium, das von der heißen Platte abströmt, effektiv abzuführen, also quasi abzusaugen. Diese Querströmung sollte jedoch nicht das anströmende Kühlmedium von der Düse zur Platte, also den Freistrahl, beeinträchtigen.The gaps between the nozzles can be subjected to an additional cross flow in order to increase the cooling rate and thus effectively remove the cooling medium that flows from the hot plate, that is to say, by suction. However, this cross-flow should not affect the cooling medium flowing from the nozzle to the plate, i.e. the free jet.

Die Kühleinrichtung kann dabei über Kühlschwerter verfügen, die sich von einem Kühlkasten wegerstrecken und an ihren freien Enden oder ihren freien Kanten eine Reihe von Düsen besitzen.The cooling device can have cooling blades that extend away from a cooling box and have a row of nozzles at their free ends or free edges.

Darüber hinaus kann die Kühleinrichtung auch durch einzelne, von einer Trägeroberfläche wegstehende Kühlsäulen ausgebildet sein, wobei diese Kühlsäulen an ihrer von der Trägeroberfläche wegweisenden Fläche oder Spitze zumindest je eine Düse tragen. Die Kühlsäulen können dabei einen zylindrischen oder sonstigen Querschnitt besitzen, wobei der Querschnitt der Kühlsäulen auch an gewünschte Querströmungen angepasst und oval, flach tragflächenartig, mehreckig oder ähnlich ausgebildet sein kann.In addition, the cooling device can also be formed by individual cooling columns protruding from a carrier surface, these cooling columns each carrying at least one nozzle on their surface or tip pointing away from the carrier surface. The cooling columns can have a cylindrical or other cross-section, wherein the cross-section of the cooling columns can also be adapted to desired cross flows and can be oval, flat, wing-like, polygonal or similar.

Selbstverständlich sind auch Mischformen möglich, bei denen die Kühlschwerter nicht durchgehend, sondern unterbrochen ausgebildet sind oder, bei breit oval ausgeführten Kühlsäulen, mehrere Düsen an einer Säulenspitze austreten.Mixed forms are of course also possible, in which the cooling swords are not continuous, but are formed interrupted or, in the case of cooling columns with a wide oval design, several nozzles emerge at one column tip.

Die Geometrie der Düsenöffnungen bzw. der Ausströmöffnungen der Düsen reicht von einfachen runden Geometrien bis hin zu komplexen geometrisch definierten Ausführungen.The geometry of the nozzle openings or the outflow openings of the nozzles ranges from simple round geometries to complex geometrically defined designs.

Vorzugsweise sind die Düsen oder Düsenreihen versetzt zueinander angeordnet, so dass auch die Kühlsäulen oder Schwerter so versetzt zueinander angeordnet sind, dass die Düsen ein versetztes oder sonstiges Muster bilden. Dies gilt insbesondere bei beidseitiger Kühlung auch für die Anordnung der Düsen oder Düsenreihen der Oberseite zu denen der Unterseite.The nozzles or rows of nozzles are preferably arranged offset from one another, so that the cooling columns or swords are also arranged offset from one another such that the nozzles form an offset or other pattern. This applies in particular to cooling on both sides for the arrangement of the nozzles or rows of nozzles on the top to those on the bottom.

Die Düsen sind bevorzugt derart ansteuerbar ausgebildet, dass die Strömung durch die Düse begrenzt und gegebenenfalls sogar abgeschaltet werden kann. Beispielsweise sind für jede Düse einzelne, ansteuerbare Stifte vorhanden, die den Gasdurchtritt begrenzen können. Eine unterschiedliche Kühlwirkung kann beispielsweise auch dadurch erreicht werden, das der Abstand von Düsenaustrittsöffung zur zu kühlenden Oberfläche, z. B durch unterschiedliche Kühlsäulenhöhen, unterschiedlich eingestellt wird. Der Vorteil dieser Methode liegt in der gleichbleibenden Strömung je Düse und damit in gut vorhersehbaren Strömungsverhältnissen, da sich die Strömungswiderstände durch die Höhenänderungen nahezu nicht verändern.The nozzles are preferably designed to be controllable in such a way that the flow through the nozzle can be limited and possibly even switched off. For example, there are individual, controllable pins for each nozzle which can limit the gas passage. A different cooling effect can also be achieved, for example, by the distance from the nozzle outlet opening to the surface to be cooled, e.g. B is set differently by different cooling column heights. The advantage of this method lies in the constant flow per nozzle and thus in predictable flow conditions, since the flow resistance almost does not change due to the changes in height.

Erfindungsgemäß folgt das zu bevorzugende Strömungsbild auf der zu kühlenden Oberfläche einer wabenähnlichen Struktur.According to the invention, the flow pattern to be preferred follows a honeycomb-like structure on the surface to be cooled.

Erfolgt die Kühlung mit zumindest einem Kühlschwert, ist das Kühlschwert ein plattenähnliches Element, welches sich zusätzlich von einer Basis zu einer Ausströmleiste hin verjüngen kann, wobei in der Ausströmleiste mindestens eine Düse eingebracht ist. Das Schwert ist hierbei hohl ausgebildet, sodass die Düse aus dem hohlen Schwert heraus mit einem Kühlfluid versorgt werden kann. Die Düsen können voneinander mit keilartigen Elementen räumlich beabstandet sein, wobei die keilartigen Elemente auch den Raum für das strömende Fluid zur Düse hin verengen können.If the cooling is carried out with at least one cooling blade, the cooling blade is a plate-like element which can additionally taper from a base to an outflow bar, at least one nozzle being introduced in the outflow bar. The sword is hollow, so that the nozzle out of the hollow sword with a cooling fluid can be supplied. The nozzles can be spatially spaced apart from one another with wedge-like elements, wherein the wedge-like elements can also narrow the space for the flowing fluid towards the nozzle.

Hierdurch kommt es insbesondere zu einer Verdrehung des ausströmenden Fluidstrahls.This in particular causes the outflowing fluid jet to twist.

Vorzugsweise ist eine Mehrzahl von Schwertern nebeneinander angeordnet, wobei die Schwerter zueinander versetzt sind.A plurality of swords are preferably arranged next to one another, the swords being offset from one another.

Durch die versetzte Anordnung erfolgt eine Kühlung ebenfalls mit versetzten Punkten zueinander, wobei die Punkte ineinanderlaufend homogen kühlen und das ausgeströmte Fluid in den Bereich zwischen zwei Schwertern eingesaugt und abgeführt wird.The offset arrangement also results in cooling with offset points with respect to one another, the points cooling in a homogeneous manner and the fluid flowing out being sucked in and discharged into the area between two swords.

Bevorzugt gelten die folgenden Bedingungen:

  • Hydraulischer Durchmesser Düse = DH, wobei DH = 4 x A / U
  • Abstand Düse zu Körper = H
  • Abstand zwischen zwei Kühlschwerter/Kühlsäulen = S
  • Länge der Düse = L
  • L >= 6 x DH
  • H <= 6 x DH, insb. 4 bis 6 x DH
  • S <= 6 x DH, insb. 4 bis 6 x DH (staggered array)
  • Oszillation = halbe Teilung des Abstand zwischen zwei Kühlschwerter in X, Y (evtl. Z)
  • Erfolgt die Kühlung mit Kühlsäulen, sind diese in entsprechender Weise angeordnet.
The following conditions preferably apply:
  • Hydraulic diameter nozzle = DH, where DH = 4 x A / U
  • Distance nozzle to body = H
  • Distance between two cooling swords / cooling columns = S
  • Nozzle length = L
  • L> = 6 x DH
  • H <= 6 x DH, esp. 4 to 6 x DH
  • S <= 6 x DH, esp. 4 to 6 x DH (staggered array)
  • Oscillation = half division of the distance between two cooling blades in X, Y (possibly Z)
  • If cooling takes place with cooling columns, these are arranged in a corresponding manner.

Vorzugsweise wird das zu kühlende Element, z. B. eine zu kühlende Platte, hierbei bewegt, sodass die Bewegung der Platte einerseits und die versetzte Anordnung der Düsen andererseits dafür sorgt, dass das Kühlfluid alle Bereiche der Platte überströmt, sodass eine homogene Kühlung erzielt wird.Preferably, the element to be cooled, e.g. B. a plate to be cooled, moved here, so that the movement of the plate on the one hand and the offset arrangement of the nozzles on the other hand ensures that the cooling fluid flows over all areas of the plate, so that homogeneous cooling is achieved.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:

Figur 1
eine Draufsicht auf eine Mehrzahl von parallel zueinander angeordneten Düsenschwertern;
Figur 2
die Anordnung der Düsenschwerter gemäß des Schnittes A-A in Figur 1;
Figur 3
einen Längsschnitt durch ein Düsenschwert entsprechend der Schnittlinie C-C in Figur 2;
Figur 4
die Detailvergrößerung D aus Figur 3 zeigend die Düsen;
Figur 5
die Anordnung der Düsenschwerter in einer schematischen perspektivischen Ansicht;
Figur 6
eine Detailvergrößerung des Randbereichs der Düsenschwerter mit einem Versatz innerhalb der Schwertanordnung;
Figur 7
eine perspektivische Ansicht einer erfindungsgemäßen Anordnung von Kühlschwertern, welche in einem Kühlblock zusammengefasst sind;
Figur 8
die Anordnung nach Figur 7 in einer perspektivischen Ansicht auf die Rückseite;
Figur 9
eine Ansicht von erfindungsgemäßen Kühlschwertern in deren Innenraum;
Figur 10
stark schematisiert eine perspektivische Ansicht auf eine Anordnung von Düsensäulen an einem Rahmen;
Figur 11
die Ausführungsform nach Fig. 10 in einer Draufsicht;
Figur 12
die Anordnung nach den Figuren 10 und 11 in einer seitlichen Ansicht;
Figur 13
die Ausführungsform nach den Figuren 10 bis 12 mit Kühlkasten;
Figur 14
angedeutet die Kühlschwerter mit den Düsen, wobei eine zu kühlende Platte mit der Temperaturverteilung und der Fluidtemperaturverteilung gezeigt ist;
Figur 15
die Anordnung nach Figur 10, zeigend die Geschwindigkeitsverteilung;
Figur 16
schematisch die Anordnung zweier gegenüberliegender Kühlkästen aus einer Mehrzahl von versetzt zueinander angeordneten erfindungsgemäßen Kühlschwertern und einem Bewegungsschlitten zum Hindurchbewegen eines zu kühlenden Objekts;
Figur 17
die Temperaturverteilung auf einer Platine, die mit einer erfindungsgemäßen Vorrichtung gekühlt wurde;
Figur 18
ein strukturiertes abgekühltes Bauteil;
Figur 19
die Zeit-Temperaturkurve bei der Abkühlung zwischen Ofen und Umformung;
Figur 20
das Zink-Eisen-Diagramm, mit entsprechenden Abkühlkurven für Bleche mit unterschiedlich aufgeheizten Bereichen.
The invention is explained by way of example with reference to a drawing. It shows:
Figure 1
a plan view of a plurality of nozzle swords arranged parallel to each other;
Figure 2
the arrangement of the nozzle swords according to the section AA in Figure 1 ;
Figure 3
a longitudinal section through a nozzle sword according to the section line CC in Figure 2 ;
Figure 4
the detail magnification D from Figure 3 showing the nozzles;
Figure 5
the arrangement of the nozzle swords in a schematic perspective view;
Figure 6
an enlarged detail of the edge area of the nozzle swords with an offset within the sword arrangement;
Figure 7
a perspective view of an arrangement of cooling blades according to the invention, which are combined in a cooling block;
Figure 8
the order after Figure 7 in a perspective view of the back;
Figure 9
a view of cooling swords according to the invention in their interior;
Figure 10
highly schematic a perspective view of an arrangement of nozzle columns on a frame;
Figure 11
the embodiment according to Fig. 10 in a top view;
Figure 12
the arrangement according to the Figures 10 and 11 in a side view;
Figure 13
the embodiment according to the Figures 10 to 12 with cooler;
Figure 14
indicated the cooling swords with the nozzles, a plate to be cooled being shown with the temperature distribution and the fluid temperature distribution;
Figure 15
the order after Figure 10 , showing the speed distribution;
Figure 16
schematically the arrangement of two opposing cooling boxes from a plurality of cooling swords according to the invention arranged offset to one another and a movement slide for moving an object to be cooled;
Figure 17
the temperature distribution on a circuit board which was cooled with a device according to the invention;
Figure 18
a structured cooled component;
Figure 19
the time-temperature curve during cooling between the furnace and the forming;
Figure 20
the zinc-iron diagram, with corresponding cooling curves for sheets with differently heated areas.

Eine mögliche Ausführungsform wird nachfolgend beschrieben.A possible embodiment is described below.

Die erfindungsgemäße Kühlvorrichtung 1 besitzt Kühleinrichtungen 2, 15, welche Düsen 10 besitzen, die voneinander beabstandet sind, wobei die Düsen 10 nicht nur voneinander beabstandet sind, sondern auch von einem Kasten 16, einem Träger oder sonstigen, die Kühleinrichtungen 2, 15 tragenden Oberflächen beabstandet angeordnet sind.The cooling device 1 according to the invention has cooling devices 2, 15 which have nozzles 10 which are spaced apart from one another, the nozzles 10 not only being spaced apart from one another, but also spaced apart from a box 16, a carrier or other surfaces which carry the cooling devices 2, 15 are arranged.

Die Kühleinrichtungen 2, 15 sind dabei dementsprechend so ausgeführt, dass das von der heißen Platte abströmende Medium ausreichend Raum und Platz zwischen den Düsen 10 vorfindet und zwischen den Düsen quasi eintauchen kann und somit kein Crossflow bzw. Querströmungen auf der zu kühlenden Oberfläche entstehen.The cooling devices 2, 15 are accordingly designed in such a way that the medium flowing off the hot plate finds sufficient space and space between the nozzles 10 and can virtually immerse between the nozzles and thus no crossflow or cross flows occur on the surface to be cooled.

Die Zwischenräume zwischen den Düsen 10 können hierbei mit einer zusätzlichen Querströmung beaufschlagt werden, um die Kühlrate zu erhöhen und damit das Kühlmedium, das von der heißen Platte abströmt, quasi abzusaugen. Diese Querströmung sollte jedoch nicht das anströmende Kühlmedium von der Düse zur Platte, also den Freistrahl, beeinträchtigen.The gaps between the nozzles 10 can be subjected to an additional transverse flow in order to increase the cooling rate and thus quasi suck off the cooling medium that flows out of the hot plate. However, this cross-flow should not affect the cooling medium flowing from the nozzle to the plate, i.e. the free jet.

Die Kühlvorrichtung 1 kann dabei als Kühleinrichtung 2 über zumindest ein Kühlschwert 2 verfügen, das sich von einem Kühlkasten 16 wegerstreckt und an seinen freien Enden oder seiner freien Kante 6 eine Reihe von Düsen 10 besitzt.The cooling device 1 can have at least one cooling sword 2 as the cooling device 2, which extends from a cooling box 16 and has a row of nozzles 10 at its free ends or its free edge 6.

Darüber hinaus kann die Kühleinrichtung auch durch einzelne, von einer Oberfläche wegstehende Kühlsäulen 15 ausgebildet sein, wobei diese Kühlsäulen 15 an ihrer von der Oberfläche wegweisenden Fläche oder Spitze 17 zumindest je eine Düse 10 tragen. Die Kühlsäulen 15 können dabei einen zylindrischen oder sonstigen Querschnitt besitzen, wobei der Querschnitt der Kühlsäulen 15 auch an gewünschte Querströmungen angepasst und oval, flach tragflächenartig oder ähnlich ausgebildet sein kann.In addition, the cooling device can also be formed by individual cooling columns 15 protruding from a surface, these cooling columns 15 each carrying at least one nozzle 10 on their surface or tip 17 pointing away from the surface. The cooling columns 15 can have a cylindrical or other cross section, the cross section of the cooling columns 15 can also be adapted to the desired cross flows and can be oval, flat, wing-like or similar.

Selbstverständlich sind auch Mischformen möglich, bei denen die Kühlschwerter 2 nicht durchgehend sondern unterbrochen ausgebildet sind oder, bei breit oval ausgeführten Kühlsäulen 15, mehrere Düsen 10 an einer Säulenspitze austreten. Eine weitere denkbare Alternative wäre die Verbindung von mehreren Kühlsäulen durch Leitbleche um eine Beeinflussung des Querstroms zu ermöglichen.Mixed forms are, of course, also possible, in which the cooling blades 2 are not continuous but are interrupted or, in the case of cooling columns 15 of wide oval design, several nozzles 10 emerge at a column tip. Another conceivable alternative would be the connection of several cooling columns by baffles in order to enable the cross-flow to be influenced.

Die Geometrie der Düsenöffnungen bzw. der Ausströmöffnungen der Düsen reicht von einfachen runden Geometrien bis hin zu komplexen geometrisch definierten Ausführungen.The geometry of the nozzle openings or the outflow openings of the nozzles ranges from simple round geometries to complex geometrically defined designs.

Vorzugsweise sind die Düsen 10 oder Düsenreihen versetzt zueinander angeordnet, so dass auch die Kühlsäulen 15 oder Schwerter 2 so versetzt zueinander angeordnet sind, dass die Düsen 10 ein versetztes oder sonstiges Muster bilden.The nozzles 10 or rows of nozzles are preferably arranged offset from one another, so that the cooling columns 15 or swords 2 are also arranged offset from one another such that the nozzles 10 form an offset or other pattern.

Eine beispielhafte erfindungsgemäße Vorrichtung zum Kühlen 1 besitzt zumindest ein Kühlschwert 2. Das Kühlschwert 2 ist lang gestreckt klappenartig ausgebildet und besitzt eine Kühlschwertbasis 3, zwei sich von der Kühlschwertbasis weg erstreckende Kühlschwertbreitseiten 4, zwei Kühlschwertschmalseiten 5, welche die Kühlschwertbreitseiten verbinden, und eine freie Düsenkante 6.An exemplary device according to the invention for cooling 1 has at least one cooling sword 2. The cooling sword 2 is of elongated flap-like design and has a cooling sword base 3, two cooling sword broad sides 4 extending away from the cooling sword base, two cooling sword narrow sides 5, which connect the cooling sword broad sides, and a free nozzle edge 6.

Das Kühlschwert 2 ist hohl mit einem Kühlschwerthohlraum 7 ausgebildet, wobei der Hohlraum von den Kühlschwertbreitseiten 4, den Kühlschwertschmalseiten 5 und der Düsenkante 6 umschlossen wird, wobei das Kühlschwert an der Basis 3 offen ist. Mit der Kühlschwertbasis 3 ist das Kühlschwert in einen Rahmen 8 eingesetzt, wobei der Rahmen 8 auf einen hohlen Fluidzuführkasten 16 aufsetzbar ist.The cooling sword 2 is hollow with a cooling sword cavity 7, the cavity being enclosed by the cooling sword broad sides 4, the cooling sword narrow sides 5 and the nozzle edge 6, the cooling sword at the base 3 being open. With the cooling sword base 3, the cooling sword is inserted into a frame 8, wherein the frame 8 can be placed on a hollow fluid supply box 16.

Im Bereich der Düsenkante 6 ist eine Mehrzahl von Düsen 10 bzw. Öffnungen eigebracht, welche in den Hohlraum 7 reichen und somit das Ausströmen von Fluid aus dem Hohlraum nach außen durch die Düsen 10 hindurch ermöglicht.In the area of the nozzle edge 6, a plurality of nozzles 10 or openings are introduced, which extend into the cavity 7 and thus allow fluid to flow out of the cavity to the outside through the nozzles 10.

Von den Düsen 10 erstrecken sich Düsenkanäle 11 in den Hohlraum 7 hinein, welche die Düsen 10 zumindest im Bereich der Düsenkante 6 räumlich voneinander trennen. Die Düsenkanäle 11 sind dabei im Querschnitt vorzugsweise keilförmig ausgebildet, sodass die Düsenkanäle bzw. Düsen durch keilförmige Stege 12 voneinander getrennt sind. Vorzugsweise sind die Düsenkanäle dabei so ausgebildet, dass sie sich zum Hohlraum 7 hin erweitern, sodass ein einströmendes Fluid durch die Verengung der Düsenkanäle beschleunigt wird.Nozzle channels 11 extend from the nozzles 10 into the cavity 7, which spatially separate the nozzles 10 from one another at least in the region of the nozzle edge 6. The cross-section of the nozzle channels 11 is preferably wedge-shaped, so that the nozzle channels or nozzles are separated from one another by wedge-shaped webs 12. The nozzle channels are preferably designed such that they expand towards the cavity 7, so that an inflowing fluid is accelerated by the narrowing of the nozzle channels.

Die Kühlschwertbreitseiten 4 können von der Kühlschwertbasis 3 zur Düsenkante 6 hin konvergierend ausgebildet sein, sodass der Hohlraum 7 sich zur Düsenkante 6 hin verengt.The cooling sword broad sides 4 can be designed to converge from the cooling sword base 3 towards the nozzle edge 6, so that the cavity 7 narrows towards the nozzle edge 6.

Zudem können die Kühlschwertschmalseiten 5 konvergierend oder divergierend ausgebildet sein.In addition, the narrow sides 5 of the cooling sword can be designed to be convergent or divergent.

Vorzugsweise sind zumindest zwei Kühlschwerter 2 vorhanden, welche bezüglich der Breitseiten parallel zueinander angeordnet sind, wobei die Kühlschwerter 2 bezüglich des Abstandes der Düsen 10 um einen halben Düsenabstand zueinander versetzt sind.Preferably there are at least two cooling swords 2, which are arranged parallel to one another with respect to the broad sides, the cooling swords 2 being offset with respect to one another by half a nozzle spacing with respect to the spacing of the nozzles.

Darüber hinaus können auch mehr als zwei Kühlschwerter 2 vorhanden sein.In addition, there can also be more than two cooling swords 2.

Die Düsen 10 können, bezogen auf die Erstreckung der Düsenkante 6, ebenfalls länglich fluchtend zur Düsenkante 6 ausgebildet sein, die Düsen 10 können jedoch auch rund, oval fluchtend zur Düsenkante 6 oder oval quer zur Düsenkante, sechs-, acht- oder mehreckig ausgebildet sein.Based on the extent of the nozzle edge 6, the nozzles 10 can also be designed to be oblong in alignment with the nozzle edge 6, but the nozzles 10 can also be round, oval in alignment with the nozzle edge 6 or oval across the nozzle edge, hexagonal, octagonal or polygonal .

Insbesondere wenn die Düsen 10, bezogen auf die Längserstreckung der Düsenkante, ebenfalls länglich ausgebildet sind, insbesondere länglich oval oder länglich vieleckig, ergibt sich eine Drehung eines austretenden Fluidstrahls (Figuren 10, 11), wobei sich durch eine versetzte Anordnung um einen halben Düsenabstand ein Kühlmuster auf einem plattenartigen Körper ergibt (Figur 10), welche entsprechend versetzt ist.In particular, if the nozzles 10 are also elongated in relation to the longitudinal extent of the nozzle edge, in particular oblong oval or oblong polygonal, there is a rotation of an emerging fluid jet ( Figures 10, 11 ), whereby a staggered arrangement by half a nozzle distance results in a cooling pattern on a plate-like body ( Figure 10 ), which is offset accordingly.

Bei einer weiteren vorteilhaften Ausführungsform (Figuren 10 bis 13) ist auf dem Rahmen 8 eine Mehrzahl von vorstehenden Kühlsäulen 15 oder Zylindern 15 angeordnet, welche an ihrer freien äußeren Spitze 17 oder Fläche 17 zumindest je eine Düse 10 tragen. Dieser Rahmen 8 ist ebenfalls in einem Kühlkasten 16 (Fig. 13) eingesetzt, so dass in den Kühlkasten 16 einströmendes Fluid aus den jeweiligen Kühlsäulen 15 und den Düsen 10 austritt. Gegenüber den Kühlschwertern 2 sind bei dieser Ausführungsform somit die Düsen 10 quasi vereinzelt, wobei die zuvor zu den Düsen 10 und ihrer Geometrie und bezüglich der Düsenkanäle 11 gemachten Aussagen auf diese Ausführungsform ebenso zutreffen.In a further advantageous embodiment ( Figures 10 to 13 ), a plurality of projecting cooling columns 15 or cylinders 15 are arranged on the frame 8, each of which carries at least one nozzle 10 on its free outer tip 17 or surface 17. This frame 8 is also in a cooler 16 ( Fig. 13 ) used so that fluid flowing into the cooling box 16 exits the respective cooling columns 15 and the nozzles 10. Compared to the cooling swords 2, the nozzles 10 are thus quasi isolated in this embodiment, the previously relating to the nozzles 10 and their geometry and with respect to the Nozzle channels 11 statements made also apply to this embodiment.

In den Düsenkanälen 11 können Einrichtungen vorhanden sein, die durch axiales Verschieben den effektiven Düsenquerschnitt verringern können und damit den Gasstrom beeinflussen. Als derartige Einrichtungen sind beispielsweise Stifte geeignet, welche einen Querschnitt besitzen, der dem Querschnitt der Düse im Austrittsbereich entspricht, wobei die Stifte an eine Form des Düsenkanals 11, beispielsweise eine konische Form, angepasst sein können. Die Stifte können einzeln verschiebbar derart ausgebildet sein, dass sie bei dem Vorschieben in den Düsenkanal den effektiven Düsenquerschnitt bzw. Düsenkanalquerschnitt verringern und damit den Gasstrom und die Strömungsgeschwindigkeit beeinflussen.Devices can be present in the nozzle channels 11 which can reduce the effective nozzle cross-section by axially shifting and thus influence the gas flow. Suitable devices of this type are, for example, pins which have a cross section which corresponds to the cross section of the nozzle in the outlet region, the pins being able to be adapted to a shape of the nozzle channel 11, for example a conical shape. The pins can be individually displaceable in such a way that they reduce the effective nozzle cross section or nozzle channel cross section when they are pushed into the nozzle channel and thus influence the gas flow and the flow rate.

Bei vollständigem Einschieben eines Stiftes wird die Düse 10 vorzugsweise vollständig verschlossen.When a pin is fully inserted, the nozzle 10 is preferably completely closed.

Die Stifte der Düsen 10 können einzeln, reihenweise, schwertweise oder in sonstiger Weise gruppiert angesteuert werden, wodurch es möglich ist, ein gewisses Strömungsprofil in der Kühleinrichtung so auszubilden, dass ein zu kühlendes Objekt nicht gleichmäßig, sondern unterschiedlich stark gekühlt wird.The pins of the nozzles 10 can be controlled individually, in rows, by swords or in some other way in groups, which makes it possible to form a certain flow profile in the cooling device in such a way that an object to be cooled is not cooled uniformly, but to different degrees.

Alternativ zu Stiften können hierfür auch Blenden oder Schablonen mit beliebigen Ausgestaltungsformen vorgesehen sein, welche das gewünschte Strömungsprofil am zu kühlenden Objekt sicherstellen.As an alternative to pins, screens or stencils with any desired configuration can also be provided for this, which ensure the desired flow profile on the object to be cooled.

Zur Beeinflussung der Abkühlrate wäre auch eine partielle Veränderung der Länge bzw. Höhe der Kühlschwerter bzw. Kühlsäule denkbar.A partial change in the length or height of the cooling blades or cooling column would also be conceivable to influence the cooling rate.

Diese Beeinflussung der Abkühlung ist für viele Anwendungszwecke vorteilhaft, einerseits zur unterschiedlichen Abkühlung von ebenen Platinen um Bereiche mit unterschiedlichen mechanischen Eigenschaften zu schaffen, aber auch für tailor-welded blanks (TWB), tailor-rolled blanks (TRB) oder tailored heated blanks(THB) um die unterschiedlich dicken Blechabschnitte bzw. die unterschiedlich temperierten Blechbereiche mit einer jeweils angepassten Abkühlrate zu kühlen um ein homogen temperiertes Objekt zu erhalten.This influence on the cooling is advantageous for many applications, on the one hand for the different cooling of flat boards to create areas with different mechanical properties, but also for tailor-welded blanks (TWB), tailor-rolled blanks (TRB) or tailored heated blanks (THB ) to cool the differently thick sheet metal sections or the differently tempered sheet metal areas with a respectively adapted cooling rate in order to obtain a homogeneously tempered object.

Auch das entsprechende Geschwindigkeitsprofil ergibt eine entsprechende Verteilung (Figur 15).The corresponding speed profile also gives a corresponding distribution ( Figure 15 ).

Erfindungsgemäß hat sich herausgestellt, dass aus den Düsen 10 ausströmendes Fluid zwar auf die Oberfläche eines zu kühlenden Körpers prallt (Figuren 10, 11), jedoch offensichtlich zwischen den zumindest zwei Schwertern 2 bzw. Kühlsäulen 15 der Kühlvorrichtung 1 eintauchend abfließt, sodass die Kühlströmung an der Oberfläche eines zu kühlenden Körpers nicht gestört wird.According to the invention, it has been found that fluid flowing out of the nozzles 10 impinges on the surface of a body to be cooled ( Figures 10, 11 ), but apparently flows between the at least two swords 2 or cooling columns 15 of the cooling device 1 so that the cooling flow on the surface of a body to be cooled is not disturbed.

Eine Vorrichtung zum Kühlen 1 (Figur 12) besitzt z. B. zwei Anordnungen von Kühlschwertern 2 oder zwei Reihen von Kühlsäulen 15 in einem Rahmen 8, wobei die Rahmen 8 mit entsprechenden Fluidzuführungen 14 und insbesondere auf der den Kühlschwertern 2 oder Kühlsäulen 15 abgewandten Seite mit einem Fluidkasten 16 ausgebildet sind, in dem unter Druck stehendes Fluid vorhanden ist, insbesondere durch die Zuführung unter Druck stehenden Fluids.A cooling device 1 ( Figure 12 ) has z. B. two arrangements of cooling swords 2 or two rows of cooling columns 15 in a frame 8, wherein the frame 8 with corresponding fluid feeds 14 and in particular on the side facing away from the cooling swords 2 or cooling columns 15 are formed with a fluid box 16, in the pressurized Fluid is present, in particular through the supply of pressurized fluid.

Zusätzlich ist eine Bewegungseinrichtung 18 vorhanden, wobei die Bewegungseinrichtung 18 so ausgebildet ist, dass sie einen zu kühlenden Körper zwischen den gegenüberliegenden Kühlschwertanordnungen so hindurchführen kann, dass auf den zu kühlenden Körper beidseitig kühlend eingewirkt werden kann. Als Bewegungseinrichtung einer Serienpresshärteanlage kann z. B. die Transfereinrichtung zwischen Ofen und Presse beispielsweise mittels Roboter oder Linearantrieb verwendet werden. In einer bevorzugten Ausführung muss dabei der zu kühlende Körper durch die Bewegungseinrichtung nicht abgesetzt bzw. es muss nicht umgegriffen werden d.h. die Kühlung erfolgt im gegriffenen Zustand des zu kühlenden Körpers auf dem Weg von Ofen zu Presse.In addition, a movement device 18 is provided, the movement device 18 being designed such that it can guide a body to be cooled between the opposing cooling sword arrangements in such a way that it points towards the cooling body can be cooling on both sides. As a movement device of a series press hardening plant, for. B. the transfer device between the furnace and press can be used, for example, by means of a robot or linear drive. In a preferred embodiment, the body to be cooled does not have to be set down by the movement device or does not have to be gripped, ie the cooling takes place in the gripped state of the body to be cooled on the way from the furnace to the press.

Die Abstände der Düsenkanten 6 zum zu kühlenden Körper betragen dabei z. B. 5 mm bis 250 mm.The distances between the nozzle edges 6 to the body to be cooled are z. B. 5 mm to 250 mm.

Durch eine Relativbewegung entweder der Vorrichtung zum Kühlen 1 zu einem zu kühlenden Körper oder umgekehrt bewegt sich das Kühlmuster gemäß Figur 10 über die Oberfläche des zu kühlenden Körpers, wobei das von dem heißen Körper abströmende Medium zwischen den Kühlschwertern 2 oder Kühlsäulen 15 ausreichend Raum vorfindet um abzuströmen und somit kein Crossflow auf der zu kühlenden Oberfläche entsteht.The cooling pattern moves according to by a relative movement either of the device for cooling 1 to a body to be cooled or vice versa Figure 10 over the surface of the body to be cooled, the medium flowing off the hot body between the cooling blades 2 or cooling columns 15 having sufficient space to flow away and thus no crossflow occurring on the surface to be cooled.

Erfindungsgemäß können die Zwischenräume mit entsprechenden Strömungsmitteln mit einer zusätzlichen Querströmung beaufschlagt werden, um das auf den heißen Körper strömende Medium zwischen den Schwertern abzusaugen.According to the invention, the intermediate spaces can be acted upon with an additional transverse flow by means of appropriate fluid in order to suck off the medium flowing onto the hot body between the swords.

Erfindungsgemäß wird ein üblicher Bor-Manganstahl beispielsweise ein 22MnB5 oder 20MnB8 zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen verwendet, bei dem sich die Umwandlung in tiefere Bereiche verschiebt und Martensit gebildet werden kann.According to the invention, a conventional boron-manganese steel, for example a 22MnB5 or 20MnB8, is used for use as a press-hardening steel material with regard to the transformation of austenite into other phases, in which the transformation shifts to deeper areas and martensite can be formed.

Für die Erfindung sind somit Stähle dieser Legierungszusammensetzung geeignet (alle Angaben in Masse-%): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] B [%] N [%] 0,20 0,18 2,01 0,0062 0,001 0,054 0,03 0,032 0,0030 0,0041 Rest Eisen und erschmelzungsbedingte Verunreinigungen,
wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden.
Steels of this alloy composition are therefore suitable for the invention (all figures in% by mass): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] B [%] N [%] 0.20 0.18 2.01 0.0062 0.001 0.054 0.03 0.032 0.0030 0.0041 Remainder iron and melting-related impurities,
the alloying elements boron, manganese, carbon and optionally chromium and molybdenum being used in particular as retarding agents in such steels.

Für die Erfindung sind auch Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,6 Mangan (Mn) 0,8-3,0 Aluminium (Al) 0,01-0,07 Silizium (Si) 0,01-0,5 Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,08 Stickstoff (N) < 0,02 Bor (B) 0,002-0,02 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte Verunreinigungen.Steels of the general alloy composition are also suitable for the invention (all figures in% by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chrome (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) <0.02 Boron (B) 0.002-0.02 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 Remainder iron and melting impurities.

Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,30 Mangan (Mn) 1,00-3,00 Aluminium (Al) 0,03-0,06 Silizium (Si) 0,01-0,20 Chrom (Cr) 0,02-0,3 Titan (Ti) 0,03-0,04 Stickstoff (N) < 0,007 Bor (B) 0,002-0,006 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte Verunreinigungen.Steel arrangements have proven to be particularly suitable as follows (all figures in% by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chrome (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) <0.007 Boron (B) 0.002-0.006 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 Remainder iron and melting-related impurities.

Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit auch noch unter 780°C, sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums mechanische Spannung aufgebracht wird. Dies bedeutet ferner, dass in dem Moment, in dem mechanische Spannung aufgebracht wird, keine flüssigen Zinkphasen mehr vorhanden sind, welche mit dem Austenit in Kontakt kommen können. Ein weiterer Vorteil der Einstellung einer höheren Umwandlungsverzögerung ist die dadurch mögliche längere Transferzeit zwischen Kühleinrichtung und Umformpresse, die aufgrund von Wärmeleitung innerhalb des zu kühlenden Körpers zu einer zusätzlichen Vergleichmäßigung der Temperatur genutzt werden kann.By setting the alloying elements acting as transformation retarders, quench hardening, i. H. rapid cooling with a cooling rate above the critical hardening rate even below 780 ° C is reliably achieved. This means that in this case the zinc-iron system is operated below the peritectic, i.e. H. mechanical tension is only applied below the peritectic. This also means that at the moment when mechanical stress is applied, there are no longer any liquid zinc phases which can come into contact with the austenite. Another advantage of setting a higher conversion delay is the longer transfer time between the cooling device and the forming press, which can be used to further homogenize the temperature due to heat conduction within the body to be cooled.

In Figur 19 erkennt man einen günstigen Temperaturverlauf für ein austenitisiertes Stahlblech, wobei erkennbar ist, dass nach dem Aufheizen auf eine Temperatur über der Austenitisierungstemperatur und dem entsprechenden Verbringen in eine Kühleinrichtung bereits eine gewisse Abkühlung stattfindet. Anschließend folgt ein rascher Zwischenkühlschritt. Der Zwischenkühlschritt wird vorteilhafterweise mit Abkühlgeschwindigkeiten mit mindestens 15 K/s, vorzugsweise mindestens 30 K/s, weiter bevorzugt mindestens 50 K/s, durchgeführt. Anschließend wird die Platine in die Presse transferiert und die Umformung und Härtung durchgeführt.In Figure 19 one recognizes a favorable temperature profile for an austenitized steel sheet, it being recognizable that after heating up to a temperature above the austenitizing temperature and bringing it into a cooling device, a certain cooling already takes place. This is followed by a quick intermediate cooling step. The intermediate cooling step is advantageously carried out at cooling rates of at least 15 K / s, preferably at least 30 K / s, more preferably at least 50 K / s. Subsequently the board is transferred to the press and the forming and hardening is carried out.

In Figur 20 erkennt man im Eisen-Kohlenstoff-Diagramm, wie beispielsweise eine Platine mit unterschiedlich heißen Bereichen entsprechend behandelt wird. Hierbei erkennt man für die heißen, zu härtenden Bereiche eine hohe Starttemperatur zwischen 800°C und 900°C während die weichen Bereiche auf eine Temperatur unter 700°C aufgeheizt worden sind und insbesondere dann für eine Härtung nicht zur Verfügung stehen. Einen Temperaturangleich erkennt man bei einer Temperatur von etwa 550°C oder etwas darunter, wobei nach einer verstärkten Abkühlung der heißeren Bereiche auch die Temperatur der weicheren Bereiche eine rasche Abkühlung mit etwa 20 K/s erfährt.In Figure 20 You can see in the iron-carbon diagram how, for example, a board with different hot areas is treated accordingly. Here you can see a high starting temperature between 800 ° C and 900 ° C for the hot areas to be hardened, while the soft areas have been heated to a temperature below 700 ° C and are then especially not available for hardening. A temperature adjustment can be seen at a temperature of about 550 ° C. or slightly below, and after an increased cooling of the hotter areas, the temperature of the softer areas also rapidly cools down at about 20 K / s.

Für die Zwecke der Erfindung ist es dabei ausreichend, wenn die Temperaturangleichung so durchgeführt wird, dass noch Differenzen in den Temperaturen der (vormals) heißen Bereiche und der (vormals) kälteren Bereiche bestehen, die 75°C, insbesondere 50°C nicht überschreiten (in beide Richtungen).For the purposes of the invention, it is sufficient if the temperature adjustment is carried out in such a way that there are still differences in the temperatures of the (formerly) hot areas and the (formerly) colder areas, which do not exceed 75 ° C., in particular 50 ° C. in both directions).

Bei einer homogen aufgeheizten Platine erfolgt die Zwischenkühlung vorzugsweise derart, dass die Platine in die Abkühlvorrichtung verbracht wird und mit den Düsen der Kühlschwerter homogen mit einem gasförmigen Kühlmedium angeströmt und auf eine einheitliche, tiefere Temperatur abgekühlt wird.In the case of a homogeneously heated circuit board, the intermediate cooling is preferably carried out in such a way that the circuit board is brought into the cooling device and the gasses of the cooling swords flow homogeneously with a gaseous cooling medium and the mixture is cooled to a uniform, lower temperature.

Für den Fall, dass eine Platine nur teilbereichsweise auf Austenitisierungstemperatur aufgeheizt wurde, werden die Düsen bzw. die Kühlschwerter derart angesteuert und insbesondere die Düsen mittels der Einrichtungen bzw. Stifte so angesteuert, dass nur die heißen Bereiche auf mindestens die peritektische Temperatur des Zink-Eisen-Diagramms abgekühlt werden und die übrigen Bereiche gegebenenfalls weniger oder nicht angeströmt werden, um eine Vergleichmäßigung der Temperatur in der Platine zu erreichen. Hiermit wird sichergestellt, dass eine bezüglich der Temperatur homogene Platine in die Umform- und Abschreckeinrichtung eingelegt wird.In the event that a circuit board has only been partially heated to the austenitizing temperature, the nozzles or the cooling blades are controlled in such a way and in particular the nozzles are controlled by means of the devices or pins such that only the hot areas reach at least the peritectic temperature of the zinc iron -Diagram are cooled and the remaining areas may flow less or not in order to equalize the temperature in the board. This ensures that a board that is homogeneous in terms of temperature is inserted into the forming and quenching device.

Darüber hinaus können Platinen verarbeitet werden, die aus unterschiedlichen Blechen, d.h. Bleche unterschiedlicher Stahlgüte oder Bleche unterschiedlicher Dicke, ausgebildet sind. Beispielsweise wird eine zusammengesetzte Platine, die aus unterschiedlichen Blechen unterschiedlicher Dicke zusammengefügt ist, auch unterschiedlich abgekühlt werden müssen, da ein dickeres Blech gleicher Temperatur stärker abgekühlt werden muss als ein entsprechend dünneres Blech. Mit der Vorrichtung kann somit auch eine Platine mit unterschiedlichen Blechdicken, egal ob diese durch unterschiedlich dicke zusammengesetzte bzw. zusammengeschweißte Blechstücke oder durch unterschiedliche Walzdicken ausgebildet ist, rasch homogen zwischengekühlt werden.In addition, boards can be processed that are made of different sheets, i.e. Sheets of different steel grades or sheets of different thickness are formed. For example, a composite circuit board, which is composed of different sheets of different thicknesses, will also have to be cooled differently, since a thicker sheet of the same temperature must be cooled more than a correspondingly thinner sheet. A plate with different sheet thicknesses, regardless of whether it is formed by sheet metal pieces of different thicknesses or welded together or by different roll thicknesses, can thus be rapidly and homogeneously intercooled with the device.

Bei der Erfindung ist von Vorteil, dass eine homogene Kühlung von heißen Elementen möglich ist, welche kostengünstig ist und eine hohe Variabilität hinsichtlich der Zieltemperatur und möglicher Durchlaufzeiten besitzt.An advantage of the invention is that a homogeneous cooling of hot elements is possible, which is inexpensive and has a high variability with regard to the target temperature and possible throughput times.

Bei der Erfindung ist zudem von Vorteil, dass eine Stahlblechplatine über ihren gesamten Bereich oder teilbereichsweise sehr exakt und mit hoher Zuverlässigkeit und Geschwindigkeit vor dem Einlegen in ein Umformwerkzeug oder ein Formhärtewerkzeug sehr zuverlässig zwischengekühlt werden kann.Another advantage of the invention is that a steel sheet blank can be very reliably intercooled over its entire area or in some areas and with high reliability and speed before it is inserted into a forming tool or a form hardening tool.

BezugszeichenReference numerals

11
Vorrichtung zum KühlenCooling device
22nd
KühlschwertCooling sword
33rd
KühlschwertbasisCooling sword base
44th
KühlschwertbreitseitenCooling sword broadsides
55
KühlschwertschmalseitenCold sword narrow sides
66
DüsenkanteNozzle edge
77
Hohlraumcavity
88th
Rahmenframe
1010th
DüsenNozzles
1111
DüsenkanäleNozzle channels
1212th
keilförmige Stegewedge-shaped webs
1414
FluidzuführungenFluid supplies
1515
Säulencolumns
1616
Kastenbox
1717th
Säulenkante/SpitzeColumn edge / tip
1818th
BewegungseinrichtungMovement device

Claims (19)

  1. A method for producing a hardened steel component, wherein a blank is punched out and the punched-out blank is heated either completely or in parts to a temperature ≥Ac3 and, if appropriate, is held at this temperature for a predetermined time in order to carry out the austenite formation, and then the completely or partially heated blank is transferred to a forming tool, is formed in the forming tool and is cooled in the forming tool at a speed which is above the critical hardening speed and is thereby hardened, or is finished by cold-working and the formed blank is completely or partially heated to a temperature >Ac3 and optionally held at this temperature for a predetermined time in order to carry out the austenite formation, and then the completely or partially heated and formed blank is transferred to a hardening tool in which hardening tool the process of hardening is performed at a speed which is above the critical hardening speed, the steel material being adjusted with a transformation delay such that at a forming temperature which is in the range of 450°C to 700°C, a quench hardening takes place by transformation of the austenite into martensite, wherein after heating and before forming, an active cooling takes place in which the blank or parts of the blank or the formed blank or areas thereof are cooled at a cooling rate >15K/s, characterized in that
    a cooling device (1) and an object with a hot surface are moved relative to one another for homogeneous, contactless cooling of the hot blanks or components, the cooling device (1) having at least two parallel, spaced-apart cooling blades (2) or cooling columns (15), the cooling blades (2) or cooling columns (15) having a nozzle edge (6, 17) with nozzles (10) toward the blank to be cooled or toward the component to be cooled, a cooling fluid being directed through the nozzles (10) onto the surface of the blank or component and the cooling fluid flows off into the interspace between the blades (2) or cooling columns (15) after contacting the hot surface, the cooling blade (2) and/or the cooling columns (15) or the device for cooling comprising means (18) by which the device is designed to be able to pivot or oscillating about the X, Y or Z axis.
  2. The method according to claim 1, characterized in that the steel material contains the elements boron, manganese and carbon and optionally chromium and molybdenum as transformation retarders.
  3. The method according to claim 1 or 2, characterized in that a steel material with the following analysis is used (all specifications in % by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) < 0.02 Boron (B) 0.002-0.02 Phosphorus (P) < 0.01 Sulfur (S) < 0.01 Molybdenum (Mo) < 1
    the remainder being iron and impurities resulting from the smelting process.
  4. The method according to claim 1 or 2, characterized in that a steel material with the following analysis is used (all specifications in % by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chromium (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) 0.007 Boron (B) 0.002-0.006 Phosphorus (P) < 0.01 Sulfur (S) < 0.01 Molybdenum (Mo) < 1
    the remainder being iron and impurities resulting from the smelting process.
  5. The method according to any of the preceding claims, characterized in that the blank is heated in a furnace to a temperature >Ac3 and held for a predetermined time, and then the blank is cooled to a temperature between 500°C and 600°C to achieve a solidification of the zinc layer, and is then transferred to the forming tool and is formed there.
  6. The method according to any of the preceding claims, characterized in that the active cooling is carried out in such a way that the cooling rate is >30 K/s.
  7. The method according to claim 6, characterized in that the active cooling is carried out in such a way that the cooling process is carried out with more than 50 K/s.
  8. The method according to any of the preceding claims, characterized in that in the case of blanks which for achieving different hardness ranges have corresponding areas of different degrees of heating, the active cooling is carried out in such a way that, after the active cooling, the previously hotter, austenitized areas are matched in terms of temperature level to the less strongly heated areas (+/- 50 K), so that the blank is inserted into the forming tool with a substantially uniform temperature.
  9. The method according to any of the preceding claims, characterized in that the active cooling is effected by blowing air or gas or other fluids.
  10. The method according to any of the preceding claims, characterized in that the cooling progress and/or the insertion temperature when inserting into the forming tool is monitored by means of sensors, in particular pyrometers, and the cooling is controlled accordingly.
  11. The method according to any of the preceding claims, characterized in that the steel material used is a steel material coated with zinc or a zinc alloy.
  12. The method according to any of the preceding claims, characterized in that the following conditions apply:
    Hydraulic diameter of the nozzle = DH, where DH = 4 x A / U
    Distance from nozzle to body = H
    Distance between two cooling blades/cooling columns = S
    Length of the nozzle = L
    L >= 6 x DH
    H <= 6 x DH, in particular 4 to 6 x DH
    S <= 6 x DH, in particular 4 to 6 x DH (staggered array)
    Oscillation = half pitch of the distance between two cooling blades in X, Y (possibly Z).
  13. The method according to any of the preceding claims, characterized in that the means (18) for moving the device generate an oscillation speed of 0.25 seconds per pass.
  14. A device for cooling hot steel sheet blanks or steel sheet components, in particular for carrying out a process according to any of claims 1 to 13, wherein the device for cooling has at least one cooling blade (2) or a number of cooling columns (15), wherein the cooling blade (2) or the cooling column (15) is formed to be hollow and has a nozzle edge (6, 17), wherein at least one nozzle (10) is present in the nozzle edge (6, 17) and directed towards an object to be cooled, wherein a plurality of cooling blades (2) or a plurality of rows of cooling columns (15) are arranged such that the flow pattern on the surface to be cooled forms a honeycomb-like structure, characterized in that a movement means (18) is present with which the cooling blade(s) (2) or the cooling columns (15) with the frame (8) and the fluid supply box (16) can be moved over a body to be cooled or with which the body to be cooled can be moved relative to the cooling blades (2) or the cooling columns (15), the cooling blade (2) and/or the cooling columns (15) or the device for cooling comprising means (18) by which the device is designed to be able to pivot or oscillating about the X-, Y- or Z-axis.
  15. The device according to claim 14, characterized in that a plurality of cooling blades (2) or cooling columns (15) arranged parallel to one another and spaced from one another are present.
  16. The device according to any of the claims 14 or 15, characterized in that the cooling blades (2) or cooling columns (15) are each offset from one another by half the distance between the nozzles (10) at the nozzle edge (6).
  17. The device according to any of the claims 14 to 16, characterized in that the cooling blade(s) (2) have a cooling blade base (3), cooling blade broad sides (4), cooling blade narrow sides (5) and a nozzle edge (6) each, wherein the nozzle edge (6) as well as the cooling blade broad sides (4) and cooling blade narrow sides (5) define a cavity (7), and the cooling blade(s) (2) is/are placed in or on a frame (8) with the cooling blade base (3), the frame (8) being capable of being placed on a fluid box (15) for the purpose of fluid supply.
  18. The device according to any of the claims 14 to 17, characterized in that the following conditions apply:
    Hydraulic diameter of the nozzle = DH, where DH = 4 x A / U
    Distance from nozzle to body = H
    Distance between two cooling elements/cooling cylinders =S
    Length of the nozzle = L
    L >= 6 x DH
    H <= 6 x DH, in particular 4 to 6 x DH
    S <= 6 x DR, in particular 4 to 6 x DH (staggered array)
    Oscillation = half pitch of the distance between two cooling blades in X, Y (possibly Z).
  19. The device according to any of the claims 14 to 18, characterized in that the means (18) for moving the device generate an oscillation speed of 0.25 seconds per pass.
EP16724376.5A 2015-05-29 2016-05-18 Method for contactlessly cooling steel sheets and device therefor Active EP3303642B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015108514.3A DE102015108514A1 (en) 2015-05-29 2015-05-29 A method of homogeneous, non-contact cooling of hot, non-continuous surfaces and apparatus therefor
DE102015113056.4A DE102015113056B4 (en) 2015-08-07 2015-08-07 Method for the contactless cooling of steel sheets and device therefor
PCT/EP2016/061101 WO2016192993A1 (en) 2015-05-29 2016-05-18 Method for contactlessly cooling steel sheets and device therefor

Publications (2)

Publication Number Publication Date
EP3303642A1 EP3303642A1 (en) 2018-04-11
EP3303642B1 true EP3303642B1 (en) 2020-03-11

Family

ID=56068877

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16724621.4A Active EP3303640B1 (en) 2015-05-29 2016-05-18 Method for the homogeneous non-contact cooling of hot, non-endless surfaces and device therefor
EP16724376.5A Active EP3303642B1 (en) 2015-05-29 2016-05-18 Method for contactlessly cooling steel sheets and device therefor
EP16727320.0A Active EP3302837B1 (en) 2015-05-29 2016-05-18 Method for the homogeneous non-contact temperature control of non-endless surfaces which are to be temperature-controlled, and device therefor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16724621.4A Active EP3303640B1 (en) 2015-05-29 2016-05-18 Method for the homogeneous non-contact cooling of hot, non-endless surfaces and device therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP16727320.0A Active EP3302837B1 (en) 2015-05-29 2016-05-18 Method for the homogeneous non-contact temperature control of non-endless surfaces which are to be temperature-controlled, and device therefor

Country Status (9)

Country Link
US (3) US20180245173A1 (en)
EP (3) EP3303640B1 (en)
JP (3) JP7141828B2 (en)
KR (3) KR20180012328A (en)
CN (3) CN107922988B (en)
CA (1) CA2987500C (en)
ES (3) ES2781198T3 (en)
MX (1) MX2017015330A (en)
WO (3) WO2016192993A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180012328A (en) * 2015-05-29 2018-02-05 뵈스트알파인 스탈 게엠베하 Method for uniform non-contact tempering of non-infinite surfaces to be tempered and apparatus therefor
DE102017001528A1 (en) 2017-02-15 2018-08-16 Audi Ag mold
US20200392599A1 (en) * 2018-01-16 2020-12-17 Neturen Co., Ltd. Method for heating steel plate and method for manufacturing hot-pressed product
US12000007B2 (en) 2018-02-06 2024-06-04 Integrated Heat Treating Solutions, Llc High pressure instantaneously uniform quench to control part properties
DE102018109579A1 (en) * 2018-04-20 2019-10-24 Schwartz Gmbh Temperature control device for partial cooling of a component
PL3763836T3 (en) * 2019-07-11 2023-09-11 John Cockerill S.A. Cooling device for blowing gas onto a surface of a traveling strip
CN111122576B (en) * 2020-01-14 2021-08-24 昆明理工大学 Medium-low hardenability steel hardenability measuring component and measuring method
JP7210513B2 (en) * 2020-08-06 2023-01-23 株式会社ジーテクト Mold
CN113667804A (en) * 2021-08-23 2021-11-19 湖南云箭集团有限公司 Device for delaying cooling speed of steel shell after heat treatment and using method thereof
CN113751410B (en) 2021-09-14 2022-07-22 山东钢铁集团日照有限公司 Hot bath forming process for high-corrosion-resistance and easy-welding hot-pressed parts
KR102648483B1 (en) 2021-12-31 2024-03-18 주식회사 지케이알 Method of correcting current flowing through a plurality of power switches embedded in a vehicle junction box

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1970730A (en) * 1932-01-28 1934-08-21 Pittsburgh Plate Glass Co Apparatus for case hardening glass
JPS5160657A (en) * 1974-11-25 1976-05-26 Nippon Kokan Kk NETSUKANATSUENNIOKERUATSUENKOHANNO KINITSUREIKYAKUHOHO
JPS5913570B2 (en) * 1976-12-02 1984-03-30 新日本製鐵株式会社 Annealing method for strip welds
US4150963A (en) * 1978-03-06 1979-04-24 Ppg Industries, Inc. Method and apparatus for restraining glass during tempering
JPS5940436Y2 (en) * 1979-12-03 1984-11-16 川崎製鉄株式会社 Rapid cooling zone of steel strip annealing furnace
FR2738577B1 (en) * 1995-09-12 1998-03-13 Selas Sa COOLING DEVICE FOR A LAMINATED PRODUCT
AT402507B (en) * 1995-10-19 1997-06-25 Ebner Peter H PLANT FOR THE HEAT TREATMENT OF METALLIC FURNACE
TW404982B (en) * 1997-03-14 2000-09-11 Nippon Steel Corp A heat treatment apparatus for a steel sheet by a gas jet system
JP3407589B2 (en) * 1997-03-25 2003-05-19 住友金属工業株式会社 Cooling method for steel
JPH1171618A (en) * 1997-08-28 1999-03-16 Selas Sa Cooling device for rolled product
JPH11347629A (en) * 1998-06-09 1999-12-21 Nkk Corp Straightening and cooling device for high temperature steel plate and its straightening and cooling method
JP2001040421A (en) 1999-07-27 2001-02-13 Nkk Corp Gas cooling device for metallic strip
KR100496607B1 (en) 2000-12-27 2005-06-22 주식회사 포스코 Method And Device For Manufacturing A Hot Rolled Steel Strip
KR100646619B1 (en) 2001-10-23 2006-11-23 수미도모 메탈 인더스트리즈, 리미티드 Method for press working, plated steel product for use therein and method for producing the steel product
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
PL1651789T3 (en) 2003-07-29 2011-03-31 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
EP1908535B1 (en) 2005-06-23 2012-10-31 Nippon Steel Corporation Cooling device for thick steel plate
AT502239B1 (en) * 2005-08-01 2007-07-15 Ebner Ind Ofenbau Device for cooling metal strip, e.g. steel strip after heat treatment, comprises groups of nozzles arranged in parallel nozzle strips with flow channels between them for removing cooling gas deflected from the metal strip
WO2007014406A1 (en) * 2005-08-01 2007-02-08 Ebner Industrieofenbau Gesellschaft M.B.H. Device for cooling a metal strip
JP4733522B2 (en) 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
EP2100673B1 (en) * 2008-03-14 2011-01-12 ArcelorMittal France Method and device for blowing a gas onto a moving strip
JP4825882B2 (en) 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
CN101619383B (en) 2009-08-05 2011-06-29 吉林诺亚机电科技有限公司 Novel thermal forming method of high-strength steel plate stamping part
PL2290133T3 (en) 2009-08-25 2012-09-28 Thyssenkrupp Steel Europe Ag Method for producing a steel component with an anti-corrosive metal coating and steel component
CA2807332C (en) 2010-08-23 2013-12-17 Nippon Steel & Sumitomo Metal Corporation Method of hot stamping galvanized steel sheet
CN103384726B (en) * 2010-12-24 2016-11-23 沃斯特阿尔派因钢铁有限责任公司 The method producing the structure member of hardening
DE102011053939B4 (en) 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Method for producing hardened components
DE102011053941B4 (en) 2011-09-26 2015-11-05 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and / or ductility
CN202238948U (en) * 2011-07-19 2012-05-30 东北大学 After-rolling ultrafast cooling and laminar cooling device based on ultrafast cooling technology
US9486847B2 (en) * 2011-07-21 2016-11-08 Nippon Steel & Sumitomo Metal Corporation Cooling apparatus, and manufacturing apparatus and manufacturing method of hot-rolled steel sheet
JP5902939B2 (en) 2011-12-13 2016-04-13 株式会社神戸製鋼所 Manufacturing method of hot press-formed product
DE102012211454A1 (en) 2012-07-02 2014-01-02 Sms Siemag Ag Method and device for cooling surfaces in casting plants, rolling mills or other strip processing lines
CN103614534B (en) * 2013-10-17 2015-09-02 中铁宝桥集团有限公司 Hardening of rails lathe special control wind air-jet device and control wind spray wind method
CN103894427A (en) * 2014-03-28 2014-07-02 东北大学 Medium and heavy plate online multifunctional cooling device
CN104001742A (en) * 2014-05-21 2014-08-27 中冶南方工程技术有限公司 Method for achieving controlled cooling on rolled pieces between and after bar finishing mill units
KR20180012328A (en) * 2015-05-29 2018-02-05 뵈스트알파인 스탈 게엠베하 Method for uniform non-contact tempering of non-infinite surfaces to be tempered and apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3303640B1 (en) 2020-07-15
KR20180014070A (en) 2018-02-07
CA2987500A1 (en) 2016-12-08
WO2016192994A1 (en) 2016-12-08
JP2018532877A (en) 2018-11-08
CN107922988A (en) 2018-04-17
ES2781198T3 (en) 2020-08-31
CN107922988B (en) 2019-12-17
KR20180014069A (en) 2018-02-07
CN107922984A (en) 2018-04-17
JP7028514B2 (en) 2022-03-02
EP3303640A1 (en) 2018-04-11
MX2017015330A (en) 2018-08-28
ES2808779T3 (en) 2021-03-01
WO2016192993A1 (en) 2016-12-08
CN108136464A (en) 2018-06-08
US10814367B2 (en) 2020-10-27
EP3303642A1 (en) 2018-04-11
CN108136464B (en) 2020-08-28
KR20180012328A (en) 2018-02-05
US20190076899A1 (en) 2019-03-14
EP3302837B1 (en) 2020-03-11
JP7141828B2 (en) 2022-09-26
EP3302837A1 (en) 2018-04-11
US20180155803A1 (en) 2018-06-07
CN107922984B (en) 2019-12-31
US20180245173A1 (en) 2018-08-30
WO2016192992A1 (en) 2016-12-08
CA2987500C (en) 2023-09-19
JP6908231B2 (en) 2021-07-21
JP2018522138A (en) 2018-08-09
JP2018524535A (en) 2018-08-30
ES2781457T3 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
EP3303642B1 (en) Method for contactlessly cooling steel sheets and device therefor
EP2655672B1 (en) Method for producing hardened components with regions of different hardness and/or ductility
EP1786936B1 (en) Method for press quenching components consisting of sheet steel
DE102011053939B4 (en) Method for producing hardened components
EP1651789B1 (en) Method for producing hardened parts from sheet steel
DE102013100682B3 (en) A method of producing cured components and a structural component made by the method
EP2896466A1 (en) Method and device for producing a metal component
DE102011053941B4 (en) Method for producing hardened components with regions of different hardness and / or ductility
DE102015113056B4 (en) Method for the contactless cooling of steel sheets and device therefor
EP3420111B1 (en) Process for targeted heat treatment of individual component zones
EP3408420B1 (en) Method of heat treating a metallic component
DE102005012522B4 (en) Method and device for the partial hardening of finished sheet steel components
EP3159419B1 (en) Method of fabrication of roll formed partly hardened profiles
AT509597B1 (en) METHOD AND DEVICE FOR PRODUCING A SHAPE COMPONENT
WO2017137259A1 (en) Heat treatment method and heat treatment device
EP3262202B1 (en) System for the series production of press-hardened and anti-corrosion sheet metal moulded parts, comprising a cooling device for intermediate cooling of the sheet metal blanks
EP3925716B1 (en) Method for press hardening thermoformable blanks
EP3201369B1 (en) Method for the manufacture of steel strip material having different mechanical properties across the width of the strip
EP3414027A1 (en) Method and device for producing hardened steel components
EP3414072B1 (en) Method and device for producing hardened steel components
DE102021110702A1 (en) Process and device for manufacturing hardened steel components with different ductile areas
WO2017137379A1 (en) Method and device for producing hardened steel components

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE STAHL GMBH

Owner name: VOESTALPINE METAL FORMING GMBH

INTG Intention to grant announced

Effective date: 20191016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1243203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009114

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200611

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2781198

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200831

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009114

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

26N No opposition filed

Effective date: 20201214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200611

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200311

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1243203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210518

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230519

Year of fee payment: 8

Ref country code: FR

Payment date: 20230525

Year of fee payment: 8

Ref country code: ES

Payment date: 20230601

Year of fee payment: 8

Ref country code: DE

Payment date: 20230530

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230509

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230527

Year of fee payment: 8