EP3244046B1 - Control method for a combustion engine, control device and combustion engine - Google Patents

Control method for a combustion engine, control device and combustion engine Download PDF

Info

Publication number
EP3244046B1
EP3244046B1 EP17166140.8A EP17166140A EP3244046B1 EP 3244046 B1 EP3244046 B1 EP 3244046B1 EP 17166140 A EP17166140 A EP 17166140A EP 3244046 B1 EP3244046 B1 EP 3244046B1
Authority
EP
European Patent Office
Prior art keywords
emissions
emission
nox
control method
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17166140.8A
Other languages
German (de)
French (fr)
Other versions
EP3244046A1 (en
Inventor
Benjamin Segtrop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP3244046A1 publication Critical patent/EP3244046A1/en
Application granted granted Critical
Publication of EP3244046B1 publication Critical patent/EP3244046B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/38Control for minimising smoke emissions, e.g. by applying smoke limitations on the fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions

Definitions

  • the present invention relates to a control method for an internal combustion engine for determining at least one reference variable for an internal combustion engine.
  • Control processes complement constructive measures such as the design of the combustion chamber and influence the mixture formation in injection systems and through injection processes.
  • CO carbon monoxide
  • HC hydrocarbons
  • NOx nitrogen oxides
  • Information about an operating state of the engine e.g. speed, torque, desired torque, temperature, DPF (diesel particle filter) load
  • reference variables are determined which influence consumption and emissions during operation.
  • additional engine maps are often used in a control unit executing the control method, in which, for example, a target exhaust gas recirculation rate or a target boost pressure depending on the above-mentioned operating state are stored.
  • Suitable reference variables are, for example, exhaust gas recirculation rate, exhaust gas recirculation distribution, filling, injection timing, ignition timing. Manipulated variables are then derived from these reference variables (for example throttle valve position, position of a VTG (variable turbine geometry)).
  • internal combustion engine encompasses the complete internal combustion engine system with all its units, auxiliary units and control elements.
  • This strategy can be used to ensure that the upper emission limits are not exceeded in specified speed profiles through an optimized assignment of certain reference variables be crossed, be exceeded, be passed.
  • An example of such speed profiles are standardized driving cycles, for example the NEDC (New European Driving Cycle), which are used to determine the exhaust gas and / or consumption values.
  • NEDC New European Driving Cycle
  • global optimization approaches are known, as they are in Heikosequence: Emission Modeling and Model-Based Optimization of the Engine Control, D17 Darmphiler Dissertations 2012 are specified.
  • any number of different speed profiles and operating states occur that are not known before and during the journey. Since the individual operating states already have different emission values regardless of the engine control, the consumption and emission values (l / 100km or mg / km) can vary considerably upwards or downwards in these various different driving profiles. A global optimization of, for example, fuel consumption or CO 2 emissions when emission limits are not exceeded is therefore no longer given by the known control methods.
  • Control processes should therefore also optimize the reference variables in real driving operation - for example exhaust gas recirculation rate (EGR rate), EGR split (high pressure / low pressure), filling, rail pressure etc. - but also the use of exhaust gas aftertreatment systems such as diesel particle filters and SCR (selective catalytic reduction) ) in terms of fuel and AdBlue consumption and emissions.
  • EGR rate exhaust gas recirculation rate
  • EGR split high pressure / low pressure
  • filling rail pressure etc.
  • rail pressure etc. but also the use of exhaust gas aftertreatment systems such as diesel particle filters and SCR (selective catalytic reduction) ) in terms of fuel and AdBlue consumption and emissions.
  • One possible approach would be to determine a reference variable (e.g. EGR rate, EGR distribution, filling) that is output to the internal combustion engine, taking into account information about the operating status, upper emission limits and a cumulative actual emission variable.
  • a reference variable e.g. EGR rate, EGR distribution, filling
  • the operating status information could include, for example, the speed, the current torque, the desired torque, temperatures, the DPF loading and other variables.
  • the cumulative actual emissions include the sum of all emissions emitted by the internal combustion engine in a specific operating period.
  • At least one operating state of the internal combustion engine could then be set via the reference variable (s) in such a way that several actual emission variables would be influenced in such a way that the cumulative actual emission variables in a certain operating period with a compilation of any different operating states set in random order Internal combustion engine's upper emission limits for this operating period would not be exceeded (mg / km) and a target function would be reduced as much as possible.
  • a variable to be minimized or optimized is referred to as a target function (e.g. fuel consumption or the related CO 2 emissions, regeneration intervals of various exhaust gas aftertreatment systems such as soot particle filters, AdBlue consumption, NOx emissions, etc., or a combination of such variables).
  • a target function e.g. fuel consumption or the related CO 2 emissions, regeneration intervals of various exhaust gas aftertreatment systems such as soot particle filters, AdBlue consumption, NOx emissions, etc., or a combination of such variables.
  • any operating states is intended to encompass all technically meaningful operating states that can occur in proper normal operation of an internal combustion engine.
  • Such a control concept would have the advantage that, for example, a non-critical actual emission variable would be increased by changing the reference variable to such an extent that a critical actual emission variable would be reduced to such an extent that it would be ensured that the emission limit level (emission limit value) of an emission variable for the critical Emission size would not be exceeded in a certain operating period.
  • One or more reference variable could be selected from Pareto-optimal alternatives - for example, injection quantity, actual emissions and / or AdBlue dosage - using an indifference curve. This is done according to a heuristic that takes into account the distances between the cumulative actual emissions and their limit level. In this method, the reference variable is therefore determined or adapted dynamically and depending on the situation.
  • the object is therefore to provide a control method for an internal combustion engine in a vehicle, in which a current reference variable is determined in a simple and efficient manner, in which expected future driving conditions can also be taken into account.
  • the invention is characterized in that a target function is minimized by taking into account a difference between an upper emission limit and a cumulative actual emission variable when determining the reference variable.
  • a target function e.g. an emission variable such as CO 2 emissions, NOx emissions and / or soot or particle emissions
  • a target function is minimized by selecting the reference variable from Pareto-optimal alternatives using an indifference curve determined from the difference. In order to determine this difference, prediction information is also taken into account.
  • the method determines the desired reference variables such as the exhaust gas recirculation rate (EGR rate), boost pressure / filling, AdBlue metering or even the Torque or power distribution in hybrid vehicles between electric and internal combustion engines depending on previous emissions (historical observation) and predicted emissions (prediction information), which are included in the differential observation.
  • EGR rate exhaust gas recirculation rate
  • boost pressure / filling boost pressure / filling
  • AdBlue metering even the Torque or power distribution in hybrid vehicles between electric and internal combustion engines depending on previous emissions (historical observation) and predicted emissions (prediction information), which are included in the differential observation.
  • prediction information predicted emissions
  • Predicted emissions for expected operating conditions are determined, estimated or derived from stored data.
  • route preview information for a planned route can be used, for example, which provides information on the altitude profile, speed limits, traffic and traffic light information, as well as information on ambient temperatures or air pressure conditions.
  • the prediction information includes information on a route (e.g. the length of the route), which is then multiplied by a route-related emission limit value.
  • the operating state prognosis information comprises at least one item of information from the following group: route quality, route length and environmental conditions.
  • Essential operating status information (torque, speed) and the power requirement of an internal combustion engine can be determined via the route quality (e.g. inclines), the route length and environmental conditions (e.g. the height above sea level).
  • the prediction information also alternatively or additionally includes an emissions prediction variable. This makes it possible to consider both the permissible emission limit value - including a predicted component - and the actual and expected emissions when considering the difference. It is thus possible to analyze the critical difference between this limit value and the expected emissions in a past and future-oriented manner and to use it to determine the indifference curve.
  • the operating status information includes at least one speed (n) and one setpoint torque (M).
  • the actual emission quantities comprise at least two of the following quantities.
  • the variables include NOx emissions, HC emissions, CO emissions, CO 2 emissions, combined HC and NOx emissions, number of soot particles, soot particle mass, load status of a diesel particulate filter and / or a NOx storage catalytic converter.
  • the reference variable comprises at least one of the following variables which affect the emission behavior, namely EGR rate, EGR split, filling, ignition point.
  • the manipulated variables derived therefrom include one of the following variables, via which the desired reference variable can be brought about in modern engines, namely throttle valve position; Setting of the variable turbine geometry, injection timing, camshaft adjustment.
  • two actual emission variables are considered, in particular nitrogen oxide emissions and soot emissions, which are related in competition with diesel engines.
  • an internal combustion engine With the help of an internal combustion engine with a control device according to the invention, improved consumption values and emission values can be achieved.
  • Such an internal combustion engine is particularly suitable for vehicles.
  • FIG. 1 an engine diagram is shown, which is regulated or controlled via a control device 1 according to the invention.
  • An internal combustion engine designed as a reciprocating piston engine 2 diesel or Otto engine
  • the supply air passes through an air filter 6 and an exhaust gas turbocharger 7 with adjustable turbine geometry through an intercooler 8 via an inlet valve 3 into the cylinder 9, where fuel is optionally supplied via an injection system.
  • the resulting exhaust gas is discharged through an outlet valve 3 via the exhaust system.
  • the compressed exhaust gas passes through the exhaust gas turbocharger 7, drives it and thus compresses the charge air. It then passes a nitrogen storage catalytic converter 10 and a diesel particulate filter 11 and finally passes through an exhaust flap 12 into the exhaust 13.
  • valves 3 are driven via an adjustable camshaft 14.
  • the adjustment takes place via a camshaft adjusting device 15 which can be controlled by the control unit 1.
  • a portion of the exhaust gas can be introduced into the charge air line 4 via a high pressure exhaust gas recirculation valve 16.
  • An exhaust-gas-treated partial flow can be conducted in the low-pressure area after the exhaust-gas turbocharger 7 via a corresponding exhaust-gas cooling 17 and an exhaust-gas recirculation low-pressure valve 18 into the charge air line 4.
  • the turbine geometry of the exhaust gas turbocharger 7 can be adjusted via an adjusting device 19.
  • the charge air supply (“gas”) is regulated via the main throttle valve 20.
  • the control unit 1 can be used to control the low-pressure exhaust gas recirculation valve 18, the actuating device 19, the main throttle valve 20, the high-pressure exhaust gas recirculation valve 16, the camshaft adjusting device 15 and the exhaust gas flap 12 (solid lines).
  • control device 1 is supplied with temperature information (intercooler 8, exhaust gas cooling 17) and with actual emission values (e.g. from a sensor or physical / empirical model) via sensors and setpoint generators.
  • Additional operating status information can also come, such as: accelerator pedal position, throttle position, air mass, battery voltage, engine temperature, crankshaft speed and top dead center, gear stage, vehicle speed.
  • Figure 2 shows a schematically illustrated vehicle 200 in which the reciprocating piston engine 2 is arranged with the exhaust gas train 5 and which is connected to a drive train 25 via a coupling 24.
  • the vehicle is provided with an electric drive 23, which is coupled to the reciprocating piston engine 2 or the transmission 2a and the drive train 25 via the clutch 24.
  • the electric drive 23 is designed, for example, as a permanent magnet synchronous machine, which is supplied with energy via an electrical energy store 21 (and a converter 22).
  • the control device 1 is also coupled to the electric drive units (21, 22, 23) via corresponding signal lines (not shown).
  • the following exemplary embodiments relate to the control and regulation of emission values as a function of predetermined upper emission limits and cumulative actual values.
  • the control unit 1 determines one or more effective reference variables x (t) required to influence the emissions.
  • the input variables are the driver's request FW, which is derived, for example, from the position of an accelerator pedal and / or a brake pedal, and other operating conditions SB of vehicle 200 or engine 2. Furthermore, emission limit values EM G are taken into account, which are not exceeded during operation and, finally, prediction information PI is used to take future operating states into account.
  • Typical prediction information PI is, for example, an emission forecast EM P or operating state forecast information which, for a vehicle, for example, includes information about the route length s (t), the route quality and expected environmental conditions during operation.
  • reference variables x (t) e.g. EGR rate, EGR distribution, filling, ignition point
  • manipulated variables are determined that are used in internal combustion engine 2 or its components (e.g. position of main throttle valve 20, camshaft setting, setting of the turbine geometry of exhaust gas turbocharger 7 , Adjustment of the exhaust flap 12, etc.) affect the emissions (for example NOx, HC, CO, soot) of the internal combustion engine.
  • emissions for example NOx, HC, CO, soot
  • EM DS for example mass per time [mg / s]
  • Cumulative actual values EM K of the emissions are derived from these emissions (integration of the emission rates over time).
  • Fig. 4 shows an example of the relationship between NOx emissions and soot emissions as a function of the exhaust gas recirculation rate (EGR), which here forms a reference variable x (t).
  • EGR exhaust gas recirculation rate
  • t reference variable x
  • Fig. 5 shows a diagram with target variable combinations of specific soot emissions, which are plotted against specific NOx emissions. If, for example, there is the task of minimizing / lowering the soot emissions in an (arbitrary) operating state, while maintaining a (cumulative) NOx limit value, the emission history (cumulative actual values Em G ) for previous (possibly any, in different operating states set in a random order) are taken into account.
  • Pareto-optimal target variable combinations in which the soot emissions can only be further reduced if the NOx emission is increased, are indicated by the points x.
  • All Pareto-optimal target variable combinations form the so-called Pareto front, which connects the points x with one another.
  • points to the left below the Pareto front hatchched area
  • all the target variable combinations provided to the right above are not Pareto-optimal, since there are combinations (points x) that affect both soot and NOx emissions can be implemented more cheaply on the Pareto front.
  • a NOx limit value NOx-G (dashed line) is specified in the right-hand column as the upper emission limit EM G and the column shown below shows the cumulative actual value Em K of the previous cumulative NOx emissions NOx-K 1 in the hatched area. Since the cumulative NOx emissions NOx-K 1 are already relatively close to the NOx limit value NOx-G, a relatively high exchange ratio between the target variables soot emissions and NOx emissions is selected here (increased soot emissions, in favor of low NOx) around the NOx -NOx-G limit value not To exceed.
  • This exchange rate desired here is indicated by the indifference curve I, which is shown here with a relatively steep slope, and is then shifted to the closest target combination in which a certain soot emission and a certain NOx emission can be achieved for this operating point.
  • This combination of target variables is then made with the help of the diagram Fig. 4 known information is assigned to an EGR as a suitable Pareto-optimized reference variable x (t).
  • Fig. 7 shows an example in which the cumulative NOx emissions (NOx-K 2 ) are further below the NOx limit value NOx-G.
  • the exchange ratio of the indifference curve I is smaller (the straight line slopes down more gently). In this case, higher NOx emissions can be accepted without the risk of the NOx limit value NOx-G being exceeded. This means that soot emissions can be kept lower.
  • the flatter straight line is shifted to the next combination of target variables at which a specific NOx emission and a corresponding soot emission with an associated reference variable x (t) (here the corresponding EGR from Fig. 3 ) is feasible.
  • Fig. 8 shows an example in which the cumulative NOx emissions (NOx-K 3 ) have exceeded the NOx limit value NOx-G.
  • the exchange ratio of the straight line I is virtually infinite.
  • the reference variable x (t) is selected for minimum NOx emissions.
  • Fig. 9 shows analogously to Fig. 5 an example in which CO 2 is to be minimized depending on the cumulative NOx emissions.
  • Fig. 10 shows analogously to Fig. 5 an example in which the indifference curve is not linear.
  • FIGS 11 to 12C show an example of the combined emission observation on the basis of CO 2 emissions and the NOx emissions determining the Indifferenzkurven I ( Figures 12A-C ), which are applied to different Pareto fronts f in order to determine optimized operating points with regard to CO 2 emissions ⁇ CO2 and NOx emissions ⁇ NOx and to derive the corresponding reference variable (s) from this in a known manner.
  • variable ⁇ which is determined as a function of a difference ⁇ and corresponds to the slope of the indifference curves I.
  • ⁇ ( ⁇ ) denotes the angle at which the indifference curve I intersects the ⁇ NOx axis (abscissa).
  • results according to Figure 11 from the difference of a time (or distance) dependent limit value curve EM G over time t (dashed function).
  • the actual limit value EM G is specified, for example, in mg / km, i.e. a unit of mass per route, and thus increases with increasing time or distance covered s.
  • the course of the cumulative emission values EM K e.g. a NOx amount m NOx is recorded (solid Line) and the difference ⁇ is formed from the two (dotted line).
  • ⁇ t Max 0 , EM NOx G ⁇ s t + s ⁇ t - m NOx t - m ⁇ NOx t
  • the time-dependent or distance-dependent ⁇ results from the upper emission limit EM G , for NOx, which is multiplied by a distance value s, which results from a previous, i.e. already traveled distance s (t) and a predicted distance s ⁇ (t).
  • a distance value s which results from a previous, i.e. already traveled distance s (t) and a predicted distance s ⁇ (t).
  • the actual, cumulative emission EM K (here m NOx (t)) and a future, predicted emission EM P (here m ⁇ NOx (t)) are then subtracted from this distance-dependent or time-dependent limit value.
  • the curves show in a retrospective view (arrow V to the left) the previous profiles of the components EM G s (t) and m NOx (t), with a forward-looking view (arrow Z to the right) also showing the Prediction components EM G s ⁇ (t) and m ⁇ NOx (t) taken into account.
  • a characteristic curve shown in FIG Figure 12 is shown, derived a ⁇ value which corresponds to the slope of an indifference curve I, which leads to the determination of a Pareto-optimized operating point and thus to the desired reference variable.
  • Pareto fronts f 1 , f 2 for different operating states (u f1 and u f2 ) are in the Figures 12A to 12C shown.
  • the function is strictly monotonically decreasing, so that with increasing ⁇ , ⁇ continuously decreases, as is shown by way of example in the function in FIG.
  • the desired reference variable (x (t) for a certain emission combination u f1 or u f2 is determined by applying the indifference curve I, the slope of which corresponds to the ⁇ value, which is derived from the characteristic curve in Figure 12 results.
  • This target variable combination u f1 or u f2 (emission combination) determined in this way is then assigned an EGR as a suitable Pareto-optimized reference variable x (t), for example with the aid of known information (analogous to the diagram Fig. 4 ).
  • Figure 4 shows the relationship between NOx and soot emissions in connection with the EGR rate.
  • the relationships between reference variable x (t) and emission combinations from two or more emission variables can be taken from other diagrams or from multi-dimensional maps (with Pareto surfaces).
  • Figure 12A shows a ⁇ 1 , Figure 12B a ⁇ 2 and Figure 12C a ⁇ 3 .
  • the different ⁇ values result from the corresponding ⁇ values with the aid of the characteristic curve in Figure 12 .
  • the slope of the indifference curve must increase (the indifference curve I becomes steeper), since operating points are to be preferred where the distance to the emission limit value for NOx emissions is shorter those operating points are preferred at which the NOx emissions are reduced.
  • the CO 2 emissions are increased at these operating points ( Figure 12B ).
  • the emission values can be improved during operation and depending on changing boundary conditions.
  • the method can also be extended to multi-dimensional problems. For example, it is possible to determine Pareto-optimized reference variables x (t) for multiple combinations (e.g. for CO 2 emissions, soot emissions and NOx emissions).
  • other reference variables x (t) can also be determined in a Pareto-optimized manner for regulation (eg EGR distribution, filling, ignition point or rail pressure).
  • control unit 2 reciprocating engine 2a transmission 3 valves 4 charge air line 5 exhaust system 6 air filters 7 exhaust gas turbochargers 8 intercoolers 9 cylinders 10 NOx storage catalytic converter 11 diesel particulate filter 12 exhaust flap 13 exhaust 14 camshaft 15 camshaft adjusting device 16 EGR high pressure valve 17 exhaust gas cooling 18 EGR low pressure valve 19 control device 20 main throttle 21 el. Energy storage 22 inverters 23 el.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Die vorliegende Erfindung betrifft ein Steuerungsverfahren für einen Verbrennungsmotor zur Bestimmung wenigstens einer Führungsgröße für einen Verbrennungsmotor.The present invention relates to a control method for an internal combustion engine for determining at least one reference variable for an internal combustion engine.

Wichtige Motorfunktionen werden mit geeigneten Steuerungsverfahren eingestellt. Steuerungsverfahren ergänzen dabei konstruktive Maßnahmen wie die Brennraumgestaltung und beeinflussen die Gemischbildung in Einspritzsystemen und durch Einspritzverfahren. Im Motorbetrieb senken sie den Kraftstoffverbrauch und die damit zusammenhängenden CO2-Emissionen sowie wesentliche Abgaskomponenten wie Kohlenmonoxid (CO), Kohlenwasserstoffe (HC), Stickoxide (NOx) sowie Ruß und Partikel.Important engine functions are set using suitable control methods. Control processes complement constructive measures such as the design of the combustion chamber and influence the mixture formation in injection systems and through injection processes. When the engine is running, they reduce fuel consumption and the associated CO 2 emissions as well as essential exhaust gas components such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx) as well as soot and particles.

Dabei werden Informationen über einen Betriebszustand des Motors (zum Beispiel Drehzahl, Drehmoment, gewünschtes Drehmoment, Temperatur, DPF (Diesel-Partikelfilter)beladung) ausgewertet und Führungsgrößen bestimmt, welche den Verbrauch und die Emissionen im Betrieb beeinflussen.Information about an operating state of the engine (e.g. speed, torque, desired torque, temperature, DPF (diesel particle filter) load) is evaluated and reference variables are determined which influence consumption and emissions during operation.

Zur Bestimmung dieser Führungsgrößen dienen oft in einem das Steuerungsverfahren ausführenden Steuergerät zusätzlich hinterlegte Motorkennfelder, in denen bspw. eine Soll-Abgasrückführungsrate oder ein Soll-Ladedruck in Abhängigkeit zum oben genannten Betriebszustand hinterlegt sind.To determine these reference variables, additional engine maps are often used in a control unit executing the control method, in which, for example, a target exhaust gas recirculation rate or a target boost pressure depending on the above-mentioned operating state are stored.

Geeignete Führungsgrößen sind zum Beispiel Abgasrückführungsrate, Abgasrückführungsaufteilung, Füllung, Einspritzzeitpunkt, Zündzeitpunkt. Von diesen Führungsgrößen werden dann Stellgrößen abgeleitet (zum Beispiel Drosselklappenstellung, Stellung einer VTG (Variable Turbinengeometrie)).Suitable reference variables are, for example, exhaust gas recirculation rate, exhaust gas recirculation distribution, filling, injection timing, ignition timing. Manipulated variables are then derived from these reference variables (for example throttle valve position, position of a VTG (variable turbine geometry)).

Der Begriff "Verbrennungsmotor" umfasst in diesem Zusammenhang das vollständige Verbrennungsmotorsystem mit all seinen Aggregaten, Hilfsaggregaten und Stellelementen.In this context, the term “internal combustion engine” encompasses the complete internal combustion engine system with all its units, auxiliary units and control elements.

Mit dieser Strategie kann sichergestellt werden, dass in festgelegten Geschwindigkeitsprofilen durch eine optimierte Zuordnung bestimmter Führungsgrößen die Emissionsobergrenzen nicht überschritten werden. Ein Beispiel für solche Geschwindigkeitsprofile sind normierte Fahrzyklen, zum Beispiel der NEFZ (neuer Europäischer Fahrzyklus), die zur Bestimmung der Abgas- und/oder Verbrauchswerte gefahren werden. Für solche Zyklen sind beispielsweise globale Optimierungsansätze bekannt, wie sie in Heiko Sequenz: Emission Modelling and Model-Based Optimisation of the Engine Control, D17 Darmstädter Dissertationen 2012 angegeben sind.This strategy can be used to ensure that the upper emission limits are not exceeded in specified speed profiles through an optimized assignment of certain reference variables be crossed, be exceeded, be passed. An example of such speed profiles are standardized driving cycles, for example the NEDC (New European Driving Cycle), which are used to determine the exhaust gas and / or consumption values. For such cycles, for example, global optimization approaches are known, as they are in Heikosequence: Emission Modeling and Model-Based Optimization of the Engine Control, D17 Darmstädter Dissertations 2012 are specified.

Im realen Fahrbetrieb treten nun beliebige, unterschiedliche Geschwindigkeitsprofile und Betriebszustände auf, die vor und während der Fahrt nicht bekannt sind. Da die einzelnen Betriebszustände auch unabhängig von der Motorsteuerung schon unterschiedliche Emissionswerte aufweisen, können die Verbrauchs- und Emissionswerte (l/100km bzw. mg/km) bei diesen beliebigen, unterschiedlichen Fahrprofilen teilweise erheblich nach unten oder oben abweichen. Eine globale Optimierung von bspw. Kraftstoffverbrauch oder CO2-Emissionen bei Nichtüberschreiten von Emissionsgrenzen ist durch die bekannten Steuerungsverfahren somit nicht mehr gegeben.In real driving, any number of different speed profiles and operating states occur that are not known before and during the journey. Since the individual operating states already have different emission values regardless of the engine control, the consumption and emission values (l / 100km or mg / km) can vary considerably upwards or downwards in these various different driving profiles. A global optimization of, for example, fuel consumption or CO 2 emissions when emission limits are not exceeded is therefore no longer given by the known control methods.

Insbesondere bei konkurrierenden Emissionsgrößen, wie sie beispielsweise in einem Dieselmotor bei den Ruß(partikel)emissionen und den Stickoxidemissionen auftreten, können Situationen auftreten, bei denen beispielsweise in einem Geschwindigkeitsprofil die zulässigen Stickoxidemissionen überschritten werden und die zulässigen Rußemissionen deutlich unterschritten werden.Particularly in the case of competing emission variables, such as those that occur in a diesel engine with soot (particle) emissions and nitrogen oxide emissions, situations can arise in which, for example, the permissible nitrogen oxide emissions are exceeded in a speed profile and the permissible soot emissions are significantly below the limit.

Steuerungsverfahren sollen also auch im realen Fahrbetrieb die Führungsgrößen - beispielsweise Abgasrückführungsrate (AGR-Rate), AGR-Aufteilung (Hochdruck/Niederdruck), Füllung, Raildruck etc. - optimiert einstellen aber auch die Nutzung von Abgasnachbehandlungssystemen wie beispielsweise Dieselpartikelfilter und SCR (selektive katalytische Reduktion) im Hinblick auf den Kraftstoff- und AdBlue-Verbrauch sowie die Emissionsgrößen verbessern.Control processes should therefore also optimize the reference variables in real driving operation - for example exhaust gas recirculation rate (EGR rate), EGR split (high pressure / low pressure), filling, rail pressure etc. - but also the use of exhaust gas aftertreatment systems such as diesel particle filters and SCR (selective catalytic reduction) ) in terms of fuel and AdBlue consumption and emissions.

Ein möglicher Ansatz wäre es, unter Berücksichtigung einer Betriebszustandsinformation, Emissionsobergrenzen und einer kumulierten Ist-Emissionsgröße eine Führungsgröße zu bestimmen (zum Beispiel AGR-Rate, AGR-Aufteilung, Füllung), die an den Verbrennungsmotor abgegeben wird.One possible approach would be to determine a reference variable (e.g. EGR rate, EGR distribution, filling) that is output to the internal combustion engine, taking into account information about the operating status, upper emission limits and a cumulative actual emission variable.

Die Betriebszustandsinformationen könnten dabei zum Beispiel die Drehzahl, das aktuelle Drehmoment, das gewünschte Drehmoment, Temperaturen, die DPF-Beladung und andere Größen umfassen.The operating status information could include, for example, the speed, the current torque, the desired torque, temperatures, the DPF loading and other variables.

Die kumulierte Ist-Emissionsgröße umfasst die Summe aller in einem bestimmten Betriebszeitraum vom Verbrennungsmotor ausgestoßenen Emissionen.The cumulative actual emissions include the sum of all emissions emitted by the internal combustion engine in a specific operating period.

Über die Führungsgröße(n) könnte dann wenigstens ein Betriebszustand des Verbrennungsmotors so eingestellt werden, dass mehrere Ist-Emissionsgrößen so beeinflusst würden, dass die kumulierten Ist-Emissionsgrößen in einem bestimmten Betriebszeitraum mit einer Zusammenstellung aus beliebigen, in zufälliger Reihenfolge eingestellten, unterschiedlichen Betriebszuständen des Verbrennungsmotors Emissionsobergrenzen für diesen Betriebszeitraum nicht überschritten würden (mg/km) und eine Zielfunktion so weit wie möglich reduziert würde.At least one operating state of the internal combustion engine could then be set via the reference variable (s) in such a way that several actual emission variables would be influenced in such a way that the cumulative actual emission variables in a certain operating period with a compilation of any different operating states set in random order Internal combustion engine's upper emission limits for this operating period would not be exceeded (mg / km) and a target function would be reduced as much as possible.

Hier wird eine zu minimierende bzw. zu optimierende Größe als Zielfunktion bezeichnet (z.B. Kraftstoffverbrauch bzw. die davon abhängigen CO2-Emissionen, Regenerationsintervalle diverser Abgasnachbehandlungssysteme wie Rußpartikelfilter, AdBlue-Verbrauch, NOx Emissionen etc. oder eine Kombination solcher Größen).Here, a variable to be minimized or optimized is referred to as a target function (e.g. fuel consumption or the related CO 2 emissions, regeneration intervals of various exhaust gas aftertreatment systems such as soot particle filters, AdBlue consumption, NOx emissions, etc., or a combination of such variables).

Dokument US2011/0264353 A1 offenbart eine Optimierung von CO2-Emissionen und NOx-Emissionen.document US2011 / 0264353 A1 discloses an optimization of CO2 emissions and NOx emissions.

Dokumente "Beitrag zur automatisierten Steuerkennfeld-Applikation bei Fahrzeug-Dieselmotoren", von Kristian Jankov, "Emission Modelling and Model-Based Optimisation of the Engine Control" von Heiko Sequenz, und "Engine calibration: multi-objective constrained optimization of engine maps" von Hoël Langouët diskussieren über die Optimierung der Emissionen mittels der Pareto-Front Methode.Documents "Contribution to the automated control map application in vehicle diesel engines", by Kristian Jankov, "Emission Modeling and Model-Based Optimization of the Engine Control" by Heikosequence, and "Engine calibration: multi-objective constrained optimization of engine maps" by Hoël Langouët discuss the optimization of emissions using the Pareto-Front method.

Der Begriff "beliebige" Betriebszustände soll alle technisch sinnvollen Betriebszustände umfassen, die im sachgerechten Normalbetrieb eines Verbrennungsmotors auftreten können.The term "any" operating states is intended to encompass all technically meaningful operating states that can occur in proper normal operation of an internal combustion engine.

So ein Steuerungskonzept hätte den Vorteil, dass beispielsweise eine unkritische Ist-Emissionsgröße durch eine Veränderung der Führungsgröße so weit erhöht würde, dass eine kritische Ist-Emissionsgröße so weit verringert würde, dass sichergestellt wäre, dass das Emissionsgrenzniveau (Emissionsgrenzwert) einer Emissionsgröße für die kritische Emissionsgröße in einem bestimmten Betriebszeitraum nicht überschritten würde.Such a control concept would have the advantage that, for example, a non-critical actual emission variable would be increased by changing the reference variable to such an extent that a critical actual emission variable would be reduced to such an extent that it would be ensured that the emission limit level (emission limit value) of an emission variable for the critical Emission size would not be exceeded in a certain operating period.

Dabei könnten eine oder mehrere Führungsgröße(n) durch eine Indifferenzkurve aus pareto-optimalen Alternativen - von bspw. Einspritzmenge, Ist-Emissionen und/oder AdBlue-Dosierung - ausgewählt werden. Dies geschieht nach einer Heuristik, die die Abstände der kumulierten Ist-Emissionen zu ihrem Grenzniveau berücksichtigt. Die Führungsgröße wird also bei diesem Verfahren dynamisch und situationsbedingt bestimmt bzw. adaptiert.One or more reference variable (s) could be selected from Pareto-optimal alternatives - for example, injection quantity, actual emissions and / or AdBlue dosage - using an indifference curve. This is done according to a heuristic that takes into account the distances between the cumulative actual emissions and their limit level. In this method, the reference variable is therefore determined or adapted dynamically and depending on the situation.

So ein Ansatz wäre jedoch auf die Betrachtung bereits zurückliegender Betriebszustände reduziert.Such an approach would, however, be reduced to the consideration of previous operating states.

Aus dem Hybridfahrzeugbetrieb Ansätze sind bekannt, bei denen die Drehmoment- bzw. Leistungsaufteilung zwischen Verbrennungsmotor und Elektromotor unter Berücksichtigung zu erwartender Fahrzustände optimiert wird. Lin et al. "A stochastic control strategy for hybrid electric vehicles ", legt beispielsweise ein stochastisches, dynamisches Programmierungsverfahren vor, bei dem eine Antriebsmanagementstrategie für eine Gruppe zufälliger Fahrzyklen optimiert und in Echtzeit implementiert wird. So eine dynamische Programmierung ist zwar global optimal, erfordert aber unter Umständen einen sehr hohen Rechenaufwand, so dass solche Steuerungsverfahren in typischen Fahrzeugsteuergeräten mit beschränkter Rechenkapazität unter Umständen nur eingeschränkt anwendbar sind.Approaches are known from hybrid vehicle operation in which the torque or power distribution between the internal combustion engine and the electric motor is optimized, taking into account the driving conditions to be expected. Lin et al. "A stochastic control strategy for hybrid electric vehicles ", presents, for example, a stochastic, dynamic programming method in which a drive management strategy for a group of random driving cycles is optimized and implemented in real time. Dynamic programming of this kind is globally optimal, but under certain circumstances requires a very high computing effort, so that such control methods can be used in typical vehicle control devices with limited computing capacity may only be applicable to a limited extent.

Es besteht also die Aufgabe, ein Steuerungsverfahren für einen Verbrennungsmotor in einem Fahrzeug bereitzustellen, bei dem auf einfache und effiziente Weise eine aktuelle Führungsgröße bestimmt wird, bei der auch erwartete zukünftige Fahrzustände berücksichtigt werden können.The object is therefore to provide a control method for an internal combustion engine in a vehicle, in which a current reference variable is determined in a simple and efficient manner, in which expected future driving conditions can also be taken into account.

Diese Aufgabe wird durch das erfindungsgemäße Steuerungsverfahren nach Anspruch 1, einem Steuergerät nach Anspruch 12 und einem Verbrennungsmotor nach Anspruch 13 sowie einem Fahrzeug nach Anspruch 14 gelöst.This object is achieved by the control method according to the invention according to claim 1, a control device according to claim 12 and an internal combustion engine according to claim 13 and a vehicle according to claim 14.

Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung bevorzugter Ausführungsbeispiele der vorliegenden Erfindung.Further advantageous embodiments of the invention emerge from the subclaims and the following description of preferred exemplary embodiments of the present invention.

Die Erfindung zeichnet sich dadurch aus, dass eine Zielfunktion minimiert wird, indem bei der Bestimmung der Führungsgröße eine Differenz zwischen einer Emissionsobergrenze und einer kumulierten Ist-Emissionsgröße berücksichtigt wird. Dabei wird eine Zielfunktion (z.B. eine Emissionsgröße wie der CO2-Ausstoß, der NOx-Ausstoß und/oder der Ruß- bzw. Partikelausstoß) minimiert, indem die Führungsgröße mittels einer aus der Differenz bestimmten Indifferenzkurve aus pareto-optimalen Alternativen ausgewählt wird. Zur Bestimmung dieser Differenz wird dabei zusätzlich eine Prädiktionsinformation berücksichtigt.The invention is characterized in that a target function is minimized by taking into account a difference between an upper emission limit and a cumulative actual emission variable when determining the reference variable. A target function ( e.g. an emission variable such as CO 2 emissions, NOx emissions and / or soot or particle emissions) is minimized by selecting the reference variable from Pareto-optimal alternatives using an indifference curve determined from the difference. In order to determine this difference, prediction information is also taken into account.

Das Verfahren bestimmt also die gewünschten Führungsgrößen wie zum Beispiel Abgasrückführungsrate (AGR-Rate), Ladedruck/Füllung, AdBlue-Dosierung oder auch die Drehmoment- bzw. Leistungsaufteilung in Hybridfahrzeugen zwischen Elektro- und Verbrennungsmotor in Abhängigkeit von bisherigen Emissionen (Vergangenheitsbetrachtung) und prädizierten Emissionen (Prädiktionsinformation), die in die Differenzbetrachtung einfließen. Das Verfahren beruht also auf einer rechnerisch einfach zu bewältigenden Differenzbetrachtung, bei der sowohl kumulierte Ist-Emissionsgrößen betrachtet werden als auch Prädiktionsinformationen.The method thus determines the desired reference variables such as the exhaust gas recirculation rate (EGR rate), boost pressure / filling, AdBlue metering or even the Torque or power distribution in hybrid vehicles between electric and internal combustion engines depending on previous emissions (historical observation) and predicted emissions (prediction information), which are included in the differential observation. The method is based on a computationally easy-to-manage difference consideration, in which both cumulative actual emission quantities and prediction information are considered.

Dabei werden prädizierte Emissionen für erwartete Betriebszustände ermittelt, abgeschätzt oder auch aus hinterlegten Daten abgeleitet. Dazu können beispielsweise Streckenvorausschauinformationen für eine geplante Fahrroute dienen, die beispielsweise Informationen zum Höhenprofil, zu Geschwindigkeitsbegrenzungen, zu Verkehrs- und Ampelinformationen, sowie Informationen zu Umgebungstemperaturen oder Luftdruckbedingungen dienen.Predicted emissions for expected operating conditions are determined, estimated or derived from stored data. For this purpose, route preview information for a planned route can be used, for example, which provides information on the altitude profile, speed limits, traffic and traffic light information, as well as information on ambient temperatures or air pressure conditions.

Dabei gibt es Ausführungen, bei denen die Prädiktionsinformationen Informationen zu einer Fahrstrecke (z.B. die Länge der Fahrstrecke) umfassen, die dann mit einem fahrstreckenbezogenen Emissionsgrenzwert multipliziert werden.There are versions in which the prediction information includes information on a route (e.g. the length of the route), which is then multiplied by a route-related emission limit value.

Es gibt auch Ausführungen, bei denen die Betriebszustandsprognoseinformation wenigstens eine Information aus der folgenden Gruppe umfasst: Fahrstreckenqualität, Fahrstreckenlänge und Umweltbedingungen. Über die Fahrstreckenqualität (bspw. Steigungen), die Fahrstreckenlänge und Umweltbedingungen (z.B. die Höhe über Meeresspiegel) lassen sich wesentliche Betriebszustandsinformationen (Drehmoment, Drehzahl) und der Leistungsbedarf einer Verbrennungskraftmaschine bestimmen.There are also designs in which the operating state prognosis information comprises at least one item of information from the following group: route quality, route length and environmental conditions. Essential operating status information (torque, speed) and the power requirement of an internal combustion engine can be determined via the route quality (e.g. inclines), the route length and environmental conditions (e.g. the height above sea level).

Es gibt eine Ausführung, bei welcher die Prädiktionsinformation weiterhin alternativ oder zusätzlich eine Emissions-Prognosegröße umfasst. Damit ist es möglich, bei der Differenzbetrachtung sowohl den zulässigen Emissionsgrenzwert - einschließlich einer prädizierten Komponente - als auch die tatsächliche und erwartete Emission zu betrachten. So ist es möglich, die kritische Differenz zwischen diesem Grenzwert und den erwarteten Emissionen vergangenheits- und zukunftsorientiert zu analysieren und zur Bestimmung der Indifferenzkurve heranzuziehen.There is an embodiment in which the prediction information also alternatively or additionally includes an emissions prediction variable. This makes it possible to consider both the permissible emission limit value - including a predicted component - and the actual and expected emissions when considering the difference. It is thus possible to analyze the critical difference between this limit value and the expected emissions in a past and future-oriented manner and to use it to determine the indifference curve.

Dabei gibt es Ausführungen, bei denen die Betriebszustandsinformation wenigstens eine Drehzahl (n) und ein Soll-Drehmoment (M) umfasst.There are versions in which the operating status information includes at least one speed (n) and one setpoint torque (M).

Bei einer Ausführung umfassen die Ist-Emissionsgrößen (Zielfunktionen) wenigstens zwei der folgenden Größen. Zu den Größen gehören NOx-Ausstoß, HC-Ausstoß, CO-Ausstoß, CO2-Ausstoß, kombinierter HC- und NOx-Ausstoß, Rußpartikelanzahl, Rußpartikelmasse, Beladungszustand eines Dieselpartikelfilters und/oder eines NOx-Speicherkatalysators.In one embodiment, the actual emission quantities (objective functions) comprise at least two of the following quantities. The variables include NOx emissions, HC emissions, CO emissions, CO 2 emissions, combined HC and NOx emissions, number of soot particles, soot particle mass, load status of a diesel particulate filter and / or a NOx storage catalytic converter.

In einer anderen Ausführung umfasst die Führungsgröße wenigstens eine der folgenden Größen, die sich auf das Emissionsverhalten auswirken, nämlich AGR-Rate, AGR-Aufteilung, Füllung, Zündzeitpunkt. Die daraus abgeleiteten Stellgrößen umfassen dabei eine der folgenden Größen, über die bei modernen Motoren die gewünschte Führungsgröße bewirkt werden kann, nämlich Drosselklappenstellung; Einstellung der variablen Turbinengeometrie, Einspritzzeitpunkt, Nockenwellenverstellung.In another embodiment, the reference variable comprises at least one of the following variables which affect the emission behavior, namely EGR rate, EGR split, filling, ignition point. The manipulated variables derived therefrom include one of the following variables, via which the desired reference variable can be brought about in modern engines, namely throttle valve position; Setting of the variable turbine geometry, injection timing, camshaft adjustment.

In einer anderen Ausführung werden zwei Ist-Emissionsgrößen betrachtet, und zwar insbesondere der Stickoxidausstoß und der Rußausstoß, die bei Dieselmotoren konkurrierend zusammenhängen.In another embodiment, two actual emission variables are considered, in particular nitrogen oxide emissions and soot emissions, which are related in competition with diesel engines.

Es gibt auch Ausführungen, bei denen der CO2-Ausstoß und der NOx-Ausstoß konkurrierend optimiert werden.There are also designs in which the CO 2 emissions and the NOx emissions are optimized in a competitive manner.

Es gibt auch Ausführungen, bei denen der CO2-Ausstoß, der NOx-Ausstoß und der Rußausstoß, also drei Ist-Emissionsgrößen, konkurrierend optimiert werden.There are also designs in which the CO 2 emissions, the NOx emissions and the soot emissions, i.e. three actual emission variables, are optimized in a competitive manner.

Mit Hilfe eines Verbrennungsmotors mit einem erfindungsgemäßen Steuergerät, lassen sich verbesserte Verbrauchswerte und Emissionswerte realisieren. So ein Verbrennungsmotor ist besonders für Fahrzeuge geeignet.With the help of an internal combustion engine with a control device according to the invention, improved consumption values and emission values can be achieved. Such an internal combustion engine is particularly suitable for vehicles.

Ausführungsbeispiele der Erfindung werden nun beispielhaft und unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Darin zeigt:

Fig. 1
schematisch ein Motorsystem mit einem erfindungsgemäßen Steuergerät;
Fig. 2
ein schematisches Fahrzeuglayout mit einem erfindungsgemäßen Steuergerät;
Fig. 3
eine schematische Darstellung eines erfindungsgemäßen Steuerverfahrens mit wesentlichen Input- und Output-Größen;
Fig. 4
ein Diagramm, in dem Ruß- und NOx-Emissionen in Abhängigkeit der AGR-Rate dargestellt sind;
Fig. 5
pareto-optimale Arbeitspunkte, für die eine bestimmte Rußemission und eine bestimmte NOx-Emission gilt;
Fig. 6
Auswahl einer Führungsgröße durch eine Indifferenzkurve basierend auf dem Zusammenhang von Rußemissionen und NOx-Emissionen bei einer bestimmten (erhöhten) kumulierten NOx-Emission;
Fig. 7
die in Fig. 6 dargestellte Auswahl für eine niedrigere kumulierte NOx-Emission;
Fig. 8
die in Fig. 6 dargestellte Auswahl für eine überhöhte kumulierte NOx-Emission;
Fig. 9
die in Fig. 6 dargestellte Auswahl basierend auf dem Zusammenhang von CO2- und NOx-Emissionen;
Fig. 10
die in Fig. 6 dargestellte Auswahl durch eine nichtlineare Indifferenzkurve;
Fig. 11
eine Darstellung verschiedener Emissionsgrößen über einen Verlauf
Fig. 12
den Verlauf einer Kennlinie zur Bestimmung einer Indifferenzkurve
Fig. 12A-C
unterschiedliche Indifferenzkurven, die nach dem erfindungsgemäßen Verfahren bestimmt sind.
Embodiments of the invention will now be described by way of example and with reference to the accompanying drawings. It shows:
Fig. 1
schematically an engine system with a control device according to the invention;
Fig. 2
a schematic vehicle layout with a control device according to the invention;
Fig. 3
a schematic representation of a control method according to the invention with essential input and output variables;
Fig. 4
a diagram in which soot and NOx emissions are shown as a function of the EGR rate;
Fig. 5
pareto-optimal working points for which a certain soot emission and a certain NOx emission apply;
Fig. 6
Selection of a reference variable by means of an indifference curve based on the relationship between soot emissions and NOx emissions in the case of a specific (increased) cumulative NOx emission;
Fig. 7
in the Fig. 6 shown selection for a lower cumulative NOx emission;
Fig. 8
in the Fig. 6 Selection shown for excessive cumulative NOx emissions;
Fig. 9
in the Fig. 6 Selection shown based on the relationship between CO 2 and NOx emissions;
Fig. 10
in the Fig. 6 selection represented by a non-linear indifference curve;
Fig. 11
a representation of different emission quantities over a course
Fig. 12
the course of a characteristic to determine an indifference curve
Figures 12A-C
different indifference curves which are determined according to the method according to the invention.

In Fig. 1 ist ein Motorschema dargestellt, welches über ein erfindungsgemäßes Steuergerät 1 geregelt bzw. gesteuert wird. Dargestellt ist ein als Hubkolbenmotor 2 (Diesel- oder Otto-Motor), ausgebildeter Verbrennungsmotor, der über Ventile 3 und über einen Ladeluftstrang 4 befüllt wird und über einen Abgasstrang 5 entleert wird. Die Zuluft gelangt durch einen Luftfilter 6 und einen Abgasturbolader 7 mit verstellbarer Turbinengeometrie durch einen Zwischenkühler 8 über ein Einlassventil 3 in den Zylinder 9, wo gegebenenfalls über ein Einspritzsystem Kraftstoff zugeführt wird. Nach der Verdichtung und Verbrennung des Luft-Kraftstoffgemischs wird das entstandene Abgas durch ein Auslassventil 3 über den Abgasstrang abgeführt.In Fig. 1 an engine diagram is shown, which is regulated or controlled via a control device 1 according to the invention. An internal combustion engine designed as a reciprocating piston engine 2 (diesel or Otto engine) is shown, which is filled via valves 3 and via a charge air line 4 and is emptied via an exhaust line 5. The supply air passes through an air filter 6 and an exhaust gas turbocharger 7 with adjustable turbine geometry through an intercooler 8 via an inlet valve 3 into the cylinder 9, where fuel is optionally supplied via an injection system. After the compression and combustion of the air-fuel mixture, the resulting exhaust gas is discharged through an outlet valve 3 via the exhaust system.

Das verdichtete Abgas passiert dabei den Abgasturbolader 7, treibt diesen an und verdichtet so die Ladeluft. Anschließend passiert es einen Stickstoffspeicherkatalysator 10 sowie einen Dieselpartikelfilter 11 und gelangt schließlich durch eine Abgasklappe 12 in den Auspuff 13.The compressed exhaust gas passes through the exhaust gas turbocharger 7, drives it and thus compresses the charge air. It then passes a nitrogen storage catalytic converter 10 and a diesel particulate filter 11 and finally passes through an exhaust flap 12 into the exhaust 13.

Die Ventile 3 werden über eine verstellbare Nockenwelle 14 angetrieben. Die Verstellung erfolgt über eine Nockenwellenverstelleinrichtung 15, die vom Steuergerät 1 ansteuerbar ist.The valves 3 are driven via an adjustable camshaft 14. The adjustment takes place via a camshaft adjusting device 15 which can be controlled by the control unit 1.

Ein Teil des Abgases kann über ein Hochdruck-Abgasrückführventil 16 in den Ladeluftstrang 4 eingeleitet werden. Ein abgasbehandelter Teilstrom kann im Niederdruckbereich nach dem Abgasturbolader 7 über eine entsprechende Abgaskühlung 17 und ein Abgasrückführungs-Niederdruckventil 18 in den Ladeluftstrang 4 geführt werden. Die Turbinengeometrie des Abgasturboladers 7 ist über eine Stelleinrichtung 19 einstellbar. Die Ladeluftzufuhr ("Gas") wird über die Hauptdrosselklappe 20 geregelt.A portion of the exhaust gas can be introduced into the charge air line 4 via a high pressure exhaust gas recirculation valve 16. An exhaust-gas-treated partial flow can be conducted in the low-pressure area after the exhaust-gas turbocharger 7 via a corresponding exhaust-gas cooling 17 and an exhaust-gas recirculation low-pressure valve 18 into the charge air line 4. The turbine geometry of the exhaust gas turbocharger 7 can be adjusted via an adjusting device 19. The charge air supply (“gas”) is regulated via the main throttle valve 20.

Über das Steuergerät 1 sind u.a. das Abgasrückführungs-Niederdruckventil 18, die Stelleinrichtung 19, die Hauptdrosselklappe 20, das Abgasrückführungs-Hochdruckventil 16, die Nockenwellenverstelleinrichtung 15 sowie die Abgasklappe 12 ansteuerbar (durchgezogene Linien).The control unit 1 can be used to control the low-pressure exhaust gas recirculation valve 18, the actuating device 19, the main throttle valve 20, the high-pressure exhaust gas recirculation valve 16, the camshaft adjusting device 15 and the exhaust gas flap 12 (solid lines).

Weiterhin wird das Steuergerät 1 über Sensoren und Sollwertgeber beispielsweise mit Temperaturinformationen (Zwischenkühler 8, Abgaskühlung 17) und mit Ist-Emissionswerten (z.B. aus einem Sensor oder physikalischen/empirischen Modell) versorgt.Furthermore, the control device 1 is supplied with temperature information (intercooler 8, exhaust gas cooling 17) and with actual emission values (e.g. from a sensor or physical / empirical model) via sensors and setpoint generators.

Dazu können noch weitere Betriebszustandsinformationen kommen wie: Fahrpedalstellung, Drosselklappenstellung, Luftmasse, Batteriespannung, Motortemperatur, Kurbelwellendrehzahl und oberer Totpunkt, Getriebestufe, Fahrzeuggeschwindigkeit.Additional operating status information can also come, such as: accelerator pedal position, throttle position, air mass, battery voltage, engine temperature, crankshaft speed and top dead center, gear stage, vehicle speed.

Es besteht also ein komplexes Steuer- und Regelsystem, welches den Motorbetrieb in unterschiedlichsten Betriebszuständen hinsichtlich unterschiedlicher Zielgrößen einstellen, regeln und möglichst optimieren soll.There is therefore a complex control and regulation system which is intended to set, regulate and, if possible, optimize engine operation in a wide variety of operating states with regard to different target variables.

Figur 2 zeigt ein schematisch dargestelltes Fahrzeug 200, in dem der Hubkolbenmotor 2 mit dem Abgasstrang 5 angeordnet ist und der über eine Kupplung 24 mit einem Antriebsstrang 25 verbunden ist. Figure 2 shows a schematically illustrated vehicle 200 in which the reciprocating piston engine 2 is arranged with the exhaust gas train 5 and which is connected to a drive train 25 via a coupling 24.

Optional oder alternativ ist das Fahrzeug mit einem elektrischen Antrieb 23 versehen, der über die Kupplung 24 mit dem Hubkolbenmotor 2 bzw. dem Getriebe 2a und dem Antriebsstrang 25 gekoppelt ist. Der elektrische Antrieb 23 ist bspw. als permanentmagneterregte Synchronmaschine ausgebildet, die über einen elektrischen Energiespeicher 21 (und einen Umrichter 22) mit Energie versorgt wird. Das Steuergerät 1 ist über entsprechende Signalleitungen (nicht dargestellt) ebenfalls mit den elektrischen Antriebseinheiten (21, 22, 23) gekoppelt.Optionally or alternatively, the vehicle is provided with an electric drive 23, which is coupled to the reciprocating piston engine 2 or the transmission 2a and the drive train 25 via the clutch 24. The electric drive 23 is designed, for example, as a permanent magnet synchronous machine, which is supplied with energy via an electrical energy store 21 (and a converter 22). The control device 1 is also coupled to the electric drive units (21, 22, 23) via corresponding signal lines (not shown).

Die nachfolgenden Ausführungsbeispiele beziehen sich auf die Steuerung und Regelung von Emissionswerten in Abhängigkeit von vorgegebenen Emissionsobergrenzen und kumulierten Ist-Werten.The following exemplary embodiments relate to the control and regulation of emission values as a function of predetermined upper emission limits and cumulative actual values.

Ein Grundsystem für die Durchführung eines solchen Verfahrens ist in Fig. 2 dargestellt. Dabei bestimmt das Steuergerät 1 eine oder mehrere zur Beeinflussung der Emissionen erforderliche und wirksame Führungsgrößen x(t).A basic system for performing such a procedure is in Fig. 2 shown. The control unit 1 determines one or more effective reference variables x (t) required to influence the emissions.

Als Eingangsgrößen dienen der Fahrerwunsch FW, der bspw. über die Stellung eines Gaspedals und/oder eines Bremspedals abgeleitet wird, sowie weitere Betriebsbedingungen SB des Fahrzeugs 200 bzw. des Motors 2. Weiterhin werden die Emissionsgrenzwerte EMG berücksichtigt, die während des Betriebs nicht überschritten werden dürfen und schließlich dient eine Prädiktionsinformation PI dazu, zukünftige Betriebszustände zu berücksichtigen. Typische Prädiktionsinformationen PI sind z.B. eine Emissionsprognose EMP oder Betriebszustandsprognoseinformationen, die bspw. bei einem Fahrzeug Informationen über die Fahrstreckenlänge s(t), die Fahrstreckenqualität und erwartete Umweltbedingungen während des Betriebes umfassen.The input variables are the driver's request FW, which is derived, for example, from the position of an accelerator pedal and / or a brake pedal, and other operating conditions SB of vehicle 200 or engine 2. Furthermore, emission limit values EM G are taken into account, which are not exceeded during operation and, finally, prediction information PI is used to take future operating states into account. Typical prediction information PI is, for example, an emission forecast EM P or operating state forecast information which, for a vehicle, for example, includes information about the route length s (t), the route quality and expected environmental conditions during operation.

Daraus werden Führungsgrößen x(t) (z.B. AGR-Rate, AGR-Aufteilung, Füllung, Zündzeitpunkt) abgeleitet und Stellgrößen bestimmt, die im Verbrennungsmotor 2 bzw. dessen Komponenten (zum Beispiel Stellung der Hauptdrosselklappe 20, Nockenwelleneinstellung, Einstellung der Turbinengeometrie des Abgasturboladers 7, Einstellung der Abgasklappe 12, etc.) die Emissionen (zum Beispiel NOx, HC, CO, Ruß) des Verbrennungsmotors beeinflussen. Diese werden als Massenströme (Emissionsraten) EMDS erfasst (zum Beispiel Masse pro Zeit [mg/s]). Aus diesen Emissionen werden kumulierte Ist-Werte EMK der Emissionen abgeleitet (Integration der Emissionsraten über die Zeit).From this, reference variables x (t) (e.g. EGR rate, EGR distribution, filling, ignition point) are derived and manipulated variables are determined that are used in internal combustion engine 2 or its components (e.g. position of main throttle valve 20, camshaft setting, setting of the turbine geometry of exhaust gas turbocharger 7 , Adjustment of the exhaust flap 12, etc.) affect the emissions (for example NOx, HC, CO, soot) of the internal combustion engine. These are recorded as mass flows (emission rates) EM DS (for example mass per time [mg / s]). Cumulative actual values EM K of the emissions are derived from these emissions (integration of the emission rates over time).

Aus diesen kumulierten Ist-Werten EMK werden im Steuergerät 1 zusammen mit der verstrichenen Betriebszeit t bzw. der zurückgelegten Strecke s, bekannten bzw. vorgegebenen Emissionsobergrenzen EMG und Informationen über den Fahrerwunsch FW (z.B. Beschleunigung: aSoll; Drehmoment: MSoll) und sonstige Betriebsbedingungen SB (z.B. Geschwindigkeit: v; Drehzahl: n) des Verbrennungsmotors 2 die Führungsgröße(n) x(t) bestimmt.From these accumulated actual values EM K , together with the elapsed operating time t or the distance covered s, known or specified upper emission limits EM G and information about the driver's request FW (e.g. acceleration: a target ; torque: M target ) and other operating conditions SB (for example speed: v; rotational speed: n) of the internal combustion engine 2 determine the reference variable (n) x (t).

Fig.4 zeigt beispielhaft den Zusammenhang zwischen NOx-Emissionen und Rußemissionen in Abhängigkeit von der Abgasrückführrate (AGR), die hier eine Führungsgröße x(t) bildet. Das Diagramm zeigt, dass durch Erhöhung der AGR die NOx-Emissionen zwar gesenkt werden können, dabei aber die Rußemissionen ansteigen. Fig. 4 shows an example of the relationship between NOx emissions and soot emissions as a function of the exhaust gas recirculation rate (EGR), which here forms a reference variable x (t). The diagram shows that by increasing the EGR, the NOx emissions can be reduced, but the soot emissions increase.

Fig. 5 zeigt ein Diagramm mit Zielgrößenkombinationen von bestimmten Rußemissionen, die über bestimmte NOx-Emissionen aufgetragen sind. Besteht nun z.B. die Aufgabe, in einem (beliebigen) Betriebszustand die Rußemissionen zu minimieren/zu senken, dabei aber einen (kumulierten) NOx-Grenzwert einzuhalten, muss die Emissionshistorie (kumulierte Ist-Werte EmG) für zurückliegende (ggf. beliebige, in zufälliger Reihenfolge eingestellte, unterschiedliche Betriebszustände) berücksichtigt werden. Fig. 5 shows a diagram with target variable combinations of specific soot emissions, which are plotted against specific NOx emissions. If, for example, there is the task of minimizing / lowering the soot emissions in an (arbitrary) operating state, while maintaining a (cumulative) NOx limit value, the emission history (cumulative actual values Em G ) for previous (possibly any, in different operating states set in a random order) are taken into account.

Pareto-optimale Zielgrößenkombinationen, bei denen der Ruß-Ausstoß nur weiter gesenkt werden kann, wenn die NOx-Emission erhöht wird, sind durch die Punkte x gekennzeichnet Alle pareto-optimalen Zielgrößenkombinationen bilden die sogenannte Paretofront, welche die Punkte x miteinander verbindet. Bei einem Minimierungsproblem sind Punkte links unterhalb der Pareto-Front (schraffierter Bereich) nicht realisierbar und alle rechts oberhalb vorgesehenen Zielgrößenkombinationen nicht pareto-optimal, da es jeweils Kombinationen (Punkte x) gibt, die sowohl hinsichtlich Ruß- Emission als auch der NOx-Emission günstiger auf der Paretofront realisiert werden können.Pareto-optimal target variable combinations, in which the soot emissions can only be further reduced if the NOx emission is increased, are indicated by the points x.All Pareto-optimal target variable combinations form the so-called Pareto front, which connects the points x with one another. In the case of a minimization problem, points to the left below the Pareto front (hatched area) cannot be implemented and all the target variable combinations provided to the right above are not Pareto-optimal, since there are combinations (points x) that affect both soot and NOx emissions can be implemented more cheaply on the Pareto front.

Die Auswahl aus pareto-optimalen Zielgrößenkombinationen von zwei Zielgrößen (NOx-Emissionen und Rußemissionen) zeigt die Darstellung in Fig. 6. In der rechten Säule ist als Emissionsobergrenze EMG ein NOx-Grenzwert NOx-G (gestrichelte Linie) angegeben und die darunter dargestellte Säule zeigt im schraffierten Bereich als kumulierten Ist-Wert EmK die bisherigen kumulierten NOx-Emissionen NOx-K1. Da die kumulierten NOx-Emissionen NOx-K1 bereits relativ nah am NOx-Grenzwert NOx-G sind, ist hier ein relativ hohes Austauschverhältnis zwischen den Zielgrößen Rußemissionen und NOx-Emissionen gewählt (erhöhte Rußemissionen, zugunsten von geringen NOx), um den NOx-Grenzwert NOx-G nicht zu überschreiten. Diese hier gewünschte Austauschrate wird durch die Indifferenzkurve I angegeben, die hier relativ steil abfallend dargestellt ist, und dann an die nächstliegende Zielgrößenkombination verschoben wird, in dem für diesen Betriebspunkt eine bestimmte Rußemission und eine bestimmte NOx-Emission realisierbar ist. Dieser Zielgrößenkombination wird dann mit Hilfe der im Diagramm aus Fig. 4 bekannten Informationen eine AGR als geeignete pareto-optimierte Führungsgröße x(t) zugeordnet.The selection from Pareto-optimal target parameter combinations of two target parameters (NOx emissions and soot emissions) is shown in Fig. 6 . A NOx limit value NOx-G (dashed line) is specified in the right-hand column as the upper emission limit EM G and the column shown below shows the cumulative actual value Em K of the previous cumulative NOx emissions NOx-K 1 in the hatched area. Since the cumulative NOx emissions NOx-K 1 are already relatively close to the NOx limit value NOx-G, a relatively high exchange ratio between the target variables soot emissions and NOx emissions is selected here (increased soot emissions, in favor of low NOx) around the NOx -NOx-G limit value not To exceed. This exchange rate desired here is indicated by the indifference curve I, which is shown here with a relatively steep slope, and is then shifted to the closest target combination in which a certain soot emission and a certain NOx emission can be achieved for this operating point. This combination of target variables is then made with the help of the diagram Fig. 4 known information is assigned to an EGR as a suitable Pareto-optimized reference variable x (t).

Fig. 7 zeigt ein Beispiel, bei dem die kumulierten NOx-Emissionen (NOx-K2) weiter unter dem NOx-Grenzwert NOx-G liegen. Hier ist das Austauschverhältnis der Indifferenzkurve I kleiner (die Gerade fällt flacher ab). Hier kann also eine höhere NOx-Emission in Kauf genommen werden, ohne dass Gefahr bestünde, dass der NOx-Grenzwert NOx-G überschritten wird. Damit kann die Rußemission geringer gehalten werden. Die flacher verlaufende Gerade wird an die nächste Zielgrößenkombination verschoben, an dem eine bestimmte NOx-Emission und eine entsprechende Rußemission mit einer zugehörigen Führungsgröße x(t) (hier die entsprechende AGR aus Fig.3) realisierbar ist. Fig. 7 shows an example in which the cumulative NOx emissions (NOx-K 2 ) are further below the NOx limit value NOx-G. Here the exchange ratio of the indifference curve I is smaller (the straight line slopes down more gently). In this case, higher NOx emissions can be accepted without the risk of the NOx limit value NOx-G being exceeded. This means that soot emissions can be kept lower. The flatter straight line is shifted to the next combination of target variables at which a specific NOx emission and a corresponding soot emission with an associated reference variable x (t) (here the corresponding EGR from Fig. 3 ) is feasible.

Fig. 8 zeigt ein Beispiel, bei dem die kumulierten NOx-Emissionen (NOx-K3) den NOx-Grenzwert NOx-G überschritten haben. Hier ist das Austauschverhältnis der Geraden I (senkrechte Indifferenzkurve) quasi unendlich. Ungeachtet der Höhe der Rußemissionen wird die Führungsgröße x(t) für minimale NOx-Emission ausgewählt. Fig. 8 shows an example in which the cumulative NOx emissions (NOx-K 3 ) have exceeded the NOx limit value NOx-G. Here the exchange ratio of the straight line I (vertical indifference curve) is virtually infinite. Regardless of the level of soot emissions, the reference variable x (t) is selected for minimum NOx emissions.

Fig. 9 zeigt analog zu Fig. 5 ein Beispiel, bei dem in Abhängigkeit der kumulierten NOx-Emissionen CO2 minimiert werden soll. Fig. 9 shows analogously to Fig. 5 an example in which CO 2 is to be minimized depending on the cumulative NOx emissions.

Fig. 10 zeigt analog zu Fig. 5 ein Beispiel, bei dem die Indifferenzkurve nicht linear verläuft. Fig. 10 shows analogously to Fig. 5 an example in which the indifference curve is not linear.

Die Figuren 11 bis 12C zeigen beispielhaft anhand der kombinierten Emissionsbetrachtung des CO2-Ausstoßes und des NOx-Ausstoßes die Bestimmung der Indifferenzkurven I (Fig. 12A-C), die an unterschiedliche Paretofronten f angelegt werden, um optimierte Betriebspunkte hinsichtlich der CO2-Emissionen ṁCO2 und der NOx-Emissionen ṁNOx zu ermitteln und daraus in bekannter Weise die entsprechende(n) Führungsgröße(n) abzuleiten.The Figures 11 to 12C show an example of the combined emission observation on the basis of CO 2 emissions and the NOx emissions determining the Indifferenzkurven I ( Figures 12A-C ), which are applied to different Pareto fronts f in order to determine optimized operating points with regard to CO 2 emissions ṁ CO2 and NOx emissions ṁ NOx and to derive the corresponding reference variable (s) from this in a known manner.

Die Grundlage bildet die in Figur 12 dargestellte Größe β, die abhängig von einer Differenz δ bestimmt wird und mit der Steigung der Indifferenzkurven I korrespondiert. ϕ(β) bezeichnet hier den Winkel, mit der die Indifferenzkurve I die ṁNOx-Achse (Abszisse) schneidet.The in Figure 12 Depicted variable β, which is determined as a function of a difference δ and corresponds to the slope of the indifference curves I. Here, ϕ (β) denotes the angle at which the indifference curve I intersects the ṁ NOx axis (abscissa).

δ ergibt sich gemäß Figur 11 aus der Differenz eines zeit- (bzw. strecken-)abhängigen Grenzwertverlaufs EMG über die Zeit t (gestrichelte Funktion). Der eigentliche Grenzwert EMG wird dabei bspw. in mg/km also einer Masseneinheit pro Strecke angegeben und wächst also mit zunehmender Zeit bzw. zurückgelegter Strecke s. Daneben wird der Verlauf der kumulierten Emissionswerte EMK (z.B. eine NOx Menge mNOx aufgezeichnet (durchgezogene Linie) und aus beiden wird die Differenz δ gebildet (gepunktete Linie). Es gilt die Beziehung gemäß Formel 1: δ t = max 0 , EM NOx G s t + s ˜ t m NOx t m ˜ NOx t

Figure imgb0001
δ results according to Figure 11 from the difference of a time (or distance) dependent limit value curve EM G over time t (dashed function). The actual limit value EM G is specified, for example, in mg / km, i.e. a unit of mass per route, and thus increases with increasing time or distance covered s. In addition, the course of the cumulative emission values EM K (e.g. a NOx amount m NOx is recorded (solid Line) and the difference δ is formed from the two (dotted line). The relationship according to formula 1 applies: δ t = Max 0 , EM NOx G s t + s ˜ t - m NOx t - m ˜ NOx t
Figure imgb0001

Demnach ergibt sich das zeit- bzw. streckenabhängige δ aus der Emissionsobergrenze EMG, für NOx die mit einem Streckenwert s multipliziert wird, der sich aus einer bisherigen, also bereits abgefahrenen Strecke s(t) und einer prognostizierten Strecke s̃(t) ergibt. In den Verlauf der Emissionsobergrenze fließt also sowohl eine auf Ist-Größen beruhende Information (bisherige Strecke) und eine auf prognostizierten Informationen beruhender Streckenverlauf ein.Accordingly, the time-dependent or distance-dependent δ results from the upper emission limit EM G , for NOx, which is multiplied by a distance value s, which results from a previous, i.e. already traveled distance s (t) and a predicted distance s̃ (t). In the course of the upper emission limit, both information based on actual values (previous route) and a route based on forecast information flow into it.

Von diesem strecken- bzw. zeitabhängigen Grenzwert wird dann die tatsächliche, kumulierte Emission EMK (hier mNOx(t)) und eine zukünftige, prognostizierte Emission EMP (hier m̃NOx(t)) abgezogen. Die Prädiktion ist bis zu einem Prädiktionshorizont t = T möglich. The actual, cumulative emission EM K (here m NOx (t)) and a future, predicted emission EM P (here m̃ NOx (t)) are then subtracted from this distance-dependent or time-dependent limit value. The prediction is possible up to a prediction horizon t = T.

Zu einem Zeitpunkt t = t1 zeigen die Kurven in einer rückschauenden Betrachtung (Pfeil V nach links) die bisherigen Verläufe der Komponenten EMG s(t) und mNOx(t), wobei eine vorausschauende Betrachtung (Pfeil Z nach rechts) zusätzlich die Prädiktionskomponenten EMG s̃(t) und m̃NOx(t) berücksichtigt.At a point in time t = t 1 , the curves show in a retrospective view (arrow V to the left) the previous profiles of the components EM G s (t) and m NOx (t), with a forward-looking view (arrow Z to the right) also showing the Prediction components EM G s̃ (t) and m̃ NOx (t) taken into account.

Zum Zeitpunkt t = t1 gilt dann: δ t 1 = max 0 , EM NOx G s t 1 + s ˜ t 1 m NOx t 1 + m ˜ NOx t 1

Figure imgb0002
mit der abgefahrenen Strecke: s t 1 = 0 t 1 v τ
Figure imgb0003
der prognostizierten Strecke: s ˜ t 1 = t 1 T v ˜ τ
Figure imgb0004
dem kumulierten (bisher realisierten) Emissionswert EMK, hier: m NOx t 1 = 0 t 1 m ˙ NOx τ
Figure imgb0005
und dem prognostizierten Emissionswert EMP, hier: m ˜ NOx t 1 = t 1 T m ˙ ˜ NOx τ
Figure imgb0006
wobei die Prädiktion eines zukünftigen Geschwindigkeitsverlaufs ist und m ˙ ˜ NOx
Figure imgb0007
der damit korrespondierende prognostizierte Verlauf eines NOx-Massenstroms.At time t = t 1, the following applies: δ t 1 = Max 0 , EM NOx G s t 1 + s ˜ t 1 - m NOx t 1 + m ˜ NOx t 1
Figure imgb0002
with the traveled route: s t 1 = 0 t 1 v τ
Figure imgb0003
the forecast route: s ˜ t 1 = t 1 T v ˜ τ
Figure imgb0004
the cumulative (so far realized) emission value EM K , here: m NOx t 1 = 0 t 1 m ˙ NOx τ
Figure imgb0005
and the forecast emission value EM P , here: m ˜ NOx t 1 = t 1 T m ˙ ˜ NOx τ
Figure imgb0006
where ṽ is the prediction of a future speed profile and m ˙ ˜ NOx
Figure imgb0007
the corresponding predicted course of a NOx mass flow.

Aus einem sich so ergebenden δ-Wert (z.B. δ1, δ2 oder δ3) wird dann mittels einer Kennlinie, die in Figur 12 dargestellt ist, ein β-Wert abgeleitet, der zur Steigung einer Indifferenzkurve I korrespondiert, die zur Ermittlung eines paretooptimierten Betriebspunktes und damit zur gewünschten Führungsgröße führt. Paretofronten f1, f2 für unterschiedliche Betriebszustände (uf1 und uf2) sind in den Fig. 12A bis 12C dargestellt. Für die Kennlinie, die zur Ermittlung des β-Wertes führt, soll gelten, dass lim δ 0 + β δ =

Figure imgb0008
From a resulting δ value (for example δ1, δ2 or δ3), a characteristic curve shown in FIG Figure 12 is shown, derived a β value which corresponds to the slope of an indifference curve I, which leads to the determination of a Pareto-optimized operating point and thus to the desired reference variable. Pareto fronts f 1 , f 2 for different operating states (u f1 and u f2 ) are in the Figures 12A to 12C shown. For the characteristic that leads to the determination of the β value, it should apply that lim δ 0 + β δ =
Figure imgb0008

Gleichzeitig soll hier auch gelten, dass die Funktion streng monoton fallend ist, so dass bei zunehmenden δ, β stetig abnimmt, wie dies in der Funktion in Fig. 13 beispielhaft dargestellt ist.At the same time, it should also apply here that the function is strictly monotonically decreasing, so that with increasing δ, β continuously decreases, as is shown by way of example in the function in FIG.

In den Figuren 12A, 12B und 12C sind jeweils zwei Kurven (die Paretofronten f1 und f2) eingezeichnet, die jeweils paretooptimierte Emissionskombinationen für CO2 und NOx in unterschiedlichen Betriebszuständen zeigen. f1 kennzeichnet hier die Emissionskombinationen eines Betriebszustands mit niedrigerer Leistung und insgesamt auch eher niedrigeren Emissionswerten (ṁCO2 und ṁNOx) und f2 kennzeichnet die Emissionskombinationen eines Betriebszustands mit höherer Leistung und damit auch mit eher höheren Emissionswerten (ṁCO2 und ṁNOx). f1 und f2 bilden Emissionsparetofronten für unterschiedliche Betriebszustände.In the Figures 12A, 12B and 12C two curves (the Pareto fronts f 1 and f 2 ) are drawn in, each showing Pareto-optimized emission combinations for CO 2 and NOx in different operating states. Here, f 1 denotes the emission combinations of an operating state with lower power and, overall, also rather lower emission values (ṁ CO2 and ṁ NOx ) and f 2 denotes the emission combinations of an operating state with higher power and thus also with higher emission values (ṁ CO2 and ṁ NOx ). f 1 and f 2 form emission fronts for different operating states.

Die gewünschte Führungsgröße (x(t) für eine bestimmte Emissionskombination uf1 oder uf2, wird durch Anlegen der Indifferenzkurve I ermittelt, deren Steigung mit dem β-Wert korrespondiert, der sich aus der Kennlinie in Figur 12 ergibt. Dieser so bestimmten Zielgrößenkombination uf1 oder uf2 (Emissionskombination) wird dann beispielsweise mit Hilfe einer bekannten Informationen eine AGR als geeignete pareto-optimierte Führungsgröße x(t) zugeordnet (analog zum Diagramm aus Fig. 4). In Figur 4 ist der Zusammenhang zwischen NOx- und Rußemission in Verbindung mit der AGR-Rate angegeben. Aus anderen Diagrammen oder auch aus mehrdimensionalen Kennfeldern (mit Paretoflächen) sind die Zusammenhänge zwischen Führungsgröße x(t) und Emissionskombinationen aus zwei oder mehr Emissionsgrößen entnehmbar.The desired reference variable (x (t) for a certain emission combination u f1 or u f2 is determined by applying the indifference curve I, the slope of which corresponds to the β value, which is derived from the characteristic curve in Figure 12 results. This target variable combination u f1 or u f2 (emission combination) determined in this way is then assigned an EGR as a suitable Pareto-optimized reference variable x (t), for example with the aid of known information (analogous to the diagram Fig. 4 ). In Figure 4 shows the relationship between NOx and soot emissions in connection with the EGR rate. The relationships between reference variable x (t) and emission combinations from two or more emission variables can be taken from other diagrams or from multi-dimensional maps (with Pareto surfaces).

Figur 12A zeigt dabei ein β1, Figur 12B ein β2 und Figur 12C ein β3. Die unterschiedlichen β-Werte (β1, β2 und β3) ergeben sich aus den korrespondierenden δ-Werten mit Hilfe der Kennlinie in der Figur 12. Figure 12A shows a β 1 , Figure 12B a β 2 and Figure 12C a β 3 . The different β values (β 1 , β 2 and β 3 ) result from the corresponding δ values with the aid of the characteristic curve in Figure 12 .

Verringert sich das δ zwischen dem Emissionsgrenzwert und der kumulierten Emission von δ1 zu δ2, so muss sich die Steigung der Indifferenzkurve erhöhen (die Indifferenzkurve I wird steiler), da Betriebspunkte bevorzugt werden sollen, bei denen wegen des geringeren Abstandes zum Emissionsgrenzwert für NOx-Emissionen solche Betriebspunkte bevorzugt werden, bei denen die NOx-Emission reduziert ist. Entsprechend ist in diesen Betriebspunkten der CO2-Ausstoß erhöht (Figur 12B).If the δ between the emission limit value and the cumulative emission decreases from δ1 to δ2, the slope of the indifference curve must increase (the indifference curve I becomes steeper), since operating points are to be preferred where the distance to the emission limit value for NOx emissions is shorter those operating points are preferred at which the NOx emissions are reduced. Correspondingly, the CO 2 emissions are increased at these operating points ( Figure 12B ).

Umgekehrt sinkt bei einem zunehmenden δ das β und damit auch die Steigung der Indifferenzkurve, deren Verlauf flacher wird, und es werden in der gewünschten Weise Betriebspunkte bevorzugt bei denen höhere NOx-Werte in Kauf genommen werden können und auf der anderen Seite die CO2-Emission entsprechend reduziert wird (Figur 12C).Conversely, with an increasing δ, the β and thus also the slope of the indifference curve, the course of which becomes flatter, and operating points are preferred in the desired manner at which higher NOx values can be accepted and, on the other hand, the CO 2 - Emission is reduced accordingly ( Figure 12C ).

Mit dem dargestellten Ansatz lassen sich im Betrieb und in Abhängigkeit von sich ändernden Randbedingungen die Emissionswerte (Zielfunktionen) verbessern. Neben den hier dargestellten Problemen, bei denen Emissionsgrößen paarweise berücksichtigt wurden, kann das Verfahren auch auf mehrdimensionale Probleme ausgedehnt werden. So ist es zum Beispiel möglich, pareto-optimierte Führungsgrößen x(t) für Mehrfach-Kombinationen (z.B. für CO2-Ausstoß, Rußemission und NOx-Emission) zu bestimmen. Es können auch in Ergänzung zur Führungsgröße AGR noch andere Führungsgrößen x(t) pareto-optimiert zur Regelung bestimmt werden (z.B. AGR-Aufteilung, Füllung, Zündzeitpunkt oder Raildruck).With the approach shown, the emission values (target functions) can be improved during operation and depending on changing boundary conditions. In addition to the problems presented here, in which emission quantities were taken into account in pairs, the method can also be extended to multi-dimensional problems. For example, it is possible to determine Pareto-optimized reference variables x (t) for multiple combinations (e.g. for CO 2 emissions, soot emissions and NOx emissions). In addition to the reference variable AGR, other reference variables x (t) can also be determined in a Pareto-optimized manner for regulation (eg EGR distribution, filling, ignition point or rail pressure).

BezugszeichenlisteList of reference symbols


1  Steuergerät
2  Hubkolbenmotor
2a  Getriebe
3  Ventile
4  Ladeluftstrang
5  Abgasstrang
6  Luftfilter
7  Abgasturbolader
8  Zwischenkühler
9  Zylinder
10  NOx-Speicherkatalysator
11  Dieselpartikelfilter
12  Abgasklappe
13  Auspuff
14  Nockenwelle
15  Nockenwellen-Verstelleinrichtung
16  AGR-Hochdruckventil
17  Abgaskühlung
18  AGR-Niederdruckventil
19  Stelleinrichtung
20  Hauptdrossel
21  el. Energiespeicher
22  Umrichter
23  el. Antrieb
24  Kupplung
25  Antriebsstrang
200  Fahrzeug
x(t)  Führungsgröße
NOx-G  Grenzwert
NOx-K1  kumulierter Ist-Wert
FW  Fahrerwunsch
SB  Sonstige Betriebsbedingungen
EMG  Emissionsgrenzwert
EMK  kumulierte Emissionswerte
EMDS  Emissionsdurchsätze
I  Indifferenzkurve
PI  Prädiktionsinformation
EMP  Emissionsprognose
δ (t)  Differenzfunktion
β  Steigung
s(t)  Betriebszustand-Prognoseinformation
s  zurückgelegte Strecke
t  Betriebszeit
f  Paretofront
ϕ(β)  Winkel
s̃(t)  prognostizierte Strecke
  Prädiktion eines zukünftigen Geschwindigkeitsverlaufs
m ˙ ˜ NOx

Figure imgb0009
  prognostizierter Verlauf eines NOx-Massenstroms
uf  Betriebszustand
V  Vergangenheitsbetrachtung
Z  Zukunftsbetrachtung
1 control unit
2 reciprocating engine
2a transmission
3 valves
4 charge air line
5 exhaust system
6 air filters
7 exhaust gas turbochargers
8 intercoolers
9 cylinders
10 NOx storage catalytic converter
11 diesel particulate filter
12 exhaust flap
13 exhaust
14 camshaft
15 camshaft adjusting device
16 EGR high pressure valve
17 exhaust gas cooling
18 EGR low pressure valve
19 control device
20 main throttle
21 el. Energy storage
22 inverters
23 el. Drive
24 clutch
25 powertrain
200 vehicle
x (t) reference variable
NOx-G limit value
NOx-K 1 cumulative actual value
FW driver request
SB Other operating conditions
EM G emission limit value
EM K cumulative emission values
EM DS emission throughputs
I indifference curve
PI prediction information
EM P emissions forecast
δ (t) difference function
β slope
s (t) Operating condition forecast information
s distance traveled
t operating time
f Pareto front
ϕ (β) angle
s̃ (t) predicted route
Prediction of a future speed curve
m ˙ ˜ NOx
Figure imgb0009
Predicted course of a NOx mass flow
u f operating status
V Looking at the past
Z Consideration of the future

Claims (15)

  1. Control method for a combustion engine (2) in a vehicle, comprising:
    determining a reference value (x(t)), taking into account
    - an item of operating state information (FW, SB) and
    - a difference (δ) between an emission upper limit (EMG) and a cumulative actual emission value (EMK),
    influencing an operating state of the combustion engine (2) by means of the reference value (x(t)) such that at least two actual emission values are set in such a way that the corresponding cumulative actual emission values, in an operating period with a combination of arbitrary, different operating states of the internal combustion engine (2) set in a random sequence, do not exceed emission upper limits (EMG) for this operating period, wherein a target function is minimized by selecting the reference value (x(t)) from pareto-optimal alternatives by means of an indifference curve (I) determined from the difference (δ), and an item of prediction information (PI) is taken into account for determining the difference (δ).
  2. Control method according to claim 1, wherein the prediction information (PI) comprises an item of operating state prognosis information (s(t)).
  3. Control method according to claim 1 or 2, wherein the operating state prognosis information (s(t)) comprises at least one item of information from the following group: route quality, route length, environmental conditions.
  4. Control method according to claim 1 or 2, wherein the item of prediction information (PI) comprises an emission prognosis value (EMP).
  5. Control method according to claim 1, 2, 3, or 4, wherein the indifference curve (I) is a straight line whose slope (β(δ)) can be determined by means of a difference function (δ(t)).
  6. Control method according to one of the preceding claims, wherein the target function comprises an actual emission value (EmDS), a fuel consumption, and/or a CO2 emission.
  7. Control method according to one of the preceding claims, wherein the operating state information (SB, FW) comprises a rotational speed (n(t)) and a reference torque (MSoll(t)).
  8. Control method according to one of the preceding claims, wherein the operating period and the various operating states of a drive are known.
  9. Control method according to one of the preceding claims, wherein the actual emission values (EmDS) comprise at least two of the following values: NOx emissions, HC emissions, CO emissions, CO2 emissions, combined HC and NOx emissions, soot particle count, soot particle mass, AdBlue consumption.
  10. Control method according to one of the preceding claims, wherein the reference value (x(t)) comprises at least one of the following values: EGR rate, EGR split, fill, boost pressure, injection timing, ignition timing, rail pressure.
  11. Control method according to one of the preceding claims, wherein at least two actual emission values (EmDS) - in particular, CO2 emissions and NOx emissions, and/or NOx emissions and soot emissions - are taken into account.
  12. Control method according to one of the preceding claims, wherein at least three actual emission values (EmDS) from the following group are taken into account: CO2 emissions, NOx emissions, and soot emissions.
  13. Control device (1) comprising means for carrying out the method according to one of claims 1 through 12.
  14. Combustion engine (2) with a control device (1) according to claim 13.
  15. Vehicle with a combustion engine (2) according to claim 14.
EP17166140.8A 2016-05-12 2017-04-12 Control method for a combustion engine, control device and combustion engine Active EP3244046B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016208236.1A DE102016208236A1 (en) 2016-05-12 2016-05-12 Control method for an internal combustion engine, control unit and internal combustion engine

Publications (2)

Publication Number Publication Date
EP3244046A1 EP3244046A1 (en) 2017-11-15
EP3244046B1 true EP3244046B1 (en) 2021-07-07

Family

ID=58644809

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17166140.8A Active EP3244046B1 (en) 2016-05-12 2017-04-12 Control method for a combustion engine, control device and combustion engine

Country Status (2)

Country Link
EP (1) EP3244046B1 (en)
DE (1) DE102016208236A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831487C1 (en) * 1998-07-14 2000-03-16 Daimler Chrysler Ag Method of operating hybrid vehicle drive with battery involves computing anticipated power requirements over route, determining time plan regulating drives or operating modes accordingly
DE10355412B4 (en) * 2003-11-27 2006-05-18 Siemens Ag Method and device for optimizing the operation of an internal combustion engine, which is designed with a direct fuel injection system
DE102006007122A1 (en) * 2006-02-16 2007-08-23 Daimlerchrysler Ag Operating process for internal combustion engine involves reporting suitable combinations of engine operating values for preset nitrogen oxide emission value
JP4928484B2 (en) * 2008-02-29 2012-05-09 株式会社小野測器 Method, computer and program for calculating engine design variables
US8359829B1 (en) * 2009-06-25 2013-01-29 Ramberg Charles E Powertrain controls
US20110264353A1 (en) * 2010-04-22 2011-10-27 Atkinson Christopher M Model-based optimized engine control
DE102010025791A1 (en) * 2010-07-01 2012-01-05 Daimler Ag Motor car pollutant reducing method, involves realizing pollutant ejection when putting back route during determination of route, and realizing aperiodicity of fuel consumption with nitrogen oxide exhaust emission before converter phase
JP5310709B2 (en) * 2010-12-27 2013-10-09 株式会社デンソー Control device for internal combustion engine
AT510328A2 (en) * 2011-12-12 2012-03-15 Avl List Gmbh METHOD FOR EVALUATING THE SOLUTION OF A MULTICRITERIAL OPTIMIZATION PROBLEM
CH708504A1 (en) * 2013-09-02 2015-03-13 Am Tec Switzerland Ag Procedure for determining an optimal operating mode and for operating a portfolio of technical systems.
DE102013016569A1 (en) * 2013-10-04 2015-04-09 Man Truck & Bus Ag Operating method for a hybrid drive, in particular for selecting optimal operating modes of the hybrid drive along a route
KR101836787B1 (en) * 2014-11-17 2018-04-19 폭스바겐 악티엔 게젤샤프트 Control device for an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3244046A1 (en) 2017-11-15
DE102016208236A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
EP3455114B1 (en) Control method for a hybrid drive, controller, and hybrid drive
DE102015222684B4 (en) Control unit for an internal combustion engine
EP3464858B1 (en) Method for operating an internal combustion engine installed in a vehicle
DE112012001015T5 (en) System and method of DPF passive amplification through powertrain torque-speed management
WO2009112056A1 (en) Cylinder pressure guided regeneration operation and operation type change
EP3253959B1 (en) Control method and controller for an internal combustion engine
EP3594480B1 (en) Method for controlling a charging system
DE102012104155A1 (en) Method for adjusting mass flow of exhaust gas recirculation of internal combustion engine, involves pre-calculating optimum supplied exhaust gas mass flow to engine, in consideration of dead and control time of gas recirculation line
WO2014090517A1 (en) Hybrid drive for a vehicle
DE102009021387A1 (en) Controller monitoring method for internal combustion engine of motor vehicle, involves controlling controller of engine by transient control parameter in transient operating mode and by control parameter in stationary operating mode
DE112013004543T5 (en) Control of a temperature in an exhaust aftertreatment system
DE102017215251B4 (en) Method and control unit for emission control of an internal combustion engine
WO2017108652A1 (en) Method and device for operating a motor vehicle with a hybrid drive
EP3244046B1 (en) Control method for a combustion engine, control device and combustion engine
DE102018220485B4 (en) Method for regulating an internal combustion engine with which fuel consumption and pollutant emissions are adapted to influencing variables
DE102017203445B3 (en) Method and device for controlling an internal combustion engine charged by an exhaust gas turbocharger
EP3244044B1 (en) Method for operating a combustion engine, in particular as propulsion device for a vehicle
DE202015004385U1 (en) Computer program for operating a drive system
EP3656994A1 (en) Method for controlling a charging system
DE112019001382T5 (en) CONTROL UNIT AND CONTROL PROCEDURE
DE102016011139A1 (en) Method for operating an internal combustion engine of a motor vehicle
DE102017101605A1 (en) Method for the control of a regeneration of a NOx storage catalyst
DE102016225780A1 (en) Method and device for operating an engine system of a motor vehicle
DE102022201661A1 (en) Method for determining an effective current uncertainty value for an emission value for a specific point in time when operating a drive train of a motor vehicle
DE202014007059U1 (en) internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180515

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210224

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1408811

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010820

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010820

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26N No opposition filed

Effective date: 20220408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1408811

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220412

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230421

Year of fee payment: 7

Ref country code: DE

Payment date: 20230430

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230418

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707