EP3182794A1 - Heating device with a carrier and method of making it - Google Patents

Heating device with a carrier and method of making it Download PDF

Info

Publication number
EP3182794A1
EP3182794A1 EP16203541.4A EP16203541A EP3182794A1 EP 3182794 A1 EP3182794 A1 EP 3182794A1 EP 16203541 A EP16203541 A EP 16203541A EP 3182794 A1 EP3182794 A1 EP 3182794A1
Authority
EP
European Patent Office
Prior art keywords
heating
heating conductor
conductor
terminal
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16203541.4A
Other languages
German (de)
French (fr)
Other versions
EP3182794B1 (en
Inventor
Volker Block
Sebastian Eigl
Holger Köbrich
Matthias Mandl
Roland Mühlnikel
Bernd Robin
Manuel Schmieder
Alfred Suss
Michael Tafferner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Geratebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Geratebau GmbH filed Critical EGO Elektro Geratebau GmbH
Priority to PL16203541T priority Critical patent/PL3182794T3/en
Publication of EP3182794A1 publication Critical patent/EP3182794A1/en
Application granted granted Critical
Publication of EP3182794B1 publication Critical patent/EP3182794B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0244Heating of fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0288Applications for non specified applications
    • H05B1/0291Tubular elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/0288Applications for non specified applications
    • H05B1/0294Planar elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/005Heaters using a particular layout for the resistive material or resistive elements using multiple resistive elements or resistive zones isolated from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/035Electrical circuits used in resistive heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/037Heaters with zones of different power density
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the invention relates to a heating device with a carrier and with at least one arranged on the carrier planar electrical heating conductor and a method for producing such a heating device.
  • Such heaters are widely known, especially with so-called thick film heaters.
  • the invention has for its object to provide an aforementioned heating device and a method for their production, which can be solved with the problems of the prior art and it is in particular possible to suitably adjust a heater to certain uses and exactly predetermined installation or operating conditions.
  • the heating device has a carrier and at least one planar electrical heating conductor, which is arranged on this carrier, advantageously in layer structure or as a layer, in particular as thick film.
  • the heating conductor extends between a first electrical connection and a second electrical connection.
  • the at least one heating element comprises carbon-based material, for example, in a simple embodiment, graphite with a very high proportion.
  • a basic possible embodiment of the invention can be provided that extends in the course of a shortest path between the first terminal and the second terminal this shortest path through the heating element or through the Schuleitermaterial.
  • This shortest path is advantageously a straight line or a circular section, in particular an exact straight line or an exact circular section.
  • This shortest path passes through the heating conductor and in this shortest path no area interruption of the heating element is provided or no incision in the heating element.
  • the heating conductor preferably has a geometric basic shape as a rectangle, trapezoid or circle or circular ring section.
  • a substantially flat heating element can be created, with a plurality of such heating conductors, a flat carrier can be well occupied. Under certain circumstances, even a single such planar heating conductor may be enough to heat a single carrier in a planar manner so that a carrier has only one heating conductor.
  • a heat conductor thickness between the electrical connections varies at least partially and is therefore not the same everywhere or constant.
  • this Schuleiterdicke varies by a factor of 0.01 to 20, the largest Schuleiterdicke can therefore be 1% to 2000% above the lowest Schuleiterdicke.
  • this Schuleiterdicke is advantageously measured in a range where the heating element extends only over the carrier and, for example, not overlapped on one of the terminals for electrical contacting.
  • a heat conductor thickness can be about 20 ⁇ m to 70 ⁇ m, that is, a factor of 3 to 5 above the heat conductor thickness of a heating conductor material with noble metal.
  • the heating conductor may be rectangular in plan view or in a development.
  • the length of the heating conductor between the first terminal and the second terminal may correspond to 10% to 250% of the width of the heating conductor in the transverse direction to this length, advantageously 50% to 200%.
  • the heating conductor is thus less an elongated track, but a rather short track with a rather squat shape.
  • a carrier in particular a rectangular or approximately rectangular carrier, is covered with only a single rectangular heating conductor and is covered by this between 30% and 95%, preferably between 50% and 70%.
  • a reduction or increase in the heating conductor thickness may be provided in a central region.
  • an increased or reduced heating power can hereby be effected in regions in accordance with the change in the thickness of the heating conductor.
  • the extent of such a region with a reduction or increase in the Schuleiterdicke may be relatively small and, for example, 1% to 20% of a length and / or width of the heat conductor correspond. But it can also be bigger.
  • a reduction or increase in the thickness of the heating conductor can advantageously be uniform or strictly monotonically continuous. This means that stages or a step-like or sudden change in the thickness of the heating element should be avoided, advantageously at least in the case of a rectangular heating conductor. This then causes locally very different current densities and temperature distributions.
  • a surface of the carrier related different temperature distributions can, for example, in the heating of past the carrier flowing media such as water or the like. be desired. As a result, it is then possible to achieve an optimum temperature transition along the water flow on the carrier, so that the water flowing by is heated as well as possible.
  • the at least one heating conductor may be formed in the plan view or in a development as a circular ring section or as a whole circular ring.
  • he is not only bent somehow, but runs along a geometric circle.
  • Inner bending and outer bending are particularly advantageously formed as circular rings or run along circular rings. While for flat support both the aforementioned rectangular shape and here the circular ring portion shape are easily imaginable, this is for arched support, especially support tubes, be such that the Rectangular shape or the circular shape in the developed representation or settlement is given, ie in the unwound form of a support tube, which is then just in the consideration of a flat sheet-like piece.
  • a free and different or unevenly curved support can be provided, is applied to the material for the heating element with a suitable application method.
  • a heating conductor as a circular ring or circular ring portion
  • the first terminal and the second terminal have a substantially radial extent with respect to the circular shape of the heating conductor.
  • the at least one heating conductor between the terminals then runs just in the circumferential direction from one terminal to the other. This also applies to the current flow, which is advantageously substantially, particularly advantageous, also extending in the circumferential direction.
  • a width of the heat conductor in the course between the terminals remain the same.
  • a heat conductor thickness can remain essentially the same, at least along the circumferential direction, that is to say along the arc which the annular segment-shaped heating conductor travels, but it could also vary slightly by 1% to 20%.
  • the heating conductor thickness can also remain essentially the same or constant along a current flow between the terminals.
  • the heating conductor thickness can change advantageously, in particular increase from radially inward to radially outward.
  • the heating conductor thickness can increase substantially linearly from radially inward to radially outward.
  • a design of the Schwarzleiterdicke can here, as generally valid for the entire invention, on the one hand be such that the heating power generation is the same everywhere and thus the temperature distribution at the heating element or on the heater.
  • higher temperatures may be caused by higher heat outputs as well as lower temperatures.
  • the Schuleiterdicke can be changed accordingly, so either be reduced or increased.
  • the first terminal and the second terminal extend substantially in the circumferential direction, wherein a terminal extends inside and a terminal extends outside.
  • the connections are advantageously concentric with each other. A current flow between the two terminals then runs in the radial direction.
  • the heating conductor is designed such that a current runs exclusively in the radial direction from one connection to the other.
  • the connections and also the heating conductor can be fully encircling circular rings, but this is not mandatory.
  • the heating conductor thickness can change along a current flow or current path between the two terminals.
  • the Schuleiterdicke should therefore change in the radial direction, either monotonically increase or decrease monotonically. This change should advantageously take place in such a way that, in turn, the generated surface output or temperature is largely the same, in particular is the same everywhere.
  • the heating conductor thickness decreases from the inside to the outside, in order to bring about an approximately constant heating power and thus temperature generation.
  • a change in the thickness of the heating conductor can also take place in steps or in steps. This occurs, for example, in that the heat conductor is produced in a multi-stage layer structure on the support, so as to produce the different Schuleiterdicken. In this case, a layer of heat conductor material is applied to the preceding and where an increased Schuleiterdicke is desired, in some areas simply more layers are applied.
  • Various methods of application can be used for such a method according to the invention, for example printing, in particular screen printing, spraying, spraying, inkjet methods or spin coating. Combinations of these are generally possible. After each application of a layer, drying of the heating conductor material can take place, possibly even hardening or baking.
  • a change in the heating conductor thickness can be strictly monotone, so that there are no jumps or other abrupt changes in the thickness of the heating conductor. Such a change is advantageous evenly. As a result, locally distinctly different current flows and thus also temperature distributions can be avoided, as mentioned at the outset. For this purpose, it is possible that according to another inventive method partially heating conductor of a finished heating element is removed or removed. Thus, a different or modifiable Schuleiterdicke can be achieved.
  • Such an abrasive method may be abrading, scraping, sandblasting, or a laser process. Combinations of these are generally possible.
  • the material of the heating conductor can be applied in several layers by a method described above in a multi-stage layer structure. In areas of increased Edelleiterdicke then simply more layers are applied as in areas with reduced Schuleiterdicke.
  • By a described removal of Edelleiterermaterial locally different Schuleiterdicken can be achieved. For this purpose, especially for a large-scale process, especially just a grinding or blasting.
  • Such removal of Schuleiterermaterial can be distributed over all areas and be either partially different or evenly.
  • the aforementioned different Schuleiterdicken can not be achieved in the building process, but only in an erosive process.
  • a width of the heat conductor between the two electrical connections varies at least partially, advantageously by 5% to 20%.
  • This also makes it possible, in principle, to achieve a heating power distribution and thus a temperature distribution based on the heating conductor, but only in a very large scale or actually only in relation to the entire width of the heating conductor. In this respect, this measure of the variation of the heat conductor is less well suited for the above-mentioned, rather small-scale changes in Schuleiterdicke.
  • carbon-based heating conductor material Various materials can be used as the carbon-based heating conductor material, in particular carbon nanotubes, fullerenes, amorphous carbon or graphene in addition to the graphite mentioned at the outset. Further possible carbon-based materials for the heating conductor material are carbon fibers, glassy carbon, carbon black,
  • Aerographite and non-graphitic carbon are considered to be relatively promising.
  • the heating conductor material is free of noble metal or has no expensive precious metal.
  • a heat conductor can be made from this carbon-based Schubertmaterial at significantly lower temperatures than usual.
  • the Schuleitermaterial is applied for such a heat conductor, also from the prior art with precious metal in the form of a paste, which paste may be sometimes thicker and sometimes thinner depending on the application.
  • a sol-gel paste or a sol-gel system can be used, which contain the resistance material, so for example, the graphite, and are suitable for the respective application method.
  • a sheet resistance of the heating conductor material may be between 20 ⁇ / ⁇ to 400 ⁇ / ⁇ , preferably 30 ⁇ / ⁇ to 250 ⁇ / ⁇ .
  • Such heating conductor materials and sol-gel pastes or sol-gel systems are well known.
  • a sheet resistance of a heating conductor material containing noble metal is usually in the range of less than 1 ⁇ / ⁇ , so it is considerably lower.
  • the further advantage is that the temperatures for baking the Schuleitermaterials are much lower than for heating conductor material with precious metal.
  • heat conductor material with precious metal they are about 800 ° C, for the carbon-based Schuleitermaterial used here, it is about 400 ° C.
  • the thermal and ultimately also the mechanical load of the heating device is lower, in particular of the carrier.
  • possibly simpler insulating layers can be used or other materials with lower requirements for temperature resistance.
  • the heating conductor can have a total of a negative temperature coefficient of its resistance, in particular because of a Graphite content. Then the electrical resistance decreases with the temperature and thus the power converted therein increases.
  • a heater 11 is shown with a flat and elongated rectangular support 12.
  • This carrier 12 could also be thought of as a development of a short tube with a round cross section, so that the left end and the right end would be closed and the inside of the tube as the inside of the Carrier 12 would be free.
  • a flat insulating layer 13 is applied on the carrier 12. This corresponds to a usual procedure.
  • connection device 15 in the form of a plug is mounted on the carrier 12. From this go from leads 16a and 16b, which open into ports 18. These are on the right a lower terminal 18a and an opposite terminal 18a ', this upper terminal 18a' merges directly into another upper terminal 18b. On the other hand, in the lower area there is a connection 18b ', which then just merges into the supply line 16b to the connection device 15.
  • Two heating conductors 20a and 20b are provided, which are applied in overlapping manner to the terminals 18, as is known for Schichtußleiter or Dick harshneckleiter. Both heating conductors 20a and 20b are of the same size and substantially the same or identical in design. As you can see, their width is about four times their length, so they are very short. The two heating conductors 20a and 20b are connected in series with each other. Their lateral distance is very small and is a few mm.
  • the heating conductors 20 are formed from the heating conductor material according to the invention which is carbon-based or which contains at least 50%, possibly even 80% to 90%, of carbon in the operational state.
  • this can be graphite be, alternatively or additionally, graphene or carbon nanotubes.
  • a possible negative temperature coefficient of the electrical resistance of the carbon-based material, in particular of graphite can be used as explained above, in order to provide in potentially cooler areas that the resistance decreases with the temperature or a higher power is converted. At the same time then measures are necessary to avoid excessive heating.
  • discrete temperature sensors or a surface temperature monitoring are advantageously used, which are sufficiently known from the prior art, but are not shown here.
  • a constant or uniform Wienleiterdicke is provided in the in the Fig. 1 illustrated embodiment of a heater 11, a constant or uniform Bankleiterdicke is provided. This may for example be 20 microns to 70 microns, so are still in a thick film area. The area can be just under 40 cm 2 , so that when connected to the terminals 18 voltage of 230 V, a power of about 2000 W is generated. This means a sheet resistance of 63 ⁇ / ⁇ and a surface load of just over 50 W / cm 2 . For possible application method for the Schuleitermaterial more will be executed below.
  • a further heating device 111 is shown, which also has a flat and planar support 112, which is here substantially square, but otherwise its structure is similar in many respects to that of FIG Fig. 1 .
  • an insulating layer 113 is applied together with a connection device 115 with leads 116a and 116b.
  • the leads 116a and 116b extend to terminals 118a and 118a 'and 118d and 118d'.
  • two parallel heating conductors 120a and 120a 'as well as 120d and 120d' are provided.
  • the terminal 118a is connected to a terminal 118b, and the terminal 118a'is connected to a terminal 118b '.
  • terminals 118b and 118b ' are heating conductors 120b and 120b'.
  • terminals 118b 'and 118d' are connected to terminals 118b 'and 118d' between which two heating conductors 120c and 120c' are located.
  • All heating conductors 120 are identical and substantially square.
  • the respective parallel and directly adjacent pairs of heating conductors 120 could also cover the thin gap separating them and thus be a single heating conductor. With this configuration, a series connection of two sets of four heating conductors is achieved, with each group of four connected in parallel. This can be recognized by the course of the connections 118.
  • the heating conductors 120 can those of Fig. 1 correspond.
  • the carrier 112 could also be a settlement of a curved or even a tubular support.
  • the Schuleitermaterial can also consist of a majority of graphite or have graphite here.
  • a heater 211 shown with a support 212 as a rectangular plate. This can be insulating here, so does not require an insulating layer.
  • Mounted on the carrier 212 are an upper terminal 218a and a lower terminal 218a ', which, as in general, are made of very good conductive material, particularly high metal content.
  • a planar heating element 220 is applied with a rectangular basic shape, which overlaps the terminals 218 a and 218 a 'for electrical contacting. Due to the smaller rectangular areas in the middle area should be indicated that here, as the side view of the Fig. 3B shows, the Schuleiterdicke increases to a central region.
  • the thickness differences from the thickness range D1 are considerably less than its thickness, for example, they are between 1% and 10%.
  • the presentation of the Fig. 3B is clearly exaggerated here for the sake of clarity.
  • the individual thickness ranges D need not correspond inwardly to the outer shape or the basic shape of the heating conductor 220, they can also be approximated inwards to an ellipse.
  • the design of the different thickness ranges or the Schuleiterdicke should be optimized for the particular application with the specific conditions of heat removal from the heating element 220 and the heater 211, advantageously in a medium.
  • the basic shape and also the heating conductor thickness itself can be optimized, in particular in peripheral areas or in central areas, by simulation or practical testing.
  • the different heating conductor thicknesses of the thickness ranges D1 to D4 Due to the different heating conductor thicknesses of the thickness ranges D1 to D4, different power densities and thus a temperature distribution which can be shaped as it were are possible. Due to the greater thickness in the central region of the heating element 220, the heating power is somewhat reduced, which is advantageous for a uniform temperature distribution, since usually in a central region of a flat heating element, the highest temperature prevails.
  • Fig. 3B is, as I said, exaggerated for the heater 211, the step-like course of Schuleiterdicke.
  • Such a course can be produced particularly well by applying the Schuleitermaterials in several layers.
  • a difference between two thickness ranges D can then be a layer thickness or the thickness of a single applied layer of heating conductor material. There are no reasons for a coarser gradation.
  • a further heating device 211 ' is shown with a carrier 212' together with a heating conductor 220 '.
  • this recognizably has a similar thickness as the heating device 211, only here there are no precisely distinguishable thickness ranges given with a stepped or graduated course. Rather, the thickness of the thinnest area on the left and on the right edge increases slowly, then slightly stronger, and then again with a weaker increase in thickness in the flat middle area to go over.
  • Such a course of the heating conductor thickness can be advantageous for a uniform current flow and a uniform power generation, but is obviously harder to produce.
  • a heater 211 shown with a carrier 212" and a heating conductor 220 ".
  • the course of the increase in thickness between the outer thin regions and The thick center area is linear, so to speak. Thus, although a kind of edge is provided at the transition to the central region, the negative impact is limited.
  • Such a so-called linear course of the heating conductor thickness can be achieved relatively easily by grinding with a flat grinding surface, as described in the following Fig. 3F is explained.
  • a sol-gel system 223 is applied to a carrier 212 by means of a spray nozzle 222 in order to form layers.
  • This sol-gel system contains the carbon-based heating conductor material, which is known per se from the prior art. It must be suitable for spraying.
  • several layers of heating conductor material or the sol-gel system 223 are applied successively, wherein either after each layer, a drying process takes place, for example, every third or fifth layer, or only at the very end.
  • a course of the heating conductor thickness accordingly Fig. 3C getting produced.
  • a screen printing process with a printing screen 225 is shown. This is placed on the support 212, as is customary in screen printing, then the Schuleitermaterial is applied as a sol-gel system or here as a possible sol-gel paste on the printing screen 225 and distributed with a doctor blade.
  • a screen printing process a course of the Schuleiterdicke corresponding Fig. 3B be produced, so rather be gradual. To achieve a desired Schuleiterdicke several layers must be applied anyway. Again, an interim drying can be provided.
  • the application process is followed by baking.
  • the finished heating conductor contains high-content carbon, for example at least 50% or even 80% to 90%.
  • Fig. 3F In the Fig. 3F is shown how a certain course of a Schuleiterdicke can be achieved by an erosive process. Shown dashed is a very thick heating element 220 on a support 212, virtually the same thickness as originally produced. Left in the Fig. 3F is simply ground off a portion of the Schuleitermaterials with a very simple illustrated rotating grinding wheel 227. Thus, the course of the heating conductor thickness accordingly Fig. 3D getting produced. Such a grinding process is considered to be very advantageous for such thickness distributions.
  • heating conductor material is also removed from an original layer thickness of the heating conductor 220, which is indicated by the dashed line.
  • a laser 229 is used whose laser beam 230 removes the heating conductor material as desired. Such laser methods are known and therefore need not be further explained here.
  • a grinding process as shown in the left Fig. 3F is advantageously carried out after a curing and finishing of the heating element 220. It is also unlikely that it will be ground very well before the paste or heat conductor material has cured.
  • an adjustment of the heating conductor in the electrical sense can also take place by means of such an ablation method, that is to say to an exact resistance value.
  • the heating element should be fully cured.
  • the heating function of the heating element can be obtained in this area, the temperature generated is only slightly changed under certain circumstances.
  • Fig. 4 is a further heating device 311 in plan view and in the Fig. 5 shown in a sectional oblique view.
  • a heating conductor 320 is applied as by a arc angle of about 340 ° rotating circular ring.
  • Two ports 318a and 318a ' are provided which are exactly radial. Starting from these terminals 318a and 318a ', the heating conductor 320 revolves with three different thickness ranges D1, D2 and D3.
  • the sectional view of Fig. 5 is to be seen, the gradual course, which is similar in principle to that of the FIGS. 3A and 3B , achieved in each case by different layer thicknesses or numbers of layers.
  • the manufacture of the heating device 311 or of the heating conductor 320 applies to the one previously described.
  • the considerably greater length of the radially outer region of the heating conductor 320 is compensated by its greater thickness of the heating conductor in this thickness range D3.
  • a total of about the same surface heating power is generated, as it were in the direction of rotation between the terminals 318a and 318a 'respectively the same surface resistance of the Schuleitermaterials is given in the combination of different lengths of the heat conductor with respective Schuleiterdicke.
  • a somewhat lower temperature is achieved here.
  • a slightly higher temperature can be achieved in the thickness range D1 or a slightly higher surface heating power can be generated. This can be adjusted by the heat conductor thickness in the thickness range D1.
  • the 6 and 7 is another heater 411 similar to that of the 4 and 5 illustrated with a round support 312 and two radially extending ports 418a and 418a '.
  • three heating conductors 420a, 420b and 420c In between are three heating conductors 420a, 420b and 420c. They are each separated by interruptions 432 from each other, as is clear from the sectional view.
  • the heating conductors 420a, 420b and 420c should be similar to the 4 and 5 again be divided into three thickness ranges D1, D2 and D3. In the Fig. 7 this is different than in the Fig. 5 , not shown, but should also be here.
  • the respective different long path of the current flow between the terminals 418a and 418a ' is compensated by adjusting the Schuleiterdicke here.
  • the same surface heating power can be achieved.
  • a further embodiment of a heater 511 is shown, which is also round or has a round support 512.
  • the inner connection 518a is like the oblique sectional view of the Fig. 9 shows, not only designed as a pure surface, but has a certain height extent. This is to serve to contact the heat conductor contacted thereby not only on its lower surface as a support on the support 512, but also, as it were, over its layer thickness away on the inner end face.
  • a heating conductor 520 is applied, which is similar to the 4 and 5 is divided into radially different thickness ranges, just just with exactly the reverse thickness distribution.
  • the heating conductor 520 is designed as a circular ring which is continuous in the circumferential direction and has a thickness range D1 on the outside, a thickness range D3 on the inside and a thickness range D2 in between.
  • the thickness of the heating conductor decreases from the inside to the outside, ie from the connection 518a to the connection 518a '. While in the embodiments of the Fig. 4 to 7 the current flow is in the direction of rotation, it runs in the embodiment of the 8 and 9 in the radial direction.
  • the distribution of the heating conductor thickness causes a total uniformly distributed over the surface of the heater 511 surface heating power.
  • the resistance is the lowest, but the current density is very high.
  • the electrical resistance is greater due to the low heating conductor thickness, but due to the much larger circumference, the current density is lower.
  • the stepwise course of the thickness ranges D1 to D3 shown here can of course also, as previously with reference to Fig. 3B to 3D explained, distributed or compensated.
  • the length of the current flow is less than in the case of the heating device 4 and 5 , so that at the same operating voltage and the same total heat, the Schuleiterdicken the thickness ranges D1 to D3 are already lower than there.
  • a heater 611 is a modification of the heater 511 from the 8 and 9 shown, in fact here eight interruptions 632 are provided, similar to the running in the circumferential direction interruptions 432 of Fig. 7 , These subdivide a heating conductor 620 by their radial course in eight circular ring sections. However, since the current flow is always exactly radially between the terminals 618a and 618a ', these interruptions 632 do not disturb the current flow. They only slightly reduce the total area of the heat conductor 620 and thus somewhat the total area that is directly heated.

Abstract

Eine Heizeinrichtung weist einen Träger und einen auf dem Träger angeordneten flächigen elektrischen Heizleiter auf, der zwischen einem ersten Anschluss und einem zweiten Anschluss verläuft, wobei der mindestens eine Heizleiter als Heizleitermaterial kohlenstoffbasiertes Material aufweist. Eine Heizleiterdicke zwischen den elektrischen Anschlüssen kann zumindest teilweise variieren und nicht konstant sein zur Anpassung einer örtlich vorliegenden Heizleistung. Zusätzlich kann der Heizleiter entweder rechteckig und kurz oder kreisringförmig sein.A heating device has a carrier and a planar electrical heating conductor arranged on the carrier, which extends between a first connection and a second connection, wherein the at least one heating conductor has carbon-based material as the heating conductor material. A heat conductor thickness between the electrical connections may at least partially vary and not be constant for adapting a local heating power. In addition, the heating element can be either rectangular and short or circular.

Description

Anwendungsgebiet und Stand der TechnikField of application and state of the art

Die Erfindung betrifft eine Heizeinrichtung mit einem Träger und mit mindestens einem auf dem Träger angeordneten flächigen elektrischen Heizleiter sowie ein Verfahren zur Herstellung einer solchen Heizeinrichtung.The invention relates to a heating device with a carrier and with at least one arranged on the carrier planar electrical heating conductor and a method for producing such a heating device.

Solche Heizeinrichtungen sind vielfach bekannt, insbesondere auch mit sogenannten Dickschicht-Heizleitern.Such heaters are widely known, especially with so-called thick film heaters.

Aufgabe und LösungTask and solution

Der Erfindung liegt die Aufgabe zugrunde, eine eingangs genannte Heizeinrichtung sowie ein Verfahren zu deren Herstellung zu schaffen, mit denen Probleme des Standes der Technik gelöst werden können und es insbesondere möglich ist, eine Heizeinrichtung zweckmäßig anzupassen an bestimmte Verwendungen und exakt vorgegebene Einbau- bzw. Betriebsverhältnisse.The invention has for its object to provide an aforementioned heating device and a method for their production, which can be solved with the problems of the prior art and it is in particular possible to suitably adjust a heater to certain uses and exactly predetermined installation or operating conditions.

Gelöst wird diese Aufgabe durch eine Heizeinrichtung mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 14 oder des Anspruchs 15. Vorteilhafte sowie bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der weiteren Ansprüche und werden im Folgenden näher erläutert. Dabei werden manche der Merkmale nur für die Heizeinrichtung oder nur für ein Verfahren zu ihrer Herstellung beschrieben. Sie sollen jedoch unabhängig davon sowohl für die Heizeinrichtung als auch für ein Herstellungsverfahren selbständig gelten können. Der Wortlaut der Ansprüche wird durch ausdrückliche Bezugnahme zum Inhalt der Beschreibung gemacht.This object is achieved by a heating device with the features of claim 1 and by a method having the features of claim 14 or claim 15. Advantageous and preferred embodiments of the invention are the subject of further claims and are explained in more detail below. In this case, some of the features are described only for the heater or only for a method for their preparation. However, they should be able to apply independently for both the heater as well as for a manufacturing process independently. The wording of the claims is incorporated herein by express reference.

Es ist vorgesehen, dass die Heizeinrichtung einen Träger und mindestens einen flächigen elektrischen Heizleiter aufweist, der auf diesem Träger angeordnet ist, vorteilhaft in Schichtaufbau bzw. als Schicht, insbesondere als Dickschicht. Der Heizleiter verläuft dabei zwischen einem ersten elektrischen Anschluss und einem zweiten elektrischen Anschluss. Als Heizleitermaterial weist der mindestens eine Heizleiter Kohlenstoff-basiertes Material auf, beispielsweise in einer einfachen Ausgestaltung Graphit mit einem sehr hohen Anteil.It is provided that the heating device has a carrier and at least one planar electrical heating conductor, which is arranged on this carrier, advantageously in layer structure or as a layer, in particular as thick film. The heating conductor extends between a first electrical connection and a second electrical connection. As a heat conductor material, the at least one heating element comprises carbon-based material, for example, in a simple embodiment, graphite with a very high proportion.

In einer grundsätzlichen möglichen Ausgestaltung der Erfindung kann vorgesehen sein, dass im Verlauf eines kürzesten Wegs zwischen dem ersten Anschluss und dem zweiten Anschluss dieser kürzeste Weg durch den Heizleiter bzw. durch das Heizleitermaterial verläuft. Vorteilhaft ist dieser kürzeste Weg eine Gerade oder ein Kreisabschnitt, insbesondere eine exakte Gerade oder ein exakter Kreisabschnitt. Dieser kürzeste Weg verläuft durch den Heizleiter und in diesem kürzesten Weg ist keine Flächenunterbrechung des Heizleiters vorgesehen bzw. kein Einschnitt in den Heizleiter. Bevorzugt weist der Heizleiter eine geometrische Grundform als Rechteck, Trapez oder Kreis bzw. Kreisringabschnitt auf.In a basic possible embodiment of the invention can be provided that extends in the course of a shortest path between the first terminal and the second terminal this shortest path through the heating element or through the Heizleitermaterial. This shortest path is advantageously a straight line or a circular section, in particular an exact straight line or an exact circular section. This shortest path passes through the heating conductor and in this shortest path no area interruption of the heating element is provided or no incision in the heating element. The heating conductor preferably has a geometric basic shape as a rectangle, trapezoid or circle or circular ring section.

Durch diese Definition kann erreicht werden, dass ein im Wesentlichen flächiger Heizleiter geschaffen werden kann, wobei mit mehreren solchen Heizleitern ein flächiger Träger gut belegt werden kann. Unter Umständen kann bereits ein einziger solcher flächiger Heizleiter reichen, um einen einzigen Träger flächig zu beheizen, so dass ein Träger nur einen einzigen Heizleiter aufweist.By this definition can be achieved that a substantially flat heating element can be created, with a plurality of such heating conductors, a flat carrier can be well occupied. Under certain circumstances, even a single such planar heating conductor may be enough to heat a single carrier in a planar manner so that a carrier has only one heating conductor.

Gemäß einem vorteilhaften Grundgedanken der Erfindung, welcher mit der vorgenannten grundsätzlichen Ausgestaltung kombiniert sein kann, aber auch unabhängig davon vorliegen kann, variiert eine Heizleiterdicke zwischen den elektrischen Anschlüssen zumindest teilweise und ist somit nicht überall gleich bzw. konstant. Vorteilhaft variiert diese Heizleiterdicke um einen Faktor von 0,01 bis 20, die größte Heizleiterdicke kann also um 1% bis 2000% über der geringsten Heizleiterdicke liegen. Dabei wird diese Heizleiterdicke vorteilhaft in einem Bereich gemessen, wo der Heizleiter nur über dem Träger verläuft und beispielsweise nicht auf einen der Anschlüsse überlappt zur elektrischen Kontaktierung. Absolut gesehen kann eine Heizleiterdicke etwa 20 µm bis 70 µm betragen, also um den Faktor 3 bis 5 über der Heizleiterdicke eines Heizleitermaterials mit Edelmetall liegen.According to an advantageous basic idea of the invention, which may be combined with the aforementioned basic configuration, but may also be present independently thereof, a heat conductor thickness between the electrical connections varies at least partially and is therefore not the same everywhere or constant. Advantageously, this Heizleiterdicke varies by a factor of 0.01 to 20, the largest Heizleiterdicke can therefore be 1% to 2000% above the lowest Heizleiterdicke. In this case, this Heizleiterdicke is advantageously measured in a range where the heating element extends only over the carrier and, for example, not overlapped on one of the terminals for electrical contacting. In absolute terms, a heat conductor thickness can be about 20 μm to 70 μm, that is, a factor of 3 to 5 above the heat conductor thickness of a heating conductor material with noble metal.

In einer ersten Ausgestaltung der Erfindung kann der Heizleiter in der Draufsicht oder in einer Abwicklung rechteckig ausgebildet sein. Insbesondere kann die Länge des Heizleiters zwischen dem ersten Anschluss und dem zweiten Anschluss 10% bis 250% der Breite des Heizleiters in Querrichtung zu dieser Länge entsprechen, vorteilhaft 50% bis 200%. Der Heizleiter ist also weniger eine langgestreckte Bahn, sondern eine eher kurze Bahn mit einer eher gedrungenen Form. Somit ist es möglich, dass ein Träger, insbesondere auch ein rechteckiger oder angenähert rechteckiger Träger, mit nur einem einzigen rechteckigen Heizleiter belegt ist und von diesem zwischen 30% und 95%, vorzugsweise zwischen 50% und 70%, bedeckt ist.In a first embodiment of the invention, the heating conductor may be rectangular in plan view or in a development. In particular, the length of the heating conductor between the first terminal and the second terminal may correspond to 10% to 250% of the width of the heating conductor in the transverse direction to this length, advantageously 50% to 200%. The heating conductor is thus less an elongated track, but a rather short track with a rather squat shape. Thus, it is possible that a carrier, in particular a rectangular or approximately rectangular carrier, is covered with only a single rectangular heating conductor and is covered by this between 30% and 95%, preferably between 50% and 70%.

Bei der Erfindung kann bei einem solchen rechteckigen Heizleiter eine Verringerung oder eine Erhöhung der Heizleiterdicke in einem Mittelbereich vorgesehen sein. Dadurch kann hier bereichsweise eine erhöhte oder verringerte Heizleistung bewirkt werden entsprechend der Änderung der Heizleiterdicke. Somit ist es eben in Anpassung an die eingangs genannte gewünschte Funktion einer örtlichen Anpassung der Heizleistung möglich, dies auch bei einem flächigen Heizleiter bzw. in einer vollständig von einem Heizleiter überdeckten Fläche zu erreichen. Die Ausdehnung eines solchen Bereichs mit einer Verringerung oder einer Erhöhung der Heizleiterdicke kann relativ gering sein und beispielsweise 1% bis 20% einer Länge und/oder Breite des Heizleiters entsprechen. Sie kann aber auch noch größer sein. Des Weiteren ist es möglich, mehrere solcher Bereiche mit veränderter Heizleiterdicke vorzusehen, und zwar verteilt bzw. getrennt voneinander.In the invention, in such a rectangular heating conductor, a reduction or increase in the heating conductor thickness may be provided in a central region. As a result, an increased or reduced heating power can hereby be effected in regions in accordance with the change in the thickness of the heating conductor. Thus, it is just in adaptation to the aforementioned desired function of a local adaptation of the heating power possible to achieve this even with a flat heating element or in a completely covered by a heating element surface. The extent of such a region with a reduction or increase in the Heizleiterdicke may be relatively small and, for example, 1% to 20% of a length and / or width of the heat conductor correspond. But it can also be bigger. Furthermore, it is possible to provide a plurality of such areas with changed Heizleiterdicke, namely distributed or separated from each other.

Des Weiteren ist es möglich, einen Bereich mit einer veränderten Heizleiterdicke nahe einem Rand oder direkt an einem Rand des Heizleiters vorzusehen. So können auch hier unterschiedliche Flächenheizleistungen bzw. im Ergebnis unterschiedliche Temperaturen bewirkt werden.Furthermore, it is possible to provide an area with a changed Heizleiterdicke near an edge or directly to an edge of the heating element. Thus, different surface heating powers or, as a result, different temperatures can also be effected here.

Eine Verringerung oder eine Erhöhung der Heizleiterdicke kann ganz allgemein vorteilhaft gleichmäßig bzw. streng monoton stetig sein. Dies bedeutet, dass Stufen bzw. eine stufenartige oder sprungartige Veränderung der Heizleiterdicke vermieden werden sollten, vorteilhaft zumindest bei einem rechteckigen Heizleiter. Dies bewirkt dann nämlich lokal stark unterschiedliche Stromdichten und Temperaturverteilungen.In general, a reduction or increase in the thickness of the heating conductor can advantageously be uniform or strictly monotonically continuous. This means that stages or a step-like or sudden change in the thickness of the heating element should be avoided, advantageously at least in the case of a rectangular heating conductor. This then causes locally very different current densities and temperature distributions.

Auf eine Fläche des Trägers bezogene unterschiedliche Temperaturverteilungen können beispielsweise bei der Erwärmung von an dem Träger vorbeiströmenden Medien wie Wasser odgl. erwünscht sein. Dadurch kann dann eben ein optimaler Temperaturübergang entlang der Wasserströmung an dem Träger erreicht werden, so dass das vorbeiströmende Wasser möglichst gut erwärmt wird.On a surface of the carrier related different temperature distributions can, for example, in the heating of past the carrier flowing media such as water or the like. be desired. As a result, it is then possible to achieve an optimum temperature transition along the water flow on the carrier, so that the water flowing by is heated as well as possible.

In einer zweiten Ausgestaltung der Erfindung kann der mindestens eine Heizleiter in der Draufsicht oder in einer Abwicklung als Kreisringabschnitt oder als ganzer Kreisring ausgebildet sein. Vorteilhaft ist er dabei nicht nur irgendwie gebogen, sondern verläuft entlang eines geometrischen Kreises. Besonders vorteilhaft sind Innenbiegung und Außenbiegung dabei als Kreisringe ausgebildet bzw. verlaufen entlang von Kreisringen. Während für flache Träger sowohl die vorgenannte rechteckige Form als auch hier die Kreisringabschnittform leicht vorstellbar sind, soll dies für gewölbte Träger, insbesondere auch Trägerrohre, so sein, dass die Rechteckform oder die Kreisform in der abgewickelten Darstellung oder Abwicklung gegeben ist, also in der abgewickelten Form eines Trägerrohrs, welches dann eben in der Betrachtung ein flaches flächiges Stück ist. In weiterer Ausbildung der Erfindung kann auch ein frei und unterschiedlich bzw. ungleichmäßig gewölbter Träger vorgesehen sein, auf den mit einem geeigneten Auftragverfahren das Material für den Heizleiter aufgebracht wird.In a second embodiment of the invention, the at least one heating conductor may be formed in the plan view or in a development as a circular ring section or as a whole circular ring. Advantageously, he is not only bent somehow, but runs along a geometric circle. Inner bending and outer bending are particularly advantageously formed as circular rings or run along circular rings. While for flat support both the aforementioned rectangular shape and here the circular ring portion shape are easily imaginable, this is for arched support, especially support tubes, be such that the Rectangular shape or the circular shape in the developed representation or settlement is given, ie in the unwound form of a support tube, which is then just in the consideration of a flat sheet-like piece. In a further embodiment of the invention, a free and different or unevenly curved support can be provided, is applied to the material for the heating element with a suitable application method.

Bei einem Heizleiter als Kreisring oder Kreisringabschnitt kann in einer ersten Ausgestaltung vorgesehen sein, dass der erste Anschluss und der zweite Anschluss im Wesentlichen radiale Erstreckung aufweisen in Bezug auf die Kreisform des Heizleiters. Der mindestens eine Heizleiter zwischen den Anschlüssen verläuft dann eben in Umfangsrichtung vom einen Anschluss zum anderen. Dies gilt auch für den Stromfluss, der vorteilhaft im Wesentlichen, besonders vorteilhaft genau, auch in Umfangsrichtung verläuft. Dabei kann eine Breite des Heizleiters im Verlauf zwischen den Anschlüssen gleich bleiben. Eine Heizleiterdicke kann zumindest entlang der Umfangsrichtung, also entlang des Bogens, den der kreisringabschnittförmige Heizleiter zurücklegt, im Wesentlichen auch gleich bleiben, sie könnte aber auch leicht variieren um 1% bis 20%. Entsprechend vorteilhaft kann die Heizleiterdicke auch entlang eines Stromflusses zwischen den Anschlüssen im Wesentlichen gleich bleiben oder konstant sein. In einer radialen Richtung kann die Heizleiterdicke sich vorteilhaft verändern, insbesondere von radial innen nach radial außen zunehmen. Dabei kann die Heizleiterdicke im Wesentlichen linear zunehmen von radial innen nach radial außen.In the case of a heating conductor as a circular ring or circular ring portion, it may be provided in a first embodiment that the first terminal and the second terminal have a substantially radial extent with respect to the circular shape of the heating conductor. The at least one heating conductor between the terminals then runs just in the circumferential direction from one terminal to the other. This also applies to the current flow, which is advantageously substantially, particularly advantageous, also extending in the circumferential direction. In this case, a width of the heat conductor in the course between the terminals remain the same. A heat conductor thickness can remain essentially the same, at least along the circumferential direction, that is to say along the arc which the annular segment-shaped heating conductor travels, but it could also vary slightly by 1% to 20%. Correspondingly advantageously, the heating conductor thickness can also remain essentially the same or constant along a current flow between the terminals. In a radial direction, the heating conductor thickness can change advantageously, in particular increase from radially inward to radially outward. In this case, the heating conductor thickness can increase substantially linearly from radially inward to radially outward.

Eine Ausbildung der Heizleiterdicke kann hier, wie allgemein für die gesamte Erfindung geltend, einerseits so sein, dass die Heizleistungserzeugung überall gleich ist und somit auch die Temperaturverteilung am Heizleiter bzw. an der Heizeinrichtung. Alternativ können in einem inneren Bereich bzw. Mittelbereich oder in einem äußeren Bereich bzw. Randbereich höhere Temperaturen durch höhere Heizleistungen bewirkt werden ebenso wie niedrigere Temperaturen. Dazu kann die Heizleiterdicke entsprechend verändert werden, also entweder verringert werden oder erhöht werden.A design of the Heizleiterdicke can here, as generally valid for the entire invention, on the one hand be such that the heating power generation is the same everywhere and thus the temperature distribution at the heating element or on the heater. Alternatively, in an inner region or middle region or in an outer region or edge region, higher temperatures may be caused by higher heat outputs as well as lower temperatures. For this purpose, the Heizleiterdicke can be changed accordingly, so either be reduced or increased.

In einer zweiten Ausgestaltung der Erfindung ist es möglich, dass der erste Anschluss und der zweite Anschluss im Wesentlichen in Umfangsrichtung verlaufen, wobei ein Anschluss innen verläuft und ein Anschluss außen verläuft. Dabei sind die Anschlüsse vorteilhaft konzentrisch zueinander. Ein Stromfluss zwischen den beiden Anschlüssen verläuft dann in radialer Richtung. Vorteilhaft ist der Heizleiter so ausgebildet, dass ein Strom ausschließlich in radialer Richtung vom einen Anschluss zum anderen verläuft. Die Anschlüsse und auch der Heizleiter können voll umlaufende Kreisringe sein, was jedoch nicht zwingend ist.In a second embodiment of the invention, it is possible that the first terminal and the second terminal extend substantially in the circumferential direction, wherein a terminal extends inside and a terminal extends outside. The connections are advantageously concentric with each other. A current flow between the two terminals then runs in the radial direction. Advantageously, the heating conductor is designed such that a current runs exclusively in the radial direction from one connection to the other. The connections and also the heating conductor can be fully encircling circular rings, but this is not mandatory.

Bei dieser Ausgestaltung der Erfindung kann sich die Heizleiterdicke entlang eines Stromflusses bzw. Strompfads zwischen den beiden Anschlüssen ändern. Die Heizleiterdicke sollte sich also in radialer Richtung verändern, entweder monoton zunehmen oder monoton abnehmen. Diese Änderung sollte vorteilhaft so erfolgen, dass wiederum die erzeugte Flächenleistung bzw. Temperatur weitgehend gleich ist, insbesondere überall gleich ist. Besonders vorteilhaft nimmt die Heizleiterdicke von innen nach außen ab, um eine in etwa gleichbleibende Heizleistung und somit Temperaturerzeugung zu bewirken.In this embodiment of the invention, the heating conductor thickness can change along a current flow or current path between the two terminals. The Heizleiterdicke should therefore change in the radial direction, either monotonically increase or decrease monotonically. This change should advantageously take place in such a way that, in turn, the generated surface output or temperature is largely the same, in particular is the same everywhere. Particularly advantageously, the heating conductor thickness decreases from the inside to the outside, in order to bring about an approximately constant heating power and thus temperature generation.

Grundsätzlich gilt allgemein, dass eine Veränderung der Heizleiterdicke auch in Sprüngen bzw. in Stufen erfolgen kann. Dies kommt beispielsweise dadurch, dass der Heizleiter in einem mehrstufigen Schichtaufbau auf dem Träger hergestellt wird, um so die unterschiedlichen Heizleiterdicken zu erzeugen. Dabei wird eine Schicht von Heizleitermaterial auf die vorhergehende aufgebracht und dort, wo eine erhöhte Heizleiterdicke gewünscht ist, werden bereichsweise einfach mehr Schichten aufgebracht. Für ein solches erfindungsgemäßes Verfahren können verschiedene Auftragverfahren angewendet werden, beispielsweise Drucken, insbesondere Siebdruck, Sprühen, Spritzen, Inkjet-Verfahren oder Aufschleudern. Auch Kombinationen davon sind allgemein möglich. Nach jedem Auftragen einer Schicht kann ein Trocknen des Heizleitermaterials erfolgen, evtl. sogar ein Aushärten bzw. Einbrennen. Wegen des dadurch entstehenden hohen Aufwands wird üblicherweise nur ein Trocknungsvorgang vorgenommen. Ein Einbrennen odgl. zur Fertigstellung erfolgt nur einmal ganz am Ende nach Fertigstellung des Heizleiters. Dabei ist es grundsätzlich möglich, dass die Schichten jeweils unterschiedlich dick sind, wobei sie vorteilhaft jeweils gleich dick sind.In general, it is generally true that a change in the thickness of the heating conductor can also take place in steps or in steps. This occurs, for example, in that the heat conductor is produced in a multi-stage layer structure on the support, so as to produce the different Heizleiterdicken. In this case, a layer of heat conductor material is applied to the preceding and where an increased Heizleiterdicke is desired, in some areas simply more layers are applied. Various methods of application can be used for such a method according to the invention, for example printing, in particular screen printing, spraying, spraying, inkjet methods or spin coating. Combinations of these are generally possible. After each application of a layer, drying of the heating conductor material can take place, possibly even hardening or baking. Because of the resulting high cost usually only one drying process is carried out. A stoving or the like. to complete it takes place only once at the very end after completion of the heating element. It is basically possible that the layers are each different in thickness, and they are advantageously the same thickness.

Durch das beschriebene Auftragen der einzelnen Schichten des Heizleiters durch ein flächen mäßiges Auftragverfahren ist es, vor allem bei Verfahren wie Drucken oder Siebdruck und Inkjet-Verfahren kaum zu vermeiden, dass die Heizleiterdicke eben sprunghaft bzw. in Stufen ansteigt. Bei Verfahren wie Sprühen, Spritzen oder Aufschleudern ist eine gleichmäßige Zunahme der Heizleiterdicke noch eher möglich.The described application of the individual layers of the heating element by a flat application method, it is difficult to avoid, especially in processes such as printing or screen printing and inkjet process that the Heizleiterdicke just jumps or increases in stages. In processes such as spraying, spraying or spin coating, a uniform increase in the thickness of the heating element is even more likely.

In einer Ausbildung der Erfindung kann eine Veränderung der Heizleiterdicke streng monoton erfolgen, so dass weder Sprünge noch sonstige schlagartige Veränderungen der Heizleiterdicke vorliegen. Eine solche Veränderung ist eben vorteilhaft gleichmäßig. Dadurch können, wie eingangs genannt, lokal deutlich unterschiedliche Stromflüsse und somit auch Temperaturverteilungen vermieden werden. Hierzu ist es möglich, dass gemäß einem anderen erfindungsgemäßen Verfahren bereichsweise Heizleitermaterial eines fertigen Heizleiters entfernt bzw. abgetragen wird. So kann eine unterschiedliche bzw. beeinflussbare Heizleiterdicke erzielt werden.In one embodiment of the invention, a change in the heating conductor thickness can be strictly monotone, so that there are no jumps or other abrupt changes in the thickness of the heating conductor. Such a change is advantageous evenly. As a result, locally distinctly different current flows and thus also temperature distributions can be avoided, as mentioned at the outset. For this purpose, it is possible that according to another inventive method partially heating conductor of a finished heating element is removed or removed. Thus, a different or modifiable Heizleiterdicke can be achieved.

Ein solches abtragendes Verfahren kann ein Abschleifen, Abkratzen, Sandstrahlen bzw. Abstrahlen oder ein Laser-Verfahren bzw. Laserstrahlen sein. Auch Kombinationen davon sind allgemein möglich. Aufgebracht werden kann das Material des Heizleiters in mehreren Schichten durch ein vorbeschriebenes Verfahren in einem mehrstufigen Schichtaufbau. In Bereichen erhöhter Heizleiterdicke sind dann einfach mehr Schichten aufgetragen als in Bereichen mit verringerter Heizleiterdicke. Durch einen beschriebenen Abtrag von Heizleitermaterial können lokal unterschiedliche Heizleiterdicken erreicht werden. Hierfür eignet sich, insbesondere für ein großflächiges Verfahren, vor allem eben ein Abschleifen oder Abstrahlen. Ein solcher Abtrag von Heizleitermaterial kann auf alle Fälle flächig verteilt sein und entweder bereichsweise unterschiedlich sein oder aber gleichmäßig sein. So können beispielsweise die zuvor genannten unterschiedlichen Heizleiterdicken nicht im aufbauenden Verfahren erzielt werden, sondern nur in einem abtragenden Verfahren. Dies weist gegenüber einem auftragenden Verfahren möglicherweise den Vorteil auf, dass erheblich leichter vergleichmäßigte und sprung- oder stufenfreie Veränderungen der Heizleiterdicke erreicht werden können. Des Weiteren ist es mit einem erfindungsgemäßen Verfahren möglich, einen Abgleich des Heizleiters auf einen genauen Widerstandswert vorzunehmen, so dass er eine exakt definierte Leistung erzeugt. Durch ein solches Abtragen bzw. Entfernen des Heizleitermaterials kann viel besser als durch sonst gebräuchliche Einschnitte oder komplette Entfernung bestimmter Flächenbereiche ein viel geringerer Eingriff in die flächige Leistungserzeugung erfolgen.Such an abrasive method may be abrading, scraping, sandblasting, or a laser process. Combinations of these are generally possible. The material of the heating conductor can be applied in several layers by a method described above in a multi-stage layer structure. In areas of increased Heizleiterdicke then simply more layers are applied as in areas with reduced Heizleiterdicke. By a described removal of Heizleiterermaterial locally different Heizleiterdicken can be achieved. For this purpose, especially for a large-scale process, especially just a grinding or blasting. Such removal of Heizleiterermaterial can be distributed over all areas and be either partially different or evenly. Thus, for example, the aforementioned different Heizleiterdicken can not be achieved in the building process, but only in an erosive process. This may have the advantage over an applied method that much easier uniform and jump or step-free changes in Heizleiterdicke can be achieved. Furthermore, it is possible with a method according to the invention to make an adjustment of the heat conductor to an exact resistance value so that it generates a precisely defined power. By such removal or removal of the Heizleiterermaterials much better than by otherwise common cuts or complete removal of certain surface areas a much lesser engagement in the area power generation done.

In weiterer Ausgestaltung der Erfindung ist es möglich, dass eine Breite des Heizleiters zwischen den beiden elektrischen Anschlüssen zumindest teilweise variiert, vorteilhaft um 5% bis 20%. Auch dadurch kann im Prinzip eine Heizleistungsverteilung und somit Temperaturverteilung auf den Heizleiter bezogen erreicht werden, allerdings nur in sehr großflächigem Maßstab bzw. eigentlich nur auf die gesamte Breite des Heizleiters bezogen. Insofern ist diese Maßnahme der Variation des Heizleiters weniger gut geeignet für die eingangs genannten, eher kleinflächigen Veränderungen der Heizleiterdicke.In a further embodiment of the invention, it is possible that a width of the heat conductor between the two electrical connections varies at least partially, advantageously by 5% to 20%. This also makes it possible, in principle, to achieve a heating power distribution and thus a temperature distribution based on the heating conductor, but only in a very large scale or actually only in relation to the entire width of the heating conductor. In this respect, this measure of the variation of the heat conductor is less well suited for the above-mentioned, rather small-scale changes in Heizleiterdicke.

Als Kohlenstoff-basiertes Heizleitermaterial können verschiedene Materialien verwendet werden, insbesondere neben dem eingangs genannten Graphit noch Carbon-Nanotubes, Fullerene, amorpher Kohlenstoff oder Graphen. Weitere mögliche Kohlenstoff-basierte Materialien für das Heizleitermaterial sind Kohlenstoff-Fasern, Glaskohlenstoff, Ruß,Various materials can be used as the carbon-based heating conductor material, in particular carbon nanotubes, fullerenes, amorphous carbon or graphene in addition to the graphite mentioned at the outset. Further possible carbon-based materials for the heating conductor material are carbon fibers, glassy carbon, carbon black,

Aerographit und nicht-graphitischer Kohlenstoff. Vor allem Graphit, Carbon-Nanotubes und Fullerene werden als relativ vielversprechend angesehen.Aerographite and non-graphitic carbon. Especially graphite, carbon nanotubes and fullerenes are considered to be relatively promising.

In vorteilhafter weiterer Ausgestaltung der Erfindung ist das Heizleitermaterial frei von Edelmetall bzw. weist kein teures Edelmetall auf. Neben dadurch möglichen Kosteneinsparungen kann ein weiterer großer Vorteil realisiert werden, dass nämlich ein solches Heizleiter aus diesem kohlenstoffbasierten Heizleitermaterial bei deutlich geringeren Temperaturen als üblich hergestellt werden kann. Üblicherweise wird das Heizleitermaterial für derartige Heizleiter, auch aus dem Stand der Technik mit Edelmetall, in Form einer Paste aufgebracht, wobei diese Paste je nach Aufbringungsart mal dickflüssiger und mal dünnflüssiger sein kann. Hier kann eine Sol-Gel-Paste oder ein Sol-Gel-System verwendet werden, die das Widerstandsmaterial enthalten, also beispielsweise das Graphit, und für das jeweilige Auftragverfahren geeignet sind. Es sollte mindestens so viel Kohlenstoff in der Paste bzw. dem System enthalten sein, dass dann nach dem Verarbeiten als Heizleiter durch Trocknen und Einbrennen dieser zu mindestens 50% aus Kohlenstoff besteht, vorteilhaft sogar noch mehr, beispielsweise 80% bis 90%. Somit wird eine hohe elektrische Leitfähigkeit als Flächenwiderstand erreicht. Ein Flächenwiderstand des Heizleitermaterials kann zwischen 20 Ω/□ bis 400 Ω/□ betragen, vorzugsweise 30 Ω/□ bis 250 Ω/□. Derartige Heizleitermaterialien und Sol-Gel-Pasten oder Sol-Gel-Systeme sind allgemein bekannt. Ein Flächenwiderstand eines Heizleitermaterials, das Edelmetall enthält, liegt üblicherweise im Bereich von unter 1 Ω/□, ist also erheblich geringer.In an advantageous further embodiment of the invention, the heating conductor material is free of noble metal or has no expensive precious metal. In addition to possible cost savings, another great advantage can be realized, namely that such a heat conductor can be made from this carbon-based Heizleitermaterial at significantly lower temperatures than usual. Usually, the Heizleitermaterial is applied for such a heat conductor, also from the prior art with precious metal in the form of a paste, which paste may be sometimes thicker and sometimes thinner depending on the application. Here, a sol-gel paste or a sol-gel system can be used, which contain the resistance material, so for example, the graphite, and are suitable for the respective application method. It should contain at least as much carbon in the paste or the system that then after processing as a heating element by drying and baking of these at least 50% of carbon, advantageously even more, for example 80% to 90%. Thus, a high electrical conductivity is achieved as sheet resistance. A sheet resistance of the heating conductor material may be between 20 Ω / □ to 400 Ω / □, preferably 30 Ω / □ to 250 Ω / □. Such heating conductor materials and sol-gel pastes or sol-gel systems are well known. A sheet resistance of a heating conductor material containing noble metal is usually in the range of less than 1 Ω / □, so it is considerably lower.

Der weitere Vorteil ist der, dass die Temperaturen zum Einbrennen des Heizleitermaterials viel niedriger sind als für Heizleitermaterial mit Edelmetall. Für Heizleitermaterial mit Edelmetall betragen sie etwa 800°C, für das hier verwendete kohlenstoffbasierte Heizleitermaterial betragen sie etwa 400°C. Dies ermöglicht zum Einen eine große Energieeinsparung, weil das Einbrennen bekanntermaßen lange dauert, in der Regel im Bereich einer Stunde. Zum Anderen ist die thermische und letztlich auch die mechanische Belastung der Heizeinrichtung geringer, insbesondere des Trägers. Somit können evtl. einfachere Isolierschichten verwendet werden oder andere Materialien mit geringeren Anforderungen an Temperaturfestigkeit.The further advantage is that the temperatures for baking the Heizleitermaterials are much lower than for heating conductor material with precious metal. For heat conductor material with precious metal, they are about 800 ° C, for the carbon-based Heizleitermaterial used here, it is about 400 ° C. This allows on the one hand a large energy saving, because the burn-in is known to last long, usually in the range of one hour. On the other hand, the thermal and ultimately also the mechanical load of the heating device is lower, in particular of the carrier. Thus, possibly simpler insulating layers can be used or other materials with lower requirements for temperature resistance.

Beim Auftragen des Heizleitermaterials durch Sprühen, Spritzen, Inkjet oder Aufschleudern können Masken, Schablonen odgl. verwendet werden.When applying the Heizleitermaterials by spraying, spraying, inkjet or spin coating masks, stencils or the like. be used.

In einer weiteren möglichen Ausgestaltung der Erfindung kann der Heizleiter insgesamt einen negativen Temperaturkoeffizienten seines Widerstands aufweisen, insbesondere wegen eines Graphitanteils. Dann sinkt der elektrische Widerstand mit der Temperatur und damit steigt die darin umgesetzte Leistung.In a further possible embodiment of the invention, the heating conductor can have a total of a negative temperature coefficient of its resistance, in particular because of a Graphite content. Then the electrical resistance decreases with the temperature and thus the power converted therein increases.

Diese und weitere Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz beansprucht wird. Die Unterteilung der Anmeldung in Zwischen-Überschriften und einzelne Abschnitte beschränkt die unter diesen gemachten Aussagen nicht in ihrer Allgemeingültigkeit.These and other features will become apparent from the claims but also from the description and drawings, wherein the individual features each alone or more in the form of sub-combinations in an embodiment of the invention and in other fields be realized and advantageous and protectable Represent embodiments for which protection is claimed here. The subdivision of the application into intermediate headings and individual sections does not limit the general validity of the statements made thereunder.

Kurzbeschreibung der ZeichnungenBrief description of the drawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen schematisch dargestellt und werden im Folgenden näher erläutert. In den Zeichnungen zeigen:

Fig. 1
eine Draufsicht auf eine erfindungsgemäße Heizeinrichtung mit zwei rechteckigen Heizleitern darauf,
Fig. 2
eine alternative Heizeinrichtung mit einem quadratischen Träger und acht Heizleitern darauf,
Fig. 3A
eine Draufsicht auf einen einzige Heizleiter in rechteckiger Form mit unterschiedlichen Heizleiterdicken und eingezeichnetem Widerstandsverlauf,
Fig. 3B bis 3D
drei verschiedene Profile einer Heizleiterdicke,
Fig. 3E
eine schematisierte Darstellung von zwei Auftragverfahren für das Heizleitermaterial auf einen Träger,
Fig. 3F
zwei schematisierte Verfahren zum Abtragen von Heizleitermaterial für einen unterschiedlichen Verlauf der Heizleiterdicke,
Fig. 4 und 5
eine Draufsicht und eine Schrägansicht einer erfindungsgemäßen Heizeinrichtung in runder Form mit radial unterschiedlichen Heizleiterdicken und Stromfluss in Umfangsrichtung,
Fig. 6 und 7
eine Draufsicht und Schrägansicht auf einen weiteren kreisrunden Heizleiter mit in radialer Richtung unterschiedlichen Heizleiterdicken und radialem Stromfluss,
Fig. 8 und 9
eine Abwandlung der Heizeinrichtung aus Fig. 6 und 7 mit radial verlaufenden Unterbrechungen im Heizleitermaterial und
Fig. 10 und 11
eine Abwandlung der Heizeinrichtung aus Fig. 4 und 5 mit in Umfangsrichtung verlaufenden Unterbrechungen zwischen Heizleiterbahnen.
Embodiments of the invention are shown schematically in the drawings and are explained in more detail below. In the drawings show:
Fig. 1
a top view of a heater according to the invention with two rectangular heating conductors on it,
Fig. 2
an alternative heater with a square support and eight heat conductors on top,
Fig. 3A
a plan view of a single heating conductor in a rectangular shape with different Heizleiterdicken and marked resistance curve,
Fig. 3B to 3D
three different profiles of a heating conductor thickness,
Fig. 3E
a schematic representation of two application methods for the Heizleitermaterial on a support,
Fig. 3F
two schematized methods for removing heating conductor material for a different course of the heating conductor thickness,
4 and 5
a top view and an oblique view of a heater according to the invention in a round shape with radially different Heizleiterdicken and current flow in the circumferential direction,
6 and 7
a top view and an oblique view of another circular heating conductor with different in the radial direction Heizleiterdicken and radial current flow,
8 and 9
a modification of the heater 6 and 7 with radial interruptions in Heizleiterermaterial and
10 and 11
a modification of the heater 4 and 5 with circumferentially extending interruptions between Heizleiterbahnen.

Detaillierte Beschreibung der AusführungsbeispieleDetailed description of the embodiments

In der Fig. 1 ist eine Heizeinrichtung 11 dargestellt mit einem flachen und länglichen rechteckigen Träger 12. Diesen Träger 12 könnte man sich auch als Abwicklung eines kurzen Rohres mit rundem Querschnitt vorstellen, so dass das linke Ende und das rechte Ende geschlossen wären und die Innenseite des Rohres als Innenseite des Trägers 12 frei wäre. Auf den Träger 12 ist eine flächige Isolierschicht 13 aufgebracht. Dies entspricht einer üblichen Vorgehensweise.In the Fig. 1 a heater 11 is shown with a flat and elongated rectangular support 12. This carrier 12 could also be thought of as a development of a short tube with a round cross section, so that the left end and the right end would be closed and the inside of the tube as the inside of the Carrier 12 would be free. On the carrier 12, a flat insulating layer 13 is applied. This corresponds to a usual procedure.

Links ist auf dem Träger 12 eine Anschlusseinrichtung 15 in Form eines Steckers angebracht. Von dieser gehen Zuleitungen 16a und 16b ab, welche in Anschlüsse 18 münden. Dies sind ganz rechts ein unterer Anschluss 18a und ein gegenüberliegender Anschluss 18a', wobei dieser obere Anschluss 18a' direkt in einen weiteren oberen Anschluss 18b übergeht. Dem gegenüber liegt im unteren Bereich ein Anschluss 18b', der dann eben in die Zuleitung 16b übergeht an die Anschlusseinrichtung 15.On the left side, a connection device 15 in the form of a plug is mounted on the carrier 12. From this go from leads 16a and 16b, which open into ports 18. These are on the right a lower terminal 18a and an opposite terminal 18a ', this upper terminal 18a' merges directly into another upper terminal 18b. On the other hand, in the lower area there is a connection 18b ', which then just merges into the supply line 16b to the connection device 15.

Es sind zwei Heizleiter 20a und 20b vorgesehen, die in überlappender Weise auf die Anschlüsse 18 aufgebracht sind, wie dies für Schichtheizleiter bzw. Dickschichtheizleiter bekannt ist. Beide Heizleiter 20a und 20b sind von der Fläche her gleich groß und im Wesentlichen auch gleich bzw. identisch ausgebildet. Wie zu erkennen ist, ist ihre Breite etwa viermal so groß wie ihre Länge, sie sind also sehr kurz. Die beiden Heizleiter 20a und 20b sind seriell miteinander verschaltet. Ihr seitlicher Abstand ist sehr gering und beträgt wenige mm.Two heating conductors 20a and 20b are provided, which are applied in overlapping manner to the terminals 18, as is known for Schichtheizleiter or Dickschichtheizleiter. Both heating conductors 20a and 20b are of the same size and substantially the same or identical in design. As you can see, their width is about four times their length, so they are very short. The two heating conductors 20a and 20b are connected in series with each other. Their lateral distance is very small and is a few mm.

Die Heizleiter 20 sind aus dem erfindungsgemäßen Heizleitermaterial gebildet, welches Kohlenstoff-basiert ist bzw. welches im einsatzfähigen Zustand mindestens 50%, evtl. sogar 80% bis 90%, Kohlenstoff enthält. Beispielsweise kann dies in einem einfachen Fall Graphit sein, alternativ oder zusätzlich auch Graphen oder Carbon-Nanotubes. Ein möglicher negativer Temperaturkoeffizient des elektrischen Widerstands des Kohlenstoff-basierten Materials, insbesondere von Graphit, kann wie eingangs erläutert genutzt werden, um in potentiell kühleren Bereichen vorzusehen, dass der Widerstand mit der Temperatur sinkt bzw. eine höhere Leistung umgesetzt wird. Gleichzeitig sind dann Maßnahmen erforderlich, um eine zu starke Erhitzung zu vermeiden. Vorteilhaft werden hierzu diskrete Temperatursensoren oder eine flächige Temperaturüberwachung eingesetzt, welche aus dem Stand der Technik ausreichend bekannt sind, hier aber nicht dargestellt sind.The heating conductors 20 are formed from the heating conductor material according to the invention which is carbon-based or which contains at least 50%, possibly even 80% to 90%, of carbon in the operational state. For example, in a simple case this can be graphite be, alternatively or additionally, graphene or carbon nanotubes. A possible negative temperature coefficient of the electrical resistance of the carbon-based material, in particular of graphite, can be used as explained above, in order to provide in potentially cooler areas that the resistance decreases with the temperature or a higher power is converted. At the same time then measures are necessary to avoid excessive heating. For this purpose, discrete temperature sensors or a surface temperature monitoring are advantageously used, which are sufficiently known from the prior art, but are not shown here.

Bei dem in der Fig. 1 dargestellten Ausführungsbeispiel einer Heizeinrichtung 11 ist eine konstante bzw. gleichmäßige Heizleiterdicke vorgesehen. Diese kann beispielsweise 20 µm bis 70 µm betragen, also immer noch in einem Dickschicht-Bereich liegen. Die Fläche kann knapp 40 cm2 betragen, so dass bei einer an den Anschlüssen 18 anliegenden Spannung von 230 V eine Leistung von etwa 2000 W erzeugt wird. Die bedeutet einen Flächenwiderstand von 63 Ω/□ und eine Flächenbelastung von etwas über 50 W/cm2. Zu möglichen Auftragverfahren für das Heizleitermaterial wird nachfolgend mehr ausgeführt.In the in the Fig. 1 illustrated embodiment of a heater 11, a constant or uniform Heizleiterdicke is provided. This may for example be 20 microns to 70 microns, so are still in a thick film area. The area can be just under 40 cm 2 , so that when connected to the terminals 18 voltage of 230 V, a power of about 2000 W is generated. This means a sheet resistance of 63 Ω / □ and a surface load of just over 50 W / cm 2 . For possible application method for the Heizleitermaterial more will be executed below.

In der Fig. 2 ist eine weitere Heizeinrichtung 111 dargestellt, die ebenfalls einen flachen und ebenen Träger 112 aufweist, der hier im Wesentlichen quadratisch ausgebildet ist, ansonsten gleicht sein Aufbau aber in vieler Hinsicht demjenigen aus der Fig. 1. Auf dem Träger 111 ist eine Isolierschicht 113 aufgebracht samt einer Anschlusseinrichtung 115 mit Zuleitungen 116a und 116b. Die Zuleitungen 116a und 116b verlaufen an Anschlüsse 118a und 118a'sowie 118d und 118d'. Dazwischen sind jeweils zwei parallele Heizleiter 120a und 120a' sowie 120d und 120d' vorgesehen. Der Anschluss 118a ist mit einem Anschluss 118b verbunden, und der Anschluss 118a'ist mit einem Anschluss 118b' verbunden. Zwischen den Anschlüssen 118b und 118b' befinden sich Heizleiter 120b und 120b'. An die Anschlüsse 118b' und 118d' sind Anschlüsse 118c' und 118c verbunden, zwischen denen sich zwei Heizleiter 120c und 120c' befinden.In the Fig. 2 a further heating device 111 is shown, which also has a flat and planar support 112, which is here substantially square, but otherwise its structure is similar in many respects to that of FIG Fig. 1 , On the carrier 111, an insulating layer 113 is applied together with a connection device 115 with leads 116a and 116b. The leads 116a and 116b extend to terminals 118a and 118a 'and 118d and 118d'. In between, two parallel heating conductors 120a and 120a 'as well as 120d and 120d' are provided. The terminal 118a is connected to a terminal 118b, and the terminal 118a'is connected to a terminal 118b '. Between the terminals 118b and 118b 'are heating conductors 120b and 120b'. To terminals 118b 'and 118d' are connected terminals 118c 'and 118c between which two heating conductors 120c and 120c' are located.

Sämtliche Heizleiter 120 sind identisch ausgebildet und im Wesentlichen quadratisch. Die jeweils parallel geschalteten und direkt nebeneinanderliegenden Paare von Heizleitern 120 könnten auch die sie trennende dünne Lücke überdecken und somit ein einziges Heizleiter sein. Erreicht wird mit dieser Konfiguration eine Reihenschaltung von zwei Vierergruppen von Heizleitern, wobei jede Vierergruppe in sich parallel geschaltet ist. Dies ist durch den Verlauf der Anschlüsse 118 zu erkennen. Auch vom Material und vom Auftragverfahren her können die Heizleiter 120 denjenigen der Fig. 1 entsprechen. In ähnlicher Form könnte der Träger 112 auch eine Abwicklung eines gebogenen oder sogar eines rohrartigen Trägers sein. Das Heizleitermaterial kann auch hier zu einem Großteil aus Graphit bestehen bzw. Graphit aufweisen.All heating conductors 120 are identical and substantially square. The respective parallel and directly adjacent pairs of heating conductors 120 could also cover the thin gap separating them and thus be a single heating conductor. With this configuration, a series connection of two sets of four heating conductors is achieved, with each group of four connected in parallel. This can be recognized by the course of the connections 118. Also from the material and the application method, the heating conductors 120 can those of Fig. 1 correspond. In a similar form, the carrier 112 could also be a settlement of a curved or even a tubular support. The Heizleitermaterial can also consist of a majority of graphite or have graphite here.

In der Fig. 3A ist sehr vereinfacht eine Heizeinrichtung 211 dargestellt mit einem Träger 212 als rechteckige Platte. Dieser kann hier isolierend sein, benötigt also keine Isolierschicht. Auf dem Träger 212 sind ein oberer Anschluss 218a und unterer Anschluss 218a' aufgebracht, die wie allgemein die Anschlüsse aus sehr gut leitfähigem Material, insbesondere mit hohem Metallgehalt, hergestellt sind. Darauf ist ein flächiger Heizleiter 220 mit rechteckiger Grundform aufgebracht, welches zur elektrischen Kontaktierung die Anschlüsse 218a und 218a' überlappt. Durch die kleineren rechteckigen Flächen im Mittelbereich soll angedeutet werden, dass hier, wie die Seitendarstellung der Fig. 3B zeigt, die Heizleiterdicke zu einem Mittelbereich hin ansteigt. Dazu gibt es bei dem stufigen Anstieg vier Dickenbereiche D1 bis D4. Wie aus der Seitendarstellung der Fig. 3B zu ersehen ist, sind die Dickenunterschiede ab dem Dickenbereich D1 erheblich geringer als dessen Dicke, beispielsweise liegen sie zwischen 1% und 10%. Die Darstellung der Fig. 3B ist hier der Anschaulichkeit halber deutlich übertrieben dargestellt. Während die Dicken in den einzelnen Dickenbereichen zunehmen, nimmt in entsprechender Weise der jeweilige Flächenwiderstand ab, und zwar in demselben Maß wie die Dickenveränderung. Die einzelnen Dickenbereiche D müssen nicht nach innen zu der Außenform bzw. der Grundform des Heizleiters 220 entsprechen, sie können auch nach innen zu an eine Ellipse angenähert werden. Generell sollte die Gestaltung auch der unterschiedlichen Dickenbereiche bzw. der Heizleiterdicke optimiert werden für die jeweilige Anwendung mit den konkreten Bedingungen eines Wärmeabtrags vom Heizleiter 220 bzw. von der Heizeinrichtung 211, vorteilhaft in ein Medium. Die Grundform und auch die Heizleiterdicke selbst können, insbesondere in Randbereichen oder in Mittelbereichen, durch Simulation oder praktische Erprobung optimiert werden.In the Fig. 3A is very simplified a heater 211 shown with a support 212 as a rectangular plate. This can be insulating here, so does not require an insulating layer. Mounted on the carrier 212 are an upper terminal 218a and a lower terminal 218a ', which, as in general, are made of very good conductive material, particularly high metal content. Then a planar heating element 220 is applied with a rectangular basic shape, which overlaps the terminals 218 a and 218 a 'for electrical contacting. Due to the smaller rectangular areas in the middle area should be indicated that here, as the side view of the Fig. 3B shows, the Heizleiterdicke increases to a central region. For this purpose, there are four thickness ranges D1 to D4 in the gradual increase. As from the page presentation of Fig. 3B can be seen, the thickness differences from the thickness range D1 are considerably less than its thickness, for example, they are between 1% and 10%. The presentation of the Fig. 3B is clearly exaggerated here for the sake of clarity. As the thicknesses in the individual thickness regions increase, the respective sheet resistance correspondingly decreases, to the same extent as the thickness change. The individual thickness ranges D need not correspond inwardly to the outer shape or the basic shape of the heating conductor 220, they can also be approximated inwards to an ellipse. In general, the design of the different thickness ranges or the Heizleiterdicke should be optimized for the particular application with the specific conditions of heat removal from the heating element 220 and the heater 211, advantageously in a medium. The basic shape and also the heating conductor thickness itself can be optimized, in particular in peripheral areas or in central areas, by simulation or practical testing.

Durch die unterschiedlichen Heizleiterdicken der Dickenbereiche D1 bis D4 werden unterschiedliche Leistungsdichten und somit eine sozusagen gestaltbare Temperaturverteilung möglich. Durch die größere Dicke im Mittelbereich des Heizleiters 220 wird hier die Heizleistung etwas reduziert, was von Vorteil ist für eine gleichmäßige Temperaturverteilung, da üblicherweise in einem Mittelbereich eines flächigen Heizleiters die höchste Temperatur herrscht.Due to the different heating conductor thicknesses of the thickness ranges D1 to D4, different power densities and thus a temperature distribution which can be shaped as it were are possible. Due to the greater thickness in the central region of the heating element 220, the heating power is somewhat reduced, which is advantageous for a uniform temperature distribution, since usually in a central region of a flat heating element, the highest temperature prevails.

In grober Näherung kann man sich für den Stromfluss zwischen den Anschlüssen 218a und 218a' eine Reihenschaltung von Teilwiderständen entsprechend jedem Dickenbereich vorstellen, was in der Mitte dargestellt ist. Der hier in der Mitte verlaufende Stromfluss durchläuft sozusagen die sieben Teilwiderstände, wobei der Teilwiderstand im Dickenbereich D4 aufgrund der größten Heizleiterdicke den geringsten Widerstandswert hat. Der Teilwiderstand in dem Dickenbereich D1 ist jeweils am größten.As a rough approximation, one can consider a series connection of partial resistances corresponding to each thickness range for the current flow between the terminals 218a and 218a ' Imagine what is shown in the middle. The current flow running here in the middle passes through the seven partial resistors so to speak, whereby the partial resistance in the thickness range D4 has the lowest resistance value due to the largest heating conductor thickness. The partial resistance in the thickness region D1 is the largest in each case.

Etwas rechts daneben ist für einen weiteren Stromfluss dargestellt, wie hier sozusagen durch die an sich gleiche Größenverteilung der Widerstandswerte der Teilwiderstände der Stromfluss nicht mehr direkt vom Anschluss 218a zum Anschluss 218a' fließt, also nicht mehr den kürzesten Weg wählt, sondern sozusagen zum Mittenbereich hin gebogen oder ausgebeult ist. Dies ist dadurch begründet, dass der Strom zwar einen insgesamt etwas längeren Weg wählt, um durch den Dickenbereich D4 zu fließen, dort aber einen die etwas größere Länge ausgleichenden geringeren Widerstand vorfindet. Somit kommt es hier zu einer Art Stromumleitung.Something to the right is shown for a further current flow, as here, so to speak, by the same size distribution of resistance values of the partial resistors, the current flow no longer flows directly from the terminal 218a to 218a 'connection, so no longer chooses the shortest path, but so to speak to the middle range bent or bulging. This is due to the fact that the current chooses an overall somewhat longer path to flow through the thickness range D4, but finds there a smaller resistance compensating the slightly longer length. Thus, it comes here to a kind of power diversion.

In der Fig. 3B ist, wie gesagt, für die Heizeinrichtung 211 der stufenartige Verlauf der Heizleiterdicke übertrieben dargestellt. Ein solcher Verlauf kann besonders gut hergestellt werden durch das Aufbringen des Heizleitermaterials in mehreren Schichten. Ein Unterschied zwischen zwei Dickenbereichen D kann dann eine Schichtdicke sein bzw. die Dicke einer einzigen aufgebrachten Schicht von Heizleitermaterial. Gründe für eine gröbere Abstufung gibt es eigentlich nicht.In the Fig. 3B is, as I said, exaggerated for the heater 211, the step-like course of Heizleiterdicke. Such a course can be produced particularly well by applying the Heizleitermaterials in several layers. A difference between two thickness ranges D can then be a layer thickness or the thickness of a single applied layer of heating conductor material. There are no reasons for a coarser gradation.

In der Fig. 3C ist eine weitere Heizeinrichtung 211' dargestellt mit einem Träger 212' samt einem Heizleiter 220'. In einem Mittelbereich weist dieser erkennbar eine ähnliche Dicke wie die Heizeinrichtung 211 auf, nur sind hier keine genau unterscheidbaren Dickenbereiche gegeben mit einem stufigen oder abgestuften Verlauf. Vielmehr steigt die Dicke vom dünnsten Bereich am linken und am rechten Rand erst langsam an, dann etwas stärker, um dann wieder mit einem schwächeren Dickenanstieg in den ebenen Mittelbereich überzugehen. Ein solcher Verlauf der Heizleiterdicke kann für einen gleichmäßigen Stromfluss und eine gleichmäßige Leistungserzeugung von Vorteil sein, ist aber erkennbar schwerer herzustellen. Entweder kann hier durch beispielsweise Sprühen als Auftragverfahren mit unterschiedlichen Sprühintensitäten und/oder Sprühabständen gearbeitet werden, um den gleichmäßigen Verlauf zu erreichen. Alternativ kann mit entsprechenden Abtragverfahren, wie sie eingangs beschrieben worden sind und nachfolgend noch im Detail erläutert werden, gearbeitet werden.In the Fig. 3C a further heating device 211 'is shown with a carrier 212' together with a heating conductor 220 '. In a middle region, this recognizably has a similar thickness as the heating device 211, only here there are no precisely distinguishable thickness ranges given with a stepped or graduated course. Rather, the thickness of the thinnest area on the left and on the right edge increases slowly, then slightly stronger, and then again with a weaker increase in thickness in the flat middle area to go over. Such a course of the heating conductor thickness can be advantageous for a uniform current flow and a uniform power generation, but is obviously harder to produce. Either can be done here by spraying, for example, as a method of application with different spray intensities and / or Sprühabständen to achieve the uniform course. Alternatively, it is possible to work with corresponding removal methods, as have been described in the beginning and will be explained in detail below.

In der Fig. 3D ist eine Heizeinrichtung 211" dargestellt mit einem Träger 212" und einem Heizleiter 220". Der Verlauf der Dickenzunahme zwischen den äußeren dünnen Bereichen und dem dicken Mittelbereich ist hier sozusagen linear. Somit ist zwar am Übergang zum Mittelbereich eine Art Kante vorgesehen, deren negative Auswirkung hält sich aber in Grenzen. Ein solcher sozusagen linearer Verlauf der Heizleiterdicke kann relativ leicht durch Abschleifen mit einer planen Schleiffläche erzielt werden, wie es nachfolgend in der Fig. 3F erläutert ist.In the Fig. 3D is a heater 211 "shown with a carrier 212" and a heating conductor 220 ".The course of the increase in thickness between the outer thin regions and The thick center area is linear, so to speak. Thus, although a kind of edge is provided at the transition to the central region, the negative impact is limited. Such a so-called linear course of the heating conductor thickness can be achieved relatively easily by grinding with a flat grinding surface, as described in the following Fig. 3F is explained.

In der Fig. 3E sind schematisch zwei Möglichkeiten für Auftragverfahren für das Heizleitermaterial dargestellt. Im linken Bereich wird auf einen Träger 212 mittels einer Spritzdüse 222 eine Sol-Gel-System 223 aufgebracht, um Schichten zu bilden. Dieses Sol-Gel-System enthält das Kohlenstoff-basierte Heizleitermaterial, was an sich aus dem Stand der Technik bekannt ist. Es muss geeignet sein zum Spritzen. Dabei werden mehrere Schichten von Heizleitermaterial bzw. des Sol-Gel-Systems 223 nacheinander aufgebracht, wobei entweder nach jeder Schicht ein Trocknungsvorgang stattfindet, nach beispielsweise jeder dritten oder fünften Schicht, oder erst ganz am Schluss. Je nach Genauigkeit des Arbeitens mit der Spritzdüse 222 kann ein Verlauf der Heizleiterdicke entsprechend Fig. 3C hergestellt werden.In the Fig. 3E schematically two possibilities for application process for the Heizleitermaterial are shown. In the left-hand area, a sol-gel system 223 is applied to a carrier 212 by means of a spray nozzle 222 in order to form layers. This sol-gel system contains the carbon-based heating conductor material, which is known per se from the prior art. It must be suitable for spraying. In this case, several layers of heating conductor material or the sol-gel system 223 are applied successively, wherein either after each layer, a drying process takes place, for example, every third or fifth layer, or only at the very end. Depending on the accuracy of working with the spray nozzle 222, a course of the heating conductor thickness accordingly Fig. 3C getting produced.

Rechts in der Fig. 3E ist schematisch ein Siebdruckverfahren mit einem Drucksieb 225 dargestellt. Dieses wird auf den Träger 212 aufgelegt, wie es bei Siebdruck üblich ist, dann wird das Heizleitermaterial als Sol-Gel-System bzw. hier als mögliche Sol-Gel-Paste auf das Drucksieb 225 aufgebracht und mit einem Rakel verteilt. Mittels eines Siebdruckverfahrens kann ein Verlauf der Heizleiterdicke entsprechend Fig. 3B hergestellt werden, also eher stufig sein. Zur Erreichung einer gewünschten Heizleiterdicke müssen ohnehin mehrere Schichten aufgebracht werden. Auch hier kann ein zwischenzeitliches Trocknen vorgesehen sein.Right in the Fig. 3E schematically a screen printing process with a printing screen 225 is shown. This is placed on the support 212, as is customary in screen printing, then the Heizleitermaterial is applied as a sol-gel system or here as a possible sol-gel paste on the printing screen 225 and distributed with a doctor blade. By means of a screen printing process, a course of the Heizleiterdicke corresponding Fig. 3B be produced, so rather be gradual. To achieve a desired Heizleiterdicke several layers must be applied anyway. Again, an interim drying can be provided.

An das Auftragverfahren anschließend kommt ein Einbrennen. Der fertige Heizleiter enthält Kohlenstoff mit hohem Anteil, beispielsweise mindestens 50% oder sogar 80% bis 90%.The application process is followed by baking. The finished heating conductor contains high-content carbon, for example at least 50% or even 80% to 90%.

In der Fig. 3F ist dargestellt, wie ein bestimmter Verlauf einer Heizleiterdicke erreicht werden kann durch ein abtragendes Verfahren. Gestrichelt dargestellt ist ein sehr dicker Heizleiter 220 auf einem Träger 212, quasi mit gleichbleibender Dicke, wie er ursprünglich hergestellt worden ist. Links in der Fig. 3F wird mit einer sehr vereinfacht dargestellten rotierenden planen Schleifscheibe 227 einfach ein Teil des Heizleitermaterials abgeschliffen. So kann der Verlauf der Heizleiterdicke entsprechend Fig. 3D hergestellt werden. Ein solches Schleifverfahren wird für derartige Dickenverteilungen als sehr vorteilhaft angesehen.In the Fig. 3F is shown how a certain course of a Heizleiterdicke can be achieved by an erosive process. Shown dashed is a very thick heating element 220 on a support 212, virtually the same thickness as originally produced. Left in the Fig. 3F is simply ground off a portion of the Heizleitermaterials with a very simple illustrated rotating grinding wheel 227. Thus, the course of the heating conductor thickness accordingly Fig. 3D getting produced. Such a grinding process is considered to be very advantageous for such thickness distributions.

Rechts in der Fig. 3F ist ein anderes Abtragverfahren dargestellt. Hier wird auch von einer ursprünglichen, durch die Strichlierung gekennzeichneten Schichtdicke des Heizleiters 220 Heizleitermaterial abgetragen. Hier wird mit einem Laser 229 gearbeitet, dessen Laserstrahl 230 das Heizleitermaterial wie gewünscht abträgt. Derartige Laser-Verfahren sind bekannt und brauchen deswegen hier nicht weiter erläutert zu werden.Right in the Fig. 3F another removal method is shown. In this case, heating conductor material is also removed from an original layer thickness of the heating conductor 220, which is indicated by the dashed line. Here, a laser 229 is used whose laser beam 230 removes the heating conductor material as desired. Such laser methods are known and therefore need not be further explained here.

Für die Abtragverfahren gilt grundsätzlich, dass sie sowohl vor einem Aushärten des Heizleitermaterials als auch hinterher durchgeführt werden können. Ein Schleifverfahren, wie links in der Fig. 3F dargestellt, wird vorteilhaft eher nach einem Aushärten und Fertigstellen des Heizleiters 220 durchgeführt. Vor dem Aushärten der Paste bzw. des Heizleitermaterials kann sie voraussichtlich auch nicht sehr gut geschliffen werden.For the removal method is generally that they can be carried out both before curing of the Heizleitermaterials and afterwards. A grinding process, as shown in the left Fig. 3F is advantageously carried out after a curing and finishing of the heating element 220. It is also unlikely that it will be ground very well before the paste or heat conductor material has cured.

Ein in Fig. 3F rechts dargestelltes Laser-Verfahren kann sowohl an einem ausgehärteten Heizleitermaterial durchgeführt werden als auch vor dem Aushärten und nach dem vorgenannten Trocknen durchgeführt werden. Ein noch nicht ausgehärtetes Heizleitermaterial kann unter Umständen sogar leichter entfernt werden.An in Fig. 3F The laser process shown on the right can be carried out both on a cured Heizleiterermaterial as well as be carried out before curing and after the aforementioned drying. Under certain circumstances, a not yet hardened heating conductor material can even be removed more easily.

Wie eingangs angesprochen kann durch ein solches Abtragverfahren auch ein Abgleich des Heizleiters im elektrischen Sinne erfolgen, also auf einen exakten Widerstandswert. Auch dafür sollte der Heizleiter fertig ausgehärtet sein. Durch ein flächiges Abtragverfahren gemäß einem Aspekt der Erfindung kann in diesem Bereich die Heizfunktion des Heizleiters erhalten werden, die erzeugte Temperatur wird nur unter Umständen etwas verändert.As mentioned at the outset, an adjustment of the heating conductor in the electrical sense can also take place by means of such an ablation method, that is to say to an exact resistance value. Also for this, the heating element should be fully cured. By a planar Abtragverfahren according to one aspect of the invention, the heating function of the heating element can be obtained in this area, the temperature generated is only slightly changed under certain circumstances.

In der Fig. 4 ist eine weitere Heizeinrichtung 311 in Draufsicht und in der Fig. 5 in geschnittener Schrägansicht dargestellt. Auf einem kreisrunden Träger 312 ist ein Heizleiter 320 aufgebracht als um einen Bogenwinkel von etwa 340° umlaufender Kreisring. Zwei Anschlüsse 318a und 318a' sind vorgesehen, die exakt radial verlaufen. Von diesen Anschlüssen 318a und 318a' ausgehend läuft mit drei unterschiedlichen Dickenbereichen D1, D2 und D3 der Heizleiter 320 um. Wie aus der Schnittdarstellung der Fig. 5 zu ersehen ist, wird der stufige Verlauf, der im Prinzip ähnlich ist wie derjenige der Fig. 3A und 3B, jeweils durch unterschiedliche Schichtdicken bzw. Anzahlen von Schichten erzielt. Insofern gilt für die Herstellung der Heizeinrichtung 311 bzw. des Heizleiters 320 das zuvor ausgeführte. Die erheblich größere Länge des radialen Außenbereichs des Heizleiters 320 wird durch dessen größere Heizleiterdicke in diesem Dickenbereich D3 ausgeglichen. Somit wird insgesamt eine etwa gleiche Flächenheizleistung erzeugt, da sozusagen in Umlaufrichtung zwischen den Anschlüssen 318a und 318a' jeweils der gleiche Flächenwiderstand des Heizleitermaterials gegeben ist in der Kombination aus unterschiedlicher Länge des Heizleiters mit jeweiliger Heizleiterdicke.In the Fig. 4 is a further heating device 311 in plan view and in the Fig. 5 shown in a sectional oblique view. On a circular support 312, a heating conductor 320 is applied as by a arc angle of about 340 ° rotating circular ring. Two ports 318a and 318a 'are provided which are exactly radial. Starting from these terminals 318a and 318a ', the heating conductor 320 revolves with three different thickness ranges D1, D2 and D3. As seen from the sectional view of Fig. 5 is to be seen, the gradual course, which is similar in principle to that of the FIGS. 3A and 3B , achieved in each case by different layer thicknesses or numbers of layers. In this respect, the manufacture of the heating device 311 or of the heating conductor 320 applies to the one previously described. The considerably greater length of the radially outer region of the heating conductor 320 is compensated by its greater thickness of the heating conductor in this thickness range D3. Thus, a total of about the same surface heating power is generated, as it were in the direction of rotation between the terminals 318a and 318a 'respectively the same surface resistance of the Heizleitermaterials is given in the combination of different lengths of the heat conductor with respective Heizleiterdicke.

Durch einen freien Mittelbereich der Heizeinrichtung 311 wird hier eine etwas geringere Temperatur erreicht. Um dies auszugleichen, kann im Dickenbereich D1 eine etwas höhere Temperatur erzielt werden bzw. eine etwas höhere Flächenheizleistung erzeugt werden. Dies kann durch die Heizleiterdicke im Dickenbereich D1 eingestellt werden.By means of a free middle region of the heating device 311, a somewhat lower temperature is achieved here. To compensate for this, a slightly higher temperature can be achieved in the thickness range D1 or a slightly higher surface heating power can be generated. This can be adjusted by the heat conductor thickness in the thickness range D1.

In den Fig. 6 und 7 ist eine weitere Heizeinrichtung 411 ähnlich derjenigen aus den Fig. 4 und 5 dargestellt mit einem runden Träger 312 und zwei radial verlaufenden Anschlüssen 418a und 418a'. Dazwischen verlaufen drei Heizleiter 420a, 420b und 420c. Sie sind jeweils durch Unterbrechungen 432 voneinander getrennt, wie aus der Schnittdarstellung deutlich wird. Des Weiteren sollen die Heizleiter 420a, 420b und 420c ähnlich der Fig. 4 und 5 wieder in drei Dickenbereiche D1, D2 und D3 aufgeteilt sein. In der Fig. 7 ist dies, anders als in der Fig. 5, nicht dargestellt, soll aber auch hier so sein. Somit wird auch hier der jeweils unterschiedliche lange Weg des Stromflusses zwischen den Anschlüssen 418a und 418a' durch eine Einstellung der Heizleiterdicke ausgeglichen. Somit soll für jeden der Heizleiter 420a bis 420c dieselbe Flächenheizleistung erreicht werden können.In the 6 and 7 is another heater 411 similar to that of the 4 and 5 illustrated with a round support 312 and two radially extending ports 418a and 418a '. In between are three heating conductors 420a, 420b and 420c. They are each separated by interruptions 432 from each other, as is clear from the sectional view. Furthermore, the heating conductors 420a, 420b and 420c should be similar to the 4 and 5 again be divided into three thickness ranges D1, D2 and D3. In the Fig. 7 this is different than in the Fig. 5 , not shown, but should also be here. Thus, the respective different long path of the current flow between the terminals 418a and 418a 'is compensated by adjusting the Heizleiterdicke here. Thus, for each of the heating conductors 420a to 420c, the same surface heating power can be achieved.

In den Fig. 8 und 9 ist eine weitere Ausgestaltung einer Heizeinrichtung 511 dargestellt, die ebenfalls rund ausgebildet ist bzw. einen runden Träger 512 aufweist. Auf dem Träger 512 sind ein innerer Anschluss 518a und ein äußerer Anschluss 518a' aufgebracht. Vor allem der innere Anschluss 518a ist, wie die schräge Schnittdarstellung der Fig. 9 zeigt, nicht nur als reine Fläche ausgebildet, sondern weist eine gewisse Höhenerstreckung auf. Dies soll dazu dienen, den damit kontaktierten Heizleiter nicht nur an seiner unteren Fläche als Auflage auf dem Träger 512 zu kontaktieren, sondern auch sozusagen über dessen Schichtdicke hinweg an der inneren Stirnseite.In the 8 and 9 a further embodiment of a heater 511 is shown, which is also round or has a round support 512. On the carrier 512, an inner terminal 518a and an outer terminal 518a 'are applied. Above all, the inner connection 518a is like the oblique sectional view of the Fig. 9 shows, not only designed as a pure surface, but has a certain height extent. This is to serve to contact the heat conductor contacted thereby not only on its lower surface as a support on the support 512, but also, as it were, over its layer thickness away on the inner end face.

Auf den Träger 512 und an die Anschlüsse 518a und 518a' ist ein Heizleiter 520 aufgebracht, der ähnlich wie bei der Fig. 4 und 5 in radial unterschiedliche Dickenbereiche unterteilt ist, nur eben mit genau umgekehrter Dickenverteilung. Der Heizleiter 520 ist als in Umlaufrichtung durchgehender Kreisring ausgebildet und weist außen einen Dickenbereich D1 auf, innen einen Dickenbereich D3 und dazwischen einen Dickenbereich D2. Die Heizleiterdicke nimmt von innen nach außen ab, also vom Anschluss 518a zum Anschluss 518a' ab. Während in den Ausführungsbeispielen der Fig. 4 bis 7 der Stromfluss in Umlaufrichtung geht, verläuft er in dem Ausführungsbeispiel der Fig. 8 und 9 in radialer Richtung. Die Verteilung der Heizleiterdicke, die sich aus Fig. 9 mit einem stufenartigen Verlauf ersehen lässt, bewirkt entsprechend einem vorteilhaften Aspekt der Erfindung eine insgesamt über die Fläche der Heizeinrichtung 511 gleichmäßig verteilte Flächenheizleistung. Im Dickenbereich D3 mit der größten Heizleiterdicke ist der Widerstand am geringsten, dafür aber die Stromdichte sehr groß. Im äußeren Dickenbereich D1 ist der elektrische Widerstand größer durch die geringe Heizleiterdicke, dafür aber aufgrund des deutlich größeren Umfangs die Stromdichte geringer. Der hier dargestellte stufige Verlauf der Dickenbereiche D1 bis D3 kann natürlich auch, wie zuvor anhand der Fig. 3B bis 3D erläutert, verteilt bzw. ausgeglichen werden.On the support 512 and to the terminals 518a and 518a ', a heating conductor 520 is applied, which is similar to the 4 and 5 is divided into radially different thickness ranges, just just with exactly the reverse thickness distribution. The heating conductor 520 is designed as a circular ring which is continuous in the circumferential direction and has a thickness range D1 on the outside, a thickness range D3 on the inside and a thickness range D2 in between. The thickness of the heating conductor decreases from the inside to the outside, ie from the connection 518a to the connection 518a '. While in the embodiments of the Fig. 4 to 7 the current flow is in the direction of rotation, it runs in the embodiment of the 8 and 9 in the radial direction. The distribution of the heating conductor thickness, the from Fig. 9 can be seen with a step-like course, according to an advantageous aspect of the invention causes a total uniformly distributed over the surface of the heater 511 surface heating power. In the thickness range D3 with the largest heat conductor thickness, the resistance is the lowest, but the current density is very high. In the outer thickness range D1, the electrical resistance is greater due to the low heating conductor thickness, but due to the much larger circumference, the current density is lower. The stepwise course of the thickness ranges D1 to D3 shown here can of course also, as previously with reference to Fig. 3B to 3D explained, distributed or compensated.

Durch einen hier vorgesehenen radialen Stromfluss ist die Länge des Stromflusses geringer als bei der Heizeinrichtung der Fig. 4 und 5, so dass bei gleicher Betriebsspannung und gleicher Gesamtheizleistung die Heizleiterdicken der Dickenbereiche D1 bis D3 ohnehin geringer sind als dort.Through a radial current flow provided here, the length of the current flow is less than in the case of the heating device 4 and 5 , so that at the same operating voltage and the same total heat, the Heizleiterdicken the thickness ranges D1 to D3 are already lower than there.

In dem Ausführungsbeispiel einer Heizeinrichtung 611 entsprechend der Fig. 10 und 11 ist sozusagen eine Abwandlung der Heizeinrichtung 511 aus den Fig. 8 und 9 dargestellt, und zwar sind hier acht Unterbrechungen 632 vorgesehen, ähnlich den in Umlaufrichtung verlaufenden Unterbrechungen 432 der Fig. 7. Diese unterteilen einen Heizleiter 620 durch ihren radialen Verlauf in acht Kreisringabschnitte. Da der Stromfluss aber stets exakt radial zwischen den Anschlüssen 618a und 618a' erfolgt stören diese Unterbrechungen 632 den Stromfluss nicht. Sie verringern nur etwas die Gesamtfläche des Heizleiters 620 und somit etwas die Gesamtfläche, die direkt beheizt ist.In the embodiment of a heater 611 according to the 10 and 11 is a modification of the heater 511 from the 8 and 9 shown, in fact here eight interruptions 632 are provided, similar to the running in the circumferential direction interruptions 432 of Fig. 7 , These subdivide a heating conductor 620 by their radial course in eight circular ring sections. However, since the current flow is always exactly radially between the terminals 618a and 618a ', these interruptions 632 do not disturb the current flow. They only slightly reduce the total area of the heat conductor 620 and thus somewhat the total area that is directly heated.

Claims (15)

Heizeinrichtung mit einem Träger und mit mindestens einem auf dem Träger angeordneten flächigen elektrischen Heizleiter, wobei der Heizleiter zwischen einem ersten Anschluss und einem zweiten Anschluss verläuft, dadurch gekennzeichnet, dass der mindestens eine Heizleiter als Heizleitermaterial kohlenstoffbasiertes Material aufweist.Heating means comprising a support and at least one disposed on the support area electrical heating conductor, wherein the heating conductors extending between a first terminal and a second terminal, characterized in that the at least one heat conductor has a heat conductor material carbon-based material. Heizeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass im Verlauf eines kürzesten Weges zwischen dem ersten Anschluss und dem zweiten Anschluss, wobei dieser kürzeste Weg durch das Heizleiter verläuft, keine Flächenunterbrechung des Heizleiters bzw. kein Einschnitt im kürzesten Weg vorgesehen ist.Heating device according to claim 1, characterized in that in the course of a shortest path between the first terminal and the second terminal, this shortest path through the heating conductor, no area interruption of the heating element or no incision in the shortest path is provided. Heizeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Heizleiterdicke zwischen den elektrischen Anschlüssen zumindest teilweise variiert und nicht konstant ist, wobei vorzugsweise die Heizleiterdicke um einen Faktor 0,01 bis 20 variiert, wobei insbesondere eine Breite des Heizleiters zwischen den Anschlüssen zumindest teilweise variiert,.Heating device according to claim 1 or 2, characterized in that a Heizleiterdicke between the electrical connections varies at least partially and is not constant, wherein preferably the Heizleiterdicke varies by a factor of 0.01 to 20, in particular a width of the heat conductor between the terminals at least partially varies ,. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Heizleiter in der Draufsicht oder in der Abwicklung rechteckig ist, wobei insbesondere die Länge des Heizleiters zwischen dem ersten Anschluss und dem zweiten Anschluss 10% bis 250% der Breite des Heizleiters in Querrichtung zur Länge entspricht, wobei insbesondere der Heizleiter in einem Mittelbereich eine Verringerung oder eine Erhöhung der Heizleiterdicke aufweist, vorzugsweise eine gleichmäßige bzw. streng monoton stetige Verringerung oder eine gleichmäßige bzw. streng monoton stetige Erhöhung der Heizleiterdicke.Heating device according to one of the preceding claims, characterized in that the heating conductor is rectangular in plan view or in the unwinding, wherein in particular the length of the heating conductor between the first terminal and the second terminal 10% to 250% of the width of the heating conductor in the transverse direction to the length In particular, the heating conductor in a middle region has a reduction or an increase in the heating conductor thickness, preferably a uniform or strictly monotonously continuous reduction or a uniform or strictly monotonically continuous increase in the heating conductor thickness. Heizeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Heizleiter in der Draufsicht als Kreisringabschnitt ausgebildet ist, wobei insbesondere der erste Anschluss und der zweite Anschluss im Wesentlichen radiale Erstreckung aufweisen und wobei das mindestens eine Heizleiter zwischen den Anschlüssen samt Stromfluss durch das Heizleiter in Umfangsrichtung verläuft, wobei vorzugsweise die Heizleiterdicke entlang des kürzesten Weges oder entlang eines Stromflusses zwischen den Anschlüssen im Wesentlichen gleich bleibt bzw. konstant ist.Heating device according to one of claims 1 to 3, characterized in that the at least one heating conductor is formed in the plan view as a circular ring portion, wherein in particular the first terminal and the second terminal have substantially radial extent and wherein the at least one heating conductor between the terminals, including current flow extends through the heating conductor in the circumferential direction, wherein preferably the heating conductor thickness along the shortest path or along a current flow between the terminals remains substantially constant or constant. Heizeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der mindestens eine Heizleiter in der Draufsicht als Kreisringabschnitt ausgebildet ist, wobei der erste Anschluss und der zweite Anschluss im Wesentlichen in Umfangsrichtung verlaufen, wobei ein Anschluss innen verläuft und ein Anschluss außen verläuft, wobei vorzugsweise der eine Anschluss konzentrisch zum anderen Anschluss verläuft, wobei insbesondere der Stromfluss zwischen den beiden Anschlüssen in radialer Richtung verläuft.Heating device according to one of claims 1 to 3, characterized in that the at least one heating conductor is formed in the plan view as a circular ring portion, wherein the first terminal and the second terminal extend substantially in the circumferential direction, wherein a connection extends inside and a connection runs outside, wherein preferably one terminal is concentric with the other terminal, wherein in particular the current flow between the two terminals extends in the radial direction. Heizeinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass sich die Heizleiterdicke entlang eines Stromflusses bzw. Strompfades zwischen den beiden Anschlüssen ändert, vorteilhaft monoton zunimmt oder monoton abnimmt.Heating device according to claim 6, characterized in that the Heizleiterdicke changes along a current flow or current path between the two terminals, advantageously increases monotonically or decreases monotonically. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Veränderung der Heizleiterdicke in Sprüngen bzw. in Stufen erfolgt.Heating device according to one of the preceding claims, characterized in that a change in the Heizleiterdicke takes place in jumps or in stages. Heizeinrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass eine Veränderung der Heizleiterdicke streng monoton erfolgt, insbesondere ohne Sprünge und vorzugsweise gleichmäßig.Heating device according to one of claims 1 to 7, characterized in that a change in the heating conductor thickness is strictly monotonous, in particular without jumps and preferably evenly. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Heizleiter im Schichtauftrag hergestellt ist, insbesondere mehr Schichten je größer die Heizleiterdicke ist, wobei die Schichten jeweils gleich dick sind und wobei in Bereichen erhöhter Heizleiterdicke mehr Schichten aufgetragen sind als in Bereichen verringerter Heizleiterdicke.Heating device according to one of the preceding claims, characterized in that the heating conductor is made in a layer order, in particular more layers the greater the Heizleiterdicke, wherein the layers are each the same thickness and wherein in areas of increased Heizleiterdicke more layers are applied as in areas of reduced Heizleiterdicke. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unterschiedliche Heizleiterdicken durch einen Abtrag von Heizleitermaterial erzielt worden sind, insbesondere einen flächig verteilten, unterschiedlichen und/oder gleichmäßigen Abtrag.Heating device according to one of the preceding claims, characterized in that different Heizleiterdicken have been achieved by a removal of Heizleiterermaterial, in particular a flat distributed, different and / or uniform removal. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Heizleiter als kohlenstoffbasiertes Heizleitermaterial Graphit, Carbon Nanotubes, Fullerene, amorphen Kohlenstoff oder Graphen aufweist, wobei vorzugsweise ein Flächenwiderstand des Heizleitermaterials 20 Ω/□ bis 400 Ω/□ beträgt, vorzugsweise 30 Ω/□ bis 250 Ω/□.Heating device according to one of the preceding claims, characterized in that the at least one heating element as a carbon-based Heizleitermaterial graphite, carbon nanotubes, fullerenes, amorphous carbon or graphene, wherein preferably a sheet resistance of the Heizleiterermaterials 20 Ω / □ to 400 Ω / □, preferably 30 Ω / □ up to 250 Ω / □. Heizeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Heizleitermaterial frei von Edelmetall ist, wobei insbesondere ein Flächenwiderstand des Heizleitermaterials 20 Ω/□ bis 400 Ω/□ beträgt, vorzugsweise 30 Ω/□ bis 250 Ω/□.Heating device according to one of the preceding claims, characterized in that the heating conductor material is free of noble metal, wherein in particular a sheet resistance of the heating conductor material is 20 Ω / □ to 400 Ω / □, preferably 30 Ω / □ to 250 Ω / □. Verfahren zur Herstellung einer Heizeinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Heizleiter in einem mehrstufigen Schichtaufbau auf dem Träger hergestellt wird für die unterschiedlichen bzw. veränderlichen Heizleiterdicken mit dem Auftragen einer Schicht von Heizleitermaterial auf die andere, wobei ein Verfahren zum Auftragen aus einer der folgenden Gruppen ausgewählt ist: Drucken, Sprühen, Spritzen, Inkjet, Aufschleudern, Siebdruck.A method for producing a heating device according to claim 3, characterized in that the heating conductor is produced in a multi-stage layer construction on the support for the different or Heizleiterdicken varying with the application of a layer of Heizleiterermaterial to the other, wherein a method for applying one of the The following groups are selected: printing, spraying, spraying, inkjet, spin-on, screen printing. Verfahren zur Herstellung einer Heizeinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass bereichsweise Heizleitermaterial des fertigen Heizleiters entfernt bzw. abgetragen wird, um unterschiedliche bzw. veränderliche Heizleiterdicken zu erzielen, vorzugsweise durch ein Verfahren aus der Gruppe: Abschleifen, Abkratzen, Laserstrahlen, Sandstrahlen, Abstrahlen, wobei insbesondere für einen Abgleich des Heizleiters auf einen genauen Widerstandswert das Heizleitermaterial bereichsweise abgetragen bzw. entfernt wird, wobei vorzugsweise das Heizleitermaterial während einer Widerstandsmessung abgetragen bzw. entfernt wird.A method for producing a heating device according to claim 3, characterized in that partially heating conductor material of the finished heat conductor is removed or removed in order to achieve different or variable Heizleiterdicken, preferably by a method from the group: grinding, scraping, laser blasting, sandblasting, blasting In particular, for an adjustment of the heating element to an exact resistance value, the heating conductor material is removed or removed in regions, wherein preferably the heating conductor material is removed or removed during a resistance measurement.
EP16203541.4A 2015-12-18 2016-12-12 Heating device with a carrier and method of making it Active EP3182794B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16203541T PL3182794T3 (en) 2015-12-18 2016-12-12 Heating device with a carrier and method of making it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015226053 2015-12-18

Publications (2)

Publication Number Publication Date
EP3182794A1 true EP3182794A1 (en) 2017-06-21
EP3182794B1 EP3182794B1 (en) 2020-12-09

Family

ID=57629254

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16203541.4A Active EP3182794B1 (en) 2015-12-18 2016-12-12 Heating device with a carrier and method of making it
EP17167149.8A Pending EP3250003A1 (en) 2015-12-18 2017-04-19 Heating device

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17167149.8A Pending EP3250003A1 (en) 2015-12-18 2017-04-19 Heating device

Country Status (7)

Country Link
US (1) US20170181226A1 (en)
EP (2) EP3182794B1 (en)
JP (2) JP6800731B2 (en)
KR (1) KR20170132695A (en)
CN (3) CN107205288B (en)
DE (1) DE102016209012A1 (en)
PL (1) PL3182794T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331318A1 (en) * 2016-12-02 2018-06-06 Goodrich Corporation Method to create carbon nanotube heaters with varying resistance
EP3557144A1 (en) * 2018-04-20 2019-10-23 Future Carbon GmbH Multi-layered composite system with a heatable layer and kit which is used to produce the multi-layered composite system
US11745879B2 (en) 2020-03-20 2023-09-05 Rosemount Aerospace Inc. Thin film heater configuration for air data probe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016211081A1 (en) 2016-06-21 2017-12-21 E.G.O. Elektro-Gerätebau GmbH Method for producing a heating device and heating device
DE102016224069A1 (en) 2016-12-02 2018-06-07 E.G.O. Elektro-Gerätebau GmbH Cooking utensil with a cooking plate and a heater underneath
JP7089915B2 (en) * 2018-03-27 2022-06-23 株式会社Lixil Heat generator
US11274853B2 (en) 2018-10-15 2022-03-15 Goodrich Corporation Additively manufactured heaters for water system components
CN111050435A (en) * 2020-01-13 2020-04-21 华智算(广州)科技有限公司 Resistance controllable heating plate along length direction and preparation process thereof
DE102020207784A1 (en) 2020-06-23 2021-12-23 E.G.O. Elektro-Gerätebau GmbH Heating device with a temperature measuring device and method for temperature measurement on the heating device and for production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199610A1 (en) * 2004-03-10 2005-09-15 Kevin Ptasienski Variable watt density layered heater
US20090314765A1 (en) * 2008-06-13 2009-12-24 Tsinghua University Carbon nanotube heater
US20100096507A1 (en) * 2008-07-29 2010-04-22 Markus Villinger Heating device for deicing aircraft parts
US20140021195A1 (en) * 2010-02-12 2014-01-23 Research & Business Foundation Sungkyunkwan University Flexible transparent heating element using graphene and method for manufacturing the same
WO2015048564A1 (en) * 2013-09-29 2015-04-02 Abominable Labs, Llc Multiregion heated eye shield

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986689U (en) * 1982-12-02 1984-06-12 東日電気株式会社 Steam generator heater
DE19810848A1 (en) * 1998-02-06 1999-08-12 Heinz Zorn Mirror heater
JP2002184558A (en) * 2000-12-12 2002-06-28 Ibiden Co Ltd Heater
JP2003123945A (en) * 2001-08-08 2003-04-25 Fuji Name Plate Kk Heater
JP2003123944A (en) * 2001-10-05 2003-04-25 Toshiba Ceramics Co Ltd Resistance heating foil element, method of manufacturing the same and flat heater
WO2003047312A1 (en) * 2001-11-30 2003-06-05 Ibiden Co., Ltd. Ceramic heater
DE102004058077A1 (en) * 2004-12-01 2006-06-08 Heraeus Noblelight Gmbh CFC heaters
JP4756695B2 (en) * 2006-02-20 2011-08-24 コバレントマテリアル株式会社 Sheet heater
EP1933598B1 (en) * 2006-12-11 2013-11-13 Behr GmbH & Co. KG Electrical heater or supplementary heater, in particular for a heating or air conditioning assembly of a vehicle
US7741584B2 (en) * 2007-01-21 2010-06-22 Momentive Performance Materials Inc. Encapsulated graphite heater and process
CN100466866C (en) * 2007-02-05 2009-03-04 常熟市新力电子器件厂 Electric heating tube with automatic temperature control and preventing dry burning
US8193475B2 (en) * 2007-02-13 2012-06-05 Advanced Materials Enterprises Company Limited Heating apparatus and method for making the same
JP2009059539A (en) * 2007-08-30 2009-03-19 Harison Toshiba Lighting Corp Planar heater, heating device, and image-forming device
US20100055318A1 (en) * 2008-08-29 2010-03-04 Veeco Instruments Inc. Wafer carrier with varying thermal resistance
JP5430997B2 (en) * 2009-03-30 2014-03-05 太平洋セメント株式会社 Ceramic heater
WO2011030440A1 (en) * 2009-09-11 2011-03-17 キヤノン株式会社 Heater and image heating device equipped with heater
EP2436946B1 (en) * 2010-09-29 2013-08-21 Carl Freudenberg KG Heating element for oscillation-based components
EP2444381A1 (en) * 2010-10-19 2012-04-25 Saint-Gobain Glass France Transparent glazing
FR2968183B1 (en) * 2010-12-06 2014-02-14 Seb Sa HOUSEHOLD APPLIANCE FOR HOT-WATER BEVERAGE PREPARATION WITH DOUBLE TANK
KR20110094174A (en) * 2011-08-04 2011-08-22 한병완 Method for manufacturing ptc film heater by roll to roll with thin metallic etched electrodes
DE102012200398A1 (en) 2012-01-12 2013-07-18 BSH Bosch und Siemens Hausgeräte GmbH Water-guiding household appliance has guide path, which extends such that individual sections of guide path possesses minimum distance from one another, where liquid is guided in body with component radial to body wall
DE102012001027A1 (en) * 2012-01-19 2013-07-25 Futurecarbon Gmbh Heating device and method for operating a heating device
DE102012202065B3 (en) 2012-02-10 2013-05-29 E.G.O. Elektro-Gerätebau GmbH Pump and method for heating a pump
US9210737B2 (en) * 2012-02-16 2015-12-08 Abominable Labs, Llc Multiregion heated eye shield
JP5896142B2 (en) * 2012-03-23 2016-03-30 東芝ライテック株式会社 Ceramic heater and fixing device
DE102012213385A1 (en) 2012-07-30 2014-05-22 E.G.O. Elektro-Gerätebau GmbH Heating and electrical appliance with heating device
DE102013200277A1 (en) 2013-01-10 2014-01-30 E.G.O. Elektro-Gerätebau GmbH Heating device has measuring device that is connected to planar electrode and heating conductor, for detecting temperature dependent current flow between heating conductor and covering layer and/or dielectric insulation layer
JP2015210989A (en) * 2014-04-28 2015-11-24 東芝ライテック株式会社 Heater and image forming apparatus
KR101601456B1 (en) * 2014-07-29 2016-03-09 현대자동차주식회사 Washer liquid heating apparatus integrated into washer reservoir
CN204906731U (en) * 2015-04-10 2015-12-23 张飞林 Pottery electric heating assemblies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199610A1 (en) * 2004-03-10 2005-09-15 Kevin Ptasienski Variable watt density layered heater
US20090314765A1 (en) * 2008-06-13 2009-12-24 Tsinghua University Carbon nanotube heater
US20100096507A1 (en) * 2008-07-29 2010-04-22 Markus Villinger Heating device for deicing aircraft parts
US20140021195A1 (en) * 2010-02-12 2014-01-23 Research & Business Foundation Sungkyunkwan University Flexible transparent heating element using graphene and method for manufacturing the same
WO2015048564A1 (en) * 2013-09-29 2015-04-02 Abominable Labs, Llc Multiregion heated eye shield

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3331318A1 (en) * 2016-12-02 2018-06-06 Goodrich Corporation Method to create carbon nanotube heaters with varying resistance
US11382181B2 (en) 2016-12-02 2022-07-05 Goodrich Corporation Method to create carbon nanotube heaters with varying resistance
EP3557144A1 (en) * 2018-04-20 2019-10-23 Future Carbon GmbH Multi-layered composite system with a heatable layer and kit which is used to produce the multi-layered composite system
WO2019202100A1 (en) * 2018-04-20 2019-10-24 Future Carbon Gmbh Multilayer composite system comprising a heatable layer, and kit for manufacturing the multilayer composite system
US11745879B2 (en) 2020-03-20 2023-09-05 Rosemount Aerospace Inc. Thin film heater configuration for air data probe

Also Published As

Publication number Publication date
PL3182794T3 (en) 2021-05-17
DE102016209012A1 (en) 2017-06-22
CN107426835A (en) 2017-12-01
CN107205288A (en) 2017-09-26
JP6800731B2 (en) 2020-12-16
CN107205288B (en) 2022-10-28
CN114679802A (en) 2022-06-28
EP3182794B1 (en) 2020-12-09
US20170181226A1 (en) 2017-06-22
EP3250003A1 (en) 2017-11-29
KR20170132695A (en) 2017-12-04
JP2017112114A (en) 2017-06-22
JP2017212206A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
EP3182794B1 (en) Heating device with a carrier and method of making it
EP2357704B1 (en) Method for producing an SOFC fuel cell
EP0450455A2 (en) Foil with vacuum evaporated segmented metallic deposit and self-healing capacitor produced by means of this foil
DE102013216290B4 (en) Heating device and method for operating a heating device
EP2274475B1 (en) Heated embossing roll
EP3887116B1 (en) Rotor blade mold and method for producing a rotor blade for a wind turbine
DE112019002509T5 (en) CHIP RESISTOR AND METHOD FOR MAKING A CHIP RESISTOR
DE60123388T2 (en) CAPACITOR ELEMENT FOR A POWER CAPACITOR, POWER CAPACITOR WITH SUCH ELEMENT AND METALLIZED FILM FOR A POWER CAPACITOR
WO2018028946A1 (en) Insulator arrangement for a high or medium voltage switchgear assembly
EP3084832A1 (en) Organic photovoltaic element and method for producing same
DE102013210205A1 (en) CFK resistance sheet heating
DE102011004543A1 (en) Pulse resistor i.e. ohmic resistor, for dissipation of high voltage pulse in e.g. defibrillator, has thick-film arranged between contact members, where thickness of thick-film between contacts is specific value
EP3573425A1 (en) Heating device method of manufacturing a heating device
DE102019135208B4 (en) Printing unit, printing device and method for parallel extrusion of printing medium onto a substrate
DE2427474B2 (en) Metallic component for electrical machines or the like. Devices, in particular transformers, and processes for their manufacture
DE10104265A1 (en) Method of manufacturing a semiconductor circuit arrangement
DE7320456U (en) ELECTRIC FILM RESISTOR
EP2464194B1 (en) Heater for domestic applications
WO2009106226A1 (en) Roller and method for producing such a roller
EP2569787B1 (en) Switching arrangement
EP3261409A1 (en) Method of manufacturing a heating device and heating device
EP3451791B1 (en) Heater and method for manufacturing same
DE2525416A1 (en) ELECTRIC MACHINE
DE1239340B (en) Device for improving the tensile properties of wire
EP4161214A1 (en) Heating device and method for producing a heating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200728

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.G.O. ELEKTRO-GERAETEBAU GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1344677

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011905

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011905

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201212

26N No opposition filed

Effective date: 20210910

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1344677

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221107

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231204

Year of fee payment: 8

Ref country code: FR

Payment date: 20231219

Year of fee payment: 8

Ref country code: DE

Payment date: 20231219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231117

Year of fee payment: 8