EP3286412B1 - Energy storage device and thermal energy storage method - Google Patents

Energy storage device and thermal energy storage method Download PDF

Info

Publication number
EP3286412B1
EP3286412B1 EP16722795.8A EP16722795A EP3286412B1 EP 3286412 B1 EP3286412 B1 EP 3286412B1 EP 16722795 A EP16722795 A EP 16722795A EP 3286412 B1 EP3286412 B1 EP 3286412B1
Authority
EP
European Patent Office
Prior art keywords
compressor
circuit
temperature regenerator
expander
working gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP16722795.8A
Other languages
German (de)
French (fr)
Other versions
EP3286412A1 (en
Inventor
Peter Ortmann
Werner Graf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL16722795T priority Critical patent/PL3286412T3/en
Publication of EP3286412A1 publication Critical patent/EP3286412A1/en
Application granted granted Critical
Publication of EP3286412B1 publication Critical patent/EP3286412B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/006Accumulators and steam compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/005Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/06Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein the engine being of extraction or non-condensing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators

Definitions

  • the invention relates to an energy storage device for storing energy.
  • the invention also relates to a method for storing energy.
  • Renewable energy sources such as wind energy or solar energy are increasingly used for energy production.
  • it is necessary to store the energy recovered and release it again with a time delay.
  • low-cost energy storage devices are required, which cache excess energy and can deliver again with a time delay.
  • the document EP2147193B1 discloses on the one hand a device and a method for storing thermal energy.
  • the document also discloses an apparatus for storing and staggered delivery of electrical energy.
  • electrical energy is converted into heat for charging the energy storage and stored as thermal energy.
  • thermal energy is converted back into electrical energy and then released.
  • This device, or this method have the disadvantages that for their operation two separate energy storage, a heat storage and a cold storage, are required, which also still very high temperature of up to 2000 ° C or very low temperature of up to -. 80 ° C must be operated, which has the consequence that the creation, operation and maintenance of the device, including in addition to the heat or cold storage also still compressors, heat exchangers, etc., is very complicated and expensive.
  • the required compressors are also relatively large and their power density low.
  • the document DE 10 2011 088380 A1 discloses an energy storage device for storing seasonal excess electrical energy.
  • the energy storage takes place very long term.
  • the storage of stored energy via a steam cycle.
  • This device is disadvantageous in terms of efficiency and cost.
  • the object of the present invention is, in particular, to form an economically more advantageous device or a more economically advantageous method for storing and recovering electrical energy.
  • the dependent claims 2 to 10 relate to further advantageous embodiments.
  • the object is further achieved by a method comprising the features of claim 11.
  • the dependent claims 12 to 14 relate to further advantageous method steps.
  • the object is further achieved, in particular, with methods for storing thermal energy in an energy storage device comprising a high-temperature regenerator containing a solid storage material by circulating a working gas as a heat transfer medium in a closed charge cycle, wherein the working gas exchanges heat with the storage material, and wherein the working gas after the Hochtemperaturregenerator is cooled in a first recuperator, is subsequently expanded in a first expander, then preheated in a first preheater, then heated in the first recuperator, then compressed in a compressor and heated, and the thus heated working gas is fed to the high-temperature regenerator and wherein the high temperature regenerator heat energy is removed via a closed discharge circuit, wherein the high temperature regenerator either a part of the charging circuit or a part of the discharge eniklaufs forms by the Hochtemperaturregenerator fluid is switched either in the charging circuit or in the discharge circuit, so that a closed circuit is formed, in which the working gas circulates.
  • the same working gas is located in the charging circuit, in the discharge
  • the energy storage device comprises a high-temperature regenerator containing a solid storage material and a working gas as heat transfer medium in order to exchange heat between the working gas and the storage material via the working gas flowing along the storage material.
  • recuperator In heat exchangers, a distinction is made among other things between a recuperator and a regenerator.
  • a recuperator two fluids are conducted in mutually separated spaces, with heat transfer between the spaces.
  • two fluids are completely separated, for example, by means of a dividing wall, heat energy being transferred between the two fluids via the common dividing wall.
  • a regenerator is a heat exchanger in which the heat is temporarily stored in a medium during the exchange process.
  • the storage material In a regenerator, the storage material is flowed around directly in a possible embodiment of working gas. When loading the regenerator, the heat energy supplied by the working gas is released to the storage material and stored in the storage material.
  • the working gas When discharging the regenerator, heat energy is extracted from the storage material by the working gas, the storage material is cooled, and the heat energy withdrawn from the working gas is supplied to a subsequent process.
  • the working gas advantageously comes into direct contact with the storage material both during loading and during unloading.
  • the inventive energy storage device has the advantage that only one energy storage, and possibly even a hot water tank is required.
  • the energy storage device according to the invention also comprises a charging circuit, a discharging circuit, and switching means for charging the charging circuit or for discharging the discharging circuit with the high-temperature regenerator.
  • a storage material in the high temperature regenerator is a solid material such as porous refractory bricks, sand, gravel, concrete, graphite or ceramic suitable.
  • the storage material may be heated to a temperature of preferably in the range between 600-1000 ° C and if necessary also up to 1500 ° C.
  • the charging circuit and the discharge circuit are designed as a closed circuit.
  • This embodiment has the Advantage on that the working gas can also have an overpressure, which increases the power density of the compressor and turbine accordingly.
  • argon or nitrogen is used as working gas.
  • working gases but other gases are suitable.
  • the inventive energy storage device has the advantage that it has a high energy density, so that the high temperature generator can be made relatively compact.
  • the high-temperature regenerator is inexpensive to produce, since the storage material is very cheap and also environmentally friendly.
  • the inventive energy storage device also has the advantage that the Entladeniklauf can be configured differently depending on needs, for example, to generate electrical energy.
  • the energy storage device comprises an electric generator, and in a preferred embodiment also an electric motor, so that the inventive energy storage device can be charged with electrical energy, and emits electrical energy again during discharge.
  • an energy storage device is also referred to in English as “Electricity Energy Storage System by Means of Pumped Heat (ESSPH)”.
  • ESSPH Electronicity Energy Storage System by Means of Pumped Heat
  • the inventive energy storage device comprising an electric generator and an electric motor is thus able to convert electrical energy into heat energy, to store the heat energy, and to convert the stored heat energy back into electrical energy.
  • the energy storage device according to the invention can thus also be referred to as a "thermal battery" which can be charged via a charging process and discharged via an unloading process, wherein the charging process takes place with the aid of a hot gas heat pump and the discharging process preferably takes place with the aid of a gas turbine process.
  • a thermal battery for compressing and relaxing in particular rotating turbomachinery or linear piston machines are suitable.
  • the energy storage device according to the invention can be charged and discharged similarly to an electric battery inasmuch as a partial load or a partial discharge is also possible at any time. That the According to the energy storage device according to the invention underlying storage concept allows to store by an appropriate design of the sub-components power in the range between 1 to 50 MW and amounts of energy in the range between 1 to 250 MWh and deliver time-delayed again. In a particularly advantageous embodiment of the electric generator and the electric motor are designed as a single machine in the form of a motor generator.
  • the energy storage device according to the invention is outstandingly suitable for shunting electrical energy, for example, to store solar energy generated in an electrical network during the day and to dispense it at night.
  • the inventive energy storage device is also ideal for stabilizing the electrical network, in particular for frequency stabilization, provided that the compressor and expander of the energy storage device are designed as rotating machines.
  • the energy storage device is operated at constant speed and is connected to the electrical network.
  • Fig. 1 shows an energy storage device 1 for storing thermal energy, comprising a charging circuit 100 with lines 101, a discharge circuit 200 with lines 201, a Hochtemperaturregenerator 120 and switching means 400, 401 wherein the switching means 400, 401 are connected to the lines 101, 201, that Hochtemperaturregenerator 120 fluid can be connected to either the charging circuit 100 or the discharge circuit 200 so that the Hochtemperaturregenerator 120 forms part of the charging circuit 100 and a portion of the Entladenikanks 200.
  • a control device 500 is signal-conducting connected to the switching means 400, 401 and other sensors and actuators, not shown in detail, in order to control the energy storage device 1.
  • the Figures 2 and 3 show the in FIG. 1 illustrated charging circuit 100 and discharge circuit 200 in detail.
  • the Hochtemperaturregenerator 120 includes a solid storage material and a working gas A as the heat transfer medium to exchange heat between the storage material and the working gas A flowing through.
  • a solid storage material for example, porous refractory materials, sand, gravel, rock, concrete, graphite or a ceramic such as silicon carbide are suitable as a solid storage material for the high-temperature regenerator.
  • the high-temperature regenerator 120 comprises an outer shell 120a and an inner space, wherein the solid storage material is arranged and / or configured in the interior such that the storage material for heat exchange can be flowed through or flowed around by the working gas A.
  • the high temperature regenerator 120 includes, as shown in FIG FIG.
  • FIG. 1 shows a vertically running or arranged Hochtemperaturregenerator 120, wherein the working gas A when charging flows from top to bottom and flows during discharge from bottom to top.
  • FIG. 2 shows the in FIG. 1 illustrated closed charging circuit 100 in detail.
  • the closed charging circuit 100 for the working gas A comprises a first compressor 110, a first expander 140, a first recuperator 130 with a first and a second heat exchange channel 130a, 130b, the Hochtemperaturregenerator 120 and a preheater 151, wherein the first compressor 110 via a common Wave 114 is coupled to the first expander 140.
  • the designed as valves switching means 400 are connected to flow and the in FIG. 2 Switching means 401, not shown, are blocked, so that a closed charging circuit 100 is formed, in which the working gas A flows in the flow direction A1 or in the charging flow direction A1.
  • As the working gas A argon or nitrogen is preferably used.
  • the working gas A is advantageously maintained under an overpressure in order to increase the power density of the compressor 110 and the turbine 140 and to improve the heat transfer in the caloric apparatus.
  • the pressure is preferably in a range of 1 to 20 bar.
  • the working gas A is successively supplied to at least the first heat exchange channel 130a of the recuperator 130, the first expander 140, the preheater 151, the second heat exchange channel 130b of the recuperator 130, the first compressor 110 and then again the high-temperature regenerator 120, forming a closed, fluid conducting circuit.
  • the first compressor 110, the first expander 140, the first recuperator 130 and the preheater 151 form a heat pump.
  • the preheated by the preheater 151 and the recuperator 130 working gas A is supplied as input gas to the first compressor 110, compressed therein, and thereby undergoes a temperature and pressure increase.
  • the compressed working gas A is supplied to the high-temperature generator 120, therein cooled, then further cooled in the recuperator 130, and then expanded in the first expander 140, to be subsequently preheated in the preheater 151 and the recuperator 130 again.
  • the first expander 140 and the compressor 110 are disposed on the same shaft 114 so that the first expander 140 assists in driving the first compressor 110.
  • the shaft 114 is driven by a drive device, not shown, such as an electric motor, a turbine, or generally an engine.
  • FIG. 3 shows the in FIG. 1 shown closed discharge circuit 200, which is configured as a gas turbine process, in detail.
  • the working gas A the same gas as in the charging circuit 100 is used, preferably argon or nitrogen.
  • the closed discharge circuit 200 for the working gas A comprises a second compressor 210, a second expander 250, a second recuperator 230 having a first and a second heat exchange channel 230a, 230b, the Hochtemperaturregenerator 120 and a first cooler 270, the second compressor 210 via the Wave 214 is coupled to the second expander 250.
  • the designed as valves switching means 401 are connected to flow and the in FIG. 3 Switching means 400, not shown, are blocked, so that a closed discharge circuit 200 is formed, in which the working gas A flows in the flow direction A2 or in the discharge flow direction A2.
  • the discharge circuit 200 is configured such that, starting from the high-temperature regenerator 120, at least the second expander 250, the first heat exchange channel 230a of the second recuperator 230, the first cooler 270, the second compressor 210, the second heat exchange channel 230b of the recuperator 230, and then the second heat exchanger 230 High-temperature regenerator 120 are fluidly connected to one another with formation of the closed circuit fluid, wherein the working gas A flows in the discharge circuit 200 in the flow direction A2 and in Entladeströmungscardi A2.
  • the first cooler 270 is preferably cooled to ambient temperature U. Like from the Figures 2 and 3 visible flows in High temperature regenerator 120, the discharge flow direction A2 in the opposite direction to the charging flow direction A1.
  • the effluent from the Hochtemperaturregenerator 120 working gas A is expanded via the second expander 250 and thereby cooled, and is then further cooled in the second recuperator 230 and the first cooler 270 before the working gas A is compressed in the second compressor 210 and then in the second recuperator 230th is preheated to then flow back into the Hochtemperaturregenerator 120.
  • the second compressor 210 and the second expander 250 are disposed on the same shaft 214 so that the second expander 250 drives the second compressor 210.
  • the shaft 214 is taken from an unillustrated arrangement of energy, for example, a generator or a working machine may be connected to the shaft 214.
  • FIG. 4 shows a particularly advantageous embodiment of an energy storage device 1.
  • the in FIG. 4 illustrated energy storage device 1 a single, common recuperator 130.
  • the working gas A is conducted with the aid of switching means 400, 401 such as valves so switchable that a charging circuit 100 and a discharge circuit 200 is formed, similar to that in FIG. 2 or 3 illustrated charging circuit 100 ref.
  • Discharge cycle 200 with the exception that only a single, common recuperator 130 is present.
  • the energy storage device 1 in addition to the charging circuit 100 and the discharge circuit 200, also comprises a preheating system 150 for a circulating preheating fluid V.
  • the preheating system 150 comprises, in particular, a first fluid reservoir 152, in which a heated preheating fluid V1 is stored second fluid reservoir 222, in which a cooled Vormérmfluid V2 is stored, and fluid lines 155, 224 and optionally conveying means 153, 223 to circulate the preheating fluid V in the preheating system 150 and in particular the preheater 151 and the radiator 221 supply.
  • the preheating fluid V starting from the first fluid reservoir 152, the heated preheating fluid V is supplied to the preheater 151, and the then cooled Vorierrmfluid V the second fluid reservoir 222 supplied.
  • the cooled preheating fluid V of the second fluid reservoir 222 is supplied to a radiator 221, and the preheating fluid V heated thereafter is supplied to the first fluid reservoir 152.
  • Water is preferably used as preheating fluid V, since water has a high storage density with respect to heat.
  • the second fluid reservoir 222 could be configured as a fluid reservoir so that the preheat system 150 forms a closed circuit.
  • the second fluid reservoir 222 could also be designed to be open, wherein, instead of a container, a body of water, for example a lake, would be suitable for receiving the cooled preheating fluid V or for providing cooling fluid V.
  • the energy storage device 1 is used for the storage of electrical energy and for the staggered delivery of electrical energy.
  • FIG. 4 shows such a storage device for electrical energy comprising the energy storage device 1 and comprising an electric motor 170 and a generator 290.
  • the electric motor 170 and the generator 290 are combined into a single machine to form a so-called motor generator.
  • energy storage device 1 is therefore particularly low to produce because only a single motor generator 170/290, a single Hochtemperaturregenerator 120 and a single recuperator 130 is required.
  • the first compressor 110, the first expander 140, the first recuperator 130 and the preheater 151 form a heat pump in the charging circuit 100.
  • the preheated working gas A is supplied to the first compressor 110 and brought therein to the maximum pressure or to the maximum temperature in the charging circuit 100.
  • the working gas A is then passed through the Hochtemperaturregenerator 120, thereby cooled and then cooled again in the recuperator 130.
  • the working gas A is then expanded in the first expander 140 to the lowest pressure in the charging circuit 100, wherein the energy released thereby in the first expander 140 is used for the partial drive of the first compressor 110.
  • the working gas A then flows through the preheater 151 and is preheated.
  • the preheater 151 is connected to the preheating system 150 and draws the heat energy from the first fluid storage 152 for the warm preheating fluid, in the illustrated embodiment as warm water.
  • the discharge circuit 200 includes a second compressor 210 configured as an intercooled gas turbine compressor with a radiator 221 and includes the recuperator 130, the high temperature regenerator 120, the second expander 250, and the first radiator 270 that cools to ambient temperature U.
  • the radiator 221 is connected to the preheating system 150 via lines 224, with cool fluid being removed from the reservoir 222, via which conveyor 223 is supplied to the radiator 221, and the heated fluid is supplied to the accumulator 152.
  • FIG. 5 1 schematically shows an exemplary embodiment of an intercooled second compressor 210 comprising a low pressure compressor part 210b, an intercooler 221 and a high pressure compressor part 210a.
  • the working gas A which has been cooled almost to ambient temperature in the first radiator 270, enters the second compressor 210, and is further compressed.
  • Intercooler 221 reduces the required compression energy and provides approximately isothermal compression.
  • the heat dissipated by the intercooler 221 is stored in the first fluid reservoir 152, a hot water tank.
  • the working gas A is then supplied to the recuperator 130 and is heated.
  • the maximum cycle temperature is reached at the exit of the high temperature regenerator 120.
  • the second expander 250 drives both the second compressor 210 and the generator 290 via the common shaft 214.
  • the in FIG. 5 illustrated second compressor 210 with intercooler 221 has the advantage that the discharge circuit 200 has a high power density.
  • the gas turbine efficiency can be further increased by additional intercoolers 221 as the compression thereby
  • FIG. 6 shows a further arrangement in which the second radiator 221 is connected downstream of the second compressor 210.
  • FIG. 7 shows a further arrangement in which the second radiator 221 is connected upstream of the second compressor 210.
  • the two, in FIGS. 6 and 7 shown, in itself also advantageous embodiments have opposite to in FIG. 5 illustrated embodiment, a lower power density and storage efficiency.
  • FIG. 8 shows a twin-shaft gas turbine arrangement.
  • the second expander 250 comprises a high-pressure expander 250b and a low-pressure expander 250a, wherein the high-pressure expander 250a is connected to the second compressor 210 via a second shaft 214b and drives it as a free-running unit, and wherein the low-pressure expander 250a is connected to the generator via a first shaft 214a 290 is connected.
  • This arrangement has the advantage that twin-shaft systems have a partial-load performance that is better than single-shaft systems, and that standard components such as Compander, a combination of expander and compressor, can be used with economic advantage.
  • switching means 400, 401 or valves are shown, which are required in order to switch between the charging process and the discharging process or between the charging circuit 100 and the discharging circuit 200 in the illustrated energy storage device 1.
  • the energy storage device 1 has, inter alia, the advantage that, if desired, heat energy can also be dissipated directly, and heat energy can also be dissipated also at different locations and to different high temperatures.
  • the second fluid reservoir 222 may be configured, for example, as a closed container, wherein in the preheating circuit 150, an additional heat exchanger 154 is arranged, which exchanges heat with the environment.
  • FIG. 10 shows a further embodiment of an energy storage device 1, which in turn comprises a charging circuit 100 with lines 101, a discharge circuit 200 with lines 201 and a preheating circuit 150.
  • the preheating circuit 150 is not shown in detail, but is configured the same as in FIG. 9 shown.
  • the radiator 221 and the preheater 151 are fed by the preheating circuit 150.
  • the radiator 270 cools to ambient temperature U.
  • FIG. 10 show the Energy storage device 1 during the discharging process, wherein the lines 201 of the Entladeniklaufs 200 are shown in solid lines, and wherein all the valves 401 are opened and all valves 400 are closed.
  • the lines 101 of the charging circuit 100 are shown in dashed lines.
  • the illustrated energy storage device 1 is designed as a two-shaft system and comprises a single turbocharger, also referred to as Compander, which comprises the second compressor 210, the high-pressure part of the second expander 250b, and the second shaft 214b.
  • the turbocharger is either utilized as described above or used to form the first expander 140 and the first compressor 110b, with the first expander 140 and the first compressor 110b being connected via the second shaft 114b connected to each other.
  • the low pressure part of the expander 250a is directly connected to the generator 290 via the first shaft 214a.
  • the low pressure part of the first compressor 110a is connected to the engine 170 via the first shaft 114a directly or via a transmission.
  • the compressor 110a could also be connected to the engine 170 via a transmission 172, as in FIGS Figures 11c or 11d shown.
  • An advantage of in FIG. 10 shown energy storage device 1 is thus that this requires a single turbocharger or Compander, which is designed to run freely.
  • each energy storage device 1 shown two turbochargers, so that they are designed as a two-shaft arrangement.
  • FIG. 11a shows an arrangement of motor 170, first compressor 110 and first expander 140, which are arranged on a common shaft 114.
  • the first compressor 110 is configured as an axial or inline radial compressor or as a combination of axial and radial compressors.
  • the arrangement is operated at a speed of 3000 revolutions per minute, in particular to operate the motor 170 with a mains frequency of 50 Hz.
  • the arrangement may, for example, also be operated at a speed of 3600 revolutions per minute, in particular when the motor 170 is operated at a mains frequency of 60 Hz. This arrangement is particularly suitable for a large system of more than 15 MW in particular.
  • FIG. 11a shows an arrangement of motor 170, first compressor 110 and first expander 140, which are arranged on a common shaft 114.
  • the first compressor 110 is configured as an axial or inline radial compressor or as a combination of axial and radial compressors.
  • the arrangement is operated at a speed of 3000 revolutions per minute,
  • FIG. 11b shows an arrangement of gear 172, first compressor 110 and first expander 140, which are arranged on a common shaft 114.
  • the engine 170 is connected to the transmission 172.
  • the first compressor 110 is configured as an axial or in-line radial compressor or as a combination of axial and radial compressors.
  • the arrangement is operated at a speed of 3000 revolutions per minute. This arrangement is particularly suitable for a smaller system of particular less than 20 MW.
  • 11c 1 shows an arrangement of the engine 170, the first compressor 110 and the first expander 140, wherein the first compressor 110 is designed to be divided, and the low-pressure part 110a via a first shaft 114a to the motor 170 and the high-pressure part 110b via a second shaft 114b to the expander 140 connected, free-running, and in particular designed as a compander.
  • the low pressure compressor 110a is configured as an axial or radial low pressure compressor 110a.
  • the low-pressure compressor 110a is operated at a speed of 3000 revolutions per minute, and the Compander rotates freely, preferably at a speed of over 3000 revolutions per minute. This arrangement is particularly suitable for a large system of more than 15 MW in particular.
  • 11d 1 shows an arrangement of transmission 172, first compressor 110 and first expander 140, wherein the first compressor 110 is designed to be split, and one part via a first shaft 114a with the gear 172 and the other part via a second shaft 114b with the expander 140th connected, freely running and in particular forms a Compander.
  • the engine 170 is connected to the transmission 172.
  • the low-pressure compressor 110a is operated at a speed of over 3000 revolutions per minute, and the Compander rotates free-running also preferably with a speed of over 3000 revolutions per minute. This arrangement is particularly suitable for a small system of particular less than 20 MW.
  • 11e 11 shows an arrangement of transmission 172, first compressor 110, and first expander 140, with first compressor 110 and first expander 140 connected to transmission 172 to adjust their speed via transmission 172.
  • the engine 170 is connected to the transmission 172.
  • the first compressor 110 is designed as a radial compressor.
  • the transmission 172 allows the speed of the first compressor 110 and first expander 140 to match each other. Due to the inherent flexibility of the arrangement, it is suitable for a wide power range of up to 40 MW.
  • 11f 11 shows an arrangement of transmission 172, first compressor 110 and first expander 140, wherein first compressor 110 includes a low pressure compressor 110a and a high pressure compressor 110b, with low pressure compressor 110a, high pressure compressor 110b and first expander 140 connected to transmission 172 Adjust their speed via the transmission 172.
  • the low-pressure compressor 110a and the high-pressure compressor 110b are designed as radial compressors. Due to the inherent flexibility of the arrangement, it is suitable for a wide power range of up to 40 MW.
  • Figure 11g 1 shows an arrangement of the engine 170, the first compressor 110 and the first expander 140, with the first compressor 110 divided and the high-pressure compressor 110b via a first shaft 114a to the engine 170 and the low-pressure compressor 110a via a second shaft 114b to the expander 140 connected, freely running, and in particular designed as a turbocharger.
  • the high-pressure compressor 110b is designed as a piston compressor, which is preferably driven by the motor 170 without an intermediate gearbox.
  • the low pressure compressor 110a is configured as an axial or radial low pressure compressor 110a.
  • the expander 140 is configured as an axial or radial expander and forms the turbocharger together with the low-pressure compressor 110a.
  • the high-pressure compressor 110b is operated at a speed of 3000 revolutions or 1500 revolutions per minute, and the turbocharger rotates freely, preferably at a speed of more than 3000 revolutions per minute Minute.
  • This arrangement is particularly suitable for a small system of particular less than 2 MW.
  • Figure 11h shows a further embodiment of a heat pump, which in contrast to the in Figure 11g
  • a transmission 172 comprises, so that the high-pressure compressor 110b, which is configured as a piston compressor, is driven by the engine 170 via the transmission 172.
  • the motor 170 is operated at a mains frequency of 50 Hz, and in particular at a speed of 3000 revolutions or 1500 revolutions per minute, whereas the piston compressor with an increased by the gear ratio of the transmission 172 speed, for example greater 3000 revolutions per minute.
  • FIG. 11i shows components of a discharge circuit 200 in detail.
  • Figure 11i shows an arrangement with a second expander 250 which drives a transmission 172, wherein the transmission 172 drives a second compressor 210 comprising four partial compressors 210a, 210b, 210c, 210d and a generator 290.
  • the in the FIGS. 11a to 11h Arrangements could also be used for a discharge circuit 200 by replacing the motor 170 by a generator 290, the first compressor 110 by the second compressor 210, and the first expander 140 by the second expander 250.
  • the charging circuit 100 and the discharge circuit 200 is advantageously operated pressure charged.
  • the first compressor 110 and the second compressor 210 are preferably configured as a radial compressor or as an axial compressor. Particularly advantageous is the use of a gear compressor, on the transmission 172 as in FIG. 11e or 11f shown, also the expander 140 can be connected.
  • the first and / or second compressor 110, 210 could also be used as a reciprocating compressor, as in FIGS Figures 11g and 11h shown to be configured as a screw compressor.
  • the first compressor 110 and the second compressor 210 are preferably equipped without a control device. However, the first and second compressors 110, 210 could also be equipped with a flow control device.
  • the first compressor or second compressor 110, 210 of the type radial and axial the Flow control device of one or more Vorleitizern In one possible embodiment, in a first compressor 110 or a second compressor 210 of the radial and axial type, the flow control device could consist of one or more adjustable diffusers. Optionally, for the first or second radial or axial type compressor 110, 210, the flow control could consist of a combination of pilot and diffuser control.
  • the first compressor 110 is uncooled.
  • the first compressor 110 may also be equipped with a cooling device.
  • the Hochtemperaturregenerator 120 is advantageously a pressure-resistant, temperature-resistant, heat-insulated container.
  • the high-temperature regenerator 120 is advantageously equipped with a porous, temperature-resistant heat storage material 121, wherein in the free spaces of the Hochtemperaturregenerators 120, the working gas A flows.
  • the Hochtemperaturregenerators 120 is arranged vertically and is preferably flowed through during loading from top to bottom and when unloading from bottom to top.
  • the first expander 140 and the second expander 250 are preferably of the radial or axial expander type.
  • the first and second expander 140, 250 may be piston expander type.
  • the first and second expanders 140, 250 of the radial or axial type are preferably unregulated.
  • the first and second expanders 140, 250 of the radial and axial type may be equipped with a volume flow control.
  • the fluid in the preheating loop 150 is preferably water.
  • other fluids such as a mixture of water and (mono) ethylene glycol could be used.
  • the preheating loop 150 is preferably operated without pressure.
  • the preheating circuit 150 can be operated pressurized. In this case, the preheating circuit 150 is pressure-resistant.
  • the drive 170 of the charging circuit 100 is designed as an electric motor.
  • the electric motor is equipped with a frequency converter.
  • the Drive 170 of the charging circuit 100 a steam turbine.
  • the drive 170 of the charging circuit 100 is a gas turbine.
  • the drive 170 of the charging circuit is an internal combustion engine.
  • the rotating components of the charging circuit 100 are operated at a constant speed.
  • the rotating components of the charging circuit 100 are operated variable speed.
  • the load 290 of the discharge circuit 200 is configured as a generator.
  • the generator is equipped with a frequency converter.
  • the load 290 of the discharge circuit 200 is a compressor.
  • the load 290 of the discharge circuit 200 is a pump.
  • the load 290 of the unloading circuit 200 is a propeller.
  • the rotating components of the discharge circuit 200 are operated at a constant speed.
  • the rotating components of the discharge circuit 200 are operated variable speed.
  • air could also be used as the working gas, it then being necessary to ensure that the storage material in the high-temperature regenerator 120 consists of a non-combustible material.
  • a transmission 172 may include a plurality of rotating shafts. For example, this could be in FIG. 11f gearboxes 172 driven by the motor 170 also comprise more than four shafts, for example also five, six, seven or eight.
  • Such a transmission 172 has the advantage that, for example, identical compressors can be operated in parallel.
  • the two compressors 110a and 110b be configured identically, and have a common supply or a common discharge for the fluid, so that the two compressors 110a, 110b can be operated at the same speed and in parallel.
  • the transmission 172 also allows, for example, the two compressors 110a, 110b to be operated in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft eine Energiespeichervorrichtung zur Speicherung von Energie. Die Erfindung betrifft zudem ein Verfahren zur Speicherung von Energie.The invention relates to an energy storage device for storing energy. The invention also relates to a method for storing energy.

Stand der TechnikState of the art

Erneuerbare Energiequellen wie Windenergie oder Sonnenenergie werden zunehmend zur Energiegewinnung verwendet. Um eine nachhaltige und stabile Energieversorgung basierend auf erneuerbaren Energiequellen zu gewährleisten ist es erforderlich gewonnene Energie zu speichern und zeitversetzt wieder abzugeben. Hierzu sind kostengünstige Energiespeichervorrichtungen erforderlich, welche Überschussenergie zwischenspeichern und zeitverzögert wieder abgeben können.Renewable energy sources such as wind energy or solar energy are increasingly used for energy production. In order to ensure a sustainable and stable energy supply based on renewable energy sources, it is necessary to store the energy recovered and release it again with a time delay. For this purpose, low-cost energy storage devices are required, which cache excess energy and can deliver again with a time delay.

Das Dokument EP2147193B1 offenbart einerseits eine Vorrichtung sowie ein Verfahren zur Speicherung von thermischer Energie. Das Dokument offenbart zudem eine Vorrichtung zur Speicherung und zur zeitversetzten Abgabe von elektrischer Energie. Dabei wird zum Laden des Energiespeichers elektrische Energie in Wärme umgewandelt und als thermische Energie gespeichert. Beim Entladen wird die thermische Energie wieder in elektrische Energie umgesetzt und danach abgegeben. Diese Vorrichtung, beziehungsweise dieses Verfahren, weisen die Nachteile auf, dass zu deren Betrieb zwei separate Energiespeicher, ein Wärmespeicher sowie ein Kältespeicher, erforderlich sind, die zudem noch mit sehr hoher Temperatur von bis zu 2000 °C beziehungsweise sehr tiefer Temperatur von bis zu - 80°C betrieben werden müssen, was zur Folge hat, dass die Erstellung, der Betrieb sowie der Unterhalt der Vorrichtung, umfassend nebst dem Wärme- beziehungsweise Kältespeicher zudem noch Verdichter, Wärmetauscher usw., sehr aufwendig und teuer ist. Die erforderlichen Verdichter sind zudem relativ gross und deren Leistungsdichte gering.The document EP2147193B1 discloses on the one hand a device and a method for storing thermal energy. The document also discloses an apparatus for storing and staggered delivery of electrical energy. In this case, electrical energy is converted into heat for charging the energy storage and stored as thermal energy. When discharging the thermal energy is converted back into electrical energy and then released. This device, or this method, have the disadvantages that for their operation two separate energy storage, a heat storage and a cold storage, are required, which also still very high temperature of up to 2000 ° C or very low temperature of up to -. 80 ° C must be operated, which has the consequence that the creation, operation and maintenance of the device, including in addition to the heat or cold storage also still compressors, heat exchangers, etc., is very complicated and expensive. The required compressors are also relatively large and their power density low.

Das Dokument DE 10 2011 088380 A1 offenbart eine Energiespeichervorrichtung zur Speicherung saisonal anfallender elektrischer Überschussenergie. Die Energiespeicherung erfolgt sehr langfristig. Die Ausspeicherung der gespeicherten Energie erfolgt über einen Dampfkreislauf. Diese Vorrichtung ist bezüglich Wirkungsrad und bezüglich Kosten nachteilig.The document DE 10 2011 088380 A1 discloses an energy storage device for storing seasonal excess electrical energy. The energy storage takes place very long term. The storage of stored energy via a steam cycle. This device is disadvantageous in terms of efficiency and cost.

Darstellung der ErfindungPresentation of the invention

Aufgabe der vorliegenden Erfindung ist es somit, eine wirtschaftlich vorteilhaftere Energiespeichervorrichtung beziehungsweise ein wirtschaftlich vorteilhafteres Verfahren zur Energiespeicherung zu bilden.It is therefore an object of the present invention to form an economically more advantageous energy storage device or a more economically advantageous energy storage process.

Aufgabe der vorliegenden Erfindung ist es zudem insbesondere eine wirtschaftlich vorteilhaftere Vorrichtung beziehungsweise ein wirtschaftlich vorteilhafteres Verfahren zur Speicherung und Wiedergewinnung von elektrischer Energie zu bilden.In addition, the object of the present invention is, in particular, to form an economically more advantageous device or a more economically advantageous method for storing and recovering electrical energy.

Diese Aufgabe wird gelöst mit einer Vorrichtung aufweisend die Merkmale von Anspruch 1. Die abhängigen Ansprüche 2 bis 10 betreffen weitere, vorteilhafte Ausgestaltungen. Die Aufgabe wird weiter gelöst mit einem Verfahren aufweisend die Merkmale von Anspruch 11. Die abhängigen Ansprüche 12 bis 14 betreffen weitere, vorteilhafte Verfahrensschritte.This object is achieved with a device comprising the features of claim 1. The dependent claims 2 to 10 relate to further advantageous embodiments. The object is further achieved by a method comprising the features of claim 11. The dependent claims 12 to 14 relate to further advantageous method steps.

Die Aufgabe wird insbesondere gelöst mit einer Energiespeichervorrichtung zur Speicherung von Energie, umfassend:

  • einen Hochtemperaturregenerator enthaltend ein festes, insbesondere poröses Speichermaterial sowie ein Arbeitsgas als Wärmeträgermedium, um zwischen dem Speichermaterial und dem durchströmenden Arbeitsgas Wärme auszutauschen,
  • einen geschlossenen Ladekreislauf für das Arbeitsgas, umfassend einen ersten Verdichter, einen ersten Expander, einen ersten Rekuperator mit einem ersten und einem zweiten Wärmetauschkanal, den Hochtemperaturregenerator sowie einen Vorwärmer, wobei der erste Verdichter mit dem ersten Expander mittels einer Welle gekoppelt ist, und wobei der Ladekreislauf derart ausgebildet ist, dass ausgehend vom Hochtemperaturregenerator zumindest der erster Wärmetauschkanal des Rekuperators, der erste Expander, der Vorwärmer, der zweite Wärmetauschkanal des Rekuperators, der erste Verdichter und danach der Hochtemperaturgenerator unter Ausbildung eines geschlossenen Kreislaufs Fluid leitend miteinander verbunden sind,
  • einen geschlossenen Entladekreislauf für das Arbeitsgas, sowie umfassend
  • ein Schaltmittel welches den Hochtemperaturregenerator derart ansteuerbar entweder mit dem Ladekreislauf oder dem Entladekreislauf Fluid leitend verbindet, sodass der Hochtemperaturregenerator entweder ein Teil des Ladekreislaufs oder ein Teil des Endladekreislaufs bildet, und dass der Ladekreislauf, der Entladekreislauf und der Hochtemperaturregenerator dasselbe Arbeitsgas aufweisen, sodass das Arbeitsgas sowohl im Ladekreislauf als auch im Entladekreislauf vorzugsweise in direkten Kontakt mit dem Speichermaterial kommt.
The object is achieved in particular with an energy storage device for storing energy, comprising:
  • a Hochtemperaturregenerator containing a solid, in particular porous storage material and a working gas as the heat transfer medium to exchange heat between the storage material and the working gas flowing through,
  • a closed charge cycle for the working gas, comprising a first compressor, a first expander, a first recuperator having a first and a second heat exchange channel, the high temperature regenerator and a preheater, wherein the first compressor is coupled to the first expander by means of a shaft, and wherein the Charging circuit is designed such that starting from the Hochtemperaturregenerator at least the first heat exchange channel of the recuperator, the first expander, the preheater, the second heat exchange channel of the recuperator, the first compressor and then the high-temperature generator to form a closed circuit fluid are conductively connected together,
  • a closed discharge circuit for the working gas, as well as comprehensive
  • a switching means which connects the Hochtemperaturregenerator so controllably fluid either with the charging circuit or the discharge circuit so that the Hochtemperaturregenerator either forms part of the charging circuit or a part of the Endladekreislaufs, and that the charging circuit, the Entladekreislauf and the Hochtemperaturregenerator have the same working gas, so that the working gas preferably comes in direct contact with the storage material both in the charging circuit and in the discharge circuit.

Die Aufgabe wird weiter insbesondere gelöst mit Verfahren zur Speicherung thermischer Energie in einer Energiespeichervorrichtung umfassend einen Hochtemperaturregenerator enthaltend ein festes Speichermaterial, indem in einem geschlossenen Ladekreislauf ein Arbeitsgas als Wärmeträgermedium zirkuliert wird, wobei das Arbeitsgas mit dem Speichermaterial Wärme austauscht, und wobei das Arbeitsgas nach dem Hochtemperaturregenerator in einem ersten Rekuperator gekühlt wird, anschliessend in einem ersten Expander entspannt wird, anschliessend in einem ersten Vorwärmer vorgewärmt wird, anschliessend im ersten Rekuperator erwärmt wird, anschliessend in einem Verdichter verdichtet und erhitzt wird, und das derart erhitzte Arbeitsgas dem Hochtemperaturregenerator zugeführt wird, und wobei dem Hochtemperaturregenerator über einen geschlossenen Entladekreislauf Wärmeenergie entnommen wird, wobei der Hochtemperaturregenerator entweder ein Teil des Ladekreislaufs oder ein Teil des Entladekreislaufs bildet, indem der Hochtemperaturregenerator Fluid leitend entweder in den Ladekreislauf oder in den Entladekreislauf geschaltet wird, sodass einen geschlossenen Kreislauf ausbildet wird, in welchem das Arbeitsgas zirkuliert. Im Ladekreislauf, im Entladekreislauf sowie im Hochtemperaturregenerator befindet sich dasselbe Arbeitsgas. Das Speichermaterial wird sowohl im Ladekreislauf als auch im Entladekreislauf vorzugsweise direkt vom Arbeitsgas umströmt und gelangt somit in direkten Kontakt mit dem Arbeitsgas.The object is further achieved, in particular, with methods for storing thermal energy in an energy storage device comprising a high-temperature regenerator containing a solid storage material by circulating a working gas as a heat transfer medium in a closed charge cycle, wherein the working gas exchanges heat with the storage material, and wherein the working gas after the Hochtemperaturregenerator is cooled in a first recuperator, is subsequently expanded in a first expander, then preheated in a first preheater, then heated in the first recuperator, then compressed in a compressor and heated, and the thus heated working gas is fed to the high-temperature regenerator and wherein the high temperature regenerator heat energy is removed via a closed discharge circuit, wherein the high temperature regenerator either a part of the charging circuit or a part of the discharge ekreislaufs forms by the Hochtemperaturregenerator fluid is switched either in the charging circuit or in the discharge circuit, so that a closed circuit is formed, in which the working gas circulates. The same working gas is located in the charging circuit, in the discharge circuit and in the high-temperature regenerator. The storage material is preferably flowed around both directly in the charging circuit and in the discharge cycle of the working gas and thus comes in direct contact with the working gas.

Die erfindungsgemässe Energiespeichervorrichtung umfasst einen Hochtemperaturregenerator enthaltend ein festes Speichermaterial sowie ein Arbeitsgas als Wärmeträgermedium, um über das entlang dem Speichermaterial durchströmende Arbeitsgas Wärme zwischen dem Arbeitsgas und dem Speichermaterial auszutauschen.The energy storage device according to the invention comprises a high-temperature regenerator containing a solid storage material and a working gas as heat transfer medium in order to exchange heat between the working gas and the storage material via the working gas flowing along the storage material.

Bei Wärmetauschern wird unter anderem zwischen einem Rekuperator und einem Regenerator unterschieden. Bei einem Rekuperator werden zwei Fluide in gegenseitig getrennten Räumen geleitet, wobei zwischen den Räumen eine Wärmeübertragung stattfindet. So sind in einem Rekuperator zwei Fluide beispielsweise mittels einer Trennwand vollständig getrennt, wobei über die gemeinsame Trennwand Wärmeenergie zwischen den beiden Fluiden übertragen wird. Ein Regenerator ist ein Wärmetauscher bei dem die Wärme während des Austauschvorgangs in einem Medium zwischengespeichert wird. Bei einem Regenerator wird das Speichermaterial in einer möglichen Ausgestaltung direkt von Arbeitsgas umströmt. Beim Laden des Regenerators wird die vom Arbeitsgas zugeführte Wärmeenergie an das Speichermaterial abgegeben und im Speichermaterial gespeichert. Beim Entladen des Regenerators wird dem Speichermaterial durch das Arbeitsgas Wärmeenergie entzogen, das Speichermaterial abgekühlt, und die vom Arbeitsgas entzogene Wärmeenergie einem nachfolgenden Prozess zugeführt. Beim Regenerator tritt das Arbeitsgas vorteilhafterweise sowohl beim Laden als auch beim Entladen in direkten Kontakt mit dem Speichermaterial.In heat exchangers, a distinction is made among other things between a recuperator and a regenerator. In a recuperator, two fluids are conducted in mutually separated spaces, with heat transfer between the spaces. Thus, in a recuperator, for example, two fluids are completely separated, for example, by means of a dividing wall, heat energy being transferred between the two fluids via the common dividing wall. A regenerator is a heat exchanger in which the heat is temporarily stored in a medium during the exchange process. In a regenerator, the storage material is flowed around directly in a possible embodiment of working gas. When loading the regenerator, the heat energy supplied by the working gas is released to the storage material and stored in the storage material. When discharging the regenerator, heat energy is extracted from the storage material by the working gas, the storage material is cooled, and the heat energy withdrawn from the working gas is supplied to a subsequent process. In the case of the regenerator, the working gas advantageously comes into direct contact with the storage material both during loading and during unloading.

Die erfindungsgemässe Energiespeichervorrichtung weist den Vorteil auf, dass nur noch ein Energiespeicher, und gegebenenfalls noch ein Warmwasserspeicher erforderlich ist. Die erfindungsgemässe Energiespeichervorrichtung umfasst nebst dem Hochtemperatur-Regenerator zudem einen Ladekreislauf, einen Entladekreislauf, sowie Schaltmittel um zum Laden den Ladekreislauf oder zum Entladen den Entladekreislauf mit dem Hochtemperaturregenerator zu verbinden. Als Speichermaterial im Hochtemperatur-Regenerator ist ein festes Material wie beispielsweise poröse feuerfeste Steine, Sand, Kies, Beton, Graphit oder eine Keramik geeignet. Das Speichermaterial kann auf eine Temperatur von vorzugsweise im Bereich zwischen 600-1000 °C und falls erforderlich auch auf bis zu 1500 °C erhitzt werden. Der Ladekreislauf sowie der Entladekreislauf sind als ein geschlossener Kreislauf ausgestaltet. Diese Ausführungsform weist den Vorteil auf, dass das Arbeitsgas auch einen Überdruck aufweisen kann, was die Leistungsdichte der Verdichter und Turbinen entsprechend erhöht. In einer vorteilhaften Ausführungsform wird als Arbeitsgas Argon oder Stickstoff verwendet. Als Arbeitsgase sind jedoch auch andere Gase geeignet. Die erfindungsgemässe Energiespeichervorrichtung weist den Vorteil auf, dass diese eine hohe Energiedichte aufweist, sodass der Hochtemperaturgenerator relativ kompakt ausgestaltet werden kann. Zudem ist der Hochtemperatur-Regenerator kostengünstig herstellbar, da das Speichermaterial sehr günstig und zudem umweltverträglich ist. Die erfindungsgemässe Energiespeichervorrichtung weist zudem den Vorteil auf, dass der Entladekreislauf je nach Bedarf unterschiedlich ausgestaltet werden kann, um beispielweise elektrische Energie zu erzeugen.The inventive energy storage device has the advantage that only one energy storage, and possibly even a hot water tank is required. In addition to the high-temperature regenerator, the energy storage device according to the invention also comprises a charging circuit, a discharging circuit, and switching means for charging the charging circuit or for discharging the discharging circuit with the high-temperature regenerator. As a storage material in the high temperature regenerator is a solid material such as porous refractory bricks, sand, gravel, concrete, graphite or ceramic suitable. The storage material may be heated to a temperature of preferably in the range between 600-1000 ° C and if necessary also up to 1500 ° C. The charging circuit and the discharge circuit are designed as a closed circuit. This embodiment has the Advantage on that the working gas can also have an overpressure, which increases the power density of the compressor and turbine accordingly. In an advantageous embodiment, argon or nitrogen is used as working gas. As working gases but other gases are suitable. The inventive energy storage device has the advantage that it has a high energy density, so that the high temperature generator can be made relatively compact. In addition, the high-temperature regenerator is inexpensive to produce, since the storage material is very cheap and also environmentally friendly. The inventive energy storage device also has the advantage that the Entladekreislauf can be configured differently depending on needs, for example, to generate electrical energy.

In einer besonders vorteilhaften Ausgestaltung umfasst die Energiespeichervorrichtung einen Elektrogenerator, und in einer bevorzugten Ausgestaltung zudem einen Elektromotor, sodass die erfindungsgemässe Energiespeichervorrichtung mit elektrischer Energie geladen werden kann, und beim Entladen auch wieder elektrische Energie abgibt. Eine derartige Energiespeichervorrichtung wird in Englisch auch als "Electricity Energy Storage System by means of Pumped Heat (ESSPH)" bezeichnet.
Die erfindungsgemässe Energiespeichervorrichtung umfassend einen Elektrogenerator sowie einen Elektromotor ist somit in der Lage elektrische Energie in Wärmeenergie zu wandeln, die Wärmeenergie zu speichern, und die gespeicherte Wärmeenergie wieder in elektrische Energie zu wandeln. Die erfindungsgemässe Energiespeichervorrichtung kann somit auch als "thermische Batterie" bezeichnet werden, welche über einen Ladevorgang aufgeladen werden kann und über einen Entladevorgang entladen werden kann, wobei der Ladevorgang mit Hilfe einer Heissgaswärmepumpe erfolgt und der Entladevorgang vorzugsweise mit Hilfe eines Gasturbinenprozesses erfolgt. Zum Verdichten und Entspannen sind insbesondere rotierende Turbomaschinen oder lineare Kolbenmaschinen geeignet.
In a particularly advantageous embodiment, the energy storage device comprises an electric generator, and in a preferred embodiment also an electric motor, so that the inventive energy storage device can be charged with electrical energy, and emits electrical energy again during discharge. Such an energy storage device is also referred to in English as "Electricity Energy Storage System by Means of Pumped Heat (ESSPH)".
The inventive energy storage device comprising an electric generator and an electric motor is thus able to convert electrical energy into heat energy, to store the heat energy, and to convert the stored heat energy back into electrical energy. The energy storage device according to the invention can thus also be referred to as a "thermal battery" which can be charged via a charging process and discharged via an unloading process, wherein the charging process takes place with the aid of a hot gas heat pump and the discharging process preferably takes place with the aid of a gas turbine process. For compressing and relaxing in particular rotating turbomachinery or linear piston machines are suitable.

Die erfindungsgemässe Energiespeichervorrichtung, beziehungsweise die thermische Batterie, kann insofern ähnlich einer Elektrobatterie geladen und entladen werden, als jederzeit auch ein Teilladen oder ein Teilentladen möglich ist. Das der erfindungsgemässen Energiespeichervorrichtung zu Grunde liegende Speicherkonzept erlaubt es durch eine entsprechende Auslegung der Teilkomponenten Leistungen im Bereich zwischen 1 bis 50 MW und Energiemengen im Bereich zwischen 1 bis 250 MWh zu speichern und zeitverzögert wieder abzugeben. In einer besonders vorteilhaften Ausgestaltung sind der Elektrogenerator und der Elektromotor als eine einzige Maschine in Form eines Motorgenerators ausgestaltet. Die erfindungsgemässe Energiespeichervorrichtung ist hervorragend geeignet um elektrische Energie zeitlich zu schieben, beispielsweise um in einem elektrischen Netz tagsüber anfallende Sonnenenergie zu speichern und diese nachts wieder abzugeben. Die erfindungsgemässe Energiespeichervorrichtung ist zudem hervorragend zur Stabilisierung des elektrischen Netzes geeignet, insbesondere zur Frequenzstabilisierung, sofern die Verdichter und Expander der Energiespeichervorrichtung als rotierende Maschinen ausgestaltet sind. In einer vorteilhaften Betriebsweise wird die Energiespeichervorrichtung mit konstanter Drehzahl betrieben und ist mit dem elektrischen Netz verbunden.The energy storage device according to the invention, or the thermal battery, can be charged and discharged similarly to an electric battery inasmuch as a partial load or a partial discharge is also possible at any time. That the According to the energy storage device according to the invention underlying storage concept allows to store by an appropriate design of the sub-components power in the range between 1 to 50 MW and amounts of energy in the range between 1 to 250 MWh and deliver time-delayed again. In a particularly advantageous embodiment of the electric generator and the electric motor are designed as a single machine in the form of a motor generator. The energy storage device according to the invention is outstandingly suitable for shunting electrical energy, for example, to store solar energy generated in an electrical network during the day and to dispense it at night. The inventive energy storage device is also ideal for stabilizing the electrical network, in particular for frequency stabilization, provided that the compressor and expander of the energy storage device are designed as rotating machines. In an advantageous mode of operation, the energy storage device is operated at constant speed and is connected to the electrical network.

Nachfolgend wird die Erfindung an Hand von Ausführungsbeispielen im Detail beschrieben.Hereinafter, the invention will be described with reference to exemplary embodiments in detail.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Die zur Erläuterung der Ausführungsbeispiele verwendeten Zeichnungen zeigen:

  • Fig. 1 ein erstes Ausführungsbeispiel einer Energiespeichervorrichtung umfassend einen Ladekreislauf und einen Entladekreislauf;
  • Fig. 2 den Ladekreislauf gemäss Figur 1 im Detail;
  • Fig. 3 den Entladekreislauf gemäss Figur 1 im Detail;
  • Fig. 4 ein zweites Ausführungsbeispiel einer Energiespeichervorrichtung;
  • Fig. 5 eine Detailansicht eines Verdichters im Entladekreislauf mit Verdichterzwischenkühlung und einer gemeinsamen Welle;
  • Fig. 6 eine Detailansicht eines Entladekreislaufs mit Verdichternachkühlung;
  • Fig. 7 eine Detailansicht eines Entladekreislaufs mit Verdichtervorkühlung;
  • Fig. 8 eine Detailansicht eines Verdichters im Entladekreislauf mit Verdichterzwischenkühlung und zwei Wellen;
  • Fig. 9 ein drittes Ausführungsbeispiel einer Energiespeichervorrichtung;
  • Fig. 10 ein viertes Ausführungsbeispiel einer Energiespeichervorrichtung;
  • Fig. 11a-11i unterschiedlich ausgestaltete Komponenten von Wärmepumpen.
The drawings used to explain the embodiments show:
  • Fig. 1 a first embodiment of an energy storage device comprising a charging circuit and a discharge circuit;
  • Fig. 2 the charging circuit according to FIG. 1 in detail;
  • Fig. 3 the discharge circuit according to FIG. 1 in detail;
  • Fig. 4 a second embodiment of an energy storage device;
  • Fig. 5 a detail view of a compressor in the discharge circuit with intermediate compressor cooling and a common shaft;
  • Fig. 6 a detailed view of a discharge circuit with compressor Nachkühlung;
  • Fig. 7 a detailed view of a discharge circuit with compressor pre-cooling;
  • Fig. 8 a detailed view of a compressor in Entladekreislauf with intermediate compressor cooling and two waves;
  • Fig. 9 a third embodiment of an energy storage device;
  • Fig. 10 a fourth embodiment of an energy storage device;
  • Fig. 11a-11i differently designed components of heat pumps.

Grundsätzlich sind in den Zeichnungen gleiche Teile mit gleichen Bezugszeichen versehen.Basically, the same parts are given the same reference numerals in the drawings.

Wege zur Ausführung der ErfindungWays to carry out the invention

Fig. 1 zeigt eine Energiespeichervorrichtung 1 zur Speicherung thermischer Energie, umfassend einen Ladekreislauf 100 mit Leitungen 101, einen Entladekreislauf 200 mit Leitungen 201, einen Hochtemperaturregenerator 120 sowie Schaltmittel 400, 401 wobei die Schaltmittel 400, 401 derart mit den Leitungen 101, 201 verbunden sind, dass der Hochtemperaturregenerator 120 Fluid leitend entweder mit dem Ladekreislauf 100 oder mit dem Entladekreislauf 200 verbunden werden kann, sodass der Hochtemperaturregenerator 120 ein Teil des Ladekreislauf 100 bzw. ein Teil des Entladekreislaufs 200 bildet. Eine Regelungsvorrichtung 500 ist signalleitend mit den Schaltmitteln 400, 401 und weiteren, nicht im Detail dargestellten Sensoren und Aktuatoren verbunden, um die Energiespeichervorrichtung 1 anzusteuern. Die Figuren 2 und 3 zeigen den in Figur 1 dargestellten Ladekreis 100 bzw. Entladekreis 200 im Detail. Der Hochtemperaturregenerator 120 enthält ein festes Speichermaterial sowie ein Arbeitsgas A als Wärmeträgermedium, um zwischen dem Speichermaterial und dem durchströmenden Arbeitsgas A Wärme auszutauschen. Als festes Speichermaterial für den Hochtemperaturregenerator sind beispielsweise poröse feuerfeste Materialien, Sand, Kies, Gestein, Beton, Graphit oder auch eine Keramik wie Siliziumkarbid geeignet. Der Hochtemperaturregenerator 120 umfasst eine Aussenhülle 120a sowie einen Innenraum, wobei im Innenraum das feste Speichermaterial derart angeordnet und/oder ausgestaltet ist, dass das Speichermaterial zum Wärmeaustausch vom Arbeitsgas A durchströmt oder umströmt werden kann. Der Hochtemperaturregenerator 120 umfasst, wie aus Figur 2 ersichtlich, zudem zumindest eine Eintrittsöffnung 120b sowie zumindest eine Austrittsöffnung 120c um das in den Leitungen 101 bzw. 201 strömende Arbeitsgas A dem Innenraum des Hochtemperaturregenerators zu- bzw. abzuführen, sodass das im Ladekreislauf 100 oder im Entladekreislauf 200 zirkulierende Arbeitsgas A in direkten Kontakt mit dem festen Speichermaterial gelangt. Figur 1 zeigt einen in vertikaler Richtung verlaufenden bzw. angeordneten Hochtemperaturregenerator 120, wobei das Arbeitsgas A beim Laden von oben nach unten strömt und beim Entladen von unten nach oben strömt. Fig. 1 shows an energy storage device 1 for storing thermal energy, comprising a charging circuit 100 with lines 101, a discharge circuit 200 with lines 201, a Hochtemperaturregenerator 120 and switching means 400, 401 wherein the switching means 400, 401 are connected to the lines 101, 201, that Hochtemperaturregenerator 120 fluid can be connected to either the charging circuit 100 or the discharge circuit 200 so that the Hochtemperaturregenerator 120 forms part of the charging circuit 100 and a portion of the Entladekreislaufs 200. A control device 500 is signal-conducting connected to the switching means 400, 401 and other sensors and actuators, not shown in detail, in order to control the energy storage device 1. The Figures 2 and 3 show the in FIG. 1 illustrated charging circuit 100 and discharge circuit 200 in detail. The Hochtemperaturregenerator 120 includes a solid storage material and a working gas A as the heat transfer medium to exchange heat between the storage material and the working gas A flowing through. For example, porous refractory materials, sand, gravel, rock, concrete, graphite or a ceramic such as silicon carbide are suitable as a solid storage material for the high-temperature regenerator. The high-temperature regenerator 120 comprises an outer shell 120a and an inner space, wherein the solid storage material is arranged and / or configured in the interior such that the storage material for heat exchange can be flowed through or flowed around by the working gas A. The high temperature regenerator 120 includes, as shown in FIG FIG. 2 can be seen, moreover, at least one inlet opening 120b and at least one Outlet opening 120c to the working in the lines 101 and 201 flowing working gas A to the interior of the Hochtemperaturregenerators or dissipate, so that the circulating in the charging circuit 100 or in the discharge circuit 200 working gas A comes into direct contact with the solid storage material. FIG. 1 shows a vertically running or arranged Hochtemperaturregenerator 120, wherein the working gas A when charging flows from top to bottom and flows during discharge from bottom to top.

Figur 2 zeigt den in Figur 1 dargestellten geschlossenen Ladekreislauf 100 im Detail. Der geschlossene Ladekreislauf 100 für das Arbeitsgas A umfasst einen ersten Verdichter 110, einen ersten Expander 140, einen ersten Rekuperator 130 mit einem ersten und einem zweiten Wärmetauschkanal 130a, 130b, den Hochtemperaturregenerator 120 sowie einen Vorwärmer 151, wobei der erste Verdichter 110 über eine gemeinsame Welle 114 mit dem ersten Expander 140 gekoppelt ist. Die als Ventile ausgestalteten Schaltmittel 400 sind auf Durchfluss geschaltet und die in Figur 2 nicht dargestellten Schaltmittel 401 sind gesperrt, sodass sich ein geschlossener Ladekreislauf 100 ausbildet, in welchem das Arbeitsgas A in Strömungsrichtung A1 bzw. in Ladeströmungsrichtung A1 strömt. Als Arbeitsgas A wird vorzugsweise Argon oder Stickstoff verwendet. Das Arbeitsgas A wird vorteilhafterweise unter einem Überdruck gehalten, um die Leistungsdichte des Verdichters 110 und der Turbine 140 zu erhöhen und den Wärmeübergang in den kalorischen Apparaten zu verbessern. Der Druck liegt vorzugsweise in einem Bereich von 1 bis 20 bar. Ausgehend vom Hochtemperaturregenerator 120 wird das Arbeitsgas A nacheinander folgend zumindest dem ersten Wärmetauschkanal 130a des Rekuperators 130, dem ersten Expander 140, dem Vorwärmer 151, dem zweiten Wärmetauschkanal 130b des Rekuperators 130, dem ersten Verdichter 110 und danach wiederum dem Hochtemperatur-Regenerator 120 zugeführt, unter Ausbildung eines geschlossenen, Fluid leitenden Kreislaufs. Der erste Verdichter 110, der erste Expander 140, der erste Rekuperator 130 sowie der Vorwärmer 151 bilden eine Wärmepumpe. Das vom Vorwärmer 151 und dem Rekuperator 130 vorgewärmte Arbeitsgas A wird als Eingangsgas dem ersten Verdichter 110 zugeführt, darin verdichtet, und erfährt dadurch eine Temperatur- und Druckerhöhung. Das verdichtete Arbeitsgas A wird dem Hochtemperaturgenerator 120 zugeführt, darin abgekühlt, nachfolgend im Rekuperator 130 weiter abgekühlt, und anschliessend im ersten Expander 140 entspannt, um anschliessend im Vorwärmer 151 und im Rekuperator 130 wieder vorgewärmt zu werden. Der erste Expander 140 und der Verdichter 110 sind auf derselben Welle 114 angeordnet, sodass der erste Expander 140 das Antreiben des ersten Verdichters 110 unterstützt. Die Welle 114 wird von einer nicht dargestellten Antriebsvorrichtung angetrieben, beispielsweise einem Elektromotor, einer Turbine, oder allgemein einer Kraftmaschine. FIG. 2 shows the in FIG. 1 illustrated closed charging circuit 100 in detail. The closed charging circuit 100 for the working gas A comprises a first compressor 110, a first expander 140, a first recuperator 130 with a first and a second heat exchange channel 130a, 130b, the Hochtemperaturregenerator 120 and a preheater 151, wherein the first compressor 110 via a common Wave 114 is coupled to the first expander 140. The designed as valves switching means 400 are connected to flow and the in FIG. 2 Switching means 401, not shown, are blocked, so that a closed charging circuit 100 is formed, in which the working gas A flows in the flow direction A1 or in the charging flow direction A1. As the working gas A, argon or nitrogen is preferably used. The working gas A is advantageously maintained under an overpressure in order to increase the power density of the compressor 110 and the turbine 140 and to improve the heat transfer in the caloric apparatus. The pressure is preferably in a range of 1 to 20 bar. Starting from the high-temperature regenerator 120, the working gas A is successively supplied to at least the first heat exchange channel 130a of the recuperator 130, the first expander 140, the preheater 151, the second heat exchange channel 130b of the recuperator 130, the first compressor 110 and then again the high-temperature regenerator 120, forming a closed, fluid conducting circuit. The first compressor 110, the first expander 140, the first recuperator 130 and the preheater 151 form a heat pump. The preheated by the preheater 151 and the recuperator 130 working gas A is supplied as input gas to the first compressor 110, compressed therein, and thereby undergoes a temperature and pressure increase. The compressed working gas A is supplied to the high-temperature generator 120, therein cooled, then further cooled in the recuperator 130, and then expanded in the first expander 140, to be subsequently preheated in the preheater 151 and the recuperator 130 again. The first expander 140 and the compressor 110 are disposed on the same shaft 114 so that the first expander 140 assists in driving the first compressor 110. The shaft 114 is driven by a drive device, not shown, such as an electric motor, a turbine, or generally an engine.

Um die im Hochtemperaturregenerator 120 gespeicherte Wärmeenergie wieder zu entladen ist ein Entladekreislauf 200 erforderlich. Dieser Entladekreislauf 200 kann auf unterschiedliche Weise ausgestaltet sein, je nach dem Bedarf, für welchen die gespeicherte Wärmeenergie benötigt wird. Figur 3 zeigt den in Figur 1 dargestellten geschlossenen Entladekreislauf 200, welcher als Gasturbinenprozess ausgestaltet ist, im Detail. Als Arbeitsgas A wird dasselbe Gas wie im Ladekreislauf 100 verwendet, vorzugsweise Argon oder Stickstoff. Der geschlossene Entladekreislauf 200 für das Arbeitsgas A umfasst einen zweiten Verdichter 210, einen zweiten Expander 250, einen zweiten Rekuperator 230 mit einem ersten und einem zweiten Wärmetauschkanal 230a, 230b, den Hochtemperaturregenerator 120 sowie einen ersten Kühler 270, wobei der zweite Verdichter 210 über die Welle 214 mit dem zweiten Expander 250 gekoppelt ist. Die als Ventile ausgestalteten Schaltmittel 401 sind auf Durchfluss geschaltet und die in Figur 3 nicht dargestellten Schaltmittel 400 sind gesperrt, sodass sich ein geschlossener Entladekreislauf 200 ausbildet, in welchem das Arbeitsgas A in Strömungsrichtung A2 bzw. in Entladeströmungsrichtung A2 strömt. Der Entladekreislauf 200 ist derart ausgebildet, dass ausgehend vom Hochtemperaturregenerator 120 nacheinander folgend zumindest der zweite Expander 250, der erster Wärmetauschkanal 230a des zweiten Rekuperators 230, der erste Kühler 270, der zweite Verdichter 210, der zweite Wärmetauschkanal 230b des Rekuperators 230, und danach der Hochtemperatur-Regenerator 120 unter Ausbildung des geschlossenen Kreislaufs Fluid leitend miteinander verbunden sind, wobei das Arbeitsgas A im Entladekreislauf 200 in Strömungsrichtung A2 bzw. in Entladeströmungsrichtung A2 strömt.
Wie in Figur 3 dargestellt wird im ersten Kühler 270 vorzugsweise auf Umgebungstemperatur U gekühlt. Wie aus den Figuren 2 und 3 ersichtlich fliesst im Hochtemperaturregenerator 120 die Entladeströmungsrichtung A2 in entgegengesetzter Richtung zur Ladeströmungsrichtung A1. Das aus dem Hochtemperaturregenerator 120 ausströmende Arbeitsgas A wird über den zweiten Expander 250 entspannt und dadurch gekühlt, und wird danach im zweiten Rekuperator 230 und im ersten Kühler 270 weiter gekühlt, bevor das Arbeitsgas A im zweiten Verdichter 210 komprimiert wird und anschliessend im zweiten Rekuperator 230 vorgewärmt wird, um danach wieder in den Hochtemperaturregenerator 120 einzuströmen. Der zweite Verdichter 210 und der zweite Expander 250 sind auf derselben Welle 214 angeordnet, sodass der zweite Expander 250 den zweiten Verdichter 210 antreibt. Der Welle 214 wird von einer nicht dargestellten Anordnung Energie entnommen, wobei beispielsweise ein Generator oder eine Arbeitsmaschine mit der Welle 214 verbunden sein kann.
In order to discharge the heat energy stored in the high-temperature regenerator 120 again, a discharge circuit 200 is required. This discharge circuit 200 may be configured in different ways, depending on the needs for which the stored thermal energy is needed. FIG. 3 shows the in FIG. 1 shown closed discharge circuit 200, which is configured as a gas turbine process, in detail. As the working gas A, the same gas as in the charging circuit 100 is used, preferably argon or nitrogen. The closed discharge circuit 200 for the working gas A comprises a second compressor 210, a second expander 250, a second recuperator 230 having a first and a second heat exchange channel 230a, 230b, the Hochtemperaturregenerator 120 and a first cooler 270, the second compressor 210 via the Wave 214 is coupled to the second expander 250. The designed as valves switching means 401 are connected to flow and the in FIG. 3 Switching means 400, not shown, are blocked, so that a closed discharge circuit 200 is formed, in which the working gas A flows in the flow direction A2 or in the discharge flow direction A2. The discharge circuit 200 is configured such that, starting from the high-temperature regenerator 120, at least the second expander 250, the first heat exchange channel 230a of the second recuperator 230, the first cooler 270, the second compressor 210, the second heat exchange channel 230b of the recuperator 230, and then the second heat exchanger 230 High-temperature regenerator 120 are fluidly connected to one another with formation of the closed circuit fluid, wherein the working gas A flows in the discharge circuit 200 in the flow direction A2 and in Entladeströmungsrichtung A2.
As in FIG. 3 is shown in the first cooler 270 is preferably cooled to ambient temperature U. Like from the Figures 2 and 3 visible flows in High temperature regenerator 120, the discharge flow direction A2 in the opposite direction to the charging flow direction A1. The effluent from the Hochtemperaturregenerator 120 working gas A is expanded via the second expander 250 and thereby cooled, and is then further cooled in the second recuperator 230 and the first cooler 270 before the working gas A is compressed in the second compressor 210 and then in the second recuperator 230th is preheated to then flow back into the Hochtemperaturregenerator 120. The second compressor 210 and the second expander 250 are disposed on the same shaft 214 so that the second expander 250 drives the second compressor 210. The shaft 214 is taken from an unillustrated arrangement of energy, for example, a generator or a working machine may be connected to the shaft 214.

Figur 4 zeigt eine besonders vorteilhafte Ausgestaltung einer Energiespeichervorrichtung 1. Im Unterschied zu der in den Figuren 1 bis 3 dargestellten Energiespeichervorrichtung 1 mit zwei separaten Rekuperatoren 130 weist die in Figur 4 dargestellte Energiespeichervorrichtung 1 einen einzigen, gemeinsamen Rekuperator 130 auf. Das Arbeitsgas A wird mit Hilfe von Schaltmitteln 400, 401 wie Ventilen derart schaltbar geleitet, dass ein Ladekreislauf 100 beziehungsweise ein Entladekreislauf 200 entsteht, ähnlich dem in Figur 2 bzw. 3 dargestellten Ladekreislauf 100 bez. Entladekreislauf 200, mit Ausnahme, dass nur ein einziger, gemeinsamer Rekuperator 130 vorhanden ist. FIG. 4 shows a particularly advantageous embodiment of an energy storage device 1. In contrast to the in the FIGS. 1 to 3 illustrated energy storage device 1 with two separate recuperators 130 has the in FIG. 4 illustrated energy storage device 1 a single, common recuperator 130. The working gas A is conducted with the aid of switching means 400, 401 such as valves so switchable that a charging circuit 100 and a discharge circuit 200 is formed, similar to that in FIG. 2 or 3 illustrated charging circuit 100 ref. Discharge cycle 200, with the exception that only a single, common recuperator 130 is present.

In einer weiteren, besonders vorteilhaften Ausgestaltung umfasst die Energiespeichervorrichtung 1 nebst dem Ladekreislauf 100 und dem Entladekreislauf 200 zudem noch ein Vorwärmesystem 150 für ein zirkulierendes Vorwärmfluid V. Das Vorwärmesystem 150 umfasst insbesondere einen ersten Fluidspeicher 152, in welchem ein erwärmtes Vorwärmfluid V1 gespeichert wird, einen zweiten Fluidspeicher 222, in welchem ein abgekühltes Vorwärmfluid V2 gespeichert wird, sowie Fluidleitungen 155, 224 und gegebenenfalls Fördermittel 153, 223 um das Vorwärmfluid V im Vorwärmesystem 150 zu zirkulieren und insbesondere dem Vorwärmer 151 und dem Kühler 221 zuzuführen. Im dargestellten Ausführungsbeispiel wird das Vorwärmfluid V, ausgehend vom ersten Fluidspeicher 152 das erwärmte Vorwärmfluid V dem Vorwärmer 151 zugeführt, und das danach abgekühlte Vorwärmfluid V dem zweiten Fluidspeicher 222 zugeführt. Das abgekühlte Vorwärmfluid V des zweiten Fluidspeichers 222 wird einem Kühler 221 zugeführt, und das danach erwärmte Vorwärmfluid V dem ersten Fluidspeicher 152 zugeführt. Als Vorwärmfluid V wird vorzugsweise Wasser verwendet, da Wasser bezüglich Wärme eine hohe Speicherdichte aufweist. Der zweite Fluidspeicher 222 könnte als ein Flüssigkeitsbehälter ausgestaltet sein, sodass das Vorwärmesystem 150 einen geschlossenen Kreislauf ausbildet. Der zweite Fluidspeicher 222 könnte auch offen ausgestaltet sein, wobei an Stelle eines Behälters auch ein Gewässer, beispielsweise ein See, geeignet wäre zur Aufnahme des abgekühlten Vorwärmfluides V beziehungsweise zur Bereitstellung von Kühlfluid V.In a further, particularly advantageous embodiment, the energy storage device 1, in addition to the charging circuit 100 and the discharge circuit 200, also comprises a preheating system 150 for a circulating preheating fluid V. The preheating system 150 comprises, in particular, a first fluid reservoir 152, in which a heated preheating fluid V1 is stored second fluid reservoir 222, in which a cooled Vorwärmfluid V2 is stored, and fluid lines 155, 224 and optionally conveying means 153, 223 to circulate the preheating fluid V in the preheating system 150 and in particular the preheater 151 and the radiator 221 supply. In the illustrated embodiment, the preheating fluid V, starting from the first fluid reservoir 152, the heated preheating fluid V is supplied to the preheater 151, and the then cooled Vorwärmfluid V the second fluid reservoir 222 supplied. The cooled preheating fluid V of the second fluid reservoir 222 is supplied to a radiator 221, and the preheating fluid V heated thereafter is supplied to the first fluid reservoir 152. Water is preferably used as preheating fluid V, since water has a high storage density with respect to heat. The second fluid reservoir 222 could be configured as a fluid reservoir so that the preheat system 150 forms a closed circuit. The second fluid reservoir 222 could also be designed to be open, wherein, instead of a container, a body of water, for example a lake, would be suitable for receiving the cooled preheating fluid V or for providing cooling fluid V.

In einer besonders vorteilhaften Ausgestaltung wird die Energiespeichervorrichtung 1 zur Speicherung von elektrischer Energie und zur zeitlich versetzten Abgabe von elektrischer Energie verwendet. Figur 4 zeigt eine derartige Speichervorrichtung für elektrische Energie umfassend die Energiespeichervorrichtung 1 sowie umfassend einen Elektromotor 170 und einen Generator 290. In einer besonders vorteilhaften Ausgestaltung sind der Elektromotor 170 und der Generator 290 zu einer einzigen Maschine zusammengefasst unter Ausbildung eines sogenannten Motorgenerators. Die in Figur 4 dargestellte Energiespeichervorrichtung 1 ist daher besonders günstig herstellbar, weil nur ein einziger Motorgenerator 170/290, ein einziger Hochtemperaturregenerator 120 und ein einziger Rekuperator 130 erforderlich ist.In a particularly advantageous embodiment, the energy storage device 1 is used for the storage of electrical energy and for the staggered delivery of electrical energy. FIG. 4 shows such a storage device for electrical energy comprising the energy storage device 1 and comprising an electric motor 170 and a generator 290. In a particularly advantageous embodiment, the electric motor 170 and the generator 290 are combined into a single machine to form a so-called motor generator. In the FIG. 4 illustrated energy storage device 1 is therefore particularly low to produce because only a single motor generator 170/290, a single Hochtemperaturregenerator 120 and a single recuperator 130 is required.

Zur Funktionsweise der in Figur 4 dargestellten, besonders vorteilhaften Energiespeichervorrichtung 1 werden nachfolgend noch einige Details erläutert. Der erste Verdichter 110, der erste Expander 140, der erste Rekuperator 130 sowie der Vorwärmer 151 bilden im Ladekreislauf 100 eine Wärmepumpe. Das vorgeheizte Arbeitsgas A wird dem ersten Verdichter 110 zugeführt und darin auf den maximalen Druck beziehungsweise auf die maximale Temperatur im Ladekreislauf 100 gebracht. Das Arbeitsgas A wird danach durch den Hochtemperaturregenerator 120 geleitet, dabei abgekühlt und nachfolgend im Rekuperator 130 nochmals abgekühlt. Das Arbeitsgas A wird danach im ersten Expander 140 entspannt auf den tiefsten Druck im Ladekreislauf 100, wobei die dadurch im ersten Expander 140 freigesetzte Energie zum teilweisen Antrieb des ersten Verdichters 110 genutzt wird. Das Arbeitsgas A fliest danach durch den Vorwärmer 151 und wird dabei vorgewärmt. Der Vorwärmer 151 ist mit dem Vorwärmesystem 150 verbunden und bezieht die Wärmeenergie aus dem ersten Fluidspeicher 152 für das warme Vorwärmfluid, in der dargestellten Ausführungsform als warmes Wasser.To the functioning of in FIG. 4 shown, particularly advantageous energy storage device 1 will be explained below some details. The first compressor 110, the first expander 140, the first recuperator 130 and the preheater 151 form a heat pump in the charging circuit 100. The preheated working gas A is supplied to the first compressor 110 and brought therein to the maximum pressure or to the maximum temperature in the charging circuit 100. The working gas A is then passed through the Hochtemperaturregenerator 120, thereby cooled and then cooled again in the recuperator 130. The working gas A is then expanded in the first expander 140 to the lowest pressure in the charging circuit 100, wherein the energy released thereby in the first expander 140 is used for the partial drive of the first compressor 110. The working gas A then flows through the preheater 151 and is preheated. The preheater 151 is connected to the preheating system 150 and draws the heat energy from the first fluid storage 152 for the warm preheating fluid, in the illustrated embodiment as warm water.

Der Entladekreislauf 200 umfasst einen zweiten Verdichter 210, ausgestaltet als ein zwischengekühlter Gasturbinenverdichter mit einem Kühler 221, und umfasst den Rekuperator 130, den Hochtemperaturregenerator 120, den zweiten Expander 250 und den ersten Kühler 270, der zur Umgebungstemperatur U kühlt. Der Kühler 221 ist über Leitungen 224 mit dem Vorwärmesystem 150 verbunden, wobei kühles Fluid dem Speicher 222 entnommen wird, über das Fördermittel 223 dem Kühler 221 zugeführt wird, und wobei das erwärmte Fluid dem Speicher 152 zugeführt wird.The discharge circuit 200 includes a second compressor 210 configured as an intercooled gas turbine compressor with a radiator 221 and includes the recuperator 130, the high temperature regenerator 120, the second expander 250, and the first radiator 270 that cools to ambient temperature U. The radiator 221 is connected to the preheating system 150 via lines 224, with cool fluid being removed from the reservoir 222, via which conveyor 223 is supplied to the radiator 221, and the heated fluid is supplied to the accumulator 152.

Figur 5 zeigt schematisch ein Ausführungsbeispiel eines zwischengekühlten zweiten Verdichters 210, umfassend einen Niederdruckteilverdichter 210b, einen Zwischenkühler 221 und einen Hochdruckteilverdichter 210a. Das Arbeitsgas A, welches im ersten Kühler 270 beinahe auf Umgebungstemperatur gekühlt wurde, tritt in den zweiten Verdichter 210, ein und wird weiter verdichtet. Durch den Zwischenkühler 221 wird die erforderliche Kompressionsenergie reduziert, und es wird angenähert eine isotherme Kompression erzielt. Die vom Zwischenkühler 221 abgeführt Wärme wird im ersten Fluidspeicher 152, ein Warmwasserspeicher, gespeichert. Das Arbeitsgas A wird danach dem Rekuperator 130 zugeführt und wird dabei erwärmt. Die maximale Zyklustemperatur wird beim Austritt des Hochtemperatur-Regenerators 120 erreicht. Der zweite Expander 250 treibt über die gemeinsame Welle 214 sowohl den zweiten Verdichter 210 als auch den Generator 290 an. Der in Figur 5 dargestellte zweite Verdichter 210 mit Zwischenkühler 221 weist den Vorteil auf, dass der Entladekreislauf 200 eine hohe Leistungsdichte aufweist. Der Gasturbinenwirkungsgrad kann durch zusätzliche Zwischenkühler 221 noch weiter gesteigert werden, da sich die Kompression dadurch noch weiter einer idealen isotherm Kompression annähert. FIG. 5 1 schematically shows an exemplary embodiment of an intercooled second compressor 210 comprising a low pressure compressor part 210b, an intercooler 221 and a high pressure compressor part 210a. The working gas A, which has been cooled almost to ambient temperature in the first radiator 270, enters the second compressor 210, and is further compressed. Intercooler 221 reduces the required compression energy and provides approximately isothermal compression. The heat dissipated by the intercooler 221 is stored in the first fluid reservoir 152, a hot water tank. The working gas A is then supplied to the recuperator 130 and is heated. The maximum cycle temperature is reached at the exit of the high temperature regenerator 120. The second expander 250 drives both the second compressor 210 and the generator 290 via the common shaft 214. The in FIG. 5 illustrated second compressor 210 with intercooler 221 has the advantage that the discharge circuit 200 has a high power density. The gas turbine efficiency can be further increased by additional intercoolers 221 as the compression thereby further approaches ideal isothermal compression.

Figur 6 zeigt eine weitere Anordnung, bei welcher der zweite Kühler 221 dem zweiten Verdichte 210 nachgeschaltet ist. Figur 7 zeigt eine weitere Anordnung, bei welcher der zweite Kühler 221 dem zweiten Verdichte 210 vorgeschaltet ist. Die beiden, in Figur 6 und 7 dargestellten, an sich auch vorteilhaften Ausführungsformen weisen gegenüber der in Figur 5 dargestellten Ausführung eine geringere Leistungsdichte und Speicherwirkungsgrad auf. FIG. 6 shows a further arrangement in which the second radiator 221 is connected downstream of the second compressor 210. FIG. 7 shows a further arrangement in which the second radiator 221 is connected upstream of the second compressor 210. The two, in FIGS. 6 and 7 shown, in itself also advantageous embodiments have opposite to in FIG. 5 illustrated embodiment, a lower power density and storage efficiency.

Figur 8 zeigt eine zweiwellige Gasturbinenanordnung. Der zweite Expander 250 umfasst einen Hochdruckexpander 250b sowie einen Niederdruckexpander 250a, wobei der Hochdruckexpander 250a über eine zweite Welle 214b mit dem zweiten Verdichter 210 verbunden ist und diesen als frei laufende Einheit antreibt, und wobei der Niederdruckexpander 250a über eine erste Welle 214a mit dem Generator 290 verbunden ist. Diese Anordnung weist den Vorteil auf, dass zweiwellige Anlagen ein gegenüber einwelligen Anlagen verbessertes Betriebsverhalten in der Teillast besitzen, und dass Standardkomponenten wie Compander, eine Kombination aus Expander und Verdichter, mit ökonomischem Vorteil verwendet werden können. FIG. 8 shows a twin-shaft gas turbine arrangement. The second expander 250 comprises a high-pressure expander 250b and a low-pressure expander 250a, wherein the high-pressure expander 250a is connected to the second compressor 210 via a second shaft 214b and drives it as a free-running unit, and wherein the low-pressure expander 250a is connected to the generator via a first shaft 214a 290 is connected. This arrangement has the advantage that twin-shaft systems have a partial-load performance that is better than single-shaft systems, and that standard components such as Compander, a combination of expander and compressor, can be used with economic advantage.

Figur 9 zeigt ein weiteres Ausführungsbeispiel einer Energiespeichervorrichtung 1, die wiederum einen Ladekreislauf 100, einen Entladekreislauf 200 sowie einen Vorwärmekreislauf 150 umfasst. Die Energiespeichervorrichtung 1 gemäss Figur 9 ist ähnlich ausgestaltet wie die Energiespeichervorrichtung 1 gemäss Figur 4, unterscheidet sich jedoch zumindest bezüglich der nachfolgenden Aspekte:

  • Der Vorwärmekreislauf 150 ist als geschlossener Kreislauf ausgestaltet, umfassend einen geschlossenen Behälter 22, wobei als Fluid im geschlosseren Kreislauf vorzugsweise Wasser verwendet wird. Zudem ist im Vorwärmekreislauf 150 ein Wärmetauscher 154 angeordnet, welcher gegenüber der Umgebung U Wärme austauscht. Der Wärmetauscher 154 kann alternativ auch zwischen dem Kaltwasserspeicher 222 und der Fördereinrichtung 223 angeordnet sein. Der Wärmetauscher 154 kann alternativ auch im Kaltwasserspeicher 222 angeordnet sein, um direkt zwischen dem Kaltwasserspeicher 222 und der Umgebung U oder einem weiteren Medium Wärme auszutauschen. Beispielsweise könnte der Kaltwasserspeicher 222 nachts durch den Wärmetauscher 154 gekühlt werden.
  • Der Ladekreislauf 100 umfasst in einer vorteilhaften Ausgestaltung eine Zusatzheizung 190, welche zwischen dem ersten Verdichter 110 und dem Hochtemperaturregenerator 120 angeordnet ist. Die Zusatzheizung 190 dient dazu das den ersten Verdichter 110 verlassende, heisse Arbeitsgas A nochmals nachzuerhitzen, beispielsweise von 750 °C auf 1500°C, um dadurch die im Hochtemperaturregenerator 120 gespeicherte Energie zu erhöhen. Die Zusatzheizung 190 könnte beispielsweise eine Elektroheizung 190a enthalten um das durchfliessende Arbeitsgas A zu erhitzen. Abhängig von der durch die Zusatzheizung 190 bewirkten Temperaturerhöhung des Arbeitsgases A kann die im Hochtemperaturregenerator 120 gespeicherte Wärmeenergie um einen beträchtlichen Faktor, erhöht werden, beispielsweise um einen Faktor 2.
  • Der Entladekreislauf 200 umfasst einen zusätzlichen Kühler 260, über welchen dem Entladekreislauf 200 Wärme für einen Wärmeprozess 260a entnommen werden kann. Der Wärmeprozess 260a könnte beispielsweise ein lokaler Wärmeverbund zur Beheizung von Häusern sein.
FIG. 9 shows a further embodiment of an energy storage device 1, which in turn comprises a charging circuit 100, a discharge circuit 200 and a preheating circuit 150. The energy storage device 1 according to FIG. 9 is configured similarly as the energy storage device 1 according to FIG. 4 but differs at least in the following aspects:
  • The preheating circuit 150 is configured as a closed circuit comprising a closed container 22, wherein water is preferably used as the fluid in the closed circuit. In addition, in the preheating circuit 150, a heat exchanger 154 is arranged, which exchanges heat with respect to the environment U. The heat exchanger 154 may alternatively be arranged between the cold water reservoir 222 and the conveyor 223. The heat exchanger 154 may alternatively be arranged in the cold water storage 222 in order to exchange heat directly between the cold water storage 222 and the environment U or another medium. For example, the cold water storage 222 could be cooled by the heat exchanger 154 at night.
  • The charging circuit 100 comprises in an advantageous embodiment, an additional heater 190, which between the first compressor 110 and the high-temperature regenerator 120 is arranged. The auxiliary heater 190 serves to reheat the hot working gas A leaving the first compressor 110, for example, from 750 ° C. to 1500 ° C., thereby increasing the energy stored in the high-temperature regenerator 120. The additional heater 190 could for example contain an electric heater 190a to heat the flowing working gas A. Depending on the temperature increase of the working gas A caused by the additional heater 190, the heat energy stored in the high-temperature regenerator 120 can be increased by a considerable factor, for example by a factor of 2.
  • The discharge circuit 200 includes an additional cooler 260, via which the discharge circuit 200 heat for a heat process 260 a can be removed. For example, the heating process 260a could be a local heating network for heating homes.

In Figur 9 sind zudem noch Schaltmittel 400, 401 bzw. Ventile dargestellt, welche erforderlich sind um bei der dargestellten Energiespeichervorrichtung 1 zwischen dem Ladevorgang und dem Entladevorgang beziehungsweise zwischen Ladekreislauf 100 und Entladekreislauf 200 umzuschalten.In FIG. 9 In addition, switching means 400, 401 or valves are shown, which are required in order to switch between the charging process and the discharging process or between the charging circuit 100 and the discharging circuit 200 in the illustrated energy storage device 1.

Die in Figur 9 dargestellte Energiespeichervorrichtung 1 weist unter anderem den Vorteil auf, dass, falls erwünscht, Wärmeenergie auch direkt abgeführt werden kann, und Wärmeenergie zudem auch an unterschiedlichen Stellen und zu unterschiedlich hohen Temperaturen abgeführt werden kann. Wie in Figur 9 dargestellt kann der zweite Fluidspeicher 222 beispielsweise auch als geschlossener Behälter ausgestaltet sein, wobei im Vorwärmekreislauf 150 ein zusätzlicher Wärmetauscher 154 angeordnet ist, welcher Wärme mit der Umgebung austauscht.In the FIG. 9 shown energy storage device 1 has, inter alia, the advantage that, if desired, heat energy can also be dissipated directly, and heat energy can also be dissipated also at different locations and to different high temperatures. As in FIG. 9 illustrated, the second fluid reservoir 222 may be configured, for example, as a closed container, wherein in the preheating circuit 150, an additional heat exchanger 154 is arranged, which exchanges heat with the environment.

Figur 10 zeigt ein weiteres Ausführungsbeispiel einer Energiespeichervorrichtung 1, die wiederum einen Ladekreislauf 100 mit Leitungen 101, einen Entladekreislauf 200 mit Leitungen 201 sowie einen Vorwärmekreislauf 150 umfasst. Der Vorwärmekreislauf 150 ist nicht im Detail dargestellt, ist jedoch gleich ausgestaltet wie in Figur 9 dargestellt. In Figur 10 werden die Kühler 221 und der Vorwärmer 151 somit vom Vorwärmekreislauf 150 gespeist. Der Kühler 270 kühlt gegen Umgebungstemperatur U. Figur 10 zeigt die Energiespeichervorrichtung 1 während des Entladevorgangs, wobei die Leitungen 201 des Entladekreislaufs 200 mit durchgezogenen Linien dargestellt sind, und wobei alle Ventile 401 geöffnet sind und alle Ventile 400 geschlossen sind. Die Leitungen 101 des Ladekreislaufs 100 sind mit gestrichelten Linien dargestellt. Werden alle Ventile 401 geschlossen und Ventile 400 geöffnet so ist die Energiespeichervorrichtung 1 im Ladezustand. Die dargestellte Energiespeichervorrichtung 1 ist als Zweiwellenanlage ausgestaltet und umfasst einen einzigen Turbolader, auch als Compander bezeichnet, welcher den zweiten Verdichter 210, den Hochdruckteil des zweiten Expanders 250b, sowie die zweite Welle 214b umfasst. Abhängig von der Stellung der Ventile 400, 401 wird der Turbolader entweder wie vorhin beschrieben genutzt, oder derart genutzt, dass dieser den ersten Expander 140 und den ersten Verdichter 110b ausbildet, wobei der erste Expander 140 und der erste Verdichter 110b über die zweite Welle 114b miteinander verbunden sind. Durch diese Schaltung kann, im Vergleich zu den bisher dargestellten Ausführungsbeispielen, ein Turbolader eingespart werden. Der Niederdruckteil des Expanders 250a ist über die erste Welle 214a direkt mit dem Generator 290 verbunden. Der Niederdruckteil des ersten Verdichters 110a ist über die erste Welle 114a direkt oder über ein Getriebe mit dem Motor 170 verbunden. Der Verdichter 110a könnte auch über ein Getriebe 172 mit dem Motor 170 verbunden sein, wie in den Figuren 11c oder 11d dargestellt. Ein Vorteil der in Figur 10 dargestellten Energiespeichervorrichtung 1 ist somit, dass diese einen einzigen Turbolader bzw. Compander benötigt, welcher freilaufend ausgestaltet ist. Da der Hochdruckteil des zweiten Expanders 250b des Entladeprozesses 200 grösser als der Hochdruckteil des ersten Expanders 140 des Ladeprozesses 100 ausfallen muss, ist dieser mit einer auf den Volumenstrom des Arbeitsgases A wirksamen Regeleinrichtung auszustatten, um während des Ladebetriebes dem geringeren Eintrittsvolumenstrom des Expanders 140 gerecht zu werden. Diese Energiespeichervorrichtung 1 ist somit besonders kostengünstig herstellbar. Im Gegensatz dazu benötigen die in den Figuren 1, 4 und 9 dargestellten Energiespeichervorrichtungen 1 jeweils zwei Turbolader, so dass sie als zweiwellige Anordnung ausgeführt sind. FIG. 10 shows a further embodiment of an energy storage device 1, which in turn comprises a charging circuit 100 with lines 101, a discharge circuit 200 with lines 201 and a preheating circuit 150. The preheating circuit 150 is not shown in detail, but is configured the same as in FIG. 9 shown. In FIG. 10 Thus, the radiator 221 and the preheater 151 are fed by the preheating circuit 150. The radiator 270 cools to ambient temperature U. FIG. 10 show the Energy storage device 1 during the discharging process, wherein the lines 201 of the Entladekreislaufs 200 are shown in solid lines, and wherein all the valves 401 are opened and all valves 400 are closed. The lines 101 of the charging circuit 100 are shown in dashed lines. If all valves 401 are closed and valves 400 are opened, the energy storage device 1 is in the state of charge. The illustrated energy storage device 1 is designed as a two-shaft system and comprises a single turbocharger, also referred to as Compander, which comprises the second compressor 210, the high-pressure part of the second expander 250b, and the second shaft 214b. Depending on the position of the valves 400, 401, the turbocharger is either utilized as described above or used to form the first expander 140 and the first compressor 110b, with the first expander 140 and the first compressor 110b being connected via the second shaft 114b connected to each other. By this circuit, in comparison to the previously illustrated embodiments, a turbocharger can be saved. The low pressure part of the expander 250a is directly connected to the generator 290 via the first shaft 214a. The low pressure part of the first compressor 110a is connected to the engine 170 via the first shaft 114a directly or via a transmission. The compressor 110a could also be connected to the engine 170 via a transmission 172, as in FIGS Figures 11c or 11d shown. An advantage of in FIG. 10 shown energy storage device 1 is thus that this requires a single turbocharger or Compander, which is designed to run freely. Since the high-pressure part of the second expander 250b of the unloading process 200 has to be larger than the high-pressure part of the first expander 140 of the charging process 100, this must be equipped with a control device that acts on the volume flow of the working gas A in order to meet the lower inlet volume flow of the expander 140 during the loading operation become. This energy storage device 1 is thus particularly inexpensive to produce. In contrast, those in the FIGS. 1 . 4 and 9 each energy storage devices 1 shown two turbochargers, so that they are designed as a two-shaft arrangement.

Die Figuren 11a bis 11h zeigen unterschiedlich ausgestaltete Komponenten von Wärmepumpen des Ladekreislaufs 100. Figur 11a zeigt eine Anordnung von Motor 170, erstem Verdichter 110 und erstem Expander 140, welche an einer gemeinsamen Welle 114 angeordnet sind. Der erste Verdichter 110 ist als Axial- oder Inline-RadialVerdichter ausgestaltet oder als eine Kombination von Axial und Radialverdichter. Vorteilhafterweise wird die Anordnung mit einer Drehzahl von 3000 Umdrehungen pro Minute betrieben, inbesondere um den Motor 170 mit einer Netzfrequenz von 50 Hz zu betreiben. Die Anordnung kann zum Beispiel auch mit einer Drehzahl von 3600 Umdrehungen pro Minute betrieben werden, insbesondere wenn der Motor 170 mit einer Netzfrequenz von 60 Hz betrieben wird. Diese Anordnung ist insbesondere für eine grosse Anlage von insbesondere mehr als 15 MW geeignet. Figur 11b zeigt eine Anordnung von Getriebe 172, erstem Verdichter 110 und erstem Expander 140, welche an einer gemeinsamen Welle 114 angeordnet sind. Zudem ist der Motor 170 mit dem Getriebe 172 verbunden. Der erste Verdichter 110 ist als Axial- oder Inline-Radial-Verdichter ausgestaltet oder als eine Kombination von Axial und Radialverdichter. Vorteilhafterweise wird die Anordnung mit einer Drehzahl von 3000 Umdrehungen pro Minute betrieben. Diese Anordnung ist insbesondere für eine kleinere Anlage von insbesondere weniger als 20 MW geeignet. Figur 11c zeigt eine Anordnung von Motor 170, erstem Verdichter 110 und erstem Expander 140, wobei der erste Verdichter 110 geteilt ausgestaltet ist, und der Niederdruckteil 110a über eine erste Welle 114a mit dem Motor 170 und der Hochdruckteil 110b über eine zweite Welle 114b mit dem Expander 140 verbunden, frei laufend, und insbesondere als Compander ausgestaltet ist. Der Niederdruckverdichter 110a ist als axialer oder radialer Niederdruckverdichter 110a ausgestaltet. Vorteilhafterweise wird der Niederdruckverdichter 110a mit einer Drehzahl von 3000 Umdrehungen pro Minute betrieben, und der Compander rotiert freilaufend mit vorzugsweise einer Drehzahl von über 3000 Umdrehungen pro Minute. Diese Anordnung ist insbesondere für eine grosse Anlage von insbesondere mehr als 15 MW geeignet. Figur 11d zeigt eine Anordnung von Getriebe 172, erstem Verdichter 110 und erstem Expander 140, wobei der erste Verdichter 110 geteilt ausgestaltet ist, und der eine Teil über eine erste Welle 114a mit dem Getriebe 172 und der andere Teil über eine zweite Welle 114b mit dem Expander 140 verbunden, frei laufend ausgestaltet ist und insbesondere einen Compander ausbildet. Zudem ist der Motor 170 mit dem Getriebe 172 verbunden. Vorteilhafterweise wird der Niederdruckverdichter 110a mit einer Drehzahl von über 3000 Umdrehungen pro Minute betrieben, und der Compander rotiert freilaufend ebenfalls mit vorzugsweise einer Drehzahl von über 3000 Umdrehungen pro Minute. Diese Anordnung ist insbesondere für eine kleine Anlage von insbesondere weniger als 20 MW geeignet. Figur 11e zeigt eine Anordnung von Getriebe 172, erstem Verdichter 110 und erstem Expander 140, wobei der erste Verdichter 110 und der erste Expander 140 mit dem Getriebe 172 verbunden sind, um deren Drehzahl über das Getriebe 172 anzupassen. Zudem ist der Motor 170 mit dem Getriebe 172 verbunden. Der erste Verdichter 110 ist als Radialverdichter ausgestaltet. Das Getriebe 172 erlaubt es die Drehzahl von erstem Verdichter 110 und erstem Expander 140 gegenseitig anzupassen. Aufgrund der inhärenten Flexibilität der Anordnung ist sie für ein weites Leistungsspektrum von bis zu 40 MW geeignet. Figur 11f zeigt eine Anordnung von Getriebe 172, erstem Verdichter 110 und erstem Expander 140, wobei der erste Verdichter 110 einen Niederdruckverdichter 110a sowie einen Hochdruckverdichter 110b umfasst, wobei der Niederdruckverdichter 110a, der Hochdruckverdichter 110b und der erste Expander 140 mit dem Getriebe 172 verbunden sind, um deren Drehzahl über das Getriebe 172 anzupassen. Der Niederdruckverdichter 110a sowie der Hochdruckverdichter 110b sind als Radialverdichter ausgestaltet. Aufgrund der inhärenten Flexibilität der Anordnung ist sie für ein weites Leistungsspektrum von bis zu 40 MW geeignet.The FIGS. 11a to 11h show differently configured components of heat pumps of the charging circuit 100th FIG. 11a shows an arrangement of motor 170, first compressor 110 and first expander 140, which are arranged on a common shaft 114. The first compressor 110 is configured as an axial or inline radial compressor or as a combination of axial and radial compressors. Advantageously, the arrangement is operated at a speed of 3000 revolutions per minute, in particular to operate the motor 170 with a mains frequency of 50 Hz. The arrangement may, for example, also be operated at a speed of 3600 revolutions per minute, in particular when the motor 170 is operated at a mains frequency of 60 Hz. This arrangement is particularly suitable for a large system of more than 15 MW in particular. FIG. 11b shows an arrangement of gear 172, first compressor 110 and first expander 140, which are arranged on a common shaft 114. In addition, the engine 170 is connected to the transmission 172. The first compressor 110 is configured as an axial or in-line radial compressor or as a combination of axial and radial compressors. Advantageously, the arrangement is operated at a speed of 3000 revolutions per minute. This arrangement is particularly suitable for a smaller system of particular less than 20 MW. FIG. 11c 1 shows an arrangement of the engine 170, the first compressor 110 and the first expander 140, wherein the first compressor 110 is designed to be divided, and the low-pressure part 110a via a first shaft 114a to the motor 170 and the high-pressure part 110b via a second shaft 114b to the expander 140 connected, free-running, and in particular designed as a compander. The low pressure compressor 110a is configured as an axial or radial low pressure compressor 110a. Advantageously, the low-pressure compressor 110a is operated at a speed of 3000 revolutions per minute, and the Compander rotates freely, preferably at a speed of over 3000 revolutions per minute. This arrangement is particularly suitable for a large system of more than 15 MW in particular. FIG. 11d 1 shows an arrangement of transmission 172, first compressor 110 and first expander 140, wherein the first compressor 110 is designed to be split, and one part via a first shaft 114a with the gear 172 and the other part via a second shaft 114b with the expander 140th connected, freely running and in particular forms a Compander. In addition, the engine 170 is connected to the transmission 172. Advantageously, the low-pressure compressor 110a is operated at a speed of over 3000 revolutions per minute, and the Compander rotates free-running also preferably with a speed of over 3000 revolutions per minute. This arrangement is particularly suitable for a small system of particular less than 20 MW. FIG. 11e 11 shows an arrangement of transmission 172, first compressor 110, and first expander 140, with first compressor 110 and first expander 140 connected to transmission 172 to adjust their speed via transmission 172. In addition, the engine 170 is connected to the transmission 172. The first compressor 110 is designed as a radial compressor. The transmission 172 allows the speed of the first compressor 110 and first expander 140 to match each other. Due to the inherent flexibility of the arrangement, it is suitable for a wide power range of up to 40 MW. FIG. 11f 11 shows an arrangement of transmission 172, first compressor 110 and first expander 140, wherein first compressor 110 includes a low pressure compressor 110a and a high pressure compressor 110b, with low pressure compressor 110a, high pressure compressor 110b and first expander 140 connected to transmission 172 Adjust their speed via the transmission 172. The low-pressure compressor 110a and the high-pressure compressor 110b are designed as radial compressors. Due to the inherent flexibility of the arrangement, it is suitable for a wide power range of up to 40 MW.

Figur 11g zeigt eine Anordnung von Motor 170, erstem Verdichter 110 und erstem Expander 140, wobei der erste Verdichter 110 geteilt ausgestaltet ist, und der Hochdruckverdichter 110b über eine erste Welle 114a mit dem Motor 170 und der Niederdruckverdichter 110a über eine zweite Welle 114b mit dem Expander 140 verbunden, frei laufend, und insbesondere als Turbolader ausgestaltet ist. Der Hochdruckverdichter 110b ist als Kolbenverdichter ausgestaltet, welcher vorzugsweise ohne zwischengeschaltetes Getriebe vom Motor 170 angetrieben ist. Der Niederdruckverdichter 110a ist als axialer oder radialer Niederdruckverdichter 110a ausgestaltet. Der Expander 140 ist als axialer oder radialer Expander ausgestaltet und bildet zusammen mit dem Niederdruckverdichter 110a den Turbolader. Vorteilhafterweise wird der Hochdruckverdichter 110b mit einer Drehzahl von 3000 Umdrehungen oder von 1500 Umdrehungen pro Minute betrieben, und der Turbolader rotiert freilaufend mit vorzugsweise einer Drehzahl von über 3000 Umdrehungen pro Minute. Diese Anordnung ist insbesondere für eine kleine Anlage von insbesondere weniger als 2 MW geeignet. Figur 11h zeigt eine weitere Ausgestaltung einer Wärmepumpe, welche im Unterschied zu der in Figur 11g dargestellten Ausführungsform zudem ein Getriebe 172 umfasst, sodass der Hochdruckverdichter 110b, welcher als Kolbenkompressor ausgestaltet ist, vom Motor 170 über das Getriebe 172 angetrieben ist. Vorteilhafterweise wird der Motor 170 mit einer Netzfrequenz von 50 Hz, und inbesondere mit einer Drehzahl von 3000 Umdrehungen oder von 1500 Umdrehungen pro Minute betrieben, wogegen der Kolbenkompressor mit einer um das Übersetzungsverhältnis des Getriebes 172 erhöhten Drehzahl, beispielweise grösser 3000 Umdrehungen pro Minute. Figure 11g 1 shows an arrangement of the engine 170, the first compressor 110 and the first expander 140, with the first compressor 110 divided and the high-pressure compressor 110b via a first shaft 114a to the engine 170 and the low-pressure compressor 110a via a second shaft 114b to the expander 140 connected, freely running, and in particular designed as a turbocharger. The high-pressure compressor 110b is designed as a piston compressor, which is preferably driven by the motor 170 without an intermediate gearbox. The low pressure compressor 110a is configured as an axial or radial low pressure compressor 110a. The expander 140 is configured as an axial or radial expander and forms the turbocharger together with the low-pressure compressor 110a. Advantageously, the high-pressure compressor 110b is operated at a speed of 3000 revolutions or 1500 revolutions per minute, and the turbocharger rotates freely, preferably at a speed of more than 3000 revolutions per minute Minute. This arrangement is particularly suitable for a small system of particular less than 2 MW. Figure 11h shows a further embodiment of a heat pump, which in contrast to the in Figure 11g In addition, a transmission 172 comprises, so that the high-pressure compressor 110b, which is configured as a piston compressor, is driven by the engine 170 via the transmission 172. Advantageously, the motor 170 is operated at a mains frequency of 50 Hz, and in particular at a speed of 3000 revolutions or 1500 revolutions per minute, whereas the piston compressor with an increased by the gear ratio of the transmission 172 speed, for example greater 3000 revolutions per minute.

Die Figur 11i zeigt Komponenten eines Entladekreislaufs 200 im Detail. Figur 11i zeigt eine Anordnung mit einem zweiten Expander 250, welcher ein Getriebe 172 antreibt, wobei das Getriebe 172 einen zweiten Verdichter 210 umfassend vier Teilverdichter 210a, 210b, 210c, 210d sowie einen Generator 290 antreibt. Die in den Figuren 11a bis 11h dargestellten Anordnungen könnten auch für einen Entladekreislauf 200 verwendet werden, indem der Motor 170 durch einen Generator 290, der erste Verdichter 110 durch den zweiten Verdichter 210 und der erste Expander 140 durch den zweiten Expander 250 ersetzt wird.The Figure 11i shows components of a discharge circuit 200 in detail. Figure 11i shows an arrangement with a second expander 250 which drives a transmission 172, wherein the transmission 172 drives a second compressor 210 comprising four partial compressors 210a, 210b, 210c, 210d and a generator 290. The in the FIGS. 11a to 11h Arrangements could also be used for a discharge circuit 200 by replacing the motor 170 by a generator 290, the first compressor 110 by the second compressor 210, and the first expander 140 by the second expander 250.

Bei den in den Figuren 1 bis 11i dargestellten Ausführungsbeispielen wird der Ladekreislauf 100 und der Entladekreislauf 200 vorteilhafterweise druckaufgeladen betrieben. Der erste Verdichter 110 und der zweite Verdichter 210 sind vorzugsweise als ein Radial- oder als Axialverdichter ausgestaltet. Besonders vorteilhaft ist die Verwendung eines Getriebeverdichters, an dessen Getriebe 172 wie in Figur 11e oder 11f dargestellt, auch der Expander 140 angeschlossen werden kann. Der erste und/oder der zweite Verdichter 110, 210 könnte jedoch auch als ein Kolbenverdichter, wie in den Figuren 11g und 11h dargestellt, als ein Schraubenverdichter ausgestaltet sein.
Der erste Verdichter 110 und der zweite Verdichter 210 sind vorzugsweise ohne eine Regeleinrichtung ausgerüstet. Der erste und zweite Verdichter 110, 210 könnte jedoch auch mit einer Durchfluss-Regeleinrichtung ausgerüstet werden. Vorzugsweise besteht beim ersten Verdichter oder zweiten Verdichter 110, 210 vom Typ Radial und Axial die Durchfluss-Regeleinrichtung aus einem oder mehreren Vorleiträdern. In einer möglichen Ausführungsform könnte bei einem ersten Verdichter 110 oder zweiten Verdichter 210 vom Typ Radial und Axial die Durchfluss-Regeleinrichtung aus einem oder mehreren verstellbaren Diffusoren bestehen. Optional könnte beim ersten oder zweiten Verdichter 110, 210 vom Typ Radial oder Axial die Durchflussregelung aus einer Kombination von Vorleitrad- und Diffusorregelung bestehen.
In the in the FIGS. 1 to 11i illustrated embodiments, the charging circuit 100 and the discharge circuit 200 is advantageously operated pressure charged. The first compressor 110 and the second compressor 210 are preferably configured as a radial compressor or as an axial compressor. Particularly advantageous is the use of a gear compressor, on the transmission 172 as in FIG. 11e or 11f shown, also the expander 140 can be connected. However, the first and / or second compressor 110, 210 could also be used as a reciprocating compressor, as in FIGS Figures 11g and 11h shown to be configured as a screw compressor.
The first compressor 110 and the second compressor 210 are preferably equipped without a control device. However, the first and second compressors 110, 210 could also be equipped with a flow control device. Preferably, the first compressor or second compressor 110, 210 of the type radial and axial the Flow control device of one or more Vorleiträdern. In one possible embodiment, in a first compressor 110 or a second compressor 210 of the radial and axial type, the flow control device could consist of one or more adjustable diffusers. Optionally, for the first or second radial or axial type compressor 110, 210, the flow control could consist of a combination of pilot and diffuser control.

Vorzugsweise ist der erste Verdichter 110 ungekühlt. Optional kann der erste Verdichter 110 auch mit einer Kühleinrichtung ausgestattet sein.Preferably, the first compressor 110 is uncooled. Optionally, the first compressor 110 may also be equipped with a cooling device.

Der Hochtemperaturregenerator 120 ist vorteilhafterweise ein druckfester, temperaturbeständiger, wärmeisolierter Behälter. Der Hochtemperaturregenerator 120 ist vorteilhafterweise mit einem porösen, temperaturfesten Wärmespeichermaterial 121 bestückt, wobei in den freien Räumen des Hochtemperaturregenerators 120 das Arbeitsgas A strömt. Vorteilhafterweise ist der Hochtemperaturregenerators 120 vertikal angeordnet und wird beim Laden vorzugsweise von oben nach unten durchströmt und beim Entladen von unten nach oben.The Hochtemperaturregenerator 120 is advantageously a pressure-resistant, temperature-resistant, heat-insulated container. The high-temperature regenerator 120 is advantageously equipped with a porous, temperature-resistant heat storage material 121, wherein in the free spaces of the Hochtemperaturregenerators 120, the working gas A flows. Advantageously, the Hochtemperaturregenerators 120 is arranged vertically and is preferably flowed through during loading from top to bottom and when unloading from bottom to top.

Der erste Expander 140 und der zweite Expander 250 sind vorzugsweise vom Typ Radial- oder Axialexpander. Optional kann der erste und zweite Expander 140, 250 vom Typ Kolbenexpander sein. Der erste und zweite Expander 140, 250 vom Typ Radial oder Axial sind vorzugsweise ungeregelt. Optional kann der erste und zweite Expander 140, 250 vom Typ Radial und Axial mit einer Volumenstromregelung ausgerüstet sein.The first expander 140 and the second expander 250 are preferably of the radial or axial expander type. Optionally, the first and second expander 140, 250 may be piston expander type. The first and second expanders 140, 250 of the radial or axial type are preferably unregulated. Optionally, the first and second expanders 140, 250 of the radial and axial type may be equipped with a volume flow control.

Das Fluid im Vorwärmekreislauf 150 ist vorzugsweise Wasser. Optional könnten auch andere Fluide wie beispielsweise eine Mischung aus Wasser und (Mono-) Ethylenglycol verwendet werden. Der Vorwärmekreislauf 150 wird vorzugsweise drucklos betrieben. Optional kann der Vorwärmekreislauf 150 druckbeaufschlagt betrieben werden. Für diesen Fall ist der Vorwärmekreislauf 150 druckfest ausgeführt.The fluid in the preheating loop 150 is preferably water. Optionally, other fluids such as a mixture of water and (mono) ethylene glycol could be used. The preheating loop 150 is preferably operated without pressure. Optionally, the preheating circuit 150 can be operated pressurized. In this case, the preheating circuit 150 is pressure-resistant.

Vorzugsweise ist der Antrieb 170 des Ladekreislaufs 100 als Elektromotor ausgestaltet. Optional ist der Elektromotor mit einem Frequenzumrichter ausgestattet. Optional ist der Antrieb 170 des Ladekreislaufs 100 eine Dampfturbine. Optional ist der Antrieb 170 des Ladekreislaufs 100 eine Gasturbine. Optional ist der Antrieb 170 des Ladekreislaufs ein Verbrennungsmotor. Vorzugsweise werden die drehenden Komponenten des Ladekreislaufs 100 bei konstanter Drehzahl betrieben. Optional werden die drehenden Komponenten des Ladekreislaufs 100 drehzahl-variabel betrieben.Preferably, the drive 170 of the charging circuit 100 is designed as an electric motor. Optionally, the electric motor is equipped with a frequency converter. Optional is the Drive 170 of the charging circuit 100 a steam turbine. Optionally, the drive 170 of the charging circuit 100 is a gas turbine. Optionally, the drive 170 of the charging circuit is an internal combustion engine. Preferably, the rotating components of the charging circuit 100 are operated at a constant speed. Optionally, the rotating components of the charging circuit 100 are operated variable speed.

Vorzugsweise ist der Verbraucher 290 des Entladekreislaufs 200 als Generator ausgestaltet. Optional ist der Generator mit einem Frequenzumrichter ausgestattet. Optional ist der Verbraucher 290 des Entladekreislaufs 200 ein Verdichter. Optional ist der Verbraucher 290 des Entladekreislaufs 200 eine Pumpe. Optional ist der Verbraucher 290 des Entladekreislaufs 200 eine Schiffsschraube. Vorzugsweise werden die drehenden Komponenten des Entladekreislaufs 200 bei konstanter Drehzahl betrieben. Optional werden die drehenden Komponenten des Entladekreislaufs 200 drehzahl-variabel betrieben.Preferably, the load 290 of the discharge circuit 200 is configured as a generator. Optionally, the generator is equipped with a frequency converter. Optionally, the load 290 of the discharge circuit 200 is a compressor. Optionally, the load 290 of the discharge circuit 200 is a pump. Optionally, the load 290 of the unloading circuit 200 is a propeller. Preferably, the rotating components of the discharge circuit 200 are operated at a constant speed. Optionally, the rotating components of the discharge circuit 200 are operated variable speed.

In einem weiteren möglichen Ausführungsbeispiel könnte als Arbeitsgas auch Luft verwendet werden, wobei dann sicherzustellen ist, dass des Speichermaterial im Hochtemperaturregenerator 120 aus einem nicht brennbaren Material besteht.In a further possible embodiment, air could also be used as the working gas, it then being necessary to ensure that the storage material in the high-temperature regenerator 120 consists of a non-combustible material.

Ein Getriebe 172 kann eine Mehrzahl von drehenden Wellen umfassen. Beispielsweise könnte das in Figur 11f von dem Motor 170 angetriebene Getriebe 172 auch mehr als vier Wellen umfassen, beispielweise auch fünf, sechs, sieben oder acht. Ein derartiges Getriebe 172 weist den Vorteil auf, dass zum Beispiel identische Verdichter parallel betrieben werden können. So könnten zum Beispiel in Figur 11f die beiden Verdichter 110a und 110b identisch ausgestaltet sein, und eine gemeinsame Zuführung bzw. eine gemeinsame Abführung für das Fluid aufweisen, sodass die beiden Verdichter 110a, 110b mit gleicher Drehzahl und parallel betrieben werden können. Das Getriebe 172 erlaubt es jedoch beispielsweise auch die beiden Verdichter 110a, 110b in Serie zu betreiben.A transmission 172 may include a plurality of rotating shafts. For example, this could be in FIG. 11f gearboxes 172 driven by the motor 170 also comprise more than four shafts, for example also five, six, seven or eight. Such a transmission 172 has the advantage that, for example, identical compressors can be operated in parallel. For example, in FIG. 11f the two compressors 110a and 110b be configured identically, and have a common supply or a common discharge for the fluid, so that the two compressors 110a, 110b can be operated at the same speed and in parallel. However, the transmission 172 also allows, for example, the two compressors 110a, 110b to be operated in series.

Claims (15)

  1. An energy storage device (1) for storing energy, comprising:
    - a high-temperature regenerator (120) containing a solid, in particular porous, storage material, and a working gas (A) as a heat transfer medium, for the purpose of exchanging heat between the storage material and the working gas (A) flowing through,
    - a closed charging circuit (100) for the working gas (A), comprising a first compressor (110), a first expander (140), a first recuperator (130) that has a first and a second heat exchange duct (130a, 130b), the high-temperature regenerator (120) and a preheater (151), wherein the first compressor (110) is coupled to the first expander (140) by means of a shaft (114), and wherein the charging circuit (100) is realized in such a manner that, starting from the high-temperature regenerator (120), at least the first heat exchange duct (130a) of the recuperator (130), the first expander (140), the preheater (151), the second heat exchange duct (130b) of the recuperator (130), the first compressor (110), and then the high-temperature generator (120), are connected to each other in a fluid-conducting manner, forming a closed circuit, and
    - a closed discharging circuit (200)
    characterized in that a switching means (400, 401) in a fluid-conducting manner connects the high-temperature regenerator (120) either to the charging circuit (100) or to the discharging circuit (200) in a controllable manner, such that the high-temperature regenerator (120) forms either a part of the charging circuit (100) or a part of the discharging circuit (200), and the charging circuit (100), the discharging circuit (200) and the high-temperature regenerator (120) have the same working gas (A), such that the working gas (A) comes into direct contact with the storage material, both in the charging circuit (100) and in the discharging circuit (200).
  2. The energy storage device as claimed in claim 1, characterized in that the discharging circuit (200) comprises a second compressor (210), a second expander (250), a second recuperator (230) having a first and a second heat exchange duct (230a, 230b), the high-temperature regenerator (120) and a first cooler (270), wherein the second compressor (210) is coupled to the second expander (250) via the shaft (214), and wherein the discharging circuit (200) is realized in such a manner that, starting from the high-temperature regenerator (120), at least the second expander (250), the first heat exchange duct (230a) of the second recuperator (230), the first cooler (270), the second compressor (210), the second heat exchange duct (230b) of the recuperator (230), and then the high-temperature regenerator (120), are connected to each other in a fluid-conducting manner, forming the closed circuit.
  3. The energy storage device as claimed in claim 2, characterized in that the discharging circuit (200) comprises a second cooler (221), which, in the discharging circuit (200), is connected upstream, intermediately or downstream in respect of the second compressor (210).
  4. The energy storage device as claimed in claim 3, characterized in that a preheating circuit (150) comprises a cold-water storage (222), a hot-water storage (152), the second cooler (221) and the preheater (151), wherein the preheating circuit (150) is designed in such a manner that, starting from the cold-water storage (222), at least the second cooler (221), the hot-water storage (152), the preheater (151) and then the cold-water storage (222) are connected to each other in a fluid-conducting manner, forming a circuit.
  5. The energy storage device as claimed in any one of the preceding claims, characterized in that the compressor (110) comprises at least two sub-compressors, a low-pressure sub-compressor (110a) and a high-pressure sub-compressor (110b), the compressor (110) comprises at least two separate shafts (W1, W2), and the expander (140) and the high-pressure sub-compressor (110b) are disposed on a common shaft.
  6. The energy storage device as claimed in any one of claims 2 to 5, characterized in that the first and the second recuperator (130, 230) are designed as a common recuperator (130), and the switching means (400, 401) are disposed in such a manner that the common recuperator (130) realizes, in controllable manner, either a part of the charging circuit (100) or of the discharging circuit (200).
  7. The energy storage device as claimed in any one of claims 2 to 6, characterized in that that the first expander (140) and the first compressor (110) are connected to a motor (170) via a common shaft (114), and the second expander (250) and the second compressor (210) are connected to a generator (290) via a common shaft (214).
  8. The energy storage device as claimed in any one of the preceding claims, characterized in that that the storage material of the high-temperature regenerator (120) is porous materials, sand, gravel, stones, concrete, graphite, or a ceramic such as silicon carbide.
  9. The energy storage device as claimed in any one of the preceding claims, characterized in that that the working gas (A) is argon or nitrogen.
  10. The energy storage device as claimed in any one of the preceding claims, characterized in that an ancillary heating system (190) is provided, which is connected before the high-temperature regenerator (120) in the charging circuit (100), such that the working gas (A) can be heated before entering the high-temperature regenerator (120).
  11. A method for storing energy in an energy storage device (1) comprising a high-temperature regenerator (120) that contains a solid storage material, in that a working gas (A) is circulated, as a heat transfer medium, in a closed charging circuit (100), wherein the working gas (A) exchanges heat with the storage material, and wherein the working gas (A) after the high-temperature regenerator (120) is cooled in a first recuperator (130), then expanded in a first expander (140), then preheated in a first preheater (151), then heated in the first recuperator (130), then compressed in a compressor (110) and heated, and the thus heated working gas (A) is supplied to the high-temperature regenerator (120), and wherein thermal energy is removed from the high-temperature regenerator (120) via a closed discharging circuit (200), characterized in that the high-temperature regenerator (120) forms either a part of the charging circuit (100) or a part of the discharging circuit (200), in that the high-temperature regenerator (120) is switched in a fluid-conducting manner either into the charging circuit (100) or into the discharging circuit (200), wherein the same working gas (A) flows through the charging circuit (100), the discharging circuit (200) and the high-temperature regenerator (120), such that the working gas (A) flows around the storage material, both in the charging circuit (100) and in the discharging circuit (200).
  12. The method as claimed in claim 11, characterized in that, in the discharging circuit (200), the working gas (A), after emerging from the high-temperature regenerator (120), is expanded in a second expander (250), then cooled in a second recuperator (230), then cooled in a first cooler (270), then compressed in a second compressor (210) and is thereby heated, then heated again the recuperator (130), and then supplied back to the high-temperature regenerator (120).
  13. The method as claimed in claim 12, characterized in that that the first compressor (110) is driven by an electric motor (170), and a generator (290) is driven by the second expander (250), in order to supply and extract electrical energy.
  14. The method as claimed in any one of claims 11 to 13, characterized in that that a preheating circuit (150) comprises at least one water storage (222, 152), and at least the preheater (151) is heated with water via the preheating circuit (150).
  15. A use of an energy storage device as claimed in any one of claims 1 to 10 for storing electrical energy and delivering electrically energy in a deferred manner.
EP16722795.8A 2015-04-24 2016-04-19 Energy storage device and thermal energy storage method Not-in-force EP3286412B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16722795T PL3286412T3 (en) 2015-04-24 2016-04-19 Energy storage device and thermal energy storage method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15165025 2015-04-24
PCT/EP2016/058654 WO2016169928A1 (en) 2015-04-24 2016-04-19 Energy storage device and method for storing energy

Publications (2)

Publication Number Publication Date
EP3286412A1 EP3286412A1 (en) 2018-02-28
EP3286412B1 true EP3286412B1 (en) 2019-04-03

Family

ID=53016498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16722795.8A Not-in-force EP3286412B1 (en) 2015-04-24 2016-04-19 Energy storage device and thermal energy storage method

Country Status (6)

Country Link
US (1) US10280803B2 (en)
EP (1) EP3286412B1 (en)
CN (1) CN107810312B (en)
ES (1) ES2733503T3 (en)
PL (1) PL3286412T3 (en)
WO (1) WO2016169928A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
US10739088B2 (en) * 2016-07-20 2020-08-11 Petrus Norlin Apparatus for heating gas
US10550765B2 (en) 2016-10-26 2020-02-04 Peter Ortmann Energy storage device and method for storing energy
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US20190186786A1 (en) * 2017-11-10 2019-06-20 Paul NEISER Refrigeration apparatus and method
US10775111B2 (en) * 2017-11-29 2020-09-15 Dresser-Rand Company Pumped heat energy storage system with convey able solid thermal storage media directly thermally coupled to working fluid
EP3584414A1 (en) 2018-06-19 2019-12-25 Siemens Aktiengesellschaft Device and method for providing heat, cold and/or electrical energy
CN110513166B (en) * 2019-08-23 2022-02-08 中国科学院上海应用物理研究所 Regenerative alternate energy storage power generation system
EP4058659A1 (en) 2019-11-16 2022-09-21 Malta Inc. Pumped heat electric storage system
US11286804B2 (en) * 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11982228B2 (en) 2020-08-12 2024-05-14 Malta Inc. Pumped heat energy storage system with steam cycle
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11473442B1 (en) * 2020-09-22 2022-10-18 Aetherdynamic Power Systems Llc Re-circulating heat pump turbine
CN113417710B (en) * 2021-06-02 2022-07-22 中国科学院理化技术研究所 Liquid air energy storage device based on compact cold box
DK181199B1 (en) * 2021-09-20 2023-04-25 Stiesdal Storage As A thermal energy storage system with environmental air exchange and a method of its operation
CN114251136A (en) * 2021-12-20 2022-03-29 中国科学院工程热物理研究所 Compression expansion type energy storage system and energy storage control method
CN114233651A (en) * 2021-12-20 2022-03-25 中国科学院工程热物理研究所 Axial flow compression expansion type energy conversion device and control method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4121460A1 (en) * 1991-06-28 1993-01-14 Deutsche Forsch Luft Raumfahrt HEAT STORAGE SYSTEM WITH COMBINED HEAT STORAGE
US8261552B2 (en) 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
FR2916101B1 (en) 2007-05-11 2009-08-21 Saipem Sa INSTALLATION AND METHODS FOR STORAGE AND RESTITUTION OF ELECTRICAL ENERGY
ES2416727T3 (en) * 2007-10-03 2013-08-02 Isentropic Limited Energy accumulation apparatus and method to accumulate energy
US9518786B2 (en) * 2010-02-24 2016-12-13 Energy Technologies Institute Llp Heat storage system
GB201104867D0 (en) * 2011-03-23 2011-05-04 Isentropic Ltd Improved thermal storage system
DE102011086374A1 (en) * 2011-11-15 2013-05-16 Siemens Aktiengesellschaft High-temperature energy storage with recuperator
DE102011088380A1 (en) * 2011-12-13 2013-06-13 Siemens Aktiengesellschaft Energy storage device with open charging circuit for storing seasonal excess electrical energy
GB2501685A (en) 2012-04-30 2013-11-06 Isentropic Ltd Apparatus for storing energy
DE102013217607B4 (en) * 2013-09-04 2023-12-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for providing steam, method for storing and later providing energy, steam provision device and use of a steam provision device
FR3011626B1 (en) * 2013-10-03 2016-07-08 Culti'wh Normands THERMODYNAMIC SYSTEM FOR STORAGE / ELECTRIC POWER GENERATION

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016169928A1 (en) 2016-10-27
CN107810312B (en) 2020-07-10
EP3286412A1 (en) 2018-02-28
CN107810312A (en) 2018-03-16
US10280803B2 (en) 2019-05-07
US20180142577A1 (en) 2018-05-24
PL3286412T3 (en) 2019-11-29
ES2733503T3 (en) 2019-11-29

Similar Documents

Publication Publication Date Title
EP3286412B1 (en) Energy storage device and thermal energy storage method
EP3532710B1 (en) Energy storage device and thermal energy storage method
EP2530283B1 (en) Adiabatic pressurised air storage power plant
EP1830046B1 (en) Drive unit with heat recovery
EP2574756B1 (en) Method for operating an adiabatic compressed air storage power plant and adiabatic compressed air storage power plant
DE4410440C2 (en) Compressed air energy storage process and system
DE102010027302A1 (en) Energy storage system
WO2003076781A1 (en) Power generating system
EP0079624A2 (en) Gas turbine power station with an air storage system
DE4210541A1 (en) Process for operating a gas turbine group
EP3186506B1 (en) Device and method for storing energy
DE102010050428A1 (en) Pressure stage heat storage power plant or energy storage method for temporary storage of energy in the form of pressure energy in a compressible medium and in the form of heat energy
DE202005003611U1 (en) Thermal electric station for producing and storing electrical energy comprises a compressed air storage unit with heat exchangers for thermally coupling the station and the compressed air storage unit
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
EP3006682B1 (en) Device and method for operating a heating distribution station
EP4244470A1 (en) Thermal energy store for storing electrical energy
WO2013156284A1 (en) System for storing and outputting thermal energy having a heat accumulator and a cold accumulator and method for the operation thereof
DE10358233A1 (en) Air storage power plant
WO2022112063A1 (en) System and method for storing and releasing electrical energy, the energy being stored as thermal energy
EP2458174B1 (en) Method for operating an adiabatic compressed air storage power plant and adiabatic compressed air power plant
DE102005060831B4 (en) Closed gas turbine process
EP3374603B1 (en) Power heat power storage device and method for controlling the load of the same
WO2017025466A1 (en) Device and method for converting electrical energy to heat and for storing said heat
EP2989310B1 (en) Accumulator system coupled to gas turbines for intake fluid preheating
DE102022134154A1 (en) Method for cooling at least one refrigerant and/or at least one coolant in an open process

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181023

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1116010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004022

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190403

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190703

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190704

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2733503

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190803

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004022

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

26N No opposition filed

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210427

Year of fee payment: 6

Ref country code: DE

Payment date: 20210420

Year of fee payment: 6

Ref country code: FR

Payment date: 20210423

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210629

Year of fee payment: 6

Ref country code: ES

Payment date: 20210621

Year of fee payment: 6

Ref country code: GB

Payment date: 20210422

Year of fee payment: 6

Ref country code: PL

Payment date: 20210408

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1116010

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016004022

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220419

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220419

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220420