EP3295014B1 - Vorrichtung und verfahren zur abgasrückführung - Google Patents

Vorrichtung und verfahren zur abgasrückführung Download PDF

Info

Publication number
EP3295014B1
EP3295014B1 EP16721157.2A EP16721157A EP3295014B1 EP 3295014 B1 EP3295014 B1 EP 3295014B1 EP 16721157 A EP16721157 A EP 16721157A EP 3295014 B1 EP3295014 B1 EP 3295014B1
Authority
EP
European Patent Office
Prior art keywords
cooler
cooling
engine
egr
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16721157.2A
Other languages
English (en)
French (fr)
Other versions
EP3295014A1 (de
Inventor
Tobias Winter
Simon Thierfelder
Erich Eder
Thomas Stieglbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorenfabrik Hatz GmbH and Co KG
Original Assignee
Motorenfabrik Hatz GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorenfabrik Hatz GmbH and Co KG filed Critical Motorenfabrik Hatz GmbH and Co KG
Priority to PL16721157T priority Critical patent/PL3295014T3/pl
Publication of EP3295014A1 publication Critical patent/EP3295014A1/de
Application granted granted Critical
Publication of EP3295014B1 publication Critical patent/EP3295014B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/72Housings
    • F02M26/73Housings with means for heating or cooling the EGR valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps

Definitions

  • the invention relates to a device for exhaust gas recirculation (EGR), in particular in diesel engines according to the preamble of patent claim 1.
  • EGR exhaust gas recirculation
  • EGR exhaust gas recirculation
  • EGR exhaust gas recirculation
  • Known embodiments of the exhaust gas recirculation (EGR) lead within an EGR route an exhaust branched off from the engine exhaust side for returning to the fresh air path of the engine. They comprise a cooling device connected to the cooling system of the engine as an exhaust gas / coolant heat exchanger, and an EGR valve whose task is to regulate the recirculated exhaust gas amount in accordance with the map data of the engine.
  • EGR valve whose task is to regulate the recirculated exhaust gas amount in accordance with the map data of the engine.
  • diesel engines are concerned with using exhaust gas recirculation (EGR) for NOx reduction.
  • EGR exhaust gas recirculation
  • the engine should be supplied on its fresh air side as cold as possible exhaust gas to keep the process temperature as low as possible for the stated purpose. Therefore, according to a known embodiment, it is provided to arrange the EGR valve on the cold side of the heat exchanger, which, however, entails the disadvantage that the EGR valve tends to sloppy at operating points below the condensation point of the exhaust gas.
  • the EGR valve is arranged on the hot side of the heat exchanger, whereby, however, it is subjected to high thermal loads and therefore only reaches the limited service life, similar to a wear component.
  • the present invention has the object to provide an improved device of the type mentioned above, which avoids the disadvantages mentioned, in particular the EGR valve thermally relieved in favor of a longer life, and thus the requirements of an efficient EGR feedback for robust and durable industrial diesel engines is enough.
  • this object is achieved with a device according to claim 1 and further embodiments and a method according to claim 10 and further embodiments achieved.
  • the cooling device is divided into an AG precooler and a downstream AG main cooler, there is the possibility of disposing the EGR valve between the AG main and the AG main radiators, there being a valve housing for receiving the EGR Valve is provided.
  • coolant can be supplied to the AG precooler via the coolant connection of the valve housing.
  • the branched off exhaust gas is first cooled in the AG precooler and after passing through the EGR valve in the AG main cooler so that a mixing temperature promoting the reduction of NOx on the fresh air side of the engine is achieved.
  • the series connection according to the invention of AG precooler and AG main cooler also counteracts the influence of the disadvantageous cooling aging, since a drop in the cooling effect of the AG precooler is compensated by the downstream AG main cooler.
  • a drop in the cooling effect of the AG precooler is compensated by the downstream AG main cooler.
  • an increasing inlet temperature difference on the part of the AG pre-cooler results in fact a higher inlet temperature difference on the part of the AG main cooler, which thus approximately compensates for the drop in the cooling effect of the AG pre-cooler.
  • By maintaining the mixing temperature on the fresh air side of the engine eliminates the adverse fouling problem, i. Deposits in the AG cooling system do not lead within certain limits to an increase in the exhaust gas temperature after the AG main radiator, even if a certain deterioration of the heat transfer due to the cooler aging would have to be accepted in the AG precooler.
  • Both the AG precooler and the AG main cooler can advantageously be designed as cast parts, either in one-part or multi-part form.
  • the AG-precooler and the valve housing are formed as a one-piece component.
  • a manufacturing simplification results from the further variant that the AG precooler and / or the AG main cooler each have a multi-part housing.
  • heat exchanger insert parts for the exhaust preferably commercially available tube bundle heat exchangers come into question.
  • the variant may be advantageous in that a respective housing part of the pre-cooler and / or the main radiator adjoining the valve housing is formed integrally with the valve housing; As a result, two separate components can be saved and eliminates sealing flanges with Verschraubungs altogether.
  • the engine cooling water for the EGR system is taken from the engine cooling water circuit and advantageously first supplied to the valve housing. In this it is divided into several cooling water paths. One passes through the AG precooler and then the AG main cooler; another flows through the valve body, thereby cooling the EGR valve from the outside, whereafter it is supplied to the engine cooling system; another cooling water path flows through the interior of the EGR valve, where it cools its electrical components.
  • cooling water paths open again via hose lines in the engine cooling water of the engine.
  • a partial flow may e.g. passed over the oil cooler and then flow back to the radiator.
  • tube bundle heat exchanger elements are basically also heat exchangers with cast chambers for guiding the exhaust stream, the chambers are surrounded on the outside by cooling water.
  • an improvement in the heat transfer can be achieved in a simple manner by the fact that the inner casting surfaces of the heat exchangers are formed on one or both sides relatively rough, so that gas turbulence as well as water arise.
  • a first cooling water path is passed into the AG precooler and passes from there directly into the AG main cooler; the valve housing is here supplied by a separate cooling water path for the housing cooling and the internal cooling of the EGR valve.
  • the invention proposes that a coolant connection forms the coolant flow to the valve housing, that the AG precooler is connected to the valve housing and provided with a coolant outlet to the AG main radiator.
  • valve housing is provided with further coolant outlets to the engine cooling system and / or other engine-side heat exchangers.
  • the AG precooler has separate cooling ducts for cooling the exhaust gas, extending in the longitudinal direction of the AG precooler, for conducting the coolant.
  • a coolant connection forms the coolant inlet to the AG precooler, whose coolant outlet is connected directly to the AG main cooler, the coolant outlet of which is in turn connected to the engine cooling system.
  • exhaust gas recirculation method After a particularly advantageous in diesel engines exhaust gas recirculation method is provided that the exhaust branched off from the exhaust line within an EGR line in series first by an AG pre-cooler then to measure the AG-return rate and their distribution through an EGR valve and finally sent by a AG main cooler.
  • the coolant is diverted from the cooling system of the engine;
  • the cooling water diverted thereby is first passed in series through the AG precooler, then through the AG main cooler.
  • At least a subset of the diverted cooling water is through a valve housing receiving the EGR valve and / or through the Passed inside the EGR valve and possibly branched off at the outside of the EGR route existing engine side heat exchanger.
  • the cooling water conducted through the AG precooler is cooled there to a temperature well above the condensation point of the exhaust gas.
  • the exhaust gas thus passes through the EGR valve, without this being thermally overloaded or endangered by condensation.
  • the exhaust gas branched off from the exhaust manifold of the engine at 550 to 600 ° C in the AG precooler is cooled by about 200 to 250 ° C.
  • the exhaust gas cooled in the AG main radiator leaves the EGR line with an outlet temperature of not more than about 100 ° C.
  • FIG. 1 shows a schematic representation of an EGR route to an exhaust manifold 1, from which the engine exhaust gas 7 via the (not shown) exhaust system is discharged to the outside.
  • the exhaust manifold 1 has a branch 2, via which a partial exhaust stream 7a supplied to an AG precooler 3, then deflected in an EGR valve housing 4 by 90 degrees and via a downstream AG main cooler 5 as a cooled exhaust partial stream 7b the (not shown) intake manifold Motors is supplied.
  • the AG precooler 3 is formed as a one-piece casting together with the EGR valve housing 4 and connected in a sealing manner via a flange connection 4b to the AG main cooler 5, likewise designed as a casting.
  • the AG main cooler 5 is also formed in one piece; it ends with a flange 5b for connection to the intake manifold, not shown, of the engine.
  • a first cooling path 8 passes through a coolant connection 18 into the interior of the valve housing 4. There, the cooling path 8 is divided into a first cooling path 8 a, which passes through the precooler 3 and is forwarded via the coolant outlet 11 to the AG main cooler 5. Through the coolant inlet 12 of the AG main cooler 5, the cooling water heated in the precooler 3 passes via the coolant outlet 13 as indicated by arrow 8b back into the cooling system of the engine.
  • the branched off exhaust gas flow 7a the inlet temperature in the precooler 3 is about 550 to 600 ° C, is cooled in the AG precooler 3 by about 250 to 300 ° C, and then as the exhaust stream 7b with a temperature ⁇ 100 ° C from the AG main cooler 5 before it is fed to the intake manifold of the engine.
  • a partial flow 8c is branched off in the interior of the EGR valve housing 4, which serves to cool the valve housing 4.
  • a cooling jacket 22 for cooling a seat bracket 23 for receiving a valve body of the EGR valve 6.
  • a coolant outlet 19 of the cooling water partial flow 8c is fed back to the cooling system of the engine.
  • a further partial flow 8d is branched off in the interior of the valve housing 4, which flows through the interior of the EGR valve 6 for the purpose of cooling the electrical installation parts present there and is connected via a coolant outlet 20 to the cooling system of the engine.
  • FIG. 2 shows a simplified spatial representation of an embodiment according to the principle of Fig. 1 , The same components are there with the reference numerals Fig. 1 designated.
  • a hose connection 21 between the AG precooler 3 and the AG main cooler 5 is shown. Close the two AG coolers 3, 5, as in Fig. 1 recognizable at an angle of 90 degrees to each other, wherein the angle is formed by the valve housing 4.
  • AG precooler 3 is integrally connected to the elbow forming valve housing 4, advantageously formed as a one-piece casting.
  • FIG. 3 allows more details Fig. 2 recognize, namely the aforementioned cooling jacket 22 of the valve housing 4, which serves to cool the seat bracket 23, in which the valve body 24 of the EGR valve 6 is received.
  • the coolant is connected to the interior of the EGR valve 6 for the purpose of cooling the electrical fittings accommodated there.
  • These internals serve to actuate a valve stem 25, the in Fig. 3 is drawn in its closed position relative to a valve seat 27 and depending on the passage opening controls the gas flow 7a.
  • FIG. 4 shows a schematic plan view of an embodiment with split version of the AG pre-cooler 3, the AG main cooler 5 and separate version of the valve housing 4.
  • the AG main cooler 5 in two housing halves 5a and 5b differs Fig. 4 of the Fig. 1 by a direct connection of a branched from the engine cooling system coolant path 9 to a coolant port 10 of the housing part 3a of the AG precooler 3.
  • the coolant path 9 flows through the AG precooler 3 and cools a heat exchanger insert 14, for example, from a prefabricated pipe system for the passage of the exhaust gas partial stream 7a exists.
  • the AG main cooler is equipped with a similar pipe system 15, through which the partial exhaust gas stream 7a flows through and out of the AG main cooler 5 as a partial exhaust stream 7b emerges for forwarding into the fresh air manifold of the engine.
  • Fig. 4 shown and with Fig. 1 the same components provided with the same reference numerals. This also applies to the spatial representation according to Fig. 5 , which of the embodiment according to Fig. 4 equivalent.
  • Fig. 5 shows in simplified form a spatial representation of the embodiment Fig. 4 , The same components are there with the reference numerals Fig. 4 designated.
  • runners 30 are shown, which are either provided as a connection for a hose connection or provided with a closure cap.
  • Cast-on fastening eyes 28, 29 are provided as attachment points for other components.
  • Figure 6 shows a variant too Fig. 4 wherein the housing parts 3b and 5a are molded integrally with the EGR valve housing 4 for reasons of cost, whereby two individual castings and two flange seals are eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Abgasrückführung (AGR), insbesondere bei Dieselmotoren gemäß Oberbegriff von Patentanspruch 1.
  • Sie betrifft ferner ein Verfahren zur Abgasrückführung (AGR), insbesondere bei Dieselmotoren gemäß Patentanspruch 11.
  • Bekannte Ausführungsformen der Abgasrückführung (AGR) leiten innerhalb einer AGR-Strecke einen vom Motor abgasseitig abgezweigten Abgasstrang zur Rückführung in den Frischluftpfad des Motors. Sie umfassen eine an das Kühlsystem des Motors angeschlossene Kühlvorrichtung als Abgas-/Kühlmittel-Wärmetauscher, sowie ein AGR-Ventil, dessen Aufgabe darin besteht, die rückgeführte Abgasmenge in Anpassung an die Kennfelddaten des Motors zu regeln. Hierzu wird beispielhaft auf DE 10 2010 014 845 A1 verwiesen. In EP 2 378 104 A1 und DE 10 2011 001 461 A1 sind weitere ähnliche Ausführungsbeispiele beschrieben.
  • Einerseits geht es bei Dieselmotoren darum, die Abgasrückführung (AGR) zur NOx-Reduktion zu nutzen. Dem Motor soll dabei auf seiner Frischluftseite möglichst kaltes Abgas zugeführt werden, um zu dem genannten Zweck die Prozesstemperatur möglichst niedrig zu halten. Daher ist nach einer bekannten Ausführungsform vorgesehen, das AGR-Ventil auf der kalten Seite des Wärmetauschers anzuordnen, was jedoch den Nachteil mit sich bringt, dass das AGR-Ventil bei Betriebspunkten unter dem Kondensationspunkt des Abgases zur Versottung neigt.
  • Bei einer anderen bekannten Ausführungsform ist das AGR-Ventil deshalb auf der heißen Seite des Wärmetauschers angeordnet, wodurch es allerdings thermisch hoch belastet wird und daher nur die begrenzte Lebensdauer, ähnlich einem Verschleißbauteil, erreicht.
  • Hinzu kommt als weitere Problematik die sogenannte Kühleralterung (Fouling) des Wärmetauschers durch Oberflächenablagerungen, die zu einer Verschlechterung des Wärmeübergangs in der Kühlstrecke führen, was sich nachteilig auf die Wirkungsweise der AGR-Strecke auswirkt.
  • Demgegenüber liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine verbesserte Vorrichtung der eingangs genannten Art zu schaffen, welche die genannten Nachteile vermeidet, insbesondere das AGR-Ventil zu Gunsten einer längeren Lebensdauer thermisch entlastet, und damit den Anforderungen einer effizienten AGR-Rückführung für robuste und langlebige Industriedieselmotoren genügt.
  • Erfindungsgemäß wird dieses Ziel mit einer Vorrichtung gemäß Patentanspruch 1 und weiteren Ausgestaltungen sowie einem Verfahren gemäß Anspruch 10
    und weiteren Ausgestaltungen erreicht.
  • Dadurch, dass nach dem Erfindungsvorschlag die Kühlvorrichtung in einen AG-Vorkühler und einen diesem nachgeschalteten AG-Hauptkühler geteilt wird, besteht die Möglichkeit, dass AGR-Ventil zwischen AG-Vor- und AG-Hauptkühler anzuordnen, wobei dort ein Ventilgehäuse zur Aufnahme des AGR-Ventils vorgesehen ist.
  • Dabei ist die Kühlung sowohl des Ventilgehäuses, in welchem das AGR-Ventil aufgenommen ist, als auch eine Innenkühlung des AGR-Ventils unproblematisch, indem ein Kühlmittelanschluss zum AG-Vorkühler dem Ventilgehäuse des AGR-Ventils zugeordnet ist. Auf diese Weise erfolgt über das gekühlte Ventilgehäuse eine Außenkühlung des AGR-Ventils, dessen elektrische Einbauteile noch an eine gesonderte Innenkühlung angeschlossen sein können.
  • Außerdem kann über den Kühlmittelanschluss des Ventilgehäuses der AG-Vorkühler mit Kühlmittel versorgt werden.
  • Das abgezweigte Abgas wird zuerst im AG-Vorkühler und nach seinem Durchtritt durch das AGR-Ventil im AG-Hauptkühler abgekühlt, so dass eine die NOx-Reduktion fördernde Mischtemperatur auf der Frischluftseite des Motors erreicht wird. Dadurch, dass der AG-Hauptkühler dem AGR-Ventil nachgeschaltet ist besteht keine Gefahr einer Versottung des AGR-Ventils durch niedrige Temperaturen des rückgeführten Abgases.
  • Durch die erfindungsgemäße Reihenschaltung von AG-Vorkühler und AG-Hauptkühler wird ferner dem Einfluss der nachteiligen Kühlalterung entgegengewirkt, da ein Abfall der Kühlwirkung des AG-Vorkühlers durch den nachgeschalteten AG-Hauptkühler kompensiert wird. Im Falle einer ansteigenden Eintrittstemperaturdifferenz auf Seiten des AG-Vorkühlers ergibt sich nämlich auch eine höhere Eintrittstemperaturdifferenz auf Seiten des AG-Hauptkühlers, der damit den Abfall der Kühlwirkung des AG-Vorkühlers etwa ausgleicht. Durch die Aufrechterhaltung der Mischtemperatur auf der Frischluftseite des Motors entfällt damit die nachteilige Fouling-Problematik, d.h. Ablagerungen im AG-Kühlsystem führen in gewissen Grenzen nicht zu einer Erhöhung der Abgastemperatur nach dem AG-Hauptkühler, selbst wenn im AG-Vorkühler eine gewisse Verschlechterung des Wärmeübergangs durch Kühleralterung hinzunehmen wäre.
  • Sowohl der AG-Vorkühler als auch der AG-Hauptkühler können vorteilhaft als Gussteile ausgebildet sein, entweder in einteiliger oder mehrteiliger Form.
  • Dabei kann erfindungsgemäß vorgesehen sein, dass der AG-Vorkühler und das Ventilgehäuse als einteiliges Bauteil ausgebildet sind.
  • Eine Herstellungsvereinfachung ergibt sich durch die weitere Variante, dass der AG-Vorkühler und/oder der AG-Hauptkühler jeweils ein mehrteiliges Gehäuse aufweisen. Damit verbindet sich die vorteilhafte Möglichkeit, dass in die Kühlergehäuse jeweils ein vorgefertigtes Wärmetauscher-Einsatzteil eingebaut werden kann und dass auf diese Weise der AG-Vorkühler und der AG-Hauptkühler mit gleichen Wärmetauscher-Einsatzteilen ausgestattet werden können. Als Wärmetauscher-Einsatzteile für das Abgas kommen bevorzugt handelsübliche Rohrbündel-Wärmetauscher in Frage.
  • In diesem Zusammenhang kann die Variante vorteilhaft sein, dass jeweils ein an das Ventilgehäuse anschließender Gehäuseteil des Vorkühlers und/oder des Hauptkühlers einteilig mit dem Ventilgehäuse ausgebildet ist; dadurch können zwei gesonderte Bauteile eingespart werden und es entfallen Dichtflansche mit Verschraubungsteilen.
  • Bei einer ersten Ausführungsvariante wird das Motorkühlwasser für das AGR-System dem Motorkühlwasserkreislauf entnommen und vorteilhaft zuerst dem Ventilgehäuse zugeführt. In diesem wird es in mehrere Kühlwasserpfade geteilt. Einer davon durchläuft den AG-Vorkühler und danach den AG-Hauptkühler; ein weiterer strömt durch das Ventilgehäuse und kühlt dabei das AGR-Ventil von außen, wonach er dem Motorkühlsystem zugeführt wird; ein weiterer Kühlwasserpfad durchströmt das Innere des AGR-Ventils, wo es dessen elektrische Komponenten kühlt.
  • Letztlich münden alle Kühlwasserpfade wieder über Schlauchleitungen in das Motorkühlwasser des Motors. Ein Teilstrom kann z.B. über den Ölkühler geleitet und dann zurück zum Motorkühler fließen.
  • Neben den bekannten Rohrbündelwärmetauscher-Elementen eignen sich grundsätzlich auch Wärmetauscher mit gegossenen Kammern zur Leitung des Abgasstroms, wobei die Kammern außenseitig von Kühlwasser umströmt werden. Dabei lässt sich auf einfache Weise eine Verbesserung des Wärmeübergangs dadurch erzielen, dass die inneren Gussoberflächen der Wärmetauscher ein- oder beidseitig verhältnismäßig rau ausgebildet sind, so dass gas- wie auch wasserseitig Strömungsturbulenzen entstehen.
  • Bei einer weiteren Ausführungsvariante wird ein erster Kühlwasserpfad in den AG-Vorkühler geleitet und gelangt von dort direkt in den AG-Hauptkühler; das Ventilgehäuse wird hier durch einen gesonderten Kühlwasserpfad für die Gehäusekühlung und die Innenkühlung des AGR-Ventils versorgt.
  • Zur Verwirklichung vorstehender Ausführungsvarianten wird erfindungsgemäß vorgeschlagen, dass ein Kühlmittelanschluss den Kühlmittelzufluss zum Ventilgehäuse bildet, dass der AG-Vorkühler an das Ventilgehäuse angeschlossen und mit einem Kühlmittelabfluss zum AG-Hauptkühler versehen ist.
  • Ferner wird vorgeschlagen, dass das Ventilgehäuse mit weiteren Kühlmittelabflüssen zum Motorkühlsystem und/oder anderen motorseitigen Wärmetauschern versehen ist.
  • Schließlich wird vorgeschlagen, dass der AG-Vorkühler zur Leitung des Kühlmittels getrennte, in Längsrichtung des AG-Vorkühlers erstreckte Kühlkanäle zur Kühlung des Abgases im Gegenstrom aufweist.
  • Nach einer weiteren Ausführungsform ist vorgesehen, dass ein Kühlmittelanschluss den Kühlmittelzufluss zum AG-Vorkühler bildet, dessen Kühlmittelabfluss direkt mit dem AG-Hauptkühler verbunden ist, dessen Kühlmittelabfluss wiederum mit dem Motorkühlsystem verbunden ist.
  • Nach einem insbesondere bei Dieselmotoren vorteilhaften Verfahren zur Abgasrückführung ist vorgesehen, dass das aus dem Abgasstrang des Motors abgezweigte Abgas innerhalb einer AGR-Strecke in Serie zuerst durch einen AG-Vorkühler dann zur Bemessung der AG-Rückführrate und deren Verteilung durch ein AGR-Ventil und schließlich durch einen AG-Hauptkühler geschickt wird.
  • Das Kühlmittel wird jeweils aus dem Kühlsystem des Motors abgezweigt; das dabei abgezweigte Kühlwasser wird in Serie zuerst durch den AG-Vorkühler, danach durch den AG-Hauptkühler geleitet. Wenigstens eine Teilmenge des abgezweigten Kühlwassers wird durch ein das AGR-Ventil aufnehmendes Ventilgehäuse und/oder durch das Innere des AGR-Ventils geleitet und ggf. an außerhalb der AGR-Strecke vorhandene motorseitige Wärmetauscher abgezweigt.
  • Das durch den AG-Vorkühler geleitete Kühlwasser wird dort auf eine Temperatur deutlich über dem Kondensationspunkt des Abgases abgekühlt. Das Abgas gelangt somit durch das AGR-Ventil, ohne dass dieses thermisch überlastet oder durch Kondensation gefährdet wird. Dabei wird das aus dem Abgaskrümmer des Motors mit 550 bis 600°C abgezweigte Abgas im AG-Vorkühler um ca. 200 bis 250°C abgekühlt. Das im AG-Hauptkühler abgekühlte Abgas verlässt die AGR-Strecke mit einer Austrittstemperatur von nicht mehr als etwa 100°C.
  • Durch die erfindungsgemäße Reihenschaltung von AG-Vorkühler und AG-Hauptkühler und der Anordnung des AGR-Ventils zwischen den beiden Kühlern wird das AGR-Ventil einerseits thermisch entlastet; andererseits ist die Abgastemperatur im AGR-Ventil noch deutlich über der Kondensationstemperatur des Abgases, so dass es im AGR-Ventil zu keiner Versottung kommt wie dies bei bekannten AGR-Strecken mit eingangs angeordneten AGR-Ventilen zu beobachten ist.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung erläutert. Es zeigt
    • Fig. 1 in schematischer Darstellung eine AGR-Strecke mit jeweils einteilig ausgebildeten AG-Vorkühler und AG-Hauptkühler,
    • Fig. 2 eine raumliche Darstellung einer Ausführungsform gemäß Fig. 1 in perspektivischer Außenansicht,
    • Fig. 3 die Ausführungsform gemäß Fig. 2, teilweise geschnitten,
    • Fig. 4 eine schematische Darstellung einer AGR-Strecke mit jeweils in geteilter Form ausgebildeten AG-Vorkühler und AG-Hauptkühler,
    • Fig. 5 eine räumliche Darstellung einer Ausführungsform gemäß Fig. 4 in perspektivischer Außenansicht und.
    • Fig. 6 in schematischer Darstellung eine Ausführungsvariante zu Fig. 4
  • Figur 1 zeigt in schematischer Darstellung eine AGR-Strecke nach einem Abgaskrümmer 1, aus welchem das Motorabgas 7 über das (nicht gezeigte) Abgassystem nach Außen abgeleitet wird. Der Abgaskrümmer 1 besitzt eine Abzweigung 2, über welche ein Abgasteilstrom 7a einem AG-Vorkühler 3 zugeführt, danach in einem AGR-Ventilgehäuse 4 um 90 Grad umgelenkt und über einen nachgeschalteten AG-Hauptkühler 5 als abgekühlter Abgasteilstrom 7b dem (nicht gezeichneten) Ansaugkrümmer des Motors zugeführt wird.
  • Der AG-Vorkühler 3 ist als einteiliges Gussteil zusammen mit dem AGR-Ventilgehäuse 4 ausgebildet und über eine Flanschverbindung 4b mit dem ebenfalls als Gussteil ausgebildeten AG-Hauptkühler 5 dichtend verbunden. Der AG-Hauptkühler 5 ist ebenfalls einteilig ausgebildet; er endet mit einem Flansch 5b zur Verbindung mit dem nicht gezeigten Ansaugkrümmer des Motors.
  • Mit dunklen Pfeilen sind verschieden Kühlpfade eingezeichnet, welche alle vom Kühlsystem des Motors versorgt werden, wobei die Ausgangstemperatur des (nicht gezeichneten) Motorölkühlers etwa der Eingangstemperatur der verschiedenen Kühlpfade entspricht.
  • Gemäß Fig. 1 gelangt ein erster Kühlpfad 8 über einen Kühlmittelanschluss 18 in das Innere des Ventilgehäuses 4. Dort kommt es zur Aufteilung des Kühlpfads 8 in einen ersten Kühlpfad 8a, welcher den Vorkühler 3 durchläuft und über dessen Kühlmittelaustritt 11 an den AG-Hauptkühler 5 weitergeleitet wird. Durch den Kühlmitteleintritt 12 des AG-Hauptkühlers 5 gelangt das im Vorkühler 3 erwärmte Kühlwasser über dessen Kühlmittelaustritt 13 gemäß Pfeil 8b wieder zurück in das Kühlsystem des Motors.
  • Der abgezweigte Abgasstrom 7a, dessen Eingangstemperatur in den Vorkühler 3 ca. 550 bis 600°C beträgt, wird im AG-Vorkühler 3 um ca. 250 bis 300°C abgekühlt, um dann als Abgasstrom 7b mit einer Temperatur ≤ 100°C aus dem AG-Hauptkühler 5 auszutreten, bevor es dem Ansaugkrümmer des Motors zugeführt wird.
  • Aus dem Kühlpfad 8 wird im Inneren des AGR-Ventilgehäuses 4 ein Teilstrom 8c abgezweigt, welcher der Kühlung des Ventilgehäuses 4 dient. In dessen Inneren befindet sich ein Kühlmantel 22 (vgl. Fig. 3) zur Kühlung einer Sitzkonsole 23 für die Aufnahme eines Ventilkörpers des AGR-Ventils 6. Durch einen Kühlmittelaustritt 19 wird der Kühlwasserteilstrom 8c wieder dem Kühlsystem des Motors zugeführt.
  • Ferner wird im Inneren des Ventilgehäuses 4 ein weiterer Teilstrom 8d abgezweigt, der das Innere des AGR-Ventils 6 zwecks Kühlung der dort vorhandenen elektrischen Einbauteile durchströmt und über einen Kühlmittelaustritt 20 mit dem Kühlsystem des Motors verbunden ist.
  • Figur 2 zeigt in vereinfachter räumlicher Darstellung eine Ausführungsform nach dem Prinzip der Fig. 1. Gleiche Bauteile sind dort mit den Bezugszeichen gemäß Fig. 1 bezeichnet. Zusätzlich ist eine Schlauchverbindung 21 zwischen dem AG-Vorkühler 3 und dem AG-Hauptkühler 5 eingezeichnet. Die beiden AG-Kühler 3, 5 schließen, wie in Fig. 1 erkennbar unter einem Winkel von 90 Grad aneinander an, wobei das Winkelstück durch das Ventilgehäuse 4 gebildet ist. AG-Vorkühler 3 ist mit dem das Winkelstück bildenden Ventilgehäuse 4 einteilig verbunden, vorteilhaft als einteiliges Gussstück ausgebildet.
  • Figur 3 lässt weitere Details zu Fig. 2 erkennen, nämlich den bereits erwähnten Kühlmantel 22 des Ventilgehäuses 4, welcher zur Kühlung der Sitzkonsole 23 dient, in welcher der Ventilkörper 24 des AGR-Ventils 6 aufgenommen ist.
  • Über Bohrungen 26 im Ventilkörper 24 ist das Kühlmittel mit dem Inneren des AGR-Ventils 6 zwecks Kühlung der dort untergebrachten elektrischen Einbauten verbunden. Diese Einbauten dienen der Betätigung eines Ventilstößels 25, der in Fig. 3 in seiner Verschlussstellung gegenüber einem Ventilsitz 27 gezeichnet ist und je nach Durchgangsöffnung den Gasstrom 7a regelt.
  • Figur 4 zeigt in schematischer Draufsicht eine Ausführungsform mit geteilter Ausführung des AG-Vorkühlers 3, des AG-Hauptkühlers 5 sowie gesonderter Ausführung des Ventilgehäuses 4. Abgesehen von der geteilten Ausführung des AG-Vorkühlers 3 in zwei Gehäusehälften 3a und 3b sowie des AG-Hauptkühlers 5 in zwei Gehäusehälften 5a und 5b unterscheidet sich die Fig. 4 von der Fig. 1 durch einen direkten Anschluss eines vom Motorkühlsystem abgezweigten Kühlmittelpfads 9 an einen Kühlmittelanschluss 10 des Gehäuseteils 3a des AG-Vorkühlers 3. Der Kühlmittelpfad 9 durchströmt den AG-Vorkühler 3 und kühlt dabei einen Wärmetauschereinsatz 14, der beispielsweise aus einem vorgefertigten Rohrsystem für die Durchleitung des Abgasteilstroms 7a besteht. Der AG-Hauptkühler ist mit einem ähnlichen Rohrsystem 15 ausgestattet, durch welches der Abgasteilstrom 7a hindurch strömt und aus dem AG-Hauptkühler 5 als Abgasteilstrom 7b zur Weiterleitung in den Frischluftkrümmer des Motors austritt. Im Übrigen sind in Fig. 4 gezeigte und mit Fig. 1 gleiche Bauteile mit den gleichen Bezugszeichen versehen. Dies gilt auch für die räumliche Darstellung gemäß Fig. 5, welche der Ausführungsform gemäß Fig. 4 entspricht.
  • Fig. 5 zeigt in vereinfachter Form eine räumliche Darstellung der Ausführungsform nach Fig. 4. Gleiche Bauteile sind dort mit den Bezugszeichen gemäß Fig. 4 bezeichnet. Zusätzlich sind Angussaugen 30 gezeigt, die entweder als Anschluss für eine Schlauchverbindung vorgesehen sind oder mit einem Verschlussdeckel versehen werden. Angegossene Befestigungsaugen 28, 29 sind als Befestigungspunkte für weitere Bauteile vorgesehen.
  • Fig.6 zeigt eine Variante zu Fig. 4, wobei die Gehäuseteile 3b und 5a aus Kostengründen einstückig mit dem AGR-Ventilgehäuse 4 gegossen werden, wodurch zwei Einzelgussteile und zwei Flanschdichtungen wegfallen.

Claims (14)

  1. Vorrichtung zur Abgasrückführung (AGR), insbesondere bei Dieselmotoren, aus dem Abgasstrang in den Frischluftpfad des Motors, wobei innerhalb einer AGR-Strecke eine an das Kühlsystem des Motors angeschlossene Kühlvorrichtung als Abgas(AG)-Kühlmittel-Wärmetauscher vorgesehen ist, dem ein an ein Kühlmittel angeschlossenes AGR-Ventil (6) zur Bemessung der AG-Rückführrate zugeordnet ist, und wobei die Kühlvorrichtung einen AG-Vorkühler (3) und einen diesem nachgeschalteten AG-Hauptkühler (5) umfasst,
    dadurch gekennzeichnet,
    dass das AGR-Ventil (6) in ein zwischen AG-Vor- und AG-Hauptkühler angeordnetes Ventilgehäuse (4) eingesetzt ist,
    dass das Ventilgehäuse (4) zur Aussenkühlung des AGR-Ventils (6) an einen gesonderten Kühlpfad (8c) angeschlossen ist, und
    dass ein weiterer Kühlpfad (8d) zur Kühlung der elektrischen Komponenten im Inneren des AGR-Ventils (6) vorgesehen ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der AG-Vorkühler (3) und das Ventilgehäuse (4) als einteiliges Bauteil ausgebildet sind.
  3. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der AG-Vorkühler (3) und/oder der AG-Hauptkühler (5) jeweils ein mehrteiliges Gehäuse (3a, 3b; 5a, 5b) aufweisen.
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass jeweils ein an das Ventilgehäuse (4) anschließender Gehäuseteil (3b; 5a) des Vorkühlers (3) und/oder des Hauptkühlers (5) einteilig mit dem Ventilgehäuse (4) ausgebildet ist.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass in den Gehäusen (3a, 3b; 5a, 5b) jeweils ein Wärmetauscher-Einsatzteil in Art eines AG-Rohrbündels (14, 15) eingebaut ist.
  6. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass ein Kühlmittelanschluss (18) den Kühlmittelzufluss zum Ventilgehäuse (4) bildet, dass der AG-Vorkühler (3) an das Ventilgehäuse (4) angeschlossen und mit einem Kühlmittelabfluß (11) zum AG-Hauptkühler (5) versehen ist.
  7. Vorrichtung nach Anspruch 6,
    dadurch gekennzeichnet,
    dass das Ventilgehäuse (4) mit weiteren Kühlmittelabflüssen (19) zum Motorkühlsystem und/oder anderen motorseitigen Wärmetauschern versehen ist.
  8. Vorrichtung nach Anspruch 7,
    dadurch gekennzeichnet,
    dass der AG-Vorkühler (3) zur Leitung des Kühlmittels getrennte, in Längsrichtung des AG-Vorkühlers (3) erstreckte Kühlkanäle zur AG-Kühlung aufweist.
  9. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass ein Kühlmittelanschluss (10) den Kühlmittelzufluss zum AG-Vorkühler (3) bildet, dessen Kühlmittelabfluss (11) direkt mit dem AG-Hauptkühler (5) verbunden ist, dessen Kühlmittelabfluss (13) wiederum mit dem Motorkühlsystem verbunden ist.
  10. Verfahren zur Abgasrückführung (AGR) insbesondere bei Dieselmotoren,
    wobei das aus dem Abgasstrang des Motors abgezweigte Abgas (AG) innerhalb einer AGR-Strecke in Serie zuerst durch einen AG-Vorkühler (3) dann zur Bemessung der AG-Rückführrate und deren Verteilung durch ein AGR-Ventil (6) und schließlich durch einen AG-Hauptkühler (5) geschickt wird, wobei als Kühlmittel aus dem Kühlsystem des Motors abgezweigtes Kühlwasser in Serie zuerst durch den AG-Vorkühler (3), danach durch den AG-Hauptkühler (5) geleitet wird, und
    wobei wenigstens eine Teilmenge des abgezweigten Kühlwassers zur Aussenkühlung des AGR-Ventils (6) durch ein das AGR-Ventil (6) aufnehmendes Ventilgehäuse (4), welches zwischen dem AGR-Vorkühler und dem AGR-Hauptkühler angeordnet ist, und zusätzlich durch das Innere des AGR-Ventils (6) geleitet wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass die abgezweigte Teilmenge des Kühlwassers an außerhalb der AGR-Strecke vorhandene motorseitige Wärmetauscher abgezweigt wird.
  12. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass das Abgas aus dem Abgaskrümmer (1) des Motors abgezweigt und im AG-Vorkühler (3) etwa um 250 bis 300°C abgekühlt wird.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet,
    dass das Abgas in der AGR-Strecke auf eine Austrittstemperatur < 100°C abgekühlt wird.
  14. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass das aus dem Kühlsystem des Motors abgezweigte Kühlwasser druckseitig hinter der Kühlwasserpumpe des Motors entnommen wird.
EP16721157.2A 2015-05-09 2016-05-06 Vorrichtung und verfahren zur abgasrückführung Active EP3295014B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16721157T PL3295014T3 (pl) 2015-05-09 2016-05-06 Urządzenie i sposób do recyrkulacji spalin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015006100.3A DE102015006100A1 (de) 2015-05-09 2015-05-09 Vorrichtung und Verfahren zur Abgasrückführung
PCT/EP2016/060143 WO2016180717A1 (de) 2015-05-09 2016-05-06 Vorrichtung und verfahren zur abgasrückführung

Publications (2)

Publication Number Publication Date
EP3295014A1 EP3295014A1 (de) 2018-03-21
EP3295014B1 true EP3295014B1 (de) 2019-04-03

Family

ID=55948828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16721157.2A Active EP3295014B1 (de) 2015-05-09 2016-05-06 Vorrichtung und verfahren zur abgasrückführung

Country Status (9)

Country Link
US (1) US10422305B2 (de)
EP (1) EP3295014B1 (de)
JP (1) JP6876621B2 (de)
DE (1) DE102015006100A1 (de)
DK (1) DK3295014T3 (de)
ES (1) ES2729023T3 (de)
PL (1) PL3295014T3 (de)
TR (1) TR201908766T4 (de)
WO (1) WO2016180717A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111173656A (zh) * 2020-03-09 2020-05-19 广西玉柴机器股份有限公司 一种带加热水腔的egr阀及加热方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378104A (en) * 1938-12-20 1945-06-12 Charles L Horn Preparation of chlorhydrins and polyhydric alcohols from olefins
JP3204043B2 (ja) * 1995-06-22 2001-09-04 日産自動車株式会社 流量制御バルブ
JP3420403B2 (ja) * 1995-09-13 2003-06-23 本田技研工業株式会社 エンジンのegrバルブ支持構造
US6216677B1 (en) * 1999-09-10 2001-04-17 Eaton Corporation EGR assembly mounted on exhaust system of a heavy duty diesel engine
JP2002349360A (ja) * 2001-05-28 2002-12-04 Mitsubishi Electric Corp 排気ガス再循環バルブ
WO2003006815A1 (fr) * 2001-07-09 2003-01-23 Mitsubishi Denki Kabushiki Kaisha Dispositif annexe pour soupape de recirculation des gaz d'echappement
JP4065239B2 (ja) * 2002-01-16 2008-03-19 三菱電機株式会社 排気ガス再循環装置
JP3961312B2 (ja) * 2002-02-26 2007-08-22 株式会社デンソー 内燃機関の制御装置
JP4473116B2 (ja) * 2002-05-15 2010-06-02 ベール ゲーエムベーハー ウント コー カーゲー 切換可能な排気熱交換器
DE10232515A1 (de) * 2002-07-18 2004-04-08 Daimlerchrysler Ag Abgasrückführung einer Brennkraftmaschine
JP4285267B2 (ja) * 2004-02-19 2009-06-24 株式会社デンソー 排気ガス再循環装置
FR2875540B1 (fr) * 2004-09-20 2007-03-16 Mark Iv Systemes Moteurs Sa Module multifonctionnel, vehicule a moteur comportant un tel module et procede de fabrication d'un tel module
US7254947B2 (en) * 2005-06-10 2007-08-14 Deere & Company Vehicle cooling system
US7299771B2 (en) * 2006-01-12 2007-11-27 International Engine Intellectual Property Company, Llc Coolant valve system for internal combustion engine and method
DE102007049336B4 (de) * 2007-10-12 2019-09-05 Mahle International Gmbh Multifunktionales Modul zur Anbringung an einer Verbrennungskraftmaschine und zur Führung von Fluiden
US9551273B2 (en) * 2009-03-23 2017-01-24 Calsonic Kansei Corporation Charge air cooling system
DE102010014845A1 (de) * 2010-04-13 2011-10-13 Pierburg Gmbh Vorkühler
DE102010014842B3 (de) * 2010-04-13 2011-09-22 Pierburg Gmbh Abgaskühlmodul für eine Verbrennungskraftmaschine
DE102011001461B4 (de) * 2011-03-22 2017-01-26 Pierburg Gmbh Abgasrückführmodul für eine Verbrennungskraftmaschine
DE102013102549B4 (de) * 2013-03-13 2022-07-14 Pierburg Gmbh Abgasventilvorrichtung für eine Verbrennungskraftmaschine
US9091202B2 (en) * 2013-08-13 2015-07-28 Ford Global Technologies, Llc Methods and systems for boost control
US9309836B2 (en) * 2013-08-13 2016-04-12 Ford Global Technologies, Llc Methods and systems for boost control
KR101480633B1 (ko) * 2013-08-30 2015-01-08 현대자동차주식회사 이지알 쿨러 및 이를 이용한 이지알 쿨러 유닛
JP5904227B2 (ja) * 2014-03-24 2016-04-13 トヨタ自動車株式会社 エンジンの冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL3295014T3 (pl) 2019-09-30
EP3295014A1 (de) 2018-03-21
DE102015006100A1 (de) 2016-11-10
JP2018518627A (ja) 2018-07-12
WO2016180717A1 (de) 2016-11-17
ES2729023T3 (es) 2019-10-29
JP6876621B2 (ja) 2021-05-26
US10422305B2 (en) 2019-09-24
US20180066611A1 (en) 2018-03-08
TR201908766T4 (tr) 2019-07-22
DK3295014T3 (da) 2019-06-11

Similar Documents

Publication Publication Date Title
DE60107748T2 (de) Brennkraftmaschine mit Abgasrückführungssystem, insbesondere für Fahrzeuge
EP2025911B1 (de) Abgaskühlvorrichtung für eine Verbrennungskraftmaschine
EP2077388B1 (de) Kombination mit Zylinderkopf und Zylinderblock und Verwendung einer derartigen Kombination
EP1132609A2 (de) Abgaswärmetauscher in einer Abgasrückführungsanordnung
EP2077387B1 (de) Verfahren zur Kühlung eines rückzuführenden Abgasstroms einer Brennkraftmaschine
EP2044319A1 (de) Vorrichtung zur kühlung eines gasstroms eines verbrennungsmotors
EP2309106A1 (de) Kühlsystem
EP1857761B1 (de) Wärmeübertragungseinheit für Verbrennungskraftmaschinen
DE102013202056A1 (de) Frischluftversorgungseinrichtung einer Brennkraftmaschine
EP3073089A1 (de) Brennkraftmaschine mit abgasführung und/oder wassergekühltem ladeluftkühler
EP2863157B1 (de) Wärmeübertrager
EP3295014B1 (de) Vorrichtung und verfahren zur abgasrückführung
DE102006054225B4 (de) Abgasrückführeinrichtung
EP2077386B1 (de) Zylinderkopf mit im Zylinderkopf integriertem Abgaskrümmer
DE102015202491B4 (de) Kühlmittelmantel für einen Zylinderkopf einer Brennkraftmaschine
EP2218897B1 (de) Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
WO1999046489A1 (de) Wassergekühlte abgasleitung
DE102015206893A1 (de) Abgasrückführungsmodul mit gekühltem Abgasrückführungsventil
EP2194245A2 (de) Öl-Abgas-Kühlmodul für eine Verbrennungskraftmaschine
EP3085942B1 (de) Abgasrückführungsmodul mit austauschbarer wärmetauscherkassette
EP2103893B1 (de) Wärmetauscher für ein Kraftfahrzeug und Verfahren zu seiner Herstellung
WO2020216465A1 (de) Brennkraftmaschine mit abgasrückführung
AT521447B1 (de) Externer abgaskrümmer
DE102005036045A1 (de) Kühlvorrichtung für Verbrennungskraftmaschinen
DE102012221941A1 (de) Abgaskrümmer für eine Verbrennungskraftmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016004020

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0026280000

Ipc: F02M0026240000

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 26/32 20160101ALI20180911BHEP

Ipc: F02M 26/24 20160101AFI20180911BHEP

Ipc: F02M 26/73 20160101ALI20180911BHEP

Ipc: F01P 5/10 20060101ALI20180911BHEP

Ipc: F02M 26/30 20160101ALI20180911BHEP

Ipc: F02M 26/28 20160101ALI20180911BHEP

Ipc: F01P 3/20 20060101ALI20180911BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1116056

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004020

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190607

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2729023

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004020

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160506

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230519

Year of fee payment: 8

Ref country code: IT

Payment date: 20230531

Year of fee payment: 8

Ref country code: FR

Payment date: 20230517

Year of fee payment: 8

Ref country code: ES

Payment date: 20230621

Year of fee payment: 8

Ref country code: DK

Payment date: 20230522

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230424

Year of fee payment: 8

Ref country code: CH

Payment date: 20230602

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230428

Year of fee payment: 8

Ref country code: SE

Payment date: 20230522

Year of fee payment: 8

Ref country code: PL

Payment date: 20230421

Year of fee payment: 8

Ref country code: FI

Payment date: 20230523

Year of fee payment: 8

Ref country code: AT

Payment date: 20230516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230728

Year of fee payment: 8