EP3224897B1 - Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices - Google Patents

Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices Download PDF

Info

Publication number
EP3224897B1
EP3224897B1 EP15807957.4A EP15807957A EP3224897B1 EP 3224897 B1 EP3224897 B1 EP 3224897B1 EP 15807957 A EP15807957 A EP 15807957A EP 3224897 B1 EP3224897 B1 EP 3224897B1
Authority
EP
European Patent Office
Prior art keywords
resonators
connection port
resonator
conducting strip
filter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15807957.4A
Other languages
German (de)
English (en)
Other versions
EP3224897A1 (fr
Inventor
Christian Leray
Geoffroy Lerosey
Nadège KAINA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Avantix SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Time Reversal Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Time Reversal Communications filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3224897A1 publication Critical patent/EP3224897A1/fr
Application granted granted Critical
Publication of EP3224897B1 publication Critical patent/EP3224897B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20336Comb or interdigital filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/088Tunable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the present invention relates to a filtering device with an electrically conductive strip structure. It also relates to a filter assembly comprising a plurality of filtering devices of this type.
  • a filtering device is produced using electrically conductive strips printed by simple etching on one side of an electrically insulating substrate.
  • One or more ground planes can also be made on the same face of the substrate, on another face of the substrate, or by stacking substrates.
  • By “effective fundamental resonance wavelength” of a resonator, is meant, of course, the wavelength effectively generated on said face of the substrate by fundamental resonance of the resonator considered, this wavelength being different from that which would correspond in the air because of the index of refraction of the substrate which is not equal to that of the air.
  • first end coupled to the transmission line is meant either a connection of said first end to the transmission line, or possibly a capacitive coupling by approaching said first end and the transmission line.
  • the topology thus proposed a metamaterial structure obtained by micro-ribbon technology which has particularly surprising and advantageous properties.
  • the object of the invention is not envisaged as comprising a delay line whose impedance or phase shift is considered.
  • the main aim is to obtain a metamaterial effect from resonators coupled to a transmission line that is as short as possible, regardless of its impedance which then becomes negligible and not taken into consideration.
  • the conductive strips forming the transmission line and the resonators are rectilinear, the resonators being otherwise parallel to each other so as to form a comb of resonators.
  • the resonators are perpendicular to the transmission line.
  • the resonators are all of the same nominal length, so as to generate the same nominal effective fundamental resonance wavelength, except at least one short resonator, each short resonator being surrounded by two neighboring resonators length nominal and being shorter than the nominal length so as to generate at least one resonant cavity in said plurality of resonators.
  • the resonators are all of nominal length except for a single short resonator so as to generate a single resonant cavity in said plurality of resonators.
  • the resonators are all of nominal length except N short resonators, with N ⁇ 2, arranged in a periodic pattern so as to generate N resonant cavities periodically distributed in said plurality of resonators.
  • At least one resonator is provided with an electronic component for adjusting its equivalent electrical fundamental resonance frequency.
  • the electronic control component comprises one of the elements of the assembly consisting of a PIN diode, a varicap diode, a varistor and a transistor.
  • a filter assembly according to the invention can comprise a single input connection port and a single output connection port, the filtering devices being coupled together in series so that the input connection port the first filter device of the series forms the input connection port of the filter assembly and the output connection port of the last filter device of the series forms the output connection port of the filter assembly.
  • the filtering device 100 shown schematically on the figure 1 comprises a transmission line 102, for example a line 50 ⁇ formed by an electrically conductive strip printed on one side of an electrically insulating substrate 104.
  • This conductive strip 102 has two ends 102 IN and 102 OUT respectively forming the two only ports of input and output connection of the filter device 100.
  • the conductive strip 102 is rectilinear.
  • the filtering device 100 further comprises a plurality of resonators 106 1 ,..., 106 M , each resonator 106 i (1 i i M M ) comprising a band electrically conductive printed on the same side of the substrate 104 as the conductive strip of the transmission line 102.
  • the conductive strip of each resonator 106 i has a first end 108 i connected to the transmission line 102 between the two connection ports 102 IN , OUT 102 and a second end 110 i free or connected to a ground so as to generate an effective fundamental resonance wavelength specific to each resonator 106 i on said face of the substrate 104.
  • the conductive strips of the resonators 106 1 ,..., 106 M are straight, all of the same length L and parallel to each other so as to form a comb of resonators.
  • the resonators 106 1 ,..., 106 M are further perpendicular to the transmission line 102 and their second ends 110 1 ,..., 110 M are illustrated free.
  • the resonators 106 1 ,..., 106 M all have the same effective fundamental resonance wavelength ⁇ equal to four times their length.
  • the resonators 106 1 ,..., 106 M would all have the same effective fundamental resonance wavelength ⁇ equal to twice their length L.
  • the distance noted e i between the first ends 108 i and 108 i + 1 of the two neighboring resonators 106 i and 106 i + 1 of this pair is less than one tenth of the smallest effective fundamental resonance wavelength of the plurality of resonators which is, in this example where all the resonators are all of the same length L, the effective wavelength ⁇ mentioned above.
  • These distances e 1 ,..., E M-1 may even advantageously be less than one tenth, or even one hundredth, of the smallest effective fundamental resonance wavelength of the plurality of resonators 106 1 ,. M. In the particular embodiment of the figure 1 all these distances e 1 , ..., e M-1 are equal and of the same order of magnitude as the width of each resonator.
  • the hybridization bandgap property is due to the phenomena of interference between the resonators 106 1 ,..., 106 M which are very close together and respond in phase opposition to any incident electromagnetic field beyond their resonance frequency.
  • any incident electromagnetic field is reflected, and the metamaterial structure is a notch filter with interesting properties.
  • This transfer function shows that it has thus been conceived a notch-filtering device 100, in other words, with a band-gap at -30 dB, having good performance, the forbidden band of transmission starting just after, in the frequency domain, the resonance frequency (about 1.3 GHz) corresponding to the effective wavelength ⁇ mentioned above and extending to about 1.6 GHz. These good performances are furthermore obtained for a filtering device 100 which remains very compact and of minimal bulk.
  • the filter structure illustrated on the figure 1 is only a particular example of filtering device according to the invention. More generally, the conductive strips forming the transmission line 102 and the resonators 106 1 ,..., 106 M are not necessarily rectilinear, the resonators are not necessarily parallel to each other or perpendicular to the transmission line. and are not necessarily of the same length L. The distances e 1 , ..., e M-1 are not necessarily equal either. On the other hand, it is necessary that for each pair of resonators neighboring the plurality of resonators, the distance between the first ends of the two neighboring resonators of this pair is less than a quarter, or even advantageously to a tenth, of the shortest length of the pair.
  • the filtering device 200 shown schematically on the figure 3 according to a second preferred embodiment of the invention, comprises a transmission line 202 with two ends 202 IN and 202 OUT printed on a substrate 204 and resonators 206 1 , ..., 206 M comprising first 208 1 ,. .., 208 M and second 210 1 , ..., 210 M ends. It is identical to the filter device 100 to except that one 206 i of its resonators 206 1 , ..., 206 M is shorter than the others.
  • the resonators 206 1 ,..., 206 M are all of the same nominal length L, so as to generate the same nominal effective fundamental resonance wavelength ⁇ , except the short resonator 206 i , disposed somewhere in the metamaterial structure between the first resonator 206 1 and the last resonator 206 M so as to generate a singular resonant cavity of very small size in the plurality of resonators 206 1 , ..., 206 M.
  • the distances e 1 ,..., E M-1 must remain less than one quarter, or even advantageously one tenth, of the smallest effective fundamental resonance wavelength of the plurality of resonators which is, in this example, the effective fundamental resonance wavelength of the short resonator 206 i .
  • the presence of the resonant cavity generated by the short resonator 206 i makes it possible to trap certain waves so as to create a resonance peak, this resonance peak being adjustable in position in the forbidden band transmitting the filter device 200 by varying the position and size of the short resonator 206 i in the plurality of resonators 206 1 , ..., 206 M.
  • the resonance peak thus obtained is very narrow, so that it has a large quality factor.
  • This transfer function shows that it has thus been conceived a filter device 200 notch-band or in other words, a bandgap of transmission at -30 dB, presenting not only good performance but also a resonance with a high quality factor. in its forbidden band.
  • the -30 dB band gap which ranges from about 1.3 GHz to 1.7 GHz, has a resonant peak at just under 1.6 GHz, the rejection being very steep around this resonance, 30 dB in a few tens of MHz.
  • the filtering device 300 comprises a transmission line 302 with two ends 302 IN and 302 OUT printed on a substrate 304 and resonators 306 1 , ..., 306 M comprising first 308 1 , ..., 308 M and second 310 1 , ..., 310 M ends. It is similar to the filter devices 100 and 200 except that several 306 i, 1 , ..., 306 i, N of its resonators 306 1 ,..., 306 M are shorter than the others.
  • the resonators 306 1 ,..., 306 M are all of the same nominal length L, so as to generate the same nominal effective fundamental resonance wavelength ⁇ , except the N short resonators 306 i, 1 , ..., 306 i, N , arranged in the metamaterial structure between the first resonator 306 1 and the last resonator 306 M so as to generate N very small coupled resonant singular cavities in the plurality of resonators 306 1 , .. ., 306 M. Each short resonator is surrounded by two neighboring resonators of nominal length.
  • the N short resonators 306 i, 1 , ..., 306 i, N are arranged in a periodic pattern so as to generate N resonant cavities periodically distributed in said plurality of resonators.
  • a short resonator is arranged every three resonators.
  • Each resulting resonant cavity is then separated from its neighbors by two resonators of nominal length and is therefore coupled directly only with its closest neighbors.
  • the width of this frequency band can be modified by modifying the structural parameters of the filtering device 300. This makes it possible to produce a filter type with even more abrupt frequency transitions (ie increasing the order of the filter) and easier to adjust.
  • Another effect resulting from the increase in the number of cavities in the metamaterial structure of the figure 5 is to considerably slow the group speed of electrical signals passing through the filter device, because a band of slow speed propagation modes is thus created.
  • the distances e 1 ,..., E M-1 must remain less than one quarter, or even advantageously one tenth, of the smallest effective fundamental resonance wavelength of the plurality of resonators. which is, in this example, the effective fundamental resonance wavelength of the N short resonators 306 i, 1 , ..., 306 i, N.
  • the filtering device 400 comprises a transmission line 402 with two ends 402 IN and 402 OUT printed on a substrate 404 and resonators 406 1 ,..., 406 M comprising first 408 1 , ..., 408 M and second 410 1 , ..., 410 M ends. It is similar to the filtering device 200 except that the short resonator 206 i is replaced by a resonator 406 i of the same length as the others but provided with an electronic component 412 for adjusting its resonance equivalent electric frequency fundamental. Thanks to this component, it is possible to modulate this frequency, in particular to increase it, without modifying the length of the resonator.
  • the electronic component 412 is for example a PIN diode, a varicap diode, a varistor or a transistor.
  • the distances e 1 ,..., E M-1 must remain less than one fourth, or even advantageously one tenth, of the smallest effective fundamental resonance wavelength of the plurality of resonators which is in this example, the effective fundamental resonance wavelength corresponding to the equivalent electrical resonance frequency of the resonator 406 i .
  • the resonator runs 456 i remains shorter than the others.
  • This split form of the so-called fractal resonators can be generalized into a multi-second tree shape for each resonator. It makes it possible to shorten the length of each resonator for the same effective resonance wavelength, at the cost of greater lateral bulk.
  • the distances e 1 ,..., E M-1 must remain less than one fourth, or even advantageously one tenth, of the smallest effective fundamental resonance wavelength of the plurality of resonators which is in this example, the effective fundamental resonance wavelength corresponding to the fundamental resonator equivalent electrical frequency of the short resonator 456 i .
  • the transfer function is obtained illustrated on the figure 8 .
  • This transfer function shows that it has thus been conceived a band-stop filtering device 450, in other words, a bandgap band at -30 dB, which not only has good performance but also broadband resonance in its range. forbidden band.
  • the -30 dB band gap which ranges from about 1.45 GHz to 2.55 GHz, has a peak resonant at 1.9 GHz in a bandwidth of -30 dB which extends about 1, 8 GHz to 2.4 GHz. These good performances are also obtained for a filtering device 450 which remains very compact and compact.
  • a filter assembly with at least one input connection port and at least one output connection port, having a plurality of filtering devices according to the invention can be designed. All the electrically conductive strips forming the transmission lines and the resonators of the filtering devices of such a filter assembly are printed on the same face of the same substrate. Furthermore, the filtering devices are coupled together in series and / or in parallel according to topologies that can be very diverse. It is thus possible to conceive a filtering unit that achieves ambitious objectives in terms of bandwidth, bandwidth loss and rejection level around this bandwidth.
  • the filtering devices are coupled together in series, so that the filter assembly comprises only one input connection port and one output connection port, the port of the first filtering device of the series forming the input connection port of the filter assembly and the output connection port of the last filtering device of the series forming the output connection port of the filter assembly.
  • FIG. figure 9 A first embodiment of a filter assembly according to the invention and according to this first family of topologies is illustrated in FIG. figure 9 .
  • the filter assembly 500 with two connection ports 502 IN and 502 OUT illustrated in this figure comprises two filtering devices 504, 506 of the same type as the filtering device 200, that is to say resonators all of the same length. except one.
  • the input connection port 502 IN corresponds to the input connection port of the first filter device 504 and the output connection port 502 OUT corresponds to the output connection port of the second and last filter device 506.
  • the two transmission lines of the two filtering devices 504 and 506 are in the extension of each other and the output connection port of the transmission line of the first filtering device 504 is coupled to the connection port of input of the transmission line of the second filter device 506 with a printed capacitive element 508.
  • the latter is formed of two electrically conductive strips perpendicular to the transmission lines of the two filtering devices 504 and 506 coupled. It makes it possible to maintain the two filtering devices 504 and 506 at a distance from one another while coupling them.
  • the transfer function illustrated on FIG. figure 10 shows that a filter set 500 has thus been designed whose band-gap and resonant band-band properties are improved.
  • a bandwidth at -30 dB of around 100 MHz between 1.5 and 1.6 GHz in the forbidden band and a rejection of 40 dB in a few tens of MHz around this bandwidth are reached, losses at resonance peak being less than 3 dB.
  • a second embodiment of a filter assembly according to the invention and according to the first family of topologies is illustrated on the figure 11 .
  • the filter assembly 600 with two connection ports 602 IN and 602 OUT illustrated in this figure comprises two filtering devices 604, 606 of the same type as the filtering device 200, that is to say resonators all of the same length. except for one (the resonant cavity is not arranged at the center of the plurality of resonators). These two filtering devices 604 and 606 are arranged in axial symmetry with respect to each other along an axis perpendicular to the transmission lines.
  • the input connection port 602 IN corresponds to the input connection port of the first filter device 604 and the output connection port 602 OUT corresponds to the output connection port of the second and last filter device 606.
  • the two transmission lines of the two filtering devices 604 and 606 are in the extension of each other and the output connection port of the transmission line of the first filter device 604 is electromagnetically coupled to the connection port of input of the transmission line of the second filtering device 606.
  • the two coupled ports are brought closer to one another and the coupling is done directly without any particular element. This coupling varies as a function of the separation distance of the two filtering devices 604 and 606.
  • the transfer function illustrated on FIG. figure 12 shows that a filter set 600 has thus been designed whose properties of band-cutter and resonant band in the forbidden band are improved. In particular, a bandwidth at -30 dB of around 50 MHz in the forbidden band and a rejection of 40 dB in a few tens of MHz around this bandwidth are reached, the losses at the resonant peak being less than 3 dB .
  • FIG. figure 13 A third embodiment of a filter assembly according to the invention and according to the first family of topologies is illustrated in FIG. figure 13 .
  • the filter assembly 700 with two connection ports 702 IN and 702 OUT illustrated in this figure comprises two filtering devices 704, 706 of the same type as the filtering device 200, that is to say with resonators all of the same length. except for one (the resonant cavity is not arranged at the center of the plurality of resonators). These two filtering devices 704 and 706 are arranged in central symmetry with respect to one another on a point of the substrate on which they are printed.
  • the input connection port 702 IN corresponds to the input connection port of the first filter device 704 and the output connection port 702 OUT corresponds to the output connection port of the second and last filter device 706.
  • the two transmission lines of the two filtering devices 704 and 706 are parallel without being in the extension of one another.
  • the electromagnetic coupling of the two filtering devices 704 and 706 is along two of their close resonators vis-à-vis, one connected to the output connection port of the first filtering device 704, the other connected to the input connection port of the second filter device 706.
  • the coupling is done directly without any particular element. This coupling varies according to the separation distance of the two resonators vis-à-vis.
  • the previously described filtering devices 100, 200, 300, 400, 450 may be coupled together in parallel so that the filter assembly has a plurality of input connection ports or a plurality of ports. output connection.
  • FIG. figure 15 A fourth embodiment of a filter assembly according to the invention and according to this second family of topologies is illustrated in FIG. figure 15 .
  • the filter assembly 800 with n input connection ports 802 IN1 , ..., 802 INn and an output connection port 802 OUT illustrated in this figure has n filters 804 1 ,..., 804 n which can each be of the same type as any of the filtering devices 100, 200, 300, 400, 450 or others.
  • the input connection port 802 IN1 corresponds to the input connection port of the first filter 804 1 , ...
  • the input connection port 802 INn corresponds to the input connection port of the last filter 804 n
  • the output connection port 802 OUT corresponds to the parallel interconnection of the n output connection ports of the n filters 804 1 ,..., 804 n .
  • a signal whose spectrum is included in the forbidden band of each filter 804 1 , ..., 804 n , is provided at the inputs 802 IN1 , ..., 802 INn of the filter assembly 800, only the part of the spectrum corresponding to the resonant peak or the bandwidth of the first filter 804 1 is transmitted by this first filter 804 1 at the output 802 OUT , ..., only the part of the spectrum corresponding to the resonant peak or the bandwidth of the last filter 804 1 is transmitted by the latter 804 1 filter 802 OUT output, so that we obtain at the output a signal multiplexed according to the different resonant peaks or bandwidths of the n filters 804 1 , ..., 804 n .
  • the filter assembly 800 is passive and therefore reversible. It can then be seen and used as a filter assembly at an input connection port 802 OUT and n output connection ports 802 IN1 , ..., 802 INn .
  • an input connection port 802 OUT and n output connection ports 802 IN1 , ..., 802 INn By injecting therein a spectrum signal included in the forbidden band of each filter 804 1 ,..., 804 n , there are at the outputs 802 IN1 ,..., 802 INn the n parts of the signal corresponding respectively to the n resonant peaks or bandwidths of n filters 804 1 , ..., 804 n .
  • filter assemblies filtering devices coupled in series such as filter assemblies 500, 600, 700, can also constitute all or part of the filters 804 1 , ..., 804 n coupled in parallel.
  • a filter assembly may be designed by serially coupling filter assemblies of parallel coupled filter devices.
  • a filtering device or filter assembly such as one of those described above makes it possible to provide a high-performance filter for a minimum space requirement, thanks to a metamaterial structure obtained by bringing together a plurality of resonators so that the distances between neighboring resonators are always less than a quarter, or even advantageously one tenth, of the smallest effective fundamental resonance wavelength of the plurality of resonators.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

  • La présente invention concerne un dispositif de filtrage à structure de bandes électriquement conductrices. Elle concerne également un ensemble filtrant comportant plusieurs dispositifs de filtrage de ce type.
  • L'invention s'applique plus particulièrement à un dispositif de filtrage à structure de bandes électriquement conductrices, comportant :
    • une ligne de transmission formée par une bande électriquement conductrice imprimée sur une face d'un substrat électriquement isolant, cette bande conductrice présentant deux extrémités formant respectivement les deux seuls ports de connexion d'entrée et sortie du dispositif de filtrage, et
    • une pluralité de résonateurs, chaque résonateur comportant une bande électriquement conductrice imprimée sur ladite face du substrat.
  • De nombreuses configurations différentes de dispositifs électromagnétiques de filtrage sont réalisables en technologie micro-ruban (de l'anglais « microstrip »), notamment pour concevoir des filtres radiofréquence d'ordre élevé. Selon cette technologie, un dispositif de filtrage est réalisé à l'aide de bandes électriquement conductrices imprimées par simple gravure sur une face d'un substrat électriquement isolant. Un ou plusieurs plans de masses peuvent par ailleurs être réalisés sur la même face du substrat, sur une autre face du substrat, ou par empilement de substrats.
  • La plupart des dispositifs de filtrage imprimés en technologie micro-ruban font appel à une technique qualifiée de filtrage à « constantes réparties » selon laquelle des montages de composants discrets sont remplacés par des assemblages de motifs élémentaires de bandes électriquement conductrices imprimées, chaque motif élémentaire réalisant une fonction R, L et/ou C prédéterminée. Selon cette technique, les motifs élémentaires sont suffisamment éloignés les uns des autres pour ne pas interférer entre eux. Par ailleurs, pour obtenir des dispositifs de filtrage d'ordres élevés, il convient de multiplier le nombre de dispositifs de filtrage connectés en série. Il en résulte des filtres qui présentent un encombrement parfois pénalisant, celui-ci augmentant avec l'ordre du filtre, compte tenu des fréquences visées (celles du spectre radiofréquence allant jusqu'à 300 GHz) et des applications envisagées.
  • En outre, dans le domaine des dispositifs de filtrage à ligne de transmission en technologie micro-ruban tel qu'il peut être illustré par l'ouvrage de Jia-Sheng Hong, intitulé « Microstrip filters for RF microwave applications - Second édition », publié par Wiley en 2011, à une fréquence de travail donnée, l'homme du métier est généralement guidé par l'objectif d'obtenir une ligne à retard d'impédance et donc de déphasage significatifs et à valeurs discrètes, c'est-à-dire π ou π/2, ce qui implique des écarts entre résonateurs voisins égaux ou supérieurs à λ/2 ou λ/4. A titre inhabituel, le document de brevet US 3,875,538 présente une démarche consistant à essayer d'obtenir une ligne à retard présentant un déphasage de π/4, ce qui implique des écarts entre résonateurs voisins d'environ λ/8. Mais en deçà de cette valeur inhabituelle de déphasage, la ligne à retard présenterait une impédance trop faible qui n'est jamais recherchée.
  • Il peut ainsi être souhaité de concevoir un dispositif de filtrage à structure de bandes électriquement conductrices qui permette de s'affranchir d'au moins une partie des problèmes et contraintes précités.
  • Il est donc proposé un dispositif de filtrage à structure de bandes électriquement conductrices du type précité dans lequel :
    • la bande conductrice de chaque résonateur présente une première extrémité couplée à la ligne de transmission entre les deux ports de connexion et au moins une deuxième extrémité libre ou raccordée à une masse de manière à engendrer une longueur d'onde de résonance fondamentale effective propre à chaque résonateur sur ladite face du substrat, et
    • pour chaque paire de résonateurs voisins de la pluralité de résonateurs, la distance entre les premières extrémités des deux résonateurs voisins de cette paire est inférieure au dixième de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs sur ladite face du substrat.
  • Par « longueur d'onde de résonance fondamentale effective » d'un résonateur, on entend bien sûr la longueur d'onde effectivement engendrée sur ladite face du substrat par résonance fondamentale du résonateur considéré, cette longueur d'onde étant différente de celle qui lui correspondrait dans l'air à cause de l'indice de réfraction du substrat qui n'est pas égal à celui de l'air.
  • Par « première extrémité couplée à la ligne de transmission », on entend soit un raccordement de ladite première extrémité à la ligne de transmission, soit éventuellement un couplage capacitif par rapprochement entre ladite première extrémité et la ligne de transmission.
  • Il résulte de la topologie ainsi proposée une structure de métamatériau obtenue par technologie micro-ruban qui présente des propriétés particulièrement surprenantes et avantageuses. Tout d'abord, en rapprochant les résonateurs les uns des autres suffisamment pour que les distances entre les premières extrémités de résonateurs voisins soient inférieures au dixième de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs, on obtient un dispositif de filtrage très compact et d'encombrement minimal pour une bande fréquentielle de fonctionnement donnée. Ensuite, le dispositif de filtrage compact obtenu présente une fonction de transfert coupe-bande d'ordre élevé, grâce notamment à la propriété de bande interdite d'hybridation des métamatériaux agissant dans le spectre radiofréquence. Enfin, on observe également une diminution de la vitesse de groupe de tout signal électrique traversant le dispositif de filtrage, ce qui permet d'envisager un tel dispositif comme alternative aux lignes de transmission à vitesses lentes qui sont généralement très complexes en technologie micro-ruban. On notera enfin que contrairement à l'enseignement de l'état de la technique mentionné précédemment, l'objet de l'invention n'est pas envisagé comme comportant une ligne à retard dont on considère l'impédance ou le déphasage. On cherche principalement à obtenir un effet de métamatériau à partir de résonateurs couplés à une ligne de transmission qui soit la plus courte possible, quelle que soit son impédance qui devient alors négligeable et non prise en considération.
  • De façon optionnelle, les bandes conductrices formant la ligne de transmission et les résonateurs sont rectilignes, les résonateurs étant par ailleurs parallèles entre eux de manière à former un peigne de résonateurs.
  • De façon optionnelle également, les résonateurs sont perpendiculaires à la ligne de transmission.
  • De façon optionnelle également, les résonateurs sont tous d'une même longueur nominale, de manière à engendrer une même longueur d'onde de résonance fondamentale effective nominale, sauf au moins un résonateur court, chaque résonateur court étant entouré de deux résonateurs voisins de longueur nominale et étant de longueur inférieure à la longueur nominale de manière à engendrer au moins une cavité résonante dans ladite pluralité de résonateurs.
  • Par exemple, les résonateurs sont tous de longueur nominale sauf un unique résonateur court de manière à engendrer une unique cavité résonante dans ladite pluralité de résonateurs.
  • Par exemple également, les résonateurs sont tous de longueur nominale sauf N résonateurs courts, avec N≥2, disposés selon un motif périodique de manière à engendrer N cavités résonantes périodiquement réparties dans ladite pluralité de résonateurs.
  • De façon optionnelle également, au moins un résonateur est pourvu d'un composant électronique de réglage de sa fréquence électrique équivalente de résonance fondamentale.
  • De façon optionnelle également, le composant électronique de réglage comporte l'un des éléments de l'ensemble constitué d'une diode PIN, d'une diode varicap, d'une varistance et d'un transistor.
  • Il est également proposé un ensemble filtrant à au moins un port de connexion d'entrée et au moins un port de connexion de sortie, comportant une pluralité de dispositifs de filtrage selon l'invention, dans lequel :
    • les bandes électriquement conductrices formant les lignes de transmission et les résonateurs des dispositifs de filtrage sont imprimées sur une même face d'un même substrat,
    • les dispositifs de filtrage sont couplés entre eux en série et/ou en parallèle.
  • De façon optionnelle, un ensemble filtrant selon l'invention peut comporter un seul port de connexion d'entrée et un seul port de connexion de sortie, les dispositifs de filtrage étant couplés entre eux en série de sorte que le port de connexion d'entrée du premier dispositif de filtrage de la série forme le port de connexion d'entrée de l'ensemble filtrant et le port de connexion de sortie du dernier dispositif de filtrage de la série forme le port de connexion de sortie de l'ensemble filtrant.
  • L'invention sera mieux comprise à l'aide de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
    • la figure 1 représente schématiquement la structure générale d'un dispositif de filtrage selon un premier mode de réalisation préféré de l'invention,
    • la figure 2 est un diagramme illustrant la fonction de transfert du dispositif de filtrage de la figure 1,
    • la figure 3 représente schématiquement la structure générale d'un dispositif de filtrage selon un deuxième mode de réalisation préféré de l'invention,
    • la figure 4 est un diagramme illustrant la fonction de transfert du dispositif de filtrage de la figure 3,
    • la figure 5 représente schématiquement la structure générale d'un dispositif de filtrage selon un troisième mode de réalisation préféré de l'invention,
    • la figure 6 représente schématiquement la structure générale d'un dispositif de filtrage selon un quatrième mode de réalisation préféré de l'invention,
    • la figure 7 représente schématiquement la structure générale d'un dispositif de filtrage selon un cinquième mode de réalisation préféré de l'invention,
    • la figure 8 est un diagramme illustrant la fonction de transfert du dispositif de filtrage de la figure 7,
    • la figure 9 représente schématiquement la structure générale d'un ensemble filtrant selon un premier mode de réalisation préféré de l'invention,
    • la figure 10 est un diagramme illustrant la fonction de transfert de l'ensemble filtrant de la figure 9,
    • la figure 11 représente schématiquement la structure générale d'un ensemble filtrant selon un deuxième mode de réalisation préféré de l'invention,
    • la figure 12 est un diagramme illustrant la fonction de transfert de l'ensemble filtrant de la figure 11,
    • la figure 13 représente schématiquement la structure générale d'un ensemble filtrant selon un troisième mode de réalisation préféré de l'invention,
    • la figure 14 est un diagramme illustrant la fonction de transfert de l'ensemble filtrant de la figure 13, et
    • la figure 15 représente schématiquement la structure générale d'un ensemble filtrant selon un quatrième mode de réalisation préféré de l'invention.
  • Le dispositif de filtrage 100 représenté schématiquement sur la figure 1 comporte une ligne de transmission 102, par exemple une ligne 50 Ω formée par une bande électriquement conductrice imprimée sur une face d'un substrat électriquement isolant 104. Cette bande conductrice 102 présente deux extrémités 102IN et 102OUT formant respectivement les deux seuls ports de connexion d'entrée et sortie du dispositif de filtrage 100. Dans le mode de réalisation illustré sur la figure 1, la bande conductrice 102 est rectiligne.
  • Le dispositif de filtrage 100 comporte en outre une pluralité de résonateurs 1061, ..., 106M, chaque résonateur 106i (1≤i≤M) comportant une bande électriquement conductrice imprimée sur la même face du substrat 104 que la bande conductrice de la ligne de transmission 102. La bande conductrice de chaque résonateur 106i présente une première extrémité 108i raccordée à la ligne de transmission 102 entre les deux ports de connexion 102IN, 102OUT et une deuxième extrémité 110i libre ou raccordée à une masse de manière à engendrer une longueur d'onde de résonance fondamentale effective propre à chaque résonateur 106i sur ladite face du substrat 104. Dans le mode de réalisation illustré sur la figure 1, les bandes conductrices des résonateurs 1061, ..., 106M sont rectilignes, toutes de même longueur L et parallèles entre elles de manière à former un peigne de résonateurs. Les résonateurs 1061, ..., 106M sont en outre perpendiculaires à la ligne de transmission 102 et leurs deuxièmes extrémités 1101, ..., 110M sont illustrées libres.
  • Compte tenu du fait que les deuxièmes extrémités 1101, ..., 110M sont libres, les résonateurs 1061, ..., 106M présentent tous une même longueur d'onde de résonance fondamentale effective λ égale à quatre fois leur longueur L. En variante, si les deuxièmes extrémités 1101, ..., 110M étaient raccordées à la masse, les résonateurs 1061, ..., 106M présenteraient tous une même longueur d'onde de résonance fondamentale effective λ égale à deux fois leur longueur L.
  • Conformément à l'invention, pour chaque paire (106i, 106i+1), avec 1≤i≤M-1, de résonateurs voisins de la pluralité de résonateurs 1061, ..., 106M, la distance notée ei entre les premières extrémités 108i et 108i+1 des deux résonateurs voisins 106i et 106i+1 de cette paire est inférieure au dixième de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs qui est, dans cet exemple où tous les résonateurs sont tous de même longueur L, la longueur d'onde effective λ mentionnée précédemment. Ces distances e1, ..., eM-1 peuvent même être avantageusement inférieures au dixième, voire au centième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs 1061, ..., 106M. Dans le mode de réalisation particulier de la figure 1, toutes ces distances e1, ..., eM-1 sont égales et du même ordre de grandeur que la largeur de chaque résonateur.
  • On obtient ainsi une structure de métamatériau en technologie micro-ruban qui présente des propriétés avantageuses comme indiqué précédemment. En particulier, la propriété de bande interdite d'hybridation est due aux phénomènes d'interférences entre les résonateurs 1061, ..., 106M qui sont très rapprochés et répondent en opposition de phase à tout champ électromagnétique incident au-delà de leur fréquence de résonance. Ainsi, par interférences destructives au-delà de cette fréquence, tout champ électromagnétique incident est réfléchi, et la structure de métamatériau constitue un filtre coupe-bande aux propriétés intéressantes.
  • A titre d'exemple, pour une ligne de transmission 102 à 50 Ω, avec une longueur L commune des résonateurs égale à 40 mm, une largeur totale W de M = 9 résonateurs égale à 20 mm, une distance e = e1 = ... = eM+1 entre résonateurs voisins d'un peu plus de 1 mm et un indice de réfraction du substrat 104 proche de 1,45, on obtient la fonction de transfert illustrée sur la figure 2. Cette fonction de transfert montre que l'on a ainsi conçu un dispositif de filtrage 100 coupe-bande ou, autrement dit, à bande interdite de transmission à -30 dB, présentant de bonnes performances, la bande interdite de transmission commençant juste après, dans le domaine fréquentiel, la fréquence de résonance (environ 1,3 GHz) correspondant à la longueur d'onde effective λ mentionnée précédemment et se prolongeant jusque vers 1,6 GHz. Ces bonnes performances sont en outre obtenues pour un dispositif de filtrage 100 qui reste très compact et d'encombrement minimal.
  • On notera que la structure de filtre illustrée sur la figure 1 n'est qu'un exemple particulier de dispositif de filtrage selon l'invention. D'une façon plus générale, les bandes conductrices formant la ligne de transmission 102 et les résonateurs 1061, ..., 106M ne sont pas nécessairement rectilignes, les résonateurs ne sont pas nécessairement parallèles entre eux ou perpendiculaires à la ligne de transmission et ne sont pas nécessairement de même longueur L. Les distances e1, ..., eM-1 ne sont pas non plus nécessairement égales. En revanche, il est nécessaire que pour chaque paire de résonateurs voisins de la pluralité de résonateurs, la distance entre les premières extrémités des deux résonateurs voisins de cette paire soit inférieure au quart, voire même avantageusement au dixième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs, cette plus petite longueur d'onde de résonance fondamentale effective étant celle du résonateur dont la longueur est la plus petite. Cette condition est nécessaire pour obtenir une structure de métamatériau aux propriétés avantageuses. En jouant sur tous les autres paramètres structurels précités, il est alors possible d'adapter la fonction de transfert du dispositif de filtrage aux différentes applications visées.
  • Le dispositif de filtrage 200, représenté schématiquement sur la figure 3 selon un deuxième mode de réalisation préféré de l'invention, comporte une ligne de transmission 202 à deux extrémités 202IN et 202OUT imprimée sur un substrat 204 et des résonateurs 2061, ..., 206M comportant des premières 2081, ..., 208M et deuxièmes 2101, ..., 210M extrémités. Il est identique au dispositif de filtrage 100 à l'exception du fait que l'un 206i de ses résonateurs 2061, ..., 206M est plus court que les autres. Plus précisément, les résonateurs 2061, ..., 206M sont tous de la même longueur nominale L, de manière à engendrer la même longueur d'onde de résonance fondamentale effective nominale λ, sauf le résonateur court 206i, disposé quelque part dans la structure de métamatériau entre le premier résonateur 2061 et le dernier résonateur 206M de manière à engendrer une cavité singulière résonante de très petite taille dans la pluralité de résonateurs 2061, ..., 206M.
  • Il convient de noter que les distances e1, ..., eM-1 doivent rester inférieures au quart, voire même avantageusement au dixième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs qui est, dans cet exemple, la longueur d'onde de résonance fondamentale effective du résonateur court 206i.
  • Loin de nuire à la structure de métamatériau, la présence de la cavité résonante engendrée par le résonateur court 206i, permet de piéger certaines ondes de manière à créer un pic de résonance, ce pic de résonance pouvant être réglé en position dans la bande interdite de transmission du dispositif de filtrage 200 en jouant sur la position et la taille du résonateur court 206i dans la pluralité de résonateurs 2061, ..., 206M. L'expérience montre que le pic de résonance ainsi obtenu est très étroit, de sorte qu'il présente un grand facteur de qualité.
  • A titre d'exemple, pour une ligne de transmission 202 à 50 Ω, avec une longueur nominale L égale à 40 mm, une largeur totale W de M = 9 résonateurs égale à 20 mm, une distance e = e1 = ... = eM+1 entre résonateurs voisins d'un peu plus de 1 mm, un résonateur court de 30 mm disposé au centre de la pluralité de résonateurs et un indice de réfraction du substrat 204 proche de 1,45, on obtient la fonction de transfert illustrée sur la figure 4. Cette fonction de transfert montre que l'on a ainsi conçu un dispositif de filtrage 200 coupe-bande ou, autrement dit, à bande interdite de transmission à -30 dB, présentant non seulement de bonnes performances mais également une résonance à grand facteur de qualité dans sa bande interdite. La bande interdite à -30 dB, qui s'étend d'environ 1,3 GHz à 1,7 GHz présente un pic résonant à un peu moins de 1,6 GHz, la réjection étant très abrupte autour de cette résonance, de 30 dB en quelques dizaines de MHz. Ces bonnes performances sont en outre obtenues pour un dispositif de filtrage 200 qui reste très compact et d'encombrement minimal.
  • Il est par ailleurs possible d'élargir le pic de résonance à l'intérieur de la bande interdite de transmission en augmentant le nombre de cavités résonantes de manière à coupler ces cavités entre elles. Cet effet est obtenu par exemple à l'aide du dispositif de filtrage 300 de la figure 5.
  • Le dispositif de filtrage 300 comporte une ligne de transmission 302 à deux extrémités 302IN et 302OUT imprimée sur un substrat 304 et des résonateurs 3061, ..., 306M comportant des premières 3081, ..., 308M et deuxièmes 3101, ..., 310M extrémités. Il est similaire aux dispositifs de filtrage 100 et 200 à l'exception du fait que plusieurs 306i,1, ..., 306i,N de ses résonateurs 3061, ..., 306M sont plus courts que les autres. Plus précisément, les résonateurs 3061, ..., 306M sont tous de la même longueur nominale L, de manière à engendrer la même longueur d'onde de résonance fondamentale effective nominale λ, sauf les N résonateurs courts 306i,1, ..., 306i,N, disposés dans la structure de métamatériau entre le premier résonateur 3061 et le dernier résonateur 306M de manière à engendrer N cavités singulières résonantes couplées de très petite taille dans la pluralité de résonateurs 3061, ..., 306M. Chaque résonateur court est entouré de deux résonateurs voisins de longueur nominale.
  • De préférence, les N résonateurs courts 306i,1, ..., 306i,N sont disposés selon un motif périodique de manière à engendrer N cavités résonantes périodiquement réparties dans ladite pluralité de résonateurs. Dans l'exemple de la figure 5, un résonateur court est disposé tous les trois résonateurs. Chaque cavité résonante résultante est alors séparée de ses voisines par deux résonateurs de longueur nominale et n'est donc couplée directement qu'avec ses plus proches voisines. Il en résulte un dispositif de filtrage qui ne laisse passer aucune fréquence dans la bande interdite telle que mentionnée pour le dispositif de la figure 1, hormis sur une bande de fréquences centrée sur la fréquence de résonance des cavités. La largeur de cette bande de fréquences peut être modifiée en jouant sur les paramètres structurels du dispositif de filtrage 300. Cela permet de réaliser un type de filtre aux transitions fréquentielles encore plus abruptes (i.e. augmentation de l'ordre du filtre) et plus facile à régler.
  • Un autre effet résultant de l'augmentation du nombre de cavités dans la structure de métamatériau de la figure 5 est de ralentir considérablement la vitesse de groupe des signaux électriques traversant le dispositif de filtrage, parce que l'on crée ainsi une bande de modes de propagation à vitesses lentes.
  • Il convient enfin de noter que les distances e1, ..., eM-1 doivent rester inférieures au quart, voire même avantageusement au dixième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs qui est, dans cet exemple, la longueur d'onde de résonance fondamentale effective des N résonateurs courts 306i,1, ..., 306i,N.
  • Une variante du mode de réalisation de la figure 3 est illustrée sur la figure 6. Le dispositif de filtrage 400 conforme à cette variante comporte une ligne de transmission 402 à deux extrémités 402IN et 402OUT imprimée sur un substrat 404 et des résonateurs 4061, ..., 406M comportant des premières 4081, ..., 408M et deuxièmes 4101, ..., 410M extrémités. Il est similaire au dispositif de filtrage 200 à l'exception du fait que le résonateur court 206i est remplacé par un résonateur 406i de même longueur que les autres mais pourvu d'un composant électronique 412 de réglage de sa fréquence électrique équivalente de résonance fondamentale. Grâce à ce composant, il est possible de moduler cette fréquence, notamment pour l'augmenter, sans pour autant modifier la longueur du résonateur. Il est alors possible d'obtenir les mêmes effets qu'avec le dispositif de filtrage 200, notamment la même fonction de transfert illustrée sur la figure 4, avec une structure de résonateurs tous de même longueur comme dans le dispositif de filtrage 100. Le composant électronique 412 est par exemple une diode PIN, une diode varicap, une varistance ou un transistor.
  • Il convient enfin de noter que les distances e1, ..., eM-1 doivent rester inférieures au quart, voire même avantageusement au dixième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs qui est, dans cet exemple, la longueur d'onde de résonance fondamentale effective correspondant à la fréquence électrique équivalente de résonance fondamentale du résonateur 406i.
  • Une autre variante du mode de réalisation de la figure 3 est illustrée sur la figure 7. Le dispositif de filtrage 450 conforme à cette autre variante comporte une ligne de transmission 452 à deux extrémités 452IN et 452OUT imprimée sur un substrat 454 et des résonateurs 4561, ..., 456M comportant des premières 4581, ..., 458M et deuxièmes 4601, ..., 460M extrémités. Il est similaire au dispositif de filtrage 200 à l'exception du fait que :
    • la première extrémité 4581, ou ..., ou 458M de chaque résonateur 4561, ou ..., ou 456M n'est pas directement raccordée à la ligne de transmission 452, mais couplée capacitivement avec elle par rapprochement sans contact, et
    • chaque résonateur 4561, ou ..., ou 456M comporte deux deuxièmes extrémités libres 4601, ou ..., ou 460M en étant constitué d'une bande conductrice dédoublée en partie médiane selon une forme générale de diapason.
  • Le résonateur court 456i reste plus court que les autres. Cette forme dédoublée des résonateurs, dite fractale, peut être généralisée en une forme arborescente à multiples deuxièmes extrémités pour chaque résonateur. Elle permet de raccourcir la longueur de chaque résonateur pour une même longueur d'onde effective de résonance, au prix d'un encombrement latéral plus important.
  • Il convient enfin de noter que les distances e1, ..., eM-1 doivent rester inférieures au quart, voire même avantageusement au dixième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs qui est, dans cet exemple, la longueur d'onde de résonance fondamentale effective correspondant à la fréquence électrique équivalente de résonance fondamentale du résonateur court 456i.
  • A titre d'exemple, pour une ligne de transmission 452 à 50 Ω, avec une longueur nominale L égale à 40 mm, une largeur totale W de M = 5 résonateurs égale à 20 mm, une distance e = e1 = ... = eM+1 entre résonateurs voisins d'environ 3 mm, un résonateur court de 20 à 30 mm disposé au centre de la pluralité de résonateurs et un indice de réfraction du substrat 454 proche de 1,45, on obtient la fonction de transfert illustrée sur la figure 8. Cette fonction de transfert montre que l'on a ainsi conçu un dispositif de filtrage 450 coupe-bande ou, autrement dit, à bande interdite de transmission à -30 dB, présentant non seulement de bonnes performances mais également une résonance à large bande dans sa bande interdite. La bande interdite à -30 dB, qui s'étend d'environ 1,45 GHz à 2,55 GHz présente un pic résonant à 1,9 GHz dans une bande passante à -30 dB qui s'étend d'environ 1,8 GHz à 2,4 GHz. Ces bonnes performances sont en outre obtenues pour un dispositif de filtrage 450 qui reste très compact et d'encombrement minimal.
  • A partir de l'un ou l'autre des dispositifs de filtrage 100, 200, 300, 400, 450 précédemment décrits, ou à partir d'autres variantes de réalisation possibles, un ensemble filtrant à au moins un port de connexion d'entrée et au moins un port de connexion de sortie, comportant une pluralité de dispositifs de filtrage selon l'invention, peut être conçu. Toutes les bandes électriquement conductrices formant les lignes de transmission et les résonateurs des dispositifs de filtrage d'un tel ensemble filtrant sont imprimées sur une même face d'un même substrat. Par ailleurs, les dispositifs de filtrage sont couplés entre eux en série et/ou en parallèle selon des topologies qui peuvent être très diverses. Il est ainsi possible de concevoir un ensemble filtrant permettant d'atteindre des objectifs ambitieux en termes de bande passante, de perte en bande passante et de niveau de réjection autour de cette bande passante.
  • Conformément à une première famille de topologies possibles, les dispositifs de filtrage sont couplés entre eux en série, de sorte que l'ensemble filtrant ne comporte qu'un port de connexion d'entrée et qu'un port de connexion de sortie, le port de connexion d'entrée du premier dispositif de filtrage de la série formant le port de connexion d'entrée de l'ensemble filtrant et le port de connexion de sortie du dernier dispositif de filtrage de la série formant le port de connexion de sortie de l'ensemble filtrant.
  • Un premier mode de réalisation d'un ensemble filtrant selon l'invention et selon cette première famille de topologies est illustré sur la figure 9.
  • L'ensemble filtrant 500 à deux ports de connexion 502IN et 502OUT illustré sur cette figure comporte deux dispositifs de filtrage 504, 506 du même type que le dispositif de filtrage 200, c'est-à-dire à résonateurs tous de même longueur nominale sauf un. Le port de connexion d'entrée 502IN correspond au port de connexion d'entrée du premier dispositif de filtrage 504 et le port de connexion de sortie 502OUT correspond au port de connexion de sortie du deuxième et dernier dispositif de filtrage 506.
  • Les deux lignes de transmission des deux dispositifs de filtrage 504 et 506 sont dans le prolongement l'une de l'autre et le port de connexion de sortie de la ligne de transmission du premier dispositif de filtrage 504 est couplé au port de connexion d'entrée de la ligne de transmission du deuxième dispositif de filtrage 506 à l'aide d'un élément capacitif imprimé 508. Ce dernier est formé de deux bandes électriquement conductrices perpendiculaires aux lignes de transmission des deux dispositifs de filtrage 504 et 506 couplés. Il permet de maintenir les deux dispositifs de filtrage 504 et 506 à une certaine distance d'un de l'autre tout en les couplant.
  • A titre d'exemple, avec des paramètres structurels d'expérimentation similaires à ceux du dispositif de filtrage 200, on obtient la fonction de transfert illustrée sur la figure 10. Cette fonction de transfert montre que l'on a ainsi conçu un ensemble de filtrage 500 dont les propriétés de coupe-bande et de bande résonante dans la bande interdite sont améliorées. En particulier une bande passante à -30 dB d'environ 100 MHz entre 1,5 et 1,6 GHz dans la bande interdite et une rejection de 40 dB en quelques dizaines de MHz autour de cette bande passante sont atteintes, les pertes au niveau du pic de résonance étant inférieures à 3 dB.
  • Un deuxième mode de réalisation d'un ensemble filtrant selon l'invention et selon la première famille de topologies est illustré sur la figure 11.
  • L'ensemble filtrant 600 à deux ports de connexion 602IN et 602OUT illustré sur cette figure comporte deux dispositifs de filtrage 604, 606 du même type que le dispositif de filtrage 200, c'est-à-dire à résonateurs tous de même longueur nominale sauf un (la cavité résonante n'étant cependant pas disposée au centre de la pluralité de résonateurs). Ces deux dispositifs de filtrage 604 et 606 sont disposés en symétrie axiale l'un par rapport à l'autre selon un axe perpendiculaire aux lignes de transmission. Le port de connexion d'entrée 602IN correspond au port de connexion d'entrée du premier dispositif de filtrage 604 et le port de connexion de sortie 602OUT correspond au port de connexion de sortie du deuxième et dernier dispositif de filtrage 606.
  • Les deux lignes de transmission des deux dispositifs de filtrage 604 et 606 sont dans le prolongement l'une de l'autre et le port de connexion de sortie de la ligne de transmission du premier dispositif de filtrage 604 est électromagnétiquement couplé au port de connexion d'entrée de la ligne de transmission du deuxième dispositif de filtrage 606. Pour cela les deux ports couplés sont rapprochés l'un de l'autre et le couplage se fait directement sans élément particulier. Ce couplage varie en fonction de la distance de séparation des deux dispositifs de filtrage 604 et 606.
  • A titre d'exemple, avec des paramètres structurels d'expérimentation similaires à ceux du dispositif de filtrage 200, on obtient la fonction de transfert illustrée sur la figure 12. Cette fonction de transfert montre que l'on a ainsi conçu un ensemble de filtrage 600 dont les propriétés de coupe-bande et de bande résonante dans la bande interdite sont améliorées. En particulier une bande passante à -30 dB d'environ 50 MHz dans la bande interdite et une rejection de 40 dB en quelques dizaines de MHz autour de cette bande passante sont atteintes, les pertes au niveau du pic de résonance étant inférieures à 3 dB.
  • Un troisième mode de réalisation d'un ensemble filtrant selon l'invention et selon la première famille de topologies est illustré sur la figure 13.
  • L'ensemble filtrant 700 à deux ports de connexion 702IN et 702OUT illustré sur cette figure comporte deux dispositifs de filtrage 704, 706 du même type que le dispositif de filtrage 200, c'est-à-dire à résonateurs tous de même longueur nominale sauf un (la cavité résonante n'étant cependant pas disposée au centre de la pluralité de résonateurs). Ces deux dispositifs de filtrage 704 et 706 sont disposés en symétrie centrale l'un par rapport à l'autre selon un point du substrat sur lequel ils sont imprimés. Le port de connexion d'entrée 702IN correspond au port de connexion d'entrée du premier dispositif de filtrage 704 et le port de connexion de sortie 702OUT correspond au port de connexion de sortie du deuxième et dernier dispositif de filtrage 706.
  • Compte tenu de la disposition en symétrie centrale, les deux lignes de transmission des deux dispositifs de filtrage 704 et 706 sont parallèles sans être dans le prolongement l'une de l'autre. Le couplage électromagnétique des deux dispositifs de filtrage 704 et 706 se fait le long de deux de leurs résonateurs rapprochés en vis-à-vis, l'un raccordé au niveau du port de connexion de sortie du premier dispositif de filtrage 704, l'autre raccordé au niveau du port de connexion d'entrée du deuxième dispositif de filtrage 706. Le couplage se fait directement sans élément particulier. Ce couplage varie en fonction de la distance de séparation des deux résonateurs en vis-à-vis.
  • A titre d'exemple, avec des paramètres structurels d'expérimentation similaires à ceux du dispositif de filtrage 200, on obtient la fonction de transfert illustrée sur la figure 14. Cette fonction de transfert, très similaire à celle de la figure 10, montre que l'on a ainsi conçu un ensemble de filtrage 700 dont les propriétés de coupe-bande et de bande résonante dans la bande interdite sont améliorées.
  • Conformément à une deuxième famille de topologies possibles, les dispositifs de filtrage 100, 200, 300, 400, 450 précédemment décrits peuvent être couplés entre eux en parallèle de sorte que l'ensemble filtrant comporte plusieurs ports de connexion d'entrée ou plusieurs ports de connexion de sortie.
  • Un quatrième mode de réalisation d'un ensemble filtrant selon l'invention et selon cette deuxième famille de topologies est illustré sur la figure 15.
  • L'ensemble filtrant 800 à n ports de connexion d'entrée 802IN1, ..., 802INn et un port de connexion de sortie 802OUT illustré sur cette figure comporte n filtres 8041, ..., 804n qui peuvent chacun être du même type que l'un quelconque des dispositifs de filtrage 100, 200, 300, 400, 450 ou autres. Le port de connexion d'entrée 802IN1 correspond au port de connexion d'entrée du premier filtre 8041, ..., le port de connexion d'entrée 802INn correspond au port de connexion d'entrée du dernier filtre 804n et le port de connexion de sortie 802OUT correspond à l'interconnexion en parallèle des n ports de connexion de sortie des n filtres 8041, ..., 804n.
  • En particulier, lorsque les n filtres 8041, ..., 804n sont à pics ou bandes passantes de résonance dans leurs bandes interdites, il est ainsi possible de concevoir un multiplexeur (un duplexeur si n=2). Par exemple lorsqu'un signal, dont le spectre est inclus dans la bande interdite de chaque filtre 8041, ..., 804n, est fourni aux entrées 802IN1, ..., 802INn de l'ensemble filtrant 800, seule la partie du spectre correspondant au pic résonant ou à la bande passante du premier filtre 8041 est transmise par ce premier filtre 8041 en sortie 802OUT, ..., seule la partie du spectre correspondant au pic résonant ou à la bande passante du dernier filtre 8041 est transmise par ce dernier filtre 8041 en sortie 802OUT, de sorte que l'on obtient en sortie un signal multiplexé selon les différents pics résonants ou bandes passantes des n filtres 8041, ..., 804n.
  • On notera que l'ensemble filtrant 800 est passif donc réversible. On peut alors le voir et l'utiliser comme un ensemble filtrant à un port de connexion d'entrée 802OUT et n ports de connexion de sortie 802IN1, ..., 802INn. En y injectant un signal de spectre inclus dans la bande interdite de chaque filtre 8041, ..., 804n, on retrouve en sorties 802IN1, ..., 802INn les n parties du signal correspondant respectivement aux n pics résonants ou bandes passantes des n filtres 8041, ..., 804n.
  • Il est possible également de généraliser la topologie de l'ensemble filtrant 800 en considérant que des ensembles filtrants à dispositifs de filtrage couplés en série, par exemple les ensembles filtrants 500, 600, 700, peuvent eux aussi constituer tout ou partie des filtres 8041, ..., 804n couplés en parallèle.
  • Inversement, un ensemble filtrant peut être conçu en couplant en série des ensembles filtrants de dispositifs de filtrages couplés en parallèle.
  • Il apparaît clairement qu'un dispositif de filtrage ou ensemble filtrant tel que l'un de ceux décrits précédemment permet de fournir un filtre performant pour un encombrement minimal, grâce à une structure de métamatériau obtenue en rapprochant une pluralité de résonateurs de telle sorte que les distances entre résonateurs voisins soient toujours inférieures au quart, voire même avantageusement au dixième, de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs.
  • On notera par ailleurs que l'invention n'est pas limitée aux modes de réalisation décrits précédemment.
  • En particulier, en ce qui concerne les ensembles filtrants présentés en références aux figures 9, 11 et 13, il convient de noter qu'il est possible d'augmenter le nombre de dispositifs de filtrage couplés en série en fonction des besoins.
  • Plus généralement toutes les topologies de dispositifs de filtrage couplés sont envisageables, notamment les topologies en cascades, étoiles ou autres.
  • Il apparaîtra à l'homme de l'art que diverses modifications peuvent être apportées aux modes de réalisation décrits ci-dessus, à la lumière de l'enseignement qui vient de lui être divulgué. Dans les revendications qui suivent, les termes utilisés ne doivent pas être interprétés comme limitant les revendications aux modes de réalisation exposés dans la présente description, mais doivent être interprétés pour y inclure tous les équivalents que les revendications visent à couvrir du fait de leur formulation et dont la prévision est à la portée de l'homme de l'art en appliquant ses connaissances générales à la mise en oeuvre de l'enseignement qui vient de lui être divulgué.

Claims (10)

  1. Dispositif de filtrage (100 ; 200 ; 300 ; 400 ; 450) à structure de bandes électriquement conductrices, comportant :
    - une ligne de transmission (102 ; 202 ; 302 ; 402 ; 452) formée par une bande électriquement conductrice imprimée sur une face d'un substrat (104 ; 204 ; 304 ; 404 ; 454) électriquement isolant, cette bande conductrice présentant deux extrémités (102IN, 102OUT ; 202IN, 202OUT ; 302IN, 302OUT ; 402IN, 402OUT ; 452IN, 452OUT) formant respectivement les deux seuls ports de connexion d'entrée et sortie du dispositif de filtrage (100 ; 200 ; 300 ; 400 ; 450),
    - une pluralité de résonateurs (1061, ..., 106M ; 2061, ..., 206M ; 3061, ..., 306M ; 4061, ..., 406M ; 4561, ..., 456M), chaque résonateur comportant une bande électriquement conductrice imprimée sur ladite face du substrat (104 ; 204 ; 304 ; 404 ; 454),
    - la bande conductrice de chaque résonateur (1061, ..., 106M ; 2061, ..., 206M ; 3061, ..., 306M ; 4061, ..., 406M ; 4561, ..., 456M) présente une première extrémité (1081, ..., 108M ; 2081, ..., 208M ; 3081, ..., 308M ; 4081, ..., 408M ; 4581, ..., 458M) couplée à la ligne de transmission entre les deux ports de connexion et au moins une deuxième extrémité (1101, ..., 110M ; 2101, ..., 210M ; 3101, ..., 310M ; 4101, ..., 410M ; 4601, ..., 460M) libre ou raccordée à une masse de manière à engendrer une longueur d'onde de résonance fondamentale effective propre à chaque résonateur sur ladite face du substrat, le dispositif de filtrage étant caractérisé en ce que
    - pour chaque paire de résonateurs voisins de la pluralité de résonateurs, la distance (e1, ..., eM-1) entre les premières extrémités des deux résonateurs voisins de cette paire est inférieure au dixième de la plus petite longueur d'onde de résonance fondamentale effective de la pluralité de résonateurs (1061, ..., 106M ; 2061, ..., 206M ; 3061, ..., 306M ; 4061, ..., 406M ; 4561, ..., 456M) sur ladite face du substrat.
  2. Dispositif de filtrage (100 ; 200 ; 300 ; 400) à structure de bandes électriquement conductrices selon la revendication 1, dans lequel les bandes conductrices formant la ligne de transmission (102 ; 202 ; 302 ; 402) et les résonateurs (1061, ..., 106M ; 2061, ..., 206M ; 3061, ..., 306M ; 4061, ..., 406M) sont rectilignes, les résonateurs étant par ailleurs parallèles entre eux de manière à former un peigne de résonateurs.
  3. Dispositif de filtrage (100 ; 200 ; 300 ; 400) à structure de bandes électriquement conductrices selon la revendication 2, dans lequel les résonateurs (1061, ..., 106M ; 2061, ..., 206M ; 3061, ..., 306M ; 4061, ..., 406M) sont perpendiculaires à la ligne de transmission (102 ; 202 ; 302 ; 402).
  4. Dispositif de filtrage (200 ; 300 ; 450) à structure de bandes électriquement conductrices selon l'une quelconque des revendications 1 à 3, dans lequel les résonateurs (2061, ..., 206M ; 3061, ..., 306M ; 4561, ..., 456M) sont tous d'une même longueur nominale (L), de manière à engendrer une même longueur d'onde de résonance fondamentale effective nominale, sauf au moins un résonateur court (206i ; 306i,1, ..., 306i,N ; 456i), chaque résonateur court étant entouré de deux résonateurs voisins de longueur nominale et étant de longueur inférieure à la longueur nominale de manière à engendrer au moins une cavité résonante dans ladite pluralité de résonateurs (2061, ..., 206M ; 3061, ..., 306M ; 4561, ..., 456M).
  5. Dispositif de filtrage (200 ; 450) à structure de bandes électriquement conductrices selon la revendication 4, dans lequel les résonateurs (2061, ..., 206M ; 4561, ..., 456M) sont tous de longueur nominale (L) sauf un unique résonateur court (206i ; 456i) de manière à engendrer une unique cavité résonante dans ladite pluralité de résonateurs (2061, ..., 206M ; 4561, ..., 456M).
  6. Dispositif de filtrage (300) à structure de bandes électriquement conductrices selon la revendication 4, dans lequel les résonateurs (3061, ..., 306M) sont tous de longueur nominale (L) sauf N résonateurs courts (306i,1, ..., 306i,N), avec N≥2, disposés selon un motif périodique de manière à engendrer N cavités résonantes périodiquement réparties dans ladite pluralité de résonateurs (3061, ..., 306M).
  7. Dispositif de filtrage (400) à structure de bandes électriquement conductrices selon l'une quelconque des revendications 1 à 6, dans lequel au moins un résonateur (406i) est pourvu d'un composant électronique (412) de réglage de sa fréquence électrique équivalente de résonance fondamentale.
  8. Dispositif de filtrage (400) à structure de bandes électriquement conductrices selon la revendication 7, dans lequel le composant électronique de réglage (412) comporte l'un des éléments de l'ensemble constitué d'une diode PIN, d'une diode varicap, d'une varistance et d'un transistor.
  9. Ensemble filtrant (500 ; 600 ; 700 ; 800) à au moins un port de connexion d'entrée (502IN ; 602IN ; 702IN ; 802IN1, ..., 802INn) et au moins un port de connexion de sortie (502OUT ; 602OUT ; 702OUT ; 802OUT), comportant une pluralité de dispositifs de filtrage (504, 506 ; 604, 606 ; 704, 706 ; 8041, ..., 804n) selon l'une quelconque des revendications 1 à 8, dans lequel :
    - les bandes électriquement conductrices formant les lignes de transmission et les résonateurs des dispositifs de filtrage (504, 506 ; 604, 606 ; 704, 706 ; 8041, ..., 804n) sont imprimées sur une même face d'un même substrat,
    - les dispositifs de filtrage (504, 506 ; 604, 606 ; 704, 706 ; 8041, ..., 804n) sont couplés entre eux en série et/ou en parallèle.
  10. Ensemble filtrant (500 ; 600 ; 700) selon la revendication 9, comportant un seul port de connexion d'entrée (502IN ; 602IN ; 702IN) et un seul port de connexion de sortie (502OUT ; 602OUT ; 702OUT), dans lequel les dispositifs de filtrage (504, 506 ; 604, 606 ; 704, 706) sont couplés entre eux en série de sorte que le port de connexion d'entrée du premier dispositif de filtrage (504 ; 604 ; 704) de la série forme le port de connexion d'entrée (502IN ; 602IN ; 702IN) de l'ensemble filtrant (500 ; 600 ; 700) et le port de connexion de sortie du dernier dispositif de filtrage (506 ; 606 ; 706) de la série forme le port de connexion de sortie (502OUT ; 602OUT ; 702OUT) de l'ensemble filtrant (500 ; 600 ; 700).
EP15807957.4A 2014-11-27 2015-11-26 Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices Active EP3224897B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461555A FR3029368B1 (fr) 2014-11-27 2014-11-27 Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices
PCT/FR2015/053224 WO2016083747A1 (fr) 2014-11-27 2015-11-26 Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices

Publications (2)

Publication Number Publication Date
EP3224897A1 EP3224897A1 (fr) 2017-10-04
EP3224897B1 true EP3224897B1 (fr) 2019-08-14

Family

ID=52824330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15807957.4A Active EP3224897B1 (fr) 2014-11-27 2015-11-26 Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices

Country Status (4)

Country Link
US (1) US10476121B2 (fr)
EP (1) EP3224897B1 (fr)
FR (1) FR3029368B1 (fr)
WO (1) WO2016083747A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116024B2 (en) * 2016-05-11 2018-10-30 King Abdulaziz City For Science And Technology Microstrip notch filter with two-pronged fork-shaped embedded resonator
CN107895832A (zh) * 2017-12-18 2018-04-10 江苏贝孚德通讯科技股份有限公司 容***叉耦合结构及通讯前端设备部件
CN112564670B (zh) * 2020-11-20 2023-11-21 核工业二〇八大队 一种音频大地电磁数据工频噪声干扰的滤波方法
CN115332774B (zh) * 2022-10-13 2023-01-24 深圳市鑫龙通信技术有限公司 一种基于超材料的低频双极化滤波辐射单元及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2220929B1 (fr) * 1973-02-20 1976-06-11 Minet Roger
AU470870B2 (en) * 1973-10-29 1976-04-01 Matsushita Electric Industrial Co., Ltd. Filters employing elements with distributed constants
JPH11186819A (ja) * 1997-12-22 1999-07-09 Murata Mfg Co Ltd 帯域阻止フィルタ及びデュプレクサ
US6504448B1 (en) * 2000-08-08 2003-01-07 Rambus Inc. Apparatus and method for transmission line impedance tuning using periodic capacitive stubs
US8314667B2 (en) * 2008-12-09 2012-11-20 Electronics And Telecommunications Research Institute Coupled line filter and arraying method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3029368B1 (fr) 2018-04-06
US20170263993A1 (en) 2017-09-14
FR3029368A1 (fr) 2016-06-03
WO2016083747A1 (fr) 2016-06-02
US10476121B2 (en) 2019-11-12
EP3224897A1 (fr) 2017-10-04

Similar Documents

Publication Publication Date Title
EP0285503B1 (fr) Filtre comportant des éléments à constantes réparties associant deux types de couplage
EP3224897B1 (fr) Dispositif de filtrage et ensemble filtrant a structure de bandes electriquement conductrices
EP2184801B1 (fr) Dispositif de filtrage différentiel à résonateurs couplés coplanaires et antenne filtrante munie d'un tel dispositif
EP2184803B1 (fr) Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
EP2808946A1 (fr) Dispositif de perturbation d'une propagation d'ondes électromagnétiques et son procédé de fabrication
FR2922696A1 (fr) Resonateur a ondes de lamb
FR2977382A1 (fr) Filtre stop bande a rejection elevee et duplexeur utilisant de tels filtres
EP0014115A2 (fr) Oscillateur accordable hyperfréquence à ondes magnétostatiques
FR2601824A1 (fr) Filtre d'onde elastique de surface
EP2178152A1 (fr) Dispositif de commutation électronique pour signaux a haute fréquence
FR2821997A1 (fr) Filtre a ondes acoustiques de surface
CA2460820C (fr) Antenne a large bande ou multi-bandes
EP3417507B1 (fr) Plaque de reflexion electromagnetique a structure de metamateriau et dispositif miniature d'antenne comportant une telle plaque
EP1550182B1 (fr) Antennes du type fente utilisant une structure a bandes interdites photoniques
EP2385625A1 (fr) Combineur comprenant des transducteurs acoustiques
FR2696045A1 (fr) Structure de filtre diélectrique possédant des résonateurs à section droite trapézoïdale.
FR3028355A1 (fr) Dispositif antenne compacte reconfigurable
EP3485534B1 (fr) Surface sélective en fréquence commandable et multifonctionnelle
EP3903417B1 (fr) Dispositif à onde acoustique de surface amélioré
EP1972882B1 (fr) Fenêtre électromagnétique.
EP3811457A2 (fr) Système hyperfréquence accordable
WO2007099063A1 (fr) Filtre passe bande hyperfrequences
WO2005050773A1 (fr) Procede de realisation d'une structure a bandes interdites photoniques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/12 20060101ALI20190228BHEP

Ipc: H01P 7/08 20060101ALI20190228BHEP

Ipc: H01P 5/02 20060101ALI20190228BHEP

Ipc: H01P 1/203 20060101AFI20190228BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1168106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015035951

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: AVANTIX

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015035951

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), PARIS, FR; TIME REVERSAL COMMUNICATIONS, CERGY-PONTOISE, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015035951

Country of ref document: DE

Owner name: AVANTIX, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), PARIS, FR; TIME REVERSAL COMMUNICATIONS, CERGY-PONTOISE, FR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1168106

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015035951

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151126

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 9

Ref country code: DE

Payment date: 20231120

Year of fee payment: 9