EP3232043B1 - Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs - Google Patents

Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs Download PDF

Info

Publication number
EP3232043B1
EP3232043B1 EP16165369.6A EP16165369A EP3232043B1 EP 3232043 B1 EP3232043 B1 EP 3232043B1 EP 16165369 A EP16165369 A EP 16165369A EP 3232043 B1 EP3232043 B1 EP 3232043B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gases
conduit
structural element
heat exchanger
central structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16165369.6A
Other languages
English (en)
French (fr)
Other versions
EP3232043A1 (de
Inventor
Domenico PETRONIO
Gerardo SPINELLI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stellantis Europe SpA
Original Assignee
FCA Italy SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCA Italy SpA filed Critical FCA Italy SpA
Priority to EP16165369.6A priority Critical patent/EP3232043B1/de
Priority to BR102017006089-6A priority patent/BR102017006089B1/pt
Priority to CN201710242138.6A priority patent/CN107448330B/zh
Publication of EP3232043A1 publication Critical patent/EP3232043A1/de
Application granted granted Critical
Publication of EP3232043B1 publication Critical patent/EP3232043B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/30Connections of coolers to other devices, e.g. to valves, heaters, compressors or filters; Coolers characterised by their location on the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/51EGR valves combined with other devices, e.g. with intake valves or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1638Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing with particular pattern of flow or the heat exchange medium flowing inside the conduits assemblies, e.g. change of flow direction from one conduit assembly to another one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Definitions

  • the present invention relates to a multi-functional module for an internal combustion engine of a motor-vehicle, incorporating a part of an exhaust gas recirculation system of the engine and a part of a cooling circuit of the engine, in particular said module comprising an EGR valve unit for regulating the recirculated exhaust gas flow and a heat exchanger for cooling the recirculated exhaust gases, by means of the engine coolant.
  • Multi-functional modules of the type indicated above are yet known (see for example documents DE 10 2007 049 336 A1 , EP 2 037 116 B1 , FR 2 875 540 A1 and EP 1 793 115 B1 ), wherein the multi-functional module comprises a central structural element, with a metal body having a face for attachment to an end face of the engine cylinder head.
  • a metal body having a face for attachment to an end face of the engine cylinder head.
  • Such a body having an elongated shape according to a direction which is perpendicular to the longitudinal direction of the cylinder head in the mounted condition of said module on the engine.
  • a conduit for circulation of the exhaust gases and a conduit for circulation of the engine coolant are formed within said metal body of the central structural element.
  • Such conduits extend starting form an inlet opening of the exhaust gases and an inlet opening of the coolant, said inlet openings are positioned on said attachment face and are intended to communicate respectively with the engine exhaust manifold and with a coolant jacket of the cylinder head.
  • the exhaust gases conduit ends into an exhaust gases outlet opening intended to communicate with the engine intake manifold, whereas said coolant conduit flows into at least one coolant outlet opening to which a thermostatic valve is associated for controlling a connection with a radiator of the engine cooling system.
  • said EGR valve unit for regulating the recirculated exhaust gas flow is mounted on a first end face of said central structural element elongated body, and is operatively interposed along said exhaust gases conduit.
  • said heat exchanger for cooling exhaust gases with the coolant is mounted on a second end face of said elongated body of the central structural element, which is opposite to said first end face on which said EGR valve unit is mounted.
  • the heat exchanger has internal conduits in heat exchange relationship to each other, which are respectively operatively interposed along said exhaust gases conduit and said coolant conduit.
  • a by-pass conduit for exhaust gas is formed within said elongated body of the central structural element, through which exhaust gases can flow towards said exhaust gases outlet opening without passing through said heat exchanger, in said by-pass conduit being interposed a by-pass valve operated by means of a vacuum actuator carried by said multi-functional module.
  • Multi-functional modules of the type indicated above which has been produced since now have several drawbacks.
  • the EGR valve unit is subjected to carbon deposits (so called "EGR soot") due to the exhaust gas flow which passes through thereof, with consequent efficiency reduction of such component with the passing of time.
  • all the aforementioned known solutions provide a vacuum tank integrated to the central structural element of the module, such a vacuum tank results necessary for controlling the vacuum actuator which controls the aforementioned by-pass valve.
  • Such a vacuum tank is mounted at a module end, adjacent to the heat exchanger, causing a reduction of the available space of the heat exchanger. Therefore it is mandatory to use a relatively small heat exchanger, with consequent less efficiency of the exhaust gases cooling.
  • Another drawback that occurs in the known solutions consists in slowing down the exhaust gas flow that passes through the heat exchanger, due to gas density reduction that is determined while gas are cooled in the heat exchanger.
  • the object that is on the basis of the present invention is to overcome above mentioned drawbacks which occur in the known solutions.
  • a further object of the invention is to provide a multi-functional module with limited dimensions, reduced weight, inexpensive to be manufactured.
  • a further object of the present invention is to provide a multi-functional module which remains efficient in all its functions during the entire life of the engine to which the module is associated.
  • the invention relates to a multi-functional module for an internal combustion engine having all the features that have been indicated above and characterized in that said EGR valve unit is operatively positioned along the exhaust gases conduit upstream of said heat exchanger, in such a way that when said EGR valve unit is in an opened condition, the exhaust gases pass through said EGR valve unit, before being cooled in the heat exchanger.
  • the exhaust gases pass through the EGR valve at a temperature which is considerably higher than what occurs in the known solutions, so causing reduction or entire cancellation of risk of carbon deposits within the EGR valve and ensuring that such valve maintains constant efficiency for the entire operative life of the engine.
  • the module according to the invention is also characterized in that said vacuum actuator which controls the by-pass valve is arranged for being operated by a vacuum source external to the module, whereby said module is without of any vacuum source or tank.
  • the multifunctional module according to the invention has the advantage that the entire second end face of the body of the central structural element can be entirely occupied by the heat exchanger. This allows to obtain a more efficient cooling of the exhaust gases, using a larger heat exchanger without increasing the overall size of the module. Or it is thus possible to use a heat exchanger with similar dimensions to the known solutions, but considerably decreasing the overall size of the module.
  • said heat exchanger is configured in such a way as the exhaust gases which pass through thereof follow a U-shaped path.
  • the U-shaped passage for the exhaust gases through the heat exchanger is defined by a first row of tubes or flat channels for the exhaust gas flow in a first direction, by a second row of tubes or flat channels for the exhaust gas flow in a second direction opposite to the first direction, and by an intermediate chamber which connects the tubes or flat channels of the first row to the tubes or flat channels of the second row.
  • tubes or flat channels of said second row define an overall passage section lower than the overall passage section defined by tubes or flat channels of the first row, so as to counteract a reduction of the exhaust gases speed resulting from the reduction of density due to the cooling.
  • the reference number 1 indicates a preferred embodiment of the multi-functional module for an internal combustion engine of a motor-vehicle according to the present invention.
  • Figures 1 , 2 diagrammatically shown the cylinder head T of a multicylinder engine E, having an intake manifold CA for the air supply, coming from a suction duct 5 to the engine cylinders, and an exhaust manifold CS for discharging in an exhaust conduit 17 the outgoing gas from the engine cylinders.
  • Figure 2 also diagrammatically illustrates the cooling jacket J of the cylinders head T.
  • the module 1 incorporates a part of the exhaust gas recirculation system of the engine and a part of the cooling circuit of the engine.
  • said module comprises an EGR valve unit 3 for regulating the recirculated exhaust gas flow and a heat exchanger 4 for cooling the recirculated exhaust gases by means of the engine coolant.
  • the EGR valve unit 3 and the heat exchanger 4 are mounted at two opposite ends of a central structural element 2.
  • the central structural element 2 comprises a metal body (such as aluminium) having a face (indicated with P6 in figures 3-5 ) for attachment to an end face of the cylinder head T of the engine E (see figures 1 , 2 ).
  • a connection can be realized for example by means of screws, providing also a seal between faces in contact of the structural element body 2 and of the cylinder head T.
  • Such constructive details have not been illustrated so getting more simple the drawings.
  • the body of the structural element 2 has an elongated shape according to a direction which is perpendicular to the longitudinal direction of the cylinder head.
  • a conduit 6 for circulation of the exhaust gases (in particular see figures 1 , 4 , 7 ) and a conduit 7 for circulation of the engine coolant (in particular see figures 2 , 5 , 6 ) are formed within said central structural element metal body 2.
  • the exhaust gases conduit 6 extends starting from an inlet opening 9 of the exhaust gas positioned on said face P6 of the body 2 provided for attachment with the cylinder head (see figures 4 and 6 , 7 ).
  • the coolant conduit 7 extends starting from an inlet opening 8 positioned also in this case on said attachment face P6.
  • the opening 9 for inlet in the module 1 of the exhaust gases communicates with the intake manifold CS by means of a conduit 24 formed in the cylinder head T.
  • the opening 8 for inlet of the coolant in the module 1 communicates with the coolant jacket J of the cylinder head T.
  • the exhaust gases conduit 6 follows a path, which will be described in detail below, through the body 2, up to ends into an outlet opening 10 connected to the suction duct 5, so as to enable recirculation of exhaust gases in the engine intake manifold.
  • the coolant conduit 7 communicates with an outlet opening 11 to which a thermostatic valve 19 is associated for controlling a connection with the radiator of the engine cooling system.
  • the EGR valve unit 3 and the heat exchanger 2 are mounted at opposite ends of the central structural element 2.
  • the EGR valve unit 3 is operatively interposed in the exhaust gases conduit 6, for regulating the recirculated exhaust gas flow .
  • the heat exchanger 4 has internal conduits, which also will be better illustrated in the following, which are in heat exchange relationship to each other, and which are respectively operatively interposed along said exhaust gases conduit 6 and said coolant conduit 7.
  • a by-pass conduit 65 for exhaust gases is formed within said elongated body of the central structural element 2 (see figure 1 ), through which exhaust gases can flow towards said exhaust gases outlet opening 10 without passing through said heat exchanger 4.
  • a by-pass valve 13 (only diagrammatically shown in figure 1 ) is interposed inside said by-pass conduit 65 which is operated by means of a vacuum actuator 14 carried by said multi-functional module 1.
  • the actuator 14 is shown in figures 3-5 and only in a diagrammatic way in figure 1 .
  • Using a vacuum actuator is necessary in order to efficiently develop the force that must be applied to the movable member of the by-pass valve.
  • the actuator body is rigidly fixed on the upper face P4 (with reference to drawings) of the body 2 and controls a stem which controls the movable member of the by-pass valve by means of a lever.
  • a first important feature of the present invention is that the EGR valve unit 3 is operatively positioned along the exhaust gases conduit 6 upstream the heat exchanger 4, in such a way that when said EGR valve unit is in an opened condition, the exhaust gases pass through said EGR valve unit 3, before being cooled in the heat exchanger 4.
  • the exhaust gases pass through the EGR valve with a temperature which is considerably higher than what occurs in the known solution, so decreasing or entirely cancelling the risk of carbon deposits within the EGR valve 3 and ensuring that this valve maintains a constant efficiency for the entire life of the engine.
  • a further feature of the module according to the invention is that the vacuum actuator 14 which controls the by pass valve 13 is arranged for being operative by a vacuum pump 15 ( figure 1 ) external to the module.
  • the communication of the actuator 14 with the vacuum pump 15 is controlled by an electrovalve 16 of the type on-off.
  • the electrovalve 16 is illustrated in figures 3-5 and only diagrammatically in figure 1 .
  • the actuator 14 is controlled by the vacuum pump 15 in order to open the by-pass conduit 65 during a warm-up phase of the engine, so when cooling of the exhaust gases is not required.
  • it is not provided any vacuum tank in order to operate the actuator 14. Thanks to this feature, weight and overall size of the module are considerably reduced.
  • the multifunctional module according to the invention has the advantage that the end face of the body 2 in which is mounted the heat exchanger can be entirely occupied by the heat exchanger. This fact permits to obtain a more efficient cooling of the exhaust gases, using a heat exchanger bigger, but without increasing the overall size of the module. Or it is also possible to use a heat exchanger with overall size similar to what is provided in the known solutions, so considerably decreasing the overall size of the module.
  • the exhaust gases conduit 6 comprises a blind conduit portion 60 which extends through the central structural element body 2 from said inlet opening 9 positioned on the attachment face of the central structural element 2. From the conduit portion 60 branches a further conduit portion 61 which extends in a parallel direction to the longitudinal direction of the body 2, up to ends into an opening 23 on the end face P3 on which is mounted the EGR valve unit 3.
  • conduit portion 62 Adjacent to the opening 23 is provided a conduit portion 62 in which the conduit portion 61 communicates with a further conduit portion 63 which runs in parallel to the conduit portion 61 and extends from the end face P3 of the body 2 up to the opposite end face P2 on which is mounted the heat exchanger 4, which flows into an opening 12 which communicates with an exhaust gases inlet in the heat exchanger 4.
  • the communication of the conduit portion 61 with the conduit portion 62 ( figure 4 ) is controlled by the EGR valve unit which comprises a body which is rigidly connected by screws (not shown) to the body of the element 2 and including an electric actuator for the position control of a shutter O which cooperates with a valve seat (not shown in the drawings) formed on the wall of the conduit portion 61.
  • the shutter O is axially movable between a rest position on the valve seat, in which the communication between the conduit portions 61, 62 is interrupted, and a position which is spaced from the valve seat, in which the aforesaid communication is open.
  • the end face of the central structural element body 2 is entirely occupied by the heat exchanger 4.
  • Such heat exchanger 4 is configured in such a way as the exhaust gas which pass through thereof follow a U-shaped path. Thanks to this feature, with equal efficiency of exhaust gas cooling, the overall size of the heat exchanger in the longitudinal direction of the module can be considerably reduced.
  • the U-shaped path for the exhaust gases through the heat exchanger 4 is defined by a first row of tubes 41 (in the case illustrated in the drawings) or alternatively by flat channels, for exhaust gas flow in a first direction, by a second row of tubes 41 or alternatively by flat channels for the exhaust gas flow in a second direction which is opposite to the first direction, and by an intermediate chamber 44 which connects the tubes or the flat channels of the first row to the tubes or the plates channel of the second row.
  • the tubes or flat channels of the second row (positioned downstream of the first row) define a total section of passage smaller than the total section of passage defined by the tubes or flat channels of the first row in such a way as counteracting a reduction of exhaust gases speed caused by the reduction of density due to the cooling.
  • the illustrated example that is obtained providing tubes 41 all of the same section, but providing a number of tubes of the upstream first row bigger than the number of tubes of the downstream second row.
  • the tubes 41 of the heat exchanger are all surrounded by a chamber 43 filled of the coolant.
  • the coolant conduit 7 comprises a conduit portion 71 which extends through the body of the central structural element 2 from said inlet opening 8 positioned on said attachment face P6 up to the opposite face P1 of the central structural element 2, wherein said conduit portion 71 ends into an outlet opening 11.
  • a fitting element 18 is mounted at the opening 11 and said fitting element 18 incorporates the thermostatic valve 19 diagrammatically shown in figure 2 (not illustrated in figure 5 ), which controls the feeding of the coolant to the radiator of the cooling system.
  • a further conduit portion 72 branches from the conduit portion 71 in direction of the end face P3 of the central structural element 2 to which the EGR valve unit 3 is associated and which flows in a chamber 73 which is adjacent to said end face P3, for the cooling of the EGR valve unit 3.
  • a further conduit portion 74 extends longitudinally along said central structural element 2 starting from a chamber 73 up to an inlet 22 of the coolant in the heat exchanger 4. Through the inlet 22, the coolant enters in the chamber 43 ( figure 8 ) of the heat exchanger 4, where cools the exhaust gases which circulate in the tubes 41. The coolant leaves the heat exchanger through an outlet fitting 42 ( figure 6 ), connected with the cooler of the engine oil, which is part of the engine cooling system. From the conduit portion 74 ( figure 5 ) branches a further conduit (not illustrated) which ends in the face P1 of the body 2, where is fixed a fitting element 22 connected with the cabin heater of the motor-vehicle.
  • arrows F1 and F2 indicates respectively the exhaust gas flow and the coolant flow.
  • a part of the exhaust gas flow is recirculated to the engine intake by means of the module 1.
  • a part of the exhaust gas flow passes through the intake manifold in the conduit 24 ( figure 1 ) of the cylinders head T in order to enter in the inlet opening 9 in the module 1.
  • the EGR valve is opened, the exhaust gases entered in the opening 9 flow through the successive conduit portion 60-63 ( figures 4 and 6 ) up to enter in the inlet of the heat exchanger 4.
  • the gas flow in a direction and than in the opposite direction through the two rows of tubes (or flat channels) 41 of the heat exchanger 4 up to flow out from the module 1 through the opening 10 and so flow into the suction duct 5 ( figure 1 ).
  • the electric actuator of the EGR valve unit 3 controls the stem O for regulating the recirculated exhaust gas flow.
  • the actuator of the EGR valve is controlled by the engine control unit, on the basis of one or more engine operation parameters, according to a known technique.
  • the actuator 14 controls the opening of the by-pass valve 13, so that the gases flow out from the module 1 without passing through the heat exchanger 4.
  • the actuator 14 becomes operative by means of the opening of the electrovalve 16 and activating the vacuum pump 15 (which is not part of the module 1, being integrated in the engine E). Therefore, a like prior art, the module 1 doesn't include a vacuum tank for supplying the actuator 14, with consequent possibility of adopt a heat exchanger bigger and more efficient, which occupies the entire end face P2 of the metal body 2, without increasing the overall size of the module 1.
  • the configuration with U-shape of the path of the exhaust gases in the heat exchanger 4 enables a reduction of the dimensions of the heat exchanger 4 in the longitudinal direction of the body 2.
  • the predisposition of the two different rows of tubes 41 or flat channels communicating with an intermediate chamber 44 enables also to provide an overall passage section for the exhaust gases which is reduced along the path of the exhaust gases, so as to counteract the reduction of speed due to the reduction of density caused by the cooling.
  • the coolant coming from the cooling jacket J of the cylinders head flows into the inlet opening 8 of the module 1.
  • Part of the flow pass through the conduit portion 71 and cause out the module 1 through the fitting element 18 when the thermostatic valve 19 ( figure 1 ) is open, so as to flow towards the radiator of the motor-vehicle.
  • Part of the flow of the coolant subsequently flows through the conduit portion 71, 72, the chamber 73 (which cools the EGR valve) and a conduit portion 74 up to flows in to the chamber 43 of the heat exchanger, where the exhaust gas are cooled.
  • the coolant leaving the heat exchanger 44 goes out from the module 1 through the fitting element 42 ( figure 6 ) from which it has been directed to the cooler of the engine oil of the motor-vehicle cooling system. Part of the coolant goes out instead from the module 1 through the fitting element 22, from which it is directed to the cabin heater.
  • the multi-functional module according to the invention combines a simple configuration and economical process for manufacturing with limited overall size features, low weight and constant efficiency in the time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Claims (8)

  1. Multifunktionsmodul (1) für einen Verbrennungsmotor (E) eines Motorfahrzeugs mit einem Teil eines Abgasrezirkulationssystems des Motors und einem Teil eines Kühlkreises des Motors, wobei das Modul eine EGR-Ventileinheit (3) zum Regeln des rezirkulierten Abgasstroms und einen Wärmetauscher (4) zum Kühlen der rezirkulierten Abgase mittels eines Motorkühlmittels aufweist, wobei ferner:
    - das Multifunktionsmodul ein zentrales strukturelles Element (2) aufweist mit einem Metallkörper mit einer Fläche (P6) zur Befestigung an einer Stirnfläche des Zylinderkopfs (T) des Motors (E), wobei ein derartiger Körper eine längliche Form entsprechend einer Richtung aufweist, die senkrecht zu der Längsrichtung des Zylinderkopfs ist, wenn das Modul an dem Motor montiert ist,
    - eine Leitung (6) zur Zirkulation der Abgase und eine Leitung (7) zur Zirkulation des Motorkühlmittels in dem Metallkörper des zentralen strukturellen Elements (2) ausgebildet sind, wobei die Leitungen (6, 7) sich ausgehend von einer Einlassöffnung (9) für die Abgase und einer Einlassöffnung (8) für das Kühlmittel aus erstrecken, wobei die Einlassöffnungen (8, 9) in der Befestigungsfläche (P6) angeordnet sind und entsprechend mit einem Motorabgasverteiler und mit einem Kühlmantel des Zylinderkopfs in Verbindung stehen,
    - die Abgasleitung (6) in eine Abgasauslassöffnung (10) mündet, die dafür vorgesehen ist, mit dem Motoreinlassverteiler in Verbindung zu stehen, während die Kühlmittelleitung (7) in mindestens eine Kühlmittelauslassöffnung (11) mündet, die mit einem Thermostatventil (19) zur Steuerung einer Verbindung zu dem Kühler des Motorkühlsystems verbindbar ist,
    - die EGR-Ventileinheit (3) zum Regeln des rezirkulierten Abgasstroms an einer ersten Stirnfläche (P3) des länglichen Körpers des zentralen strukturellen Elements (2) montiert und funktionsmäßig im Zwischenbereich entlang der Abgasleitung (6) angeordnet ist,
    - der Wärmetauscher (4) zum Kühlen der Abgase durch das Kühlmittel an einer zweiten Stirnfläche (P2) des länglichen Körpers des zentralen strukturellen Elements (2) montiert ist, die gegenüberliegend zu der ersten Stirnfläche (P3) liegt, an der die EGR-Ventileinheit (3) montiert ist, wobei der Wärmetauscher (4) interne Leitungen (41, 43), die entsprechend zum Wärmetauschen zueinander angeordnet sind, aufweist, die entsprechend funktionsmäßig im Zwischenbereich entlang der Abgasleitung (6) und der Kühlmittelleitung (7) angeordnet sind,
    - eine Umgehungsleitung (65) für die Abgase in dem länglichen Körper des zentralen strukturellen Elements (2) ausgebildet ist, durch welche die Abgase zu der Abgasauslassöffnung (10) strömen, ohne den Wärmetauscher (4) zu durchlaufen,
    - ein Umgehungsventil (13) in der Umgehungsleitung (65) angeordnet ist, das mittels eines Vakuum-Aktuators (14) betrieben wird, der von dem Multifunktionsmodul (1) getragen wird,
    - das Multifunktionsmodul (1) dadurch gekennzeichnet ist, dass die EGR-Ventileinheit (3) funktionsmäßig entlang der Abgasleitung (6) stromaufwärts von dem Wärmetauscher (4) so angeordnet ist, dass, wenn die EGR-Ventileinheit (3) in der offenen Stellung ist, die Abgase durch die EGR-Ventileinheit (3) strömen, bevor sie in dem Wärmetauscher (4) gekühlt werden, und
    - dass der Vakuum-Aktuator (14), der das Umgehungsventil (13) steuert, ausgebildet ist, mittels einer Vakuumquelle, die außerhalb des Moduls (1) liegt, betrieben zu werden, wodurch das Modul ohne Vakuumquelle oder Vakuumbehälter ist.
  2. Multifunktionsmodul (1) nach Anspruch 1, dadurch gekennzeichnet, dass die zweite Stirnfläche (P2) des Körpers des zentralen strukturellen Elements (2) vollständig von dem Wärmetauscher (4) eingenommen ist.
  3. Multifunktionsmodul (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmetauscher so ausgebildet ist, dass die Abgase, die den Wärmetauscher durchlaufen, einen U-förmigen Weg nehmen.
  4. Multifunktionsmodul (1) nach Anspruch 3, dadurch gekennzeichnet, dass der U-förmige Weg für die Abgase durch den Wärmetauscher (4) durch eine erste Reihe aus Rohren oder flachen Kanälen (41) für das Strömen der Abgase in einer ersten Richtung, durch eine zweite Reihe aus Rohren oder flachen Kanälen (41) für das Strömen der Abgase in einer zweiten Richtung entgegengesetzt zu der ersten Richtung und durch eine Zwischenkammer (44) gebildet ist, die die Rohre oder die flachen Kanäle der ersten Reihe mit den Rohren oder flachen Kanälen der zweiten Reihe verbindet.
  5. Multifunktionsmodul (1) nach Anspruch 4, dadurch gekennzeichnet, dass die Rohre oder die flachen Kanäle (41) der zweiten Reihe eine Gesamtdurchgangsquerschnittsfläche bilden, die kleiner ist als die Gesamtdurchgangsquerschnittsfläche, die durch die Rohre oder flachen Kanäle (41) der ersten Reihe gebildet ist, derart, dass einer Verringerung der Geschwindigkeit der Abgase, die durch eine Reduzierung der Dichte aufgrund der Abkühlung hervorgerufen wird, entgegengewirkt wird.
  6. Multifunktionsmodul (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kühlleitung (7) aufweist:
    - einen ersten Leitungsbereich (71), der sich durch den Körper des zentralen strukturellen Elements (2) von der Einlassöffnung (8), die an der Befestigungsfläche (P6) angeordnet ist, zu einer gegenüberliegenden Fläche (P1) des zentralen strukturellen Elements (2) erstreckt, an der die Ausgangsöffnung (11) angeordnet ist, mit der das Thermostatventil (19) verbunden ist;
    - einen zweiten Leitungsbereich (71), der von dem ersten Leitungsbereich (71) in Richtung zu der ersten Stirnfläche (P3) des zentralen strukturellen Elements (2) abzweigt, mit der die EGR-Einheit (3) verbunden ist und die in einer Kammer (73) mündet, die benachbart zu der ersten Stirnfläche (P3) des zentralen strukturellen Elements (2) zur Kühlung der EGR-Ventileinheit (3) angeordnet ist, und
    - einen dritten Leitungsbereich (74), der sich in Längsrichtung entlang des zentralen strukturellen Elements (2) ausgehend von der Kammer (73) bis zu einem Einlass (22) des Kühlmittels in den Wärmetauscher (4) erstreckt,
    - wobei der Wärmetauscher (4) einen Auslass (42) für das Kühlmittel aufweist, der mit einem externen Element des Motorkühlkreises, etwa einem Kühler für das Motoröl, zu verbinden ist.
  7. Multifunktionsmodul (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Abgasleitung (6) aufweist:
    - einen Leitungsbereich (60, 61) für die Abgase, der funktionsmäßig stromaufwärts von der EGR-Ventileinheit (3) angeordnet ist und der sich durch den Körper des zentralen strukturellen Elements (2) von der Einlassöffnung (9) für die Abgase, die an der Befestigungsfläche (P6) des zentralen strukturellen Elements (2) angeordnet ist, bis zu der ersten Stirnfläche (P3) des zentralen strukturellen Elements (2) erstreckt,
    - einen Leitungsbereich (62, 63) für die Abgase, der funktionsmäßig stromabwärts von der EGR-Ventileinheit (3) angeordnet ist und der sich durch den Körper des zentralen strukturellen Elements (2) bis zu der zweiten Stirnfläche (P2) des zentralen strukturellen Elements (2) erstreckt, wo sie in einen Einlass für die Abgase in dem Wärmetauscher (4) mündet, wobei die Verbindung zwischen dem stromaufwärtsseitigen Bereich und dem stromabwärtsseitigen Bereich der Abgasleitung (6) von der EGR-Ventileinheit (3) gesteuert ist,
    - einen Anschlussleitungsbereich für die Abgase, der in dem Körper des zentralen strukturellen Elements (2) ausgebildet ist und der einen Auslass der Abgase aus dem Wärmetauscher (4) mit der Auslassöffnung (10) der Abgase des Multifunktionsmoduls (1) verbindet,
    - wobei die Umgehungsleitung (65) durch eine Leitung gebildet ist, die in dem Körper des zentralen strukturellen Elements (2) ausgebildet ist, die den Leitungsbereich (62, 63) für die Abgase stromabwärts von der EGR-Ventileinheit (3) direkt mit dem Anschlussleitungsbereich für die Abgase verbindet.
  8. Multifunktionsmodul (1) nach Anspruch 7, dadurch gekennzeichnet, dass der Leitungsbereich (60, 61) für die Abgase, der funktionsmäßig stromaufwärts von der EGR-Ventileinheit (3) angeordnet ist, in eine Öffnung (23) auf der ersten Stirnfläche (P3) des Körpers des zentralen strukturellen Elements (2) mündet, und dass die EGR-Ventileinheit (3) einen Ventilverschluss (8) aufweist, der in der Öffnung (23) der ersten Stirnfläche (P3) beweglich vorgesehen ist und der mit einem Ventilsitz zusammenwirkt, der in dem zentralen strukturellen Element ausgebildet ist, so dass die Verbindung zwischen dem stromaufwärtsseitigen Bereich und dem stromabwärtsseitigen Bereich der Leitung (6) für die Abgase gesteuert wird.
EP16165369.6A 2016-04-14 2016-04-14 Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs Active EP3232043B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16165369.6A EP3232043B1 (de) 2016-04-14 2016-04-14 Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs
BR102017006089-6A BR102017006089B1 (pt) 2016-04-14 2017-03-24 Módulo multifuncional para um motor de combustão interna de um veículo motor
CN201710242138.6A CN107448330B (zh) 2016-04-14 2017-04-13 用于机动车辆的内燃机的多功能模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16165369.6A EP3232043B1 (de) 2016-04-14 2016-04-14 Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs

Publications (2)

Publication Number Publication Date
EP3232043A1 EP3232043A1 (de) 2017-10-18
EP3232043B1 true EP3232043B1 (de) 2018-06-06

Family

ID=55967005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16165369.6A Active EP3232043B1 (de) 2016-04-14 2016-04-14 Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs

Country Status (3)

Country Link
EP (1) EP3232043B1 (de)
CN (1) CN107448330B (de)
BR (1) BR102017006089B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143655A (ja) * 2020-03-13 2021-09-24 ヤンマーパワーテクノロジー株式会社 エンジン
CN112096543B (zh) * 2020-08-13 2021-12-07 东风汽车集团有限公司 Egr***及汽车

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060314A1 (fr) * 2002-01-16 2003-07-24 Mitsubishi Denki Kabushiki Kaisha Dispositif de recirculation des gaz d'echappement
FR2875540B1 (fr) * 2004-09-20 2007-03-16 Mark Iv Systemes Moteurs Sa Module multifonctionnel, vehicule a moteur comportant un tel module et procede de fabrication d'un tel module
CN100573017C (zh) * 2004-10-07 2009-12-23 贝洱两合公司 气冷式废气热交换器、特别是汽车废气冷却器
DE102006005246A1 (de) * 2005-02-03 2006-08-17 Behr Gmbh & Co. Kg Abgaswärmeübertrager, insbesondere für Kraftfahrzeuge
FR2894295B1 (fr) * 2005-12-01 2010-04-30 Mark Iv Systemes Moteurs Sa Module multifonctionnel pour moteur a combustion interne
FR2920706B1 (fr) 2007-09-12 2010-01-22 Mark Iv Systemes Moteurs Sa Module multifonctionnel pour moteur a combustion interne
DE102007049336B4 (de) * 2007-10-12 2019-09-05 Mahle International Gmbh Multifunktionales Modul zur Anbringung an einer Verbrennungskraftmaschine und zur Führung von Fluiden
US8056545B2 (en) * 2009-01-06 2011-11-15 Ford Global Technologies Integrated cover and exhaust gas recirculation cooler for internal combustion engine
JP6346426B2 (ja) * 2013-08-12 2018-06-20 現代自動車株式会社Hyundai Motor Company Egrガス及びエンジンオイル冷却装置とその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3232043A1 (de) 2017-10-18
BR102017006089A2 (pt) 2017-10-17
CN107448330A (zh) 2017-12-08
CN107448330B (zh) 2020-05-05
BR102017006089B1 (pt) 2022-11-22

Similar Documents

Publication Publication Date Title
US9212620B2 (en) Coolant jackets for an internal combustion engine and method of control
US7077114B2 (en) Exhaust gas recirculation system for a combustion engine
US20080060592A1 (en) Split Cooling System for an Internal Combustion Engine
US7784442B2 (en) Turbocharged engine cylinder head internal cooling
EP2225455B1 (de) Verbrennungsmotor
EP2025913A1 (de) Dreizug-Wärmetauscher für ein AGR-System
US20140209046A1 (en) Coolant circuit with head and block coolant jackets connected in series
KR101945823B1 (ko) 자동차의 통합 기능형 열교환 장치
US20090044525A1 (en) Exhaust-gas cooling device for an internal combustion engine
JP6174348B2 (ja) 車両用内燃機関
US10900442B2 (en) Cylinder head with integrated exhaust manifold and engine cooling system having the same
RU2605493C2 (ru) Контур охлаждающей жидкости
EP1426603B2 (de) Abgasrückführung
CN105723078B (zh) 用于内燃机的冷却***
EP3232043B1 (de) Multifunktionsmodul für eine brennkraftmaschine eines kraftfahrzeugs
EP2215345A1 (de) Integriertes agr/-kühlmodul für einen verbrennungsmotor
CN113494394B (zh) 发动机的egr***
US11802497B2 (en) Internal combustion engine including an oil cooler integrated into the cylinder block, and cooling water control
CN113614352B (zh) 内燃机以及冷却内燃机的方法
US20150292444A1 (en) Egr heat exchanger with continuous deaeration
JP4363176B2 (ja) エンジンの排気還流装置
US20110138795A1 (en) Exhaust gas cooler for a motor vehicle
EP2037116B1 (de) Multifunktionsmodul für einen Verbrennungsmotor
JP5494357B2 (ja) 内燃機関の冷却装置
JP4483620B2 (ja) エンジンの冷却装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1006368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016003279

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180906

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180907

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1006368

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016003279

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190414

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181008

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160414

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240320

Year of fee payment: 9

Ref country code: FR

Payment date: 20240320

Year of fee payment: 9