EP3301350B1 - Lichtmodul für einen kraftfahrzeugscheinwerfer - Google Patents

Lichtmodul für einen kraftfahrzeugscheinwerfer Download PDF

Info

Publication number
EP3301350B1
EP3301350B1 EP17190034.3A EP17190034A EP3301350B1 EP 3301350 B1 EP3301350 B1 EP 3301350B1 EP 17190034 A EP17190034 A EP 17190034A EP 3301350 B1 EP3301350 B1 EP 3301350B1
Authority
EP
European Patent Office
Prior art keywords
light
optics
module
light module
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17190034.3A
Other languages
English (en)
French (fr)
Other versions
EP3301350A1 (de
Inventor
Wolfgang Hossfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP3301350A1 publication Critical patent/EP3301350A1/de
Application granted granted Critical
Publication of EP3301350B1 publication Critical patent/EP3301350B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis

Definitions

  • a headlight with a light module that can generate different light spots that can be switched individually. Each light spot is generated by imaging an associated LED.
  • the optics consist of two lenses. The LEDs are arranged on a substrate and all simultaneously use the optical system consisting of the two lenses. In this way, an adaptive high beam can be implemented.
  • the lenses form an imaging optical system made up of rotationally symmetrical lenses.
  • the light exit surface is basically given by the shape of a lens, i.e. by an approximately circular surface. Any deviation from this shape directly affects the luminous efficacy and the quality of the light distribution.
  • a broadening of the light exit surface can also only be achieved by increasing the center thickness of the second lens. However, this also means that center thicknesses of > 20mm quickly arise, which lead to longer cycle times and increased manufacturing costs.
  • the present invention is intended to reduce the size of the light module, in particular in the light exit direction. At the same time, the light exit surface of the light module should be varied without sacrificing efficiency and the production of the optics of the light module should be able to be implemented particularly cost-effectively.
  • the light distribution is realized from an optical system of at least one thin-walled first lens (primary lens) and a thin-walled second lens (secondary lens).
  • An optic is referred to as thin-walled if it has a maximum central thickness of ⁇ 20mm. All first optics share a common second optic. All optics are astigmatic optics that have significantly different focal lengths in a vertical and a horizontal plane.
  • An optical system comprising at least one primary optics and the secondary optics forms an anamorphic image of the luminous surface at least one semiconductor light source. The anamorphic imaging causes different enlargements and thus different expansions of the beam cone generated by the semiconductor light source in the horizontal and vertical planes.
  • a suitable design of the vertical and horizontal focal lengths of the optics makes it possible to design the light exit surface of the second optics and thus of the light module in two mutually perpendicular directions with different dimensions, without sacrificing the light yield.
  • the division from one to two or more optics also enables the realization of a high numerical aperture with a large focal length or low magnification at the same time without the need for thick-walled (> 20mm middle thickness) optics that require complex and time-consuming manufacturing processes and are therefore not inexpensive to produce .
  • the first optics are used to bundle the light in a first step and to shape the light. They can therefore have differently shaped areas (segments or facets) to direct light striking the different areas to different positions in the image plane.
  • Such a catadioptric attachment optics is basically from the DE 10 2011 078 653 A1 famous.
  • the attachment optics of the light module according to the invention differs from the known attachment optics in the manner in which it is arranged in the light module and in particular with regard to the at least one semiconductor light source and the secondary optics.
  • the semiconductor light source which is assigned to a first optic, generates a light distribution through the optical system consisting of the first and second optics, which can have one or more light-dark boundaries of any shape.
  • the resulting overall light distribution of the light module results from the superimposition of the individual light distributions, which is generated by a light source, an associated primary optics and a secondary optics.
  • Each individual light distribution can have a different shape of the light distributions and the light-dark boundaries, in that the respective first optics are designed differently or the type, shape or position of the semiconductor light source is selected differently.
  • the primary optics are embodied as catadioptric attachment optics made of a transparent material
  • the light entry and/or light exit surfaces can have a wavy or pincushion-shaped modulation that serves to scatter the light in one or more directions. This scattering serves to make the light distribution broader or to homogenize it in terms of intensity or color appearance.
  • the secondary optics serves optically exclusively for further focusing of the light, preferably in only one plane. It forms the light exit surface of the optical system of the light module and, in contrast to the first optic, has no visible different areas for light shaping. All of the first optics share the second optics, ie all optical axes of the subsystems made up of light sources and associated first optics run through the second optics.
  • the focal length of the second optics in a first plane is greater than 100mm and thus greater than the length of the optical system in Light exit direction, measured along an optical axis from the light source to the light exit surface of the second lens.
  • the focal length in the second plane perpendicular thereto is significantly greater, typically infinite.
  • the width of a cylindrical lens can be flexibly adapted to design specifications.
  • the width can be made noticeably larger than the height, which is not possible with a conventional non-anamorphic optical system consisting of rotationally symmetrical individual optics.
  • a motor vehicle headlight is denoted by the reference numeral 1 in its entirety.
  • Headlight 1 includes a housing 2, which is preferably made of plastic.
  • the housing 2 has a light exit opening 4 in the light exit direction 3 which is closed by a transparent cover plate 5 .
  • the cover plate 5 can be provided with optically effective elements (e.g. in the form of cylindrical lenses or prisms) (so-called diffuser plate) at least in regions in order to cause the light passing through to be scattered, in particular in the horizontal direction.
  • the cover plate 5 can also be designed as a clear plate without any optically active elements.
  • a light module 10 according to the invention is arranged inside the housing 2 .
  • the light module 10 is used to generate any resulting driving light distribution or a part thereof, for example a low beam, high beam, adaptive driving light (city light, country road light, freeway light, partial high beam, marking light), fog light or the like.
  • light module 10 can also be installed in the housing 2 to generate any driving light distribution or part thereof, or light modules to implement any light function (e.g. indicator light, position light, parking light, daytime running light, parking light, reversing light, brake light or similar ) be arranged.
  • the light module 10 according to the invention is based on the Figures 1 to 30 explained in more detail.
  • the light module 10 comprises a first optics or primary optics 11, which in this example is designed as a catadioptric transparent optics, which consists of a refractive lens part and a totally reflecting reflection part.
  • a first optics or primary optics 11 which in this example is designed as a catadioptric transparent optics, which consists of a refractive lens part and a totally reflecting reflection part.
  • One such optics is in itself, for example, from the DE 10 2011 078 653 A1 known, to which reference is made here with regard to the structure and functioning of the optics.
  • Such an optic 11 can easily be produced, for example, by injection molding from plastic such as polycarbonate. It allows the light generated by a semiconductor light source 12, e.g. in the form of one or more LEDs or their light-emitting surface (e.g.
  • the reflective surfaces of the optics 11 are segmented or faceted. Images of the light-emitting surface are imaged by the segments or facets 13 in such a way that a horizontal light-dark boundary (cf. e.g. the light-dark boundary 31 of the shielded light distribution 30 from figure 7 ) arises.
  • figure 1 shows the light-shaping segments or facets 13 in the reflecting part of the optics 11.
  • a light exit surface 14 of the first optics 11 can be modulated in a wave shape in order to distribute and homogenize the light passing through in the horizontal direction.
  • a sinusoidal modulation of the light exit surface 14 in the form of waves is, for example figure 5 1, where the waves (light areas) are indicated by reference numeral 20 and the adjacent valleys (dark areas) by reference number 21.
  • the waves 20 and valleys 21 extend longitudinally in the vertical direction 22.
  • the wave-shaped modulation of the light exit surface 14 takes place in a horizontal direction 23 running perpendicular thereto, ie the waves 20 and valleys 21 alternate in the direction 23.
  • the exit surface 14 can also have a pincushion-shaped modulation, distributed by the passing light not only in the horizontal direction but also in the vertical direction and can be homogenized.
  • the second optics or secondary optics 15 is in the in figure 1 example shown formed as a cylindrical lens that focuses vertically. These optics 15 can also easily be made from plastic by injection molding or from glass by precision molding, casting or grinding and polishing.
  • the secondary optics 15 has a significantly greater width than height.
  • An optical axis of the optical system comprising the at least one light source 12, the at least one primary optics 11 and the secondary optics 15 is denoted by the reference numeral 16.
  • a focal point 17 of the primary optics 11 is arranged behind the at least one semiconductor light source 12 viewed against a light exit direction. Furthermore, a focal point 18 or a focal line 18a (cf. Figures 9 to 12 ) of the secondary optics 15 is also arranged behind the at least one semiconductor light source 12 viewed against the light exit direction 3 . In the example shown, the focal point 18 of the secondary optics 15 is arranged behind the focal point 17 of the primary optics 11 .
  • the two focal points 17, 18 can also be congruent or arranged in such a way that the focal point 17 of the primary optics 11 is arranged behind the focal point 18 of the secondary optics 15.
  • both focal points 17, 18 are arranged on the optical axis 16 of the optical system of the light module 10 in the example.
  • a focal line 18a of the secondary optics 15 would pass through the optical axis 16 .
  • the focal points 17, 18 it is also conceivable for the focal points 17, 18 to be offset from the optical axis 16 or for a focal line 18a to run at a distance from the optical axis 16.
  • the focal point 19 of the optical system is preferably arranged on the light-emitting surface, very particularly preferably in its center, or the focal line 19a runs on the light-emitting surface.
  • the light module 10 is off figure 1 shown, with light rays being drawn in as an example, which were emitted by the semiconductor light source 12 in the 180° half-space around the optical axis 16 .
  • These light beams are collimated by the first optics 11 and shaped by the segments or facets 13 and the light exit surface 14 in order to finally be further collimated by the secondary optics 15 in the vertical plane.
  • the light module 10 therefore has a two-part focusing of the light beams.
  • the arrangement of the optics 11, 15 in the light module 10 permits its particularly compact design, particularly when viewed in the direction of the optical axis 16.
  • the optical system of the light module 10 has a virtual (not real) image plane, which can be seen from the diverging light beams.
  • the optical system is non-imaging, ie no images of the light source 12 are generated.
  • figure 3 shows a vertical section through the arrangement figure 2 .
  • the catadioptric primary optics 11 shown here has a refractive lens part in the center around the optical axis 16 and an outer reflecting part, which surrounds the lens section, with totally reflecting boundary surfaces 13 .
  • One The light entrance surface of the reflecting part of the primary optics 11 is denoted by the reference numeral 14a and a light entrance surface of the central lens part of the primary optics 11 by the reference numeral 14b.
  • the focal points 17, 18, 19 and their positions relative to one another and with respect to the semiconductor light source 12 can be clearly seen.
  • FIG. 4 the optical system of the light module 10 is off figure 3 10 is shown with exemplary light rays traveling in the vertical plane and originating at the center of the light emitting surface of the semiconductor light source 12.
  • the focal point 17 of the primary optics 11 is arranged between the focal point 18 and the semiconductor light source 12.
  • the focal point 19 of the entire system is arranged on the light-emitting surface of the light source 12 .
  • figure 6 shows a plan view of the light module 10 from FIGS Figures 1 to 4 . It can be clearly seen that there is practically no collimation of the light beams in the horizontal plane due to the secondary optics 15 . With this structure, a resulting light distribution 30 can be generated, as is the case, for example, in figure 7 is shown.
  • figure 7 shows a measuring screen arranged at a distance (eg 25 m) in front of the motor vehicle or in front of the light module 10, on which a horizontal axis and a vertical axis are plotted, which intersect at one point.
  • the light distribution 30 forms a sharp light-dark boundary 31 just below the 0° line (vertical) and can therefore be used as a low beam distribution or as part of it.
  • Examples are lines with the same illuminance (so-called isolux lines) drawn in the light distribution 30 .
  • a reference numeral 32 denotes a solid line for 10.0 lx, 33 a broken line for 1.0 lx, and 34 a chain line for 0.1 lx.
  • Various criteria can be used to define the light-dark boundary 31 .
  • the position of the 0.1 lx iso line 34 was used as a simple criterion.
  • figure 8 shows how the light distribution 30 is created by superimposing different images 36 of the light-emitting surface of the light source 12.
  • the different segments or facets 13 of the boundary surfaces of the primary optics 11 are designed in such a way that the uppermost corner or edge of the image lies on the line that marks the target position of the light-dark boundary 31 .
  • the light source 12 in this example is an LED, the luminous surface of which is square in shape
  • all of the images 36 are rectangular in shape with widely differing lengths and widths.
  • These images 36 result because the imaging of the system is anamorphic, ie the LED chip image 36 is enlarged differently in the horizontal and vertical directions. In the system described, the horizontal magnification is always greater than the vertical because the vertical focal length of the overall system is longer than the horizontal focal length.
  • the second lens 15 is a cylindrical optic, it does not have a focal point, but rather a focal line. As a result, it is easily possible to use a plurality of first optics 11 in order, for example, to increase the luminous flux of the overall system. To do this, the additional optics must be placed on a line that runs parallel to the focal line.
  • An example of a realization of such a system shows figure 9 .
  • an optical system of a light module 10 is shown comprising three semiconductor light sources 12, three primary optics 11 assigned to them in the form of catadioptric optics, and secondary optics 15 in the form of a cylindrical lens.
  • the cylindrical lens includes a focal line 18a.
  • the light-emitting surfaces of the LEDs 12 are arranged on a line 19a, which preferably runs parallel to the focal line 18a of the secondary optics 15.
  • the line 19a corresponds to a focal line of the entire optical system of the light module 10.
  • the secondary optics 15 is designed in the form of a curved cylindrical lens in order to achieve an attractive design of the light exit surface of the light module 10 .
  • the cylindrical lens 15 is bent in a horizontal plane.
  • the curvature of the lens surface in the vertical section has remained constant.
  • the focal length of the cylindrical lens 15 in the vertical section does not change, but the position and shape of the focal line 18a, which is now also bent in the horizontal plane, does.
  • first optics 11 and second optics 15 thereby produces different horizontal and vertical magnifications and each first optics 11 must therefore be designed differently.
  • the focal line 18a of the secondary optics 15 and the focal line 19a of the entire optical system no longer run parallel to one another.
  • each optical subsystem (with elements 12, 11, 15) is intended to generate a comparable light distribution, as is the case, for example, with pixel-shaped light distributions for adaptive high beam distributions (e.g. partial high beam, marking light, etc.).
  • each subsystem provides the same magnification of the images of the light-emitting surface of the semiconductor light sources 12 in the horizontal or vertical direction.
  • the position of the LEDs 12 must be selected on a line 19a parallel to the focal line 18a of the secondary optics 15.
  • a corresponding example is in figure 12 shown.
  • a light distribution 30 with a horizontal light-dark boundary 31 (cf. figure 7 ) generated.
  • the invention can also be used to generate light distributions with horizontal and/or vertical or arbitrarily shaped and/or aligned light-dark boundaries by positioning the corners of the LED chip images along predetermined lines, with the lines then forming the light-dark boundaries of the light distribution .
  • figure 13 shows an example of how the LED chip images 41 of different areas 13 of a first optics 11 can be positioned in order to generate a strip-shaped light distribution 40 with vertical light-dark borders 42 and horizontal light-dark borders 43 .
  • FIGS. 14 to 21 show examples of a total of 21 individual light distributions 50, which can each be generated by an LED 12 with associated first optics 11 and the second optics 15 in the form of a cylindrical lens.
  • figure 14 shows the individual light distributions 50 of LEDs #1 to #3, figure 15 from LEDs #4 to #6, figure 16 from LEDs #7 to #9, figure 17 of LEDs #10 and #11, figure 18 from LEDs #12 to #14, figure 19 from LEDs #15 to #17, figure 20 from LEDs #18 to #20 and figure 21 from LED #21.
  • the individual light distributions 50 each have two vertical light-dark boundaries 51 and two horizontal light-dark boundaries 52 . This illuminates a defined angular range horizontally and vertically. Lines with the same illuminance levels (so-called isolux lines) are drawn in the individual light distributions 50 by way of example.
  • a solid line for 50.0 lx is denoted by reference numeral 53, a broken line for 10 lx by 54, and a chain line for 0.1 lx by 55.
  • Various criteria can be used to define the light-dark boundaries 51, 52. In the example shown, the position of the 0.1 lx iso line 55 was used as a simple criterion. Based on this definition, the illuminated angular range is approximately 3° wide horizontally and 10° vertically high.
  • the in figure 22 shown resulting light distribution 60, which can serve as a high beam distribution.
  • Lines with the same illuminance levels are drawn in the light distribution 60 by way of example.
  • a solid line for 50.0 lx is denoted by reference numeral 61, a broken line for 10 lx by 62 and a broken line for 0.1 lx by 63. Since the individual light distributions 50 are each offset horizontally by approx. 1.5° from one another, 12 angle areas with a minimum width of approx. 1.5° can be switched dark by deactivating or dimming individual LEDs.
  • An example of an overall light distribution 60 with two times 1.5° wide dark blanking area 64 is shown figure 23 .
  • the motor vehicle in which headlights 1 with the light module 10 according to the invention are installed has suitable means for detecting other road users in front of the motor vehicle. These means include, for example, a video camera for recording images of the area in front of the motor vehicle and a computing unit for evaluating the recorded images and for detecting oncoming vehicles or vehicles driving ahead in a specific area of the images.
  • the area of the high beam distribution 60 off figure 22 is specifically darkened or hidden by deactivating or dimming certain LEDs 12 in order to prevent road users from being dazzled.
  • the high beam can remain switched on in all other areas of light distribution 60 in order to ensure good visibility for the driver of the motor vehicle.
  • the blanking area 64 can change dynamically, for example when another oncoming road user drives past the motor vehicle with the light module 10 or when a preceding road user is driving in front of the motor vehicle on a winding road.
  • the width of the blanking area 64 can be individually adapted to the current traffic situation.
  • the LEDs 12 are typically energized in a pulse width modulated manner.
  • the luminous flux can be controlled by changing the pulse width.
  • the first optics 11 is implemented as a reflector and the second optics 15 as a cylindrical lens.
  • the second optics 15 it is advantageous to implement it with a plurality of LEDs 12, associated reflectors 11 and a cylindrical lens 15, as in figure 25 shown.
  • a low beam distribution 80 with an asymmetrical (bent) light-dark boundary 81 can be generated from this, for example, as is shown, for example, in figure 30 is shown.
  • the Figures 26 to 29 show individual light distributions 70 which are generated by subsystems #1 to #5, each comprising an LED 12, a reflector 11 and the cylindrical lens 15.
  • Subsystems #1 to #3 produce, for example, light distributions 70 with a horizontal light-dark boundary 71 that is just below 0° vertically (cf. Figures 26 to 28 ). Lines with the same illuminance levels (so-called isolux lines) are drawn in the individual light distributions 70 by way of example.
  • a solid line for 4.0 lx is denoted by 72, a broken line for 0.4 lx by 73 and a dashed line for 0.1 lx denoted by 74.
  • Various criteria can be used to define the light-dark boundary 71 .
  • the position of the 0.1 lx iso line 74 was used as a simple criterion.
  • FIG 26 is the individual light distribution 70 generated by subsystem #1, in figure 27 those through subsystem #2 and in figure 28 the individual light distribution 70 produced by subsystem #3 is shown.
  • figure 29 1 shows an individual light distribution 70 as produced by subsystem #4 (LED #4, reflector #4 and cylindrical lens 15) and subsystem #5 (LED #5, reflector #5 and cylindrical lens 15) of light module 10, respectively figure 25 is produced.
  • the light distribution 70 has a light-dark boundary 71a that rises obliquely from the center (point of intersection of the horizontal and the vertical) to the top right (towards one's own traffic side).
  • the illuminance distribution in the light distributions 70 is illustrated by iso-lines.
  • a solid line for 4.0 lx is denoted by reference numeral 72, a broken line for 1.0 lx by 73a, and a chain line for 0.1 lx by 74.
  • FIG. Of course, these values for the illuminance are only selected as examples and in practice they can deviate from the values given here.
  • figure 30 shows the resulting total light distribution 80 of the light module 10 in the form of a low beam distribution with an asymmetrical light-dark boundary 81.
  • the light distribution 80 results from a superimposition of the individual light distributions 70 of the LEDs #1 to #5 from FIGS Figures 26 to 29 .
  • the light-dark boundary 81 of the light distribution 80 has an incline approximately from the center (point of intersection of the horizontal and the vertical) to the top right (towards one's own traffic side). rising section 81a.
  • the illuminance distribution in the light distributions 80 is illustrated by iso-lines.
  • a reference numeral 82 is a solid line for 10.0 lx
  • 83a is a broken line for 1.0 lx
  • 84 is a chain line for 0.1 lx.
  • a further variant is that a plurality of LEDs 12 each use a first optics 11 .
  • the number of generated light areas ("pixels") of an adaptive high beam distribution can be increased without the number of first optics 11 having to be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Lichtmodul für einen Kraftfahrzeugscheinwerfer nach dem Oberbegriff des Anspruchs 1. Ein solches Lichtmodul ist aus der Druckschrift WO 2013/138834 A1 bekannt. Ein Lichtmodul, das mindestens eine Halbleiterlichtquelle mit einer Licht emittierenden Fläche zum Abstrahlen von Licht,
    • mindestens eine Primäroptik zum Bündeln zumindest eines Teils des abgestrahlten Lichts, und
    • eine Sekundäroptik zur weiteren Bündelung des von der mindestens einen ersten Optik bereits gebündelten Lichts und zur Erzeugung einer resultierenden Lichtverteilung des Lichtmoduls auf einer Fahrbahn vor dem Kraftfahrzeug umfasst, ist bspw. aus der DE 10 2005 015 007 A1 oder der US 2014/0092619 A1 bekannt. Bei den aus diesen beiden Druckschriften bekannten Lichtmodulen ist es jedoch so, dass die Primäroptik einen Brennpunkt aufweist, der auf der Licht emittierenden Fläche der Halbleiterlichtquelle liegt, und durch die Primäroptik ein reales Zwischenbild im Brennpunkt der Sekundäroptik erzeugt wird, welches durch die Sekundäroptik zur Erzeugung der resultierenden Lichtverteilung des Lichtmoduls auf die Fahrbahn vor das Kraftfahrzeug projiziert wird. Dadurch ergibt sich ein relativ großbauendes, insbesondere in Lichtaustrittsrichtung betrachtet recht langes Lichtmodul.
  • Ferner ist aus der DE 10 2011 078 653 A1 eine katadioptrische transparente Vorsatzoptik bekannt, deren totalreflektierende Grenzfläche in unterschiedlich geformte Bereich unterteilt ist, um eine Lichtverteilung mit einer Helldunkelgrenze zu erzeugen. Diese Lösung ist zwar sehr lichteffizient. Nachteilig ist jedoch, dass für typische Lichtverteilungen, wie z.B. eine Abblendlichtverteilung nach Regelung UN-ECE R112 das Volumen der Optik so groß wird, dass Materialdicken von > 20mm entstehen. Eine Vorsatzoptik mit einer solchen Dicke kann aber nicht mehr kostengünstig hergestellt werden, weil bei der Herstellung mit Spritzgussverfahren bspw. die Prozesszykluszeit aufgrund der längeren Aushärtzeiten des gespritzten transparenten Kunststoffmaterials mit der Mittendicke der Optik zunimmt. Zudem ist die Form der Lichtaustrittsfläche grundsätzlich kreisförmig oder elliptisch und eine Anpassung an andere Vorgaben, bspw. eine rechteckige Austrittsfläche, ist nur auf Kosten der Lichteffizienz möglich.
  • Aus der DE 10 2008 027 320 A1 ist ein Scheinwerfer mit einem Lichtmodul bekannt, der verschiedene Lichtflecken erzeugen kann, die einzeln geschaltet werden können. Jeder Lichtfleck wird durch die Abbildung einer zugeordneten LED erzeugt. Die Optik besteht aus zwei Linsen. Die LEDs sind auf einem Substrat angeordnet und nutzen alle gleichzeitig das optische System bestehend aus den zwei Linsen. Auf diese Weise kann ein adaptives Fernlicht realisiert werden.
  • Die Linsen bilden ein abbildendes optisches System aus rotationssymmetrischen Linsen. Die Lichtaustrittsfläche ist grundsätzlich durch die Form einer Linse gegeben, also durch eine in etwa kreisrunde Fläche. Eine Abweichung von dieser Form beeinträchtigt unmittelbar die Lichtausbeute und die Qualität der Lichtverteilung. Eine Verbreiterung der Lichtaustrittsfläche lässt sich außerdem nur durch Vergrößerung der Mittendicke der zweiten Optik erreichen. Dies bedeutet aber auch wieder, dass schnell Mittendicken von > 20mm entstehen, die zu längeren Zykluszeiten und erhöhten Herstellungskosten führen.
  • Durch die vorliegende Erfindung soll die Größe des Lichtmoduls, insbesondere in Lichtaustrittsrichtung verringert werden. Gleichzeitig soll die Lichtaustrittsfläche des Lichtmoduls ohne Einbußen beim Wirkungsgrad variiert und die Herstellung der Optiken des Lichtmoduls besonders kostengünstig realisiert werden können.
  • Zur Lösung dieser Aufgabe wird ein Lichtmodul mit den Merkmalen des Anspruchs 1 vorgeschlagen.
  • Die beschriebenen Mängel des Standes der Technik werden durch die Erfindung dadurch beseitigt, dass die Lichtverteilung aus einem optischen System von mindestens einer dünnwandigen ersten Optik (Primäroptik) und einer dünnwandigen zweiten Optik (Sekundäroptik) realisiert wird. Eine Optik wird hier als dünnwandig bezeichnet, wenn sie eine maximale Mittendicke von <20mm aufweist. Alle ersten Optiken teilen sich eine gemeinsame zweite Optik. Alle Optiken sind astigmatische Optiken, die in einer vertikalen und einer horizontalen Ebene deutlich unterschiedliche Brennweiten aufweisen. Ein optisches System umfassend mindestens eine Primäroptik und die Sekundäroptik bildet eine anamorphe Abbildung der leuchtenden Fläche der mindestens einen Halbleiterlichtquelle. Die anamorphe Abbildung bewirkt, dass in den horizontalen und vertikalen Ebenen unterschiedliche Vergrößerungen und damit unterschiedliche Ausdehnungen des Strahlkegels, der durch die Halbleiterlichtquelle erzeugt wird, entstehen. Durch eine geeignete Auslegung der vertikalen und horizontalen Brennweiten der Optiken wird es möglich, die Lichtaustrittsfläche der zweiten Optik und damit des Lichtmoduls in zwei zueinander senkrechten Richtungen mit unterschiedlicher Ausdehnung zu gestalten, ohne dass dies auf Kosten der Lichtausbeute geht. Die Aufteilung von einer auf zwei oder mehr Optiken ermöglicht zudem die Realisierung einer hohen numerischen Apertur bei gleichzeitig großer Brennweite bzw. geringer Vergrößerung ohne dass dafür dickwandige (> 20mm Mittendicke) Optiken benötigt werden, die aufwändige und zeitintensive Herstellungsprozesse benötigen und daher nicht kostengünstig herzustellen sind. Die hohe numerische Apertur und große Brennweite haben zur Folge, dass sowohl eine hohe optische Effizienz (= Lichtausbeute) als auch eine hohe Beleuchtungsstärke in der Bildebene des Lichtmoduls erzielt werden können.
  • Die ersten Optiken dienen zum Bündeln des Lichts in einem ersten Schritt und zur Lichtformung. Sie können daher unterschiedlich geformte Bereiche (Segmente oder Facetten) aufweisen, um Licht, das auf die verschiedenen Bereiche trifft, in unterschiedliche Positionen in der Bildebene zu lenken. Eine derartige katadioptrische Vorsatzoptik ist grundsätzlich aus der DE 10 2011 078 653 A1 bekannt. Die Vorsatzoptik des erfindungsgemäßen Lichtmoduls unterscheidet sich jedoch von der bekannten Vorsatzoptik durch die Art und Weise, wie sie im Lichtmodul und insbesondere bezüglich der mindestens einen Halbleiterlichtquelle und der Sekundäroptik angeordnet ist.
  • Die Halbleiterlichtquelle, die einer ersten Optik zugeordnet ist, erzeugt durch das optische System bestehend aus erster und zweiter Optik eine Lichtverteilung, die eine oder mehrere beliebig geformte Helldunkelgrenzen aufweisen kann. Die resultierende Gesamtlichtverteilung des Lichtmoduls ergibt sich aus der Überlagerung der Einzellichtlichtverteilungen, die durch jeweils eine Lichtquelle eine zugeordnete Primäroptik und eine Sekundäroptik erzeugt wird. Jede Einzellichtverteilung kann eine unterschiedliche Form der Lichtverteilungen und der Helldunkelgrenzen aufweisen, indem die jeweils erste Optik unterschiedlich ausgeführt wird oder die Art, Form oder Lage der Halbleiterlichtquelle unterschiedlich gewählt wird.
  • Wenn die Primäroptik als eine katadioptrische Vorsatzoptik aus einem transparenten Material ausgebildet ist, können die Lichteintritts- und/oder Lichtaustrittsflächen eine wellen- oder kissenförmige Modulation aufweisen, die dazu dient, das Licht in einer oder mehreren Richtungen zu streuen. Diese Streuung dient dazu, die Lichtverteilung breiter zu gestalten oder bzgl. Intensität oder Farberscheinung zu homogenisieren.
  • Die Sekundäroptik dient optisch ausschließlich einer weiteren Fokussierung des Lichts, vorzugsweise in nur einer Ebene. Sie bildet die Lichtaustrittsfläche des optischen Systems des Lichtmoduls und weist im Gegensatz zur ersten Optik keine sichtbaren unterschiedlichen Bereiche zur Lichtformung auf. Alle ersten Optiken teilen sich die zweite Optik, d.h. alle optischen Achsen der Teilsysteme aus Lichtquellen und zugeordneten ersten Optiken verlaufen durch die zweite Optik. Typischerweise ist die Brennweite der zweiten Optik in einer ersten Ebene größer als 100mm und damit größer als die Länge des optischen Systems in Lichtaustrittsrichtung, gemessen entlang einer optischen Achse von der Lichtquelle bis zu der Lichtaustrittsfläche der zweiten Optik. Die Brennweite in der dazu senkrechten zweiten Ebene ist deutlich größer, typischerweise unendlich. Das bewirkt, dass eine Verbreiterung der zweiten Optik in der Richtung, die in der zweiten Ebene und senkrecht zur optischen Achse liegt, wenig Auswirkung auf die Qualität der Lichtverteilung hat, da sich die Vergrößerung des Gesamtsystems aus erster und zweiter Optik dadurch nicht ändert. Das wiederum heißt, dass z.B. die Breite einer Zylinderlinse flexibel an gestalterische Vorgaben angepasst werden kann. Insbesondere kann z.B. die Breite merklich größer als die Höhe gestaltet werden, was bei einem herkömmlichen nicht-anamorphen optischen System, bestehend aus rotationssymmetrischen Einzeloptiken nicht möglich ist.
  • Vorteilhafte Weiterbildungen und weitere bevorzugte Ausführungsbeispiele der vorliegenden Erfindung können den Unteransprüchen sowie der nachfolgenden Figurenbeschreibung und den dazugehörigen Figuren entnommen werden. Es zeigen:
  • Figur 1
    ein erfindungsgemäßes Lichtmodul gemäß einer bevorzugten Ausführungsform in einer perspektivischen Ansicht;
    Figur 2
    das Lichtmodul aus Figur 1 mit beispielhaft eingezeichneten Lichtstrahlen, die von einer Licht emittierenden Fläche einer Halbleiterlichtquelle des Lichtmoduls ausgesandt wurden;
    Figur 3
    einen Vertikalschnitt durch das Lichtmodul aus Figur 1;
    Figur 4
    das Lichtmodul aus Figur 3 mit beispielhaft eingezeichneten Lichtstrahlen, die ihren Ursprung in der Mitte der Licht emittierenden Fläche der Halbleiterlichtquelle des Lichtmoduls haben;
    Figur 5
    eine Draufsicht auf eine Lichtaustrittsfläche einer ersten Optik des Lichtmoduls aus den Figuren 1 bis 4;
    Figur 6
    einen Horizontalschnitt durch das Lichtmodul aus Figur 1 mit beispielhaft eingezeichneten Lichtstrahlen, die von der Licht emittierenden Fläche der Halbleiterlichtquelle des Lichtmoduls ausgesandt wurden;
    Figur 7
    einen in Lichtaustrittsrichtung des Lichtmoduls in einem Abstand zu dem Lichtmodul angeordneten Messschirm mit einer darauf abgebildeten resultierenden Lichtverteilung des Lichtmoduls mit einer horizontalen Helldunkelgrenze;
    Figur 8
    den Messschirm aus Figur 7 mit einer Veranschaulichung des Prinzips, wie die Helldunkelgrenze erzeugt wird;
    Figur 9
    ein erfindungsgemäßes Lichtmodul gemäß einer anderen bevorzugten Ausführungsform in einer perspektivischen Ansicht;
    Figur 10
    ein erfindungsgemäßes Lichtmodul gemäß einer weiteren bevorzugten Ausführungsform in einer Draufsicht;
    Figur 11
    das Lichtmodul aus Figur 10 in einer perspektivischen Ansicht;
    Figur 12
    ein erfindungsgemäßes Lichtmodul gemäß noch einer weiteren bevorzugten Ausführungsform in einer Draufsicht;
    Figur 13
    einen in Lichtaustrittsrichtung des Lichtmoduls in einem Abstand zu dem Lichtmodul angeordneten Messschirm mit einer darauf abgebildeten streifenförmigen resultierenden Lichtverteilung des Lichtmoduls mit vertikalen und horizontalen Helldunkelgrenzen;
    Figur 14
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 1 bis 3 des Lichtmoduls erzeugt wurden;
    Figur 15
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 4 bis 6 des Lichtmoduls erzeugt wurden;
    Figur 16
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 7 bis 9 des Lichtmoduls erzeugt wurden;
    Figur 17
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 10 und 11 des Lichtmoduls erzeugt wurden;
    Figur 18
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 12 bis 14 des Lichtmoduls erzeugt wurden;
    Figur 19
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 15 bis 17 des Lichtmoduls erzeugt wurden;
    Figur 20
    übereinander verschiedene Messschirme mit verschiedenen Lichtverteilungen, die von den Lichtquellen 18 bis 20 des Lichtmoduls erzeugt wurden;
    Figur 21
    einen Messschirm mit einer Lichtverteilung, die von der Lichtquelle 21 des Lichtmoduls erzeugt wurde;
    Figur 22
    einen Messschirm mit einer resultierenden Gesamtlichtverteilung des Lichtmoduls, wenn alle Lichtquellen 1 bis 21 aus den Figuren 14 bis 21 eingeschaltet sind;
    Figur 23
    einen Messschirm mit einer resultierenden Gesamtlichtverteilung des Lichtmoduls, wenn bis auf die Lichtquellen 13 und 14 alle Lichtquellen 1 bis 21 aus den Figuren 14 bis 21 eingeschaltet sind;
    Figur 24
    ein Lichtmodul gemäß einer weiteren bevorzugten Ausführungsform in einer perspektivischen Ansicht mit beispielhaft eingezeichneten Lichtstrahlen;
    Figur 25
    ein Lichtmodul gemäß noch einer weiteren bevorzugten Ausführungsform in einer perspektivischen Ansicht;
    Figur 26
    einen Messschirm mit einer Lichtverteilung, die von dem optischen Teilsystem #1 aus Figur 25 mit der Lichtquelle #1, einem Reflektor #1 und der Sekundäroptik des Lichtmoduls erzeugt wurde;
    Figur 27
    einen Messschirm mit einer Lichtverteilung, die von dem optischen Teilsystem #2 aus Figur 25 mit der Lichtquelle #2, einem Reflektor #2 und der Sekundäroptik des Lichtmoduls erzeugt wurde;
    Figur 28
    einen Messschirm mit einer Lichtverteilung, die von dem optischen Teilsystem #3 aus Figur 25 mit der Lichtquelle #3, einem Reflektor #3 und der Sekundäroptik des Lichtmoduls erzeugt wurde;
    Figur 29
    einen Messschirm mit einer Lichtverteilung, die von dem optischen Teilsystem #4 aus Figur 25 mit der Lichtquelle #4, einem Reflektor #4 und der Sekundäroptik des Lichtmoduls und dem optischen Teilsystem #5 aus Figur 25 mit der Lichtquelle #5, einem Reflektor #5 und der Sekundäroptik des Lichtmoduls erzeugt wurde;
    Figur 30
    einen Messschirm mit einer resultierenden Gesamtlichtverteilung des Lichtmoduls, die sich aus einer Überlagerung der Einzellichtverteilungen gemäß der Figuren 26 bis 29 ergibt; und
    Figur 31
    einen Kraftfahrzeugscheinwerfer mit einem erfindungsgemäßen Lichtmodul.
  • In Figur 31 ist ein Kraftfahrzeugscheinwerfer in seiner Gesamtheit mit dem Bezugszeichen 1 bezeichnet. Der
  • Scheinwerfer 1 umfasst ein Gehäuse 2, das vorzugsweise aus Kunststoff gefertigt ist. Das Gehäuse 2 weist in Lichtaustrittsrichtung 3 eine Lichtaustrittsöffnung 4 auf, die durch eine transparente Abdeckscheibe 5 verschlossen ist. Die Abdeckscheibe 5 kann zumindest bereichsweise mit optisch wirksamen Elementen (z.B. in Form von Zylinderlinsen oder Prismen) versehen sein (sog. Streuscheibe), um eine Streuung des hindurchtretenden Lichts insbesondere in horizontaler Richtung zu bewirken. Die Abdeckscheibe 5 kann aber auch ohne optisch wirksame Elemente als klare Scheibe ausgebildet sein. Im Inneren des Gehäuses 2 ist ein erfindungsgemäßes Lichtmodul 10 angeordnet. Das Lichtmodul 10 dient zur Erzeugung einer beliebigen resultierenden Fahrt-Lichtverteilung oder eines Teils davon, bspw. eines Abblendlichts, Fernlichts, adaptiven Fahrtlichts (Stadtlicht, Landstraßenlicht, Autobahnlicht, Teilfernlicht, Markierungslicht), Nebellichts oder ähnliches.
  • Zusammen mit dem Lichtmodul 10 können in dem Gehäuse 2 auch noch andere Lichtmodule zur Erzeugung einer beliebigen Fahrt-Lichtverteilung oder eines Teils davon, oder Leuchtenmodule zur Realisierung einer beliebigen Leuchtenfunktion (z.B. Blinklicht, Positionslicht, Standlicht, Tagfahrlicht, Standlicht, Rückfahrlicht, Bremslicht oder ähnliches) angeordnet sein. Das erfindungsgemäße Lichtmodul 10 wird nachfolgend anhand der Figuren 1 bis 30 näher erläutert.
  • Ein erstes Beispiel eines Lichtmoduls 10 wird nachfolgend anhand der Figuren 1 bis 6 näher erläutert. Das Lichtmodul 10 umfasst eine erste Optik oder Primäroptik 11, die in diesem Beispiel als eine katadioptrische transparente Optik ausgebildet ist, die aus einem refraktiven Linsenteil und einem totalreflektierenden Reflexionsteil besteht. Eine solche Optik ist an sich bspw. aus der DE 10 2011 078 653 A1 bekannt, auf die hier hinsichtlich Aufbau und Funktionsweise der Optik Bezug genommen wird. Eine solche Optik 11 kann einfach z.B. durch Spritzguss aus Kunststoff wie z.B. Polycarbonat hergestellt werden. Sie ermöglicht es, das von einer Halbleiterlichtquelle 12, bspw. in Form einer oder mehrerer LEDs, bzw. deren Licht emittierender Fläche (z.B. LED-Chip) erzeugte Licht, das in einen 180°-Halbraum oberhalb einer Erstreckungsebene der Licht emittierenden Fläche abgestrahlt wird, zu sammeln und in einem ersten Schritt zu bündeln. Die reflektierenden Flächen der Optik 11 sind segmentiert oder facettiert. Durch die Segmente oder Facetten 13 werden Bilder der Licht emittierenden Fläche so abgebildet, dass in der Bildebene eine horizontale Helldunkelgrenze (vgl. bspw. die Helldunkelgrenze 31 der abgeblendeten Lichtverteilung 30 aus Figur 7) entsteht. Figur 1 zeigt die Licht formenden Segmente oder Facetten 13 im reflektierenden Teil der Optik 11. Eine Lichtaustrittsfläche 14 der ersten Optik 11 kann wellenförmig moduliert sein, um das hindurchtretende Licht in horizontaler Richtung zu verteilen und zu homogenisieren. Eine sinusförmige Modulation der Lichtaustrittsfläche 14 in Form von Wellen ist bspw. in Figur 5 gezeigt, wo die Wellen (helle Bereiche) mit dem Bezugszeichen 20 und die benachbarten Täler (dunkle Bereiche) mit dem Bezugszeichen 21 bezeichnet sind. Die Wellen 20 und Täler 21 haben eine Längserstreckung in vertikaler Richtung 22. Die wellenförmige Modulation der Lichtaustrittsfläche 14 erfolgt in einer senkrecht dazu verlaufenden horizontalen Richtung 23, d.h. die Wellen 20 und Täler 21 wechseln sich in der Richtung 23 ab. Statt der wellenförmigen Modulation kann die Austrittsfläche 14 auch eine kissenförmige Modulation aufweisen, durch die hindurchtretendes Licht nicht nur in horizontaler Richtung, sondern auch in vertikaler Richtung verteilt und homogenisiert werden kann.
  • Die zweite Optik oder Sekundäroptik 15 ist in dem in Figur 1 dargestellten Beispiel als eine Zylinderlinse ausgebildet, die vertikal fokussiert. Auch diese Optik 15 kann einfach aus Kunststoff durch Spritzgießen oder aus Glas durch Blankpressen, Gießen oder Schleifen und Polieren hergestellt werden. Die Sekundäroptik 15 weist eine deutlich größere Breite als Höhe auf. Eine optische Achse des optischen Systems umfassend die mindestens eine Lichtquelle 12, die mindestens eine Primäroptik 11 und die Sekundäroptik 15 ist mit dem Bezugszeichen 16 bezeichnet.
  • Ein Brennpunkt 17 der Primäroptik 11 ist entgegen einer Lichtaustrittsrichtung betrachtet hinter der mindestens einen Halbleiterlichtquelle 12 angeordnet. Ferner ein Brennpunkt 18 oder eine Brennlinie 18a (vgl. Figuren 9 bis 12) der Sekundäroptik 15 entgegen der Lichtaustrittsrichtung 3 betrachtet ebenfalls hinter der mindestens einen Halbleiterlichtquelle 12 angeordnet. In dem dargestellten Beispiel ist der Brennpunkt 18 der Sekundäroptik 15 hinter dem Brennpunkt 17 der Primäroptik 11 angeordnet. Selbstverständlich können die beiden Brennpunkte 17, 18 aber auch deckungsgleich oder derart angeordnet sein, dass der Brennpunkt 17 der Primäroptik 11 hinter dem Brennpunkt 18 der Sekundäroptik 15 angeordnet ist. Ferner sind in dem Beispiel beide Brennpunkte 17, 18 auf der optischen Achse 16 des optischen Systems des Lichtmoduls 10 angeordnet. Eine Brennlinie 18a der Sekundäroptik 15 würde durch die optische Achse 16 hindurch verlaufen. Das muss jedoch nicht zwangsläufig so sein. Es ist auch denkbar, dass die Brennpunkte 17, 18 versetzt zu der optischen Achse 16 angeordnet sind bzw. eine Brennlinie 18a in einem Abstand zu der optischen Achse 16 verläuft. Schließlich weist das gesamte optische System des Lichtmoduls 10, das die mindestens eine Primäroptik 11 und die Sekundäroptik 15 umfasst, einen Brennpunkt 19 oder eine Brennlinie 19a (vgl. Figuren 9 bis 12) auf, die bzw. der im Bereich der Licht emittierenden Fläche der mindestens einen Halbleiterlichtquelle 12 angeordnet ist. Vorzugsweise ist der Brennpunkt 19 des optischen Systems auf der Licht emittierenden Fläche, ganz besonders bevorzugt in deren Mitte, angeordnet bzw. verläuft die Brennlinie 19a auf der Licht emittierenden Fläche.
  • In Figur 2 ist das Lichtmodul 10 aus Figur 1 gezeigt, wobei beispielhaft Lichtstrahlen eingezeichnet wurden, die von der Halbleiterlichtquelle 12 in den 180°-Halbraum um die optische Achse 16 herum ausgesandt wurden. Diese Lichtstrahlen werden von der ersten Optik 11 kollimiert und durch die Segmente oder Facetten 13 und die Lichtaustrittsfläche 14 geformt, um schließlich durch die Sekundäroptik 15 noch in der vertikalen Ebene weiter kollimiert zu werden. Das Lichtmodul 10 weist also eine zweigeteilte Fokussierung der Lichtstrahlen auf. Die Anordnung der Optiken 11, 15 in dem Lichtmodul 10 erlaubt dessen besonders kompakte Ausgestaltung, insbesondere in Richtung der optischen Achse 16 betrachtet. Das optische System des Lichtmoduls 10 weist eine virtuelle (keine reelle) Bildebene auf, was anhand der divergierenden Lichtstrahlen zu erkennen ist. Das optische System ist nicht abbildend, d.h. es werden keine Abbilder der Lichtquelle 12 erzeugt.
  • Figur 3 zeigt einen Vertikalschnitt durch die Anordnung aus Figur 2. Gut zu erkennen ist, dass die hier gezeigte katadioptrische Primäroptik 11 einen refraktiven Linsenteil im Zentrum um die optische Achse 16 herum und einen äußeren reflektierenden Teil, der den Linsenabschnitt umgibt, mit totalreflektierenden Grenzflächen 13 aufweist. Eine Lichteintrittsfläche des reflektierenden Teils der Primäroptik 11 ist mit dem Bezugszeichen 14a und eine Lichteintrittsfläche des zentralen Linsenteils der Primäroptik 11 mit dem Bezugszeichen 14b bezeichnet. Deutlich zu erkennen sind die Brennpunkte 17, 18, 19 und deren Positionen relativ zueinander und bezüglich der Halbleiterlichtquelle 12.
  • In Figur 4 ist das optische System des Lichtmoduls 10 aus Figur 3 mit beispielhaften Lichtstrahlen gezeigt, die in der vertikalen Ebene verlaufen und ihren Ursprung in der Mitte der Licht emittierenden Fläche der Halbleiterlichtquelle 12 haben. Verlängerungen 18a' der Lichtstrahlen 18a nach hinten, d.h. entgegen der Lichtaustrittsrichtung 3, schneiden sich in dem Brennpunkt 18 der Sekundäroptik 15. Zwischen dem Brennpunkt 18 und der Halbleiterlichtquelle 12 ist der Brennpunkt 17 der Primäroptik 11 angeordnet. Der Brennpunkt 19 des Gesamtsystems ist auf der Licht emittierenden Fläche der Lichtquelle 12 angeordnet.
  • Figur 6 zeigt eine Draufsicht auf das Lichtmodul 10 aus den Figuren 1 bis 4. Es ist deutlich zu erkennen, dass in der horizontalen Ebene durch die Sekundäroptik 15 praktisch keine Kollimation der Lichtstrahlen stattfindet. Mit diesem Aufbau kann eine resultierende Lichtverteilung 30 erzeugt werden, wie sie bspw. in Figur 7 gezeigt ist. Figur 7 zeigt einen in einem Abstand (z.B. 25m) vor dem Kraftfahrzeug bzw. vor dem Lichtmodul 10 angeordneten Messschirm, auf dem eine horizontale Achse und eine vertikale Achse aufgetragen sind, die sich in einem Punkt schneiden. Die Lichtverteilung 30 bildet eine scharfe Helldunkelgrenze 31 knapp unter der 0°-Linie (vertikal) und kann daher als Abblendlichtverteilung oder als Teil davon genutzt werden. Beispielhaft sind Linien mit gleichen Beleuchtungsstärken (sog. Isoluxlinien) in der Lichtverteilung 30 eingezeichnet. Eine durchgezogene Linie für 10,0 lx ist mit dem Bezugszeichen 32, eine gestrichelte Linie für 1,0 lx mit 33 und eine gestrichpunktete Linie für 0,1 lx mit 34 bezeichnet. Für die Definition der Helldunkelgrenze 31 können verschiedene Kriterien herangezogen werden. In dem gezeigten Beispiel wurde als einfaches Kriterium die Lage der 0,1 lx Iso-Linie 34 angewandt.
  • Figur 8 zeigt, wie die Lichtverteilung 30 durch eine Überlagerung verschiedener Bilder 36 der Licht emittierenden Fläche der Lichtquelle 12 entsteht. Die unterschiedlichen Segmente oder Facetten 13 der Grenzflächen der Primäroptik 11 sind so ausgelegt, dass die jeweils oberste Ecke oder Kante des Bildes an der Linie liegt, die die Solllage der Helldunkelgrenze 31 markiert. Zu beachten ist, dass alle Bilder 36 eine rechteckige Form mit sehr unterschiedlicher Länge und Breite aufweisen, obwohl es sich bei der Lichtquelle 12 in diesem Beispiel um eine LED handelt, deren leuchtende Fläche eine quadratische Form hat. Diese Bilder 36 ergeben sich, weil die Abbildung des Systems anamorph ist, also das LED-Chip-Bild 36 in horizontaler und vertikaler Richtung unterschiedlich vergrößert wird. Die horizontale Vergrößerung ist bei dem beschriebenen System stets größer als die vertikale, weil die vertikale Brennweite des Gesamtsystems länger als die horizontale Brennweite ist.
  • Da es sich bei der zweiten Linse 15 um eine Zylinderoptik handelt, besitzt sie keinen Brennpunkt, sondern eine Brennlinie. Dadurch ist es einfach möglich, mehrere erste Optiken 11 einzusetzen, um z.B. den Lichtstrom des Gesamtsystems zu erhöhen. Hierzu müssen die zusätzlichen Optiken auf einer Linie platziert werden, die parallel zu der Brennlinie verläuft. Ein Beispiel für eine Realisierung eines solchen Systems zeigt Figur 9. Dort ist ein optisches System eines Lichtmoduls 10 umfassend drei Halbleiterlichtquellen 12, drei diesen jeweils zugeordnete Primäroptiken 11 in Form von katadioptrischen Optiken und eine Sekundäroptik 15 in Form einer Zylinderlinse dargestellt. Die Zylinderlinse umfasst eine Brenn- oder Fokuslinie 18a. Die Licht emittierenden Flächen der LEDs 12 sind auf einer Linie 19a angeordnet, die vorzugsweise parallel zu der Brennlinie 18a der Sekundäroptik 15 verläuft. Die Linie 19a entspricht einer Brennlinie des gesamten optischen Systems des Lichtmoduls 10.
  • In der nächsten beispielhaften Realisierung eines erfindungsgemäßen Lichtmoduls 10 gemäß der Figuren 10 und 11 ist die Sekundäroptik 15 in Form einer gebogenen Zylinderlinse ausgebildet, um ein ansprechendes Design der Lichtaustrittsfläche des Lichtmoduls 10 zu realisieren. Die Zylinderlinse 15 ist insbesondere in einer horizontalen Ebene gebogen. Die Krümmung der Linsenfläche im vertikalen Schnitt ist in diesem Fall konstant geblieben. Dadurch ändert sich die Brennweite der Zylinderlinse 15 im Vertikalschnitt nicht, aber die Lage und Form der Brennlinie 18a, die nun ebenfalls in der Horizontalebene gebogen ist. Falls die Lage der LEDs 12 nicht angepasst wird, um z.B. alle LEDs auf einer ebenen Platine platzieren zu können, so verändert sich für jede erste Optik 11 der Abstand zur zweiten Optik 15 auf der jeweiligen optischen Achse 16 der ersten Optik 11. Jedes optische Teilsystem aus Halbleiterlichtquelle 12, erster Optik 11 und zweiter Optik 15 erzeugt dadurch unterschiedliche horizontale und vertikale Vergrößerungen und jede erste Optik 11 muss daher unterschiedlich ausgelegt sein. Die Brennlinie 18a der Sekundäroptik 15 und die Brennlinie 19a des gesamten optischen Systems verlaufen nun nicht mehr parallel zueinander.
  • Die beschriebene Realisierung kann nachteilhaft sein, wenn jedes optische Teilsystem (mit Elementen 12, 11, 15) eine vergleichbare Lichtverteilung erzeugen soll, wie es z.B. bei pixelförmigen Lichtverteilungen für adaptive Fernlichtverteilungen (z.B. Teilfernlicht, Markierungslicht, etc.) der Fall ist. In diesem Fall ist es vorteilhaft, wenn jedes Teilsystem in horizontaler bzw. vertikaler Richtung die gleiche Vergrößerung der Bilder der Licht emittierenden Fläche der Halbleiterlichtquellen 12 liefert. Um dies zu erreichen, muss die Lage der LEDs 12 auf einer Linie 19a parallel zur Brennlinie 18a der Sekundäroptik 15 gewählt werden. Ein entsprechendes Beispiel ist in Figur 12 gezeigt.
  • Mit den zuvor beschriebenen Realisierungen der vorliegenden Erfindung wurde eine Lichtverteilung 30 mit einer horizontalen Helldunkelgrenze 31 (vgl. Figur 7) erzeugt. Generell können mit der Erfindung aber auch Lichtverteilungen mit horizontaler und/oder vertikaler oder auch beliebig geformten und/oder ausgerichteten Helldunkelgrenzen erzeugt werden, indem die Ecken der LED-Chip-Bilder entlang vorgegebener Linien positioniert werden, wobei die Linien dann die Helldunkelgrenzen der Lichtverteilung bilden. Figur 13 zeigt ein Beispiel, wie die LED-Chip-Bilder 41 verschiedener Bereiche 13 einer ersten Optik 11 positioniert werden können, um eine streifenförmige Lichtverteilung 40 mit vertikalen Helldunkelgrenzen 42 und horizontalen Helldunkelgrenzen 43 zu erzeugen.
  • Wenn mehrere LEDs 12 mit zugehöriger erster Optik 11 verwendet werden und wenn die LEDs 12 einzeln schaltbar sind, dann können adaptive Fernlichtverteilungen als resultierende Gesamtlichtverteilung des Lichtmoduls 10 realisiert werden, bei denen unterschiedliche definierte Winkelbereiche der Lichtverteilung durch verschiedene LEDs 12 ausgeleuchtet oder dunkel gelassen werden können. Die Figuren 14 bis 21 zeigen Beispiele von insgesamt 21 Einzellichtverteilungen 50, die jeweils durch eine LED 12 mit zugehöriger erster Optik 11 und der zweiten Optik 15 in Form einer Zylinderlinse generiert werden können. Figur 14 zeigt die Einzellichtverteilungen 50 von LEDs #1 bis #3, Figur 15 von LEDs #4 bis #6, Figur 16 von LEDs #7 bis #9, Figur 17 von LEDs #10 und #11, Figur 18 von LEDs #12 bis #14, Figur 19 von LEDs #15 bis #17, Figur 20 von LEDs #18 bis #20 und Figur 21 von LED #21.
  • Die Einzellichtverteilungen 50 weisen jeweils zwei vertikale Helldunkelgrenzen 51 und zwei horizontale Helldunkelgrenzen 52 auf. Dadurch wird ein definierter Winkelbereich horizontal und vertikal beleuchtet. Beispielhaft sind Linien mit gleichen Beleuchtungsstärken (sog. Isoluxlinien) in den Einzellichtverteilungen 50 eingezeichnet. Eine durchgezogene Linie für 50,0 lx ist mit dem Bezugszeichen 53, eine gestrichelte Linie für 10 lx mit 54 und eine gestrichpunktete Linie für 0,1 lx mit 55 bezeichnet. Für die Definition der Helldunkelgrenzen 51, 52 können verschiedene Kriterien herangezogen werden. In dem gezeigten Beispiel wurde als einfaches Kriterium die Lage der 0,1 lx Iso-Linie 55 angewandt. Der ausgeleuchtete Winkelbereich ist anhand dieser Definition jeweils ungefähr horizontal 3° breit und vertikal 10° hoch.
  • Wenn alle LEDs 12 gleichzeitig angeschaltet sind, so entsteht die in Figur 22 gezeigte resultierende Lichtverteilung 60, die als Fernlichtverteilung dienen kann. Beispielhaft sind Linien mit gleichen Beleuchtungsstärken (sog. Isoluxlinien) in der Lichtverteilung 60 eingezeichnet. Eine durchgezogene Linie für 50,0 lx ist mit dem Bezugszeichen 61, eine gestrichelte Linie für 10 lx mit 62 und eine gestrichpunktete Linie für 0,1 lx mit 63 bezeichnet. Da die Einzellichtverteilungen 50 horizontal um jeweils ca. 1,5° zueinander versetzt sind, können durch Deaktivieren oder Dimmen einzelner LEDs 12 Winkelbereiche mit minimal ca. 1,5° Breite dunkel geschaltet werden. Ein Beispiel für eine Gesamtlichtverteilung 60 mit zweimal 1,5° breitem dunklem Ausblendbereich 64 zeigt Figur 23. Für die Realisierung dieser Lichtverteilung 60 müssen die LEDs #13 und #14 ausgeschaltet oder gedimmt werden (die unteren beiden Einzellichtverteilungen 50 aus Figur 18). Die Lichtverteilung 60 aus Figur 23 kann als ein Teilfernlicht genutzt werden. Dabei verfügt das Kraftfahrzeug, in dem Scheinwerfer 1 mit dem erfindungsgemäßen Lichtmodul 10 installiert sind, über geeignete Mittel zum Detektieren von anderen Verkehrsteilnehmern vor dem Kraftfahrzeug. Diese Mittel umfassen bspw. eine Videokamera zum Aufnehmen von Bildern des Bereichs vor dem Kraftfahrzeug und eine Recheneinheit zur Auswertung der aufgenommenen Bilder und zur Detektion von entgegenkommen oder vorausfahrenden Fahrzeugen in einem bestimmten Bereich der Bilder. Der Bereich der Fernlichtverteilung 60 aus Figur 22, in dem andere Verkehrsteilnehmer detektiert wurden, wird durch Deaktivieren oder Dimmen bestimmter LEDs 12 gezielt abgedunkelt oder ausgeblendet, um ein Blenden der Verkehrsteilnehmer zu verhindern. Gleichzeitig kann in allen anderen Bereichen der Lichtverteilung 60 das Fernlicht eingeschaltet bleiben, um eine gute Sicht des Fahrers des Kraftfahrzeugs sicherzustellen. Der Ausblendbereich 64 kann sich dynamisch ändern, bspw. wenn ein entgegenkommender anderer Verkehrsteilnehmer an dem Kraftfahrzeug mit dem Lichtmodul 10 vorbeifährt oder wenn ein vorausfahrender Verkehrsteilnehmer auf einer kurvigen Straße vor dem Kraftfahrzeug fährt. Ferner ist es denkbar, auch mehrere Ausblendbereiche 64 in der Fernlichtverteilung 60 vorzusehen, falls dies erforderlich sein sollte. Außerdem kann die Breite des Ausblendbereichs 64 individuell an die aktuelle Verkehrssituation angepasst werden.
  • Um die erzeugte Lichtverteilung 60 noch flexibler steuern zu können, ist es sinnvoll, den Lichtstrom über eine variable Leistungsversorgung steuern zu können. Typischerweise werden die LEDs 12 dazu pulsweitenmoduliert bestromt. Durch Änderung der Pulsweite kann der Lichtstrom gesteuert werden.
  • In einem anderen Ausführungsbeispiel, das in Figur 24 gezeigt ist, ist die erste Optik 11 als Reflektor realisiert und die zweite Optik 15 als Zylinderlinse. Vorteilhaft ist auch hier die Realisierung mit mehreren LEDs 12, zugehörigen Reflektoren 11 und einer Zylinderlinse 15, wie in Figur 25 gezeigt. Falls die fünf Teilsysteme aus LED 12, Reflektor 11 und gemeinsam genutzter Zylinderoptik 15 unterschiedliche Lichtverteilungen 70 erzeugen, kann daraus z.B. eine Abblendlichtverteilung 80 mit asymmetrischer (abgeknickter) Helldunkelgrenze 81 erzeugt werden, wie sie bspw. in Figur 30 gezeigt ist. Die Figuren 26 bis 29 zeigen Einzellichtverteilungen 70, die von den Teilsystemen #1 bis #5, jeweils umfassend eine LED 12, einen Reflektor 11 und die Zylinderlinse 15, erzeugt werden. Teilsysteme #1 bis #3 erzeugen bspw. Lichtverteilungen 70 mit einer horizontalen Helldunkelgrenze 71, die knapp unterhalb vertikal 0° liegt (vgl. Figuren 26 bis 28). Beispielhaft sind Linien mit gleichen Beleuchtungsstärken (sog. Isoluxlinien) in den Einzellichtverteilungen 70 eingezeichnet. Eine durchgezogene Linie für 4,0 lx ist mit dem Bezugszeichen 72, eine gestrichelte Linie für 0,4 lx mit 73 und eine gestrichpunktete Linie für 0,1 lx mit 74 bezeichnet. Für die Definition der Helldunkelgrenze 71 können verschiedene Kriterien herangezogen werden. In dem gezeigten Beispiel wurde als einfaches Kriterium die Lage der 0,1 lx Iso-Linie 74 angewandt. In Figur 26 ist die durch das Teilsystem #1 erzeugte Einzellichtverteilung 70, in Figur 27 die durch das Teilsystem #2 und in Figur 28 die durch das Teilsystem #3 erzeugte Einzellichtverteilung 70 gezeigt.
  • In Figur 29 ist eine Einzellichtverteilung 70 gezeigt, wie sie jeweils von dem Teilsystem #4 (LED #4, Reflektor #4 und Zylinderlinse 15) und von dem Teilsystem #5 (LED #5, Reflektor #5 und Zylinderlinse 15) des Lichtmoduls 10 aus Figur 25 erzeugt wird. Die Lichtverteilung 70 weist eine in etwa vom Zentrum (Schnittpunkt der Horizontalen und der Vertikalen) aus nach rechts oben (zur eigenen Verkehrsseite hin) schräg ansteigende Helldunkelgrenze 71a auf. Die Beleuchtungsstärkeverteilung in den Lichtverteilungen 70 wird durch Iso-Linien verdeutlicht. Eine durchgezogene Linie für 4,0 lx ist mit dem Bezugszeichen 72, eine gestrichelte Linie für 1,0 lx mit 73a und eine gestrichpunktete Linie für 0,1 lx mit 74 bezeichnet. Selbstverständlich sind diese Werte für die Beleuchtungsstärken nur beispielhaft gewählt und können in der Praxis von den hier genannten Werten abweichen.
  • Figur 30 zeigt die resultierende Gesamtlichtverteilung 80 des Lichtmoduls 10 in Form einer Abblendlichtverteilung mit einer asymmetrischen Helldunkelgrenze 81. Die Lichtverteilung 80 ergibt sich aus einer Überlagerung der Einzellichtverteilungen 70 der LEDs #1 bis #5 aus den Figuren 26 bis 29. Die helldunkelgrenze 81 der Lichtverteilung 80 weist einen in etwa vom Zentrum (Schnittpunkt der Horizontalen und der Vertikalen) aus nach rechts oben (zur eigenen Verkehrsseite hin) schräg ansteigenden Abschnitt 81a auf. Die Beleuchtungsstärkeverteilung in den Lichtverteilungen 80 wird durch Iso-Linien verdeutlicht. Eine durchgezogene Linie für 10,0 lx ist mit dem Bezugszeichen 82, eine gestrichelte Linie für 1,0 lx mit 83a und eine gestrichpunktete Linie für 0,1 lx mit 84 bezeichnet.
  • Eine weitere Variante ist, dass jeweils mehrere LEDs 12 eine erste Optik 11 nutzen. Auf diese Weise kann z.B. die Zahl der erzeugten Lichtbereiche ("Pixel") einer adaptiven Fernlichtverteilung erhöht werden, ohne dass die Anzahl der ersten Optiken 11 erhöht werden muss.

Claims (13)

  1. Lichtmodul (10) für einen Kraftfahrzeugscheinwerfer (1), umfassend:
    - mindestens eine Halbleiterlichtquelle (12) mit einer Licht emittierenden Fläche zum Abstrahlen von Licht,
    - mindestens eine Primäroptik (11) zum Bündeln zumindest eines Teils des abgestrahlten Lichts, wobei die Primäroptik (11) einen Brennpunkt (17) aufweist, der entgegen einer Lichtaustrittsrichtung (3) betrachtet hinter der mindestens einen Halbleiterlichtquelle (12) angeordnet ist,
    - eine Sekundäroptik (15) zur weiteren Bündelung des von der mindestens einen Primäroptik (11) bereits gebündelten Lichts und zur Erzeugung einer resultierenden Lichtverteilung (30; 40; 60; 80) des Lichtmoduls (10) auf einer Fahrbahn vor dem Kraftfahrzeug, wobei die Sekundäroptik (15) einen Brennpunkt (18) oder eine Brennlinie (18a) aufweist, der bzw. die entgegen einer Lichtaustrittsrichtung (3) betrachtet hinter der mindestens einen Halbleiterlichtquelle (12) angeordnet ist, und wobei
    - das gesamte optische System des Lichtmoduls (10), das die mindestens eine Primäroptik (11) und die Sekundäroptik (15) umfasst, einen Brennpunkt (19) oder eine Brennlinie (19a) aufweist, der bzw. die im Bereich der Licht emittierenden Fläche der mindestens einen Halbleiterlichtquelle (12) angeordnet ist, dadurch gekennzeichnet, dass die Primäroptik (11) als eine katadioptrische Optik ausgebildet ist, die eine maximale Mittendicke kleiner 20 mm aufweist und die unterschiedlich geformte Bereiche (13) in Form von reflektierenden Segmenten oder Facetten aufweist, wobei jeder dieser Bereiche (13) Licht von der mindestens einen Halbleiterlichtquelle (12) zur Erzeugung eines Teilbereichs (36; 41; 50; 70) der Lichtverteilung (30; 40; 60; 80) reflektiert und sich die resultierende Lichtverteilung (30; 40; 60; 80) des Lichtmoduls durch eine Überlagerung der Teilbereiche (36; 41; 50; 70) der Lichtverteilung (30; 40; 60; 80) von den verschiedenen Bereichen (13) der Primäroptik (11) ergibt, wobei die Sekundäroptik eine maximale Mittendicke kleiner 20 mm aufweist und die Lichtaustrittsfläche des optischen Systems des Lichtmoduls bildet und im Gegensatz zur ersten Optik keine sichtbaren unterschiedlichen Bereiche zur Lichtformung aufweist, und wobei alle Optiken astigmatische Optiken sind, die in einer vertikalen und einer horizontalen Ebene deutlich unterschiedliche Brennweiten aufweisen.
  2. Lichtmodul (10) nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Primäroptik (11) als eine Vorsatzoptik aus einem transparenten Material ausgebildet ist, die mindestens eine Lichteintrittsfläche, mehrere totalreflektierende Grenzflächen und mindestens eine Lichtaustrittsfläche (14) aufweist und die das Licht von der mindestens einen Halbleiterlichtquelle (12) durch Brechung beim Eintritt in die Vorsatzoptik und/oder beim Austritt aus der Vorsatzoptik und durch interne Totalreflexion an den Grenzflächen bündelt.
  3. Lichtmodul (10) nach Anspruch 2, dadurch gekennzeichnet, dass mindestens eine der Lichtaustrittsflächen (14) der mindestens einen Primäroptik (11) eine wellen- oder kissenförmige Modulation aufweist.
  4. Lichtmodul (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Sekundäroptik (15) derart ausgebildet ist, dass sie das hindurchtretende Licht in einer ersten, eine optische Achse (16) des optischen Systems des Lichtmoduls (10) umfassenden Ebene stärker bündelt als in einer zweiten, die optische Achse (16) des optischen Systems des Lichtmoduls (10) umfassenden Ebene, die senkrecht zu der ersten Ebene verläuft.
  5. Lichtmodul (10) nach Anspruch 4, dadurch gekennzeichnet, dass die Sekundäroptik (15) in der ersten Ebene eine deutlich geringere Erstreckung aufweist als in der zweiten Ebene.
  6. Lichtmodul (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Sekundäroptik (15) als eine Zylinderlinse ausgebildet ist, deren Zylinderachse (18a) in der zweiten Ebene oder parallel dazu verläuft.
  7. Lichtmodul (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich die resultierende Lichtverteilung (30; 40; 60; 80) des Lichtmoduls (10) nach dem Durchtritt durch die Sekundäroptik (15) durch eine Überlagerung der Teilbereiche (36; 41; 50; 70) der Lichtverteilung (30; 40; 60; 80) von den verschiedenen Bereichen (13) der Primäroptik (11) ergibt.
  8. Lichtmodul (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens eine Primäroptik (11) und die Sekundäroptik (15) bezüglich Anordnung und Ausgestaltung derart aufeinander abgestimmt sind, dass die resultierende Lichtverteilung des Lichtmoduls (10) eine abgeblendete Lichtverteilung (30) in Form einer Abblendlicht- oder Nebellichtverteilung mit einer horizontalen Helldunkelgrenze (31) oder eine streifenförmige Lichtverteilung (40) mit vertikalen und horizontalen Helldunkelgrenzen (41, 42) oder eine Teilfernlichtverteilung (60; 80) mit vertikalen und horizontalen Helldunkelgrenzen ist.
  9. Lichtmodul (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Lichtmodul (10) mehrere Halbleiterlichtquellen (12) aufweist, deren Licht emittierende Flächen auf einer Linie (19a) bzw. in einer Ebene angeordnet sind.
  10. Lichtmodul (10) nach Anspruch 9, dadurch gekennzeichnet, dass die Linie (19a) bzw. die Ebene, auf der die Licht emittierenden Flächen der Halbleiterlichtquellen (12) angeordnet sind, parallel zu einer Brennlinie (18a) der Sekundäroptik (15) verläuft.
  11. Lichtmodul (10) nach Anspruch 9, dadurch gekennzeichnet, dass die Linie (19a) bzw. die Ebene, auf der die Licht emittierenden Flächen der Halbleiterlichtquellen (12) angeordnet sind, gebogen ist.
  12. Lichtmodul (10) nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass das Lichtmodul (10) mehrere Halbleiterlichtquellen (12) aufweist, die einzeln ein- und ausschaltbar und dimmbar sind.
  13. Lichtmodul (10) nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass mindestens zwei der Halbleiterlichtquellen (12) Licht zur Erzeugung unterschiedlicher Lichtverteilungen aussenden und zum Umschalten zwischen den Lichtverteilungen die Halbleiterlichtquellen (12) gezielt ein- oder ausgeschaltet oder gedimmt werden.
EP17190034.3A 2016-09-26 2017-09-08 Lichtmodul für einen kraftfahrzeugscheinwerfer Active EP3301350B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016118152.8A DE102016118152A1 (de) 2016-09-26 2016-09-26 Lichtmodul für einen Kraftfahrzeugscheinwerfer

Publications (2)

Publication Number Publication Date
EP3301350A1 EP3301350A1 (de) 2018-04-04
EP3301350B1 true EP3301350B1 (de) 2022-02-23

Family

ID=59829256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17190034.3A Active EP3301350B1 (de) 2016-09-26 2017-09-08 Lichtmodul für einen kraftfahrzeugscheinwerfer

Country Status (2)

Country Link
EP (1) EP3301350B1 (de)
DE (1) DE102016118152A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3550203B1 (de) * 2018-04-04 2022-12-21 ZKW Group GmbH Lichtmodul für eine gepfeilte kfz-beleuchtungsvorrichtung
FR3084728B1 (fr) * 2018-07-31 2021-03-19 Valeo Vision Module lumineux imageant la surface eclairee d'un collecteur
CN212746315U (zh) * 2020-07-02 2021-03-19 华域视觉科技(上海)有限公司 透镜单元、辅助近光模组、透镜、近光照明模组和车辆
DE102021124722A1 (de) 2021-09-24 2023-03-30 Bartenbach Holding Gmbh Strahler
EP4368878A1 (de) * 2022-11-08 2024-05-15 Hella Autotechnik Nova, s.r.o. Scheinwerfer für kraftfahrzeuge
CN116221647B (zh) * 2023-05-08 2023-07-28 常州星宇车灯股份有限公司 车灯远光照明***、照明模组及车辆

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772111B1 (fr) * 1997-12-05 2000-02-25 Valeo Vision Projecteur a reflecteur hyperbolique et bloc optique comportant un tel projecteur
JP4391870B2 (ja) 2004-04-02 2009-12-24 株式会社小糸製作所 車両用照明灯具
JP4752626B2 (ja) * 2006-06-01 2011-08-17 市光工業株式会社 車両用灯具
DE102008027320B4 (de) 2008-06-07 2024-05-23 HELLA GmbH & Co. KGaA Scheinwerfer für Fahrzeuge
DE102011078653B4 (de) 2011-07-05 2013-12-12 Automotive Lighting Reutlingen Gmbh Vorsatzoptik zur Bündelung von ausgesandtem Licht mindestens einer Halbleiterlichtquelle
AT512711B1 (de) * 2012-03-21 2014-08-15 Zizala Lichtsysteme Gmbh Lichtmodul für ein Kraftfahrzeug und Kraftfahrzeugscheinwerfer
DE102012211613A1 (de) * 2012-07-04 2014-01-09 Automotive Lighting Reutlingen Gmbh Lichtmodul
US8733992B2 (en) 2012-10-01 2014-05-27 Osram Sylvania, Inc. LED low profile linear front fog module
DE102014203335A1 (de) * 2014-02-25 2015-08-27 Automotive Lighting Reutlingen Gmbh Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul

Also Published As

Publication number Publication date
EP3301350A1 (de) 2018-04-04
DE102016118152A1 (de) 2018-03-29

Similar Documents

Publication Publication Date Title
EP3301350B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2910847B1 (de) Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul
EP2799762B1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
EP2893249B1 (de) Leuchteinheit für einen scheinwerfer
DE112013007443B4 (de) Scheinwerfer zur Verwendung in einem Fahrzeug
EP2789901B1 (de) Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung
EP2799761B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2587125B1 (de) Scheinwerferprojektionsmodul für ein Kraftfahrzeug
EP3714205B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
DE102011078653B4 (de) Vorsatzoptik zur Bündelung von ausgesandtem Licht mindestens einer Halbleiterlichtquelle
EP2505910B1 (de) Kraftfahrzeugscheinwerfer mit einer halbleiterlichtquelle
DE102014200368B4 (de) Teilfernlicht-Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
EP2846077A2 (de) Projektionsoptik zum Einsatz in einem LED-Modul eines Kraftfahrzeugscheinwerfers, sowie LED-Modul und Kraftfahrzeugscheinwerfer mit einer solchen Projektionsoptik
DE102013205487A1 (de) Kraftfahrzeugleuchte für dynamische Leuchtenfunktionen
EP2863108B1 (de) LED-Modul eines Kraftfahrzeugscheinwerfers
DE102016103288A1 (de) Leuchtenmodul insbesondere für Straßenleuchten
DE102008036845B4 (de) Beleuchtungsvorrichtung
EP2963334B1 (de) Lichtleiter-anordnung zum einsatz in einer beleuchtungseinrichtung eines kraftfahrzeugs und kraftfahrzeugbeleuchtungseinrichtung mit einer solchen lichtleiter-anordnung
EP3765781B1 (de) Lichtmodul für kraftfahrzeugscheinwerfer
DE102004032095A1 (de) Scheinwerfer für Fahrzeuge
DE602004002016T2 (de) Kfz-Scheinwerfer, der erhöht angeordnete Verkehrszeichen beleuchten kann
EP3719391B1 (de) Teilfernlichtmodul für einen kraftfahrzeugscheinwerfer
EP3870894B1 (de) Leuchteinheit für einen kfz-scheinwerfer
DE2033443A1 (de) Beleuchtungsvorrichtung, insbeson dere fur Kraftfahrzeuge
DE10310263A1 (de) LED-Scheinwerfer zur asymmetrischen Ausleuchtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181004

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/26 20180101AFI20210720BHEP

Ipc: F21S 41/265 20180101ALI20210720BHEP

Ipc: F21S 41/143 20180101ALI20210720BHEP

Ipc: F21S 41/148 20180101ALI20210720BHEP

Ipc: F21S 41/33 20180101ALI20210720BHEP

Ipc: F21V 5/00 20180101ALI20210720BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012630

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1470735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012630

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220908

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220908

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220908

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1470735

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230822

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220223