EP3182011A1 - Wand eines mittels kühlluft zu kühlenden bauteils, insbesondere einer gasturbinenbrennkammerwand - Google Patents

Wand eines mittels kühlluft zu kühlenden bauteils, insbesondere einer gasturbinenbrennkammerwand Download PDF

Info

Publication number
EP3182011A1
EP3182011A1 EP16203765.9A EP16203765A EP3182011A1 EP 3182011 A1 EP3182011 A1 EP 3182011A1 EP 16203765 A EP16203765 A EP 16203765A EP 3182011 A1 EP3182011 A1 EP 3182011A1
Authority
EP
European Patent Office
Prior art keywords
wall
cooling air
rib
tubular extension
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16203765.9A
Other languages
English (en)
French (fr)
Other versions
EP3182011B1 (de
Inventor
Dr.-Ing. Miklós Gerendás
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP3182011A1 publication Critical patent/EP3182011A1/de
Application granted granted Critical
Publication of EP3182011B1 publication Critical patent/EP3182011B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03042Film cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the invention relates to a wall of a cooling air to be cooled component according to the preamble of claim 1 and a method for producing a wall, in particular a gas turbine combustor wall.
  • the invention relates to a wall of a component, which is provided for cooling by means of cooling air with at least one cooling air duct.
  • the cooling air channel is arranged at least in its outflow region inclined at an angle to the wall.
  • the wall is acted upon by cooling air from one side, through the cooling air duct, the cooling air flows to the other side of the wall.
  • the cooling air cools the wall as it flows through the cooling air channel and then lays as a cooling air film on the thermally loaded side of the wall to shield it.
  • the invention relates to a gas turbine combustor wall, and more particularly to an inner combustor wall provided with effusion holes for passing cooling air and cooling the hot side surface of the inner combustor wall.
  • the invention has for its object to provide a means of cooling air to be cooled wall of a component, which ensures optimized cooling with a simple structure and simple, cost manufacturability.
  • the cooling air channel is formed tubular extended on the side of the supply of cooling air.
  • the cooling air duct thus extends through the wall to be cooled and protrudes in the form of a tubular extension over the surface at which the cooling air is supplied.
  • this leads to the fact that the entire length of the cooling air duct increases.
  • the tubular extension thus forms an additional cooling surface for the cooling air flowing through the cooling air channel, so that the wall can be cooled better overall.
  • tubular extension according to the invention causes an enlarged outer surface is created, namely the tubular approach, which is also used for heat transfer, since it is flowed around by the cooling air.
  • the tubular extension is connected to the wall exposed to the hot gas by a rib, so that the heat can also be passed through the rib of the wall in the tubular extension.
  • This increases the temperature of the tubular extension and thereby improves the cooling effect of the overall system.
  • the tubular extension is further disposed at an angle to the surface of the wall.
  • the rib supports the tubular extension opposite the surface of the wall.
  • the angle at which the tubular extension is arranged to the surface of the wall is preferably an acute angle, in particular in an angular range between 15 ° and 45 °. More preferably, a maximum width of the tubular extension of the cooling air channel is greater than a maximum width of the rib.
  • the width of the rib is preferably constant.
  • the rib at the foot region, on which the rib is arranged on the wall a greater width than at a connection region to the tubular extension of the cooling air duct.
  • tubular projections or extensions can have a relatively small volume, so that the overall weight of the wall as a whole becomes only insignificantly larger. This proves to be particularly advantageous for components whose weight is to be minimized.
  • a particularly advantageous application of the solution according to the invention consists in inner, hot combustion chamber walls of combustion chambers of gas turbines.
  • cooling air wall elements can be further developed according to the invention, for example, walls of turbine blades, which are cooled by cooling air ducts in the interior of the turbine blades.
  • a part of the flow length of the cooling air channel is formed as a diffuser, which extends substantially through the entire thickness of the wall.
  • a small length of the cooling air duct can be used as a diffuser, since the wall thickness limits the diffuser length.
  • the inventively provided tubular approach of the wall can be made in different ways.
  • the entire cooling air channel also the region in which it extends through the tubular extension or the tubular extension, has a rectilinear course with a straight axis.
  • the tubular extension can be slightly conical in this case in order to have a draft angle suitable for the casting process.
  • the cooling air duct can be generated by means of laser or by spark erosion.
  • the rib between the wall and the tubular extension increases the stability of the wax model for casting in the lost mold and also improves the filling of the tubular extension during the actual casting process.
  • the support of the tubular extension by means of a rib is helpful.
  • the rib ensures a production-optimized design of the geometry, since there are no free-standing parts and therefore no support structures must be provided, the be removed later.
  • the cooling air duct for example, arcuate. This means that the cooling air duct on the side of the cooling air supply to the surrounding surface has a greater angle, as in the exit region on the thermally loaded side of the wall.
  • the orientation of the rib results from the direction of the generative structure, that is, substantially perpendicular to the base plate on which the individual layers are produced during the generative production, and deviates from this direction according to the invention not more than ⁇ 30 °.
  • the direction of the curvature of the cooling air channel results from the requirements of component cooling. Near the combustion chamber head or in front of or behind wall openings such as mixing holes or access holes for spark plugs, it may be useful that the outlet of the cooling air channel has a different angle to the axis of the engine than the inlet, for example 30 ° at the inlet and 45 ° at the outlet, to guide the cooling air duct around such wall openings. Overall, it may thus be advantageous that the rib and the cooling air channel have two different orientations.
  • a central axis of the cooling air channel and a rib central axis of the rib are provided such that they lie in a common plane.
  • the tubular extension lies straight above the rib.
  • the center axis of the cooling air channel and the rib central axis of the rib are provided such that the two center axes are arranged at an acute angle to each other.
  • the angle is preferably between 15 ° and 45 ° and is particularly preferably 30 °.
  • the wall comprises an obstacle, in particular an opening, such as a mixed air opening or an access hole for a spark plug, wherein along the circumference of the obstacle, a plurality of cooling air ducts are arranged with ribs.
  • a cooling flow around the obstacle on the thermally loaded side of the wall can be achieved by the arrangement of a plurality of cooling air ducts.
  • the central axis of the cooling air channel is directed parallel to a flow which is present on the thermally loaded side of the wall. This results in improved cooling of the thermally loaded wall.
  • the inlet region of the tubular extension of the cooling air channel can furthermore be designed to be flow-optimized. It can be either sharp-edged, beveled or rounded.
  • the cross-section of the cooling air duct when used in an inner combustion chamber wall may have any shapes, for example circular, elliptical or in the form of a slot.
  • the cooling air duct can be dimensioned, for example, 0.5 mm x 1.8 mm in size.
  • the tubular extension of the cooling air duct in connection with the rib leads to an additional turbulence of the inflowing cooling air and thus results in an improved heat transfer.
  • the length of the tubular extension or the tubular extension of the cooling air duct is dimensioned such that it serves as a spacer to the outer combustion chamber wall. Accordingly, the orientation of the surface formed by the inlet region perpendicular to the central axis of the cooling air passage is selected so as not to be perpendicular to the surface of the cooling air supply side of the wall. This would lead to a closure of the inlet region upon contact with an outer combustion chamber wall. It is thus an angular arrangement is provided, which extends for example only up to about 45 °. This allows a sufficiently large inflow even when in contact with the outer combustion chamber wall.
  • the orientation of the surface through which the cooling air flows into the cooling air duct is determined by the particular manufacturing method used. This also results in that the cooling air channel is not arranged perpendicular to the surface of the side of the cooling air supply of the wall. In the case of a casting, the orientation is determined by the Entformungsschräge. In the case of generative generation, the orientation of the surface is determined by the ability of the respective generative method to produce overhanging structures without additional support structure, since an additional support structure would later have to be laboriously removed again.
  • the wall according to the invention When the wall according to the invention is used as the inner combustion chamber wall of a double-walled gas turbine combustor, it may happen that an obstruction, such as a mixing air hole or front shingle edge, for example towards a combustion head, is positioned in the inflow region of the tubular extension of the cooling air passage.
  • an obstruction such as a mixing air hole or front shingle edge, for example towards a combustion head
  • the tubular extension arcuate or more curved.
  • the overall height of the tubular extension would be less than the distance between the inner and outer combustion chamber walls. It would thus result in a distance corresponding to 0.5 to 2 x the hydraulic diameter of the cooling air duct.
  • the inlet region of the tubular extension is blocked in a thermal distortion, because the inner combustion chamber wall would get in contact with the outer combustion chamber wall at the edge of the mixing air hole or at the shingle edge. In any case, the inlet region for the cooling air remains open in the cooling air duct.
  • the invention thus provides the possibility of starting the diffuser at a greater distance from the thermally loaded side of the wall. At the same opening angle of the diffuser thus results in comparison to the prior art, a significant extension of the diffuser, without an increase in the cooling air flow rate is required.
  • the tubular extension results in an increase in the degree of turbulence of the flow in the impingement cooling cavity, namely the gap between the outer and inner combustion chamber walls, in which cooling air is supplied through impingement cooling holes to the outer combustion chamber wall. This also leads to an increased heat transfer.
  • the rib By the rib, by means of which the tubular extension is supported on the surface of the side of the cooling air supply to the wall, in addition heat is dissipated from the wall and passed into the tubular extension. There it can be discharged to the outside in the extended cooling air duct and also from the tubular extension to the outside to the surrounding air. The flow around the rib by cooling air results in additional cooling of the wall.
  • the tubular extension ensures the maintenance of a distance between the outer and inner combustion chamber walls. This ensures that even in the case of thermal distortions, in particular of the inner combustion chamber wall, the impingement cooling through the impingement cooling holes of the outer combustion chamber wall can take place unhindered, since closure of the impingement cooling holes is prevented. Thus, the cooling air can flow through the baffle cooling holes in the intermediate region between the outer and the inner combustion chamber wall unhindered.
  • the rib leads to the advantage that the wall according to the invention can be produced with a preferred geometry, be it as a casting or in a generative process by which heat is conducted from the thermally loaded wall into the tubular extension and can be absorbed by the air there ,
  • a flow optimization for example, a significant rounding of the inlet region of the tubular extension ensures that the flow applies to the entire inner wall of the cooling air channel and creates a good heat transfer.
  • the invention relates to an additive method for producing a wall of a component to be cooled by means of cooling air with a tubular extension, which is arranged at an angle to the surface of the wall and supported by a rib to the surface of the wall, wherein the additive Method is formed such that the cooling air duct and the rib are made additive, such that the rib provides a support of the cooling air duct during the manufacturing process.
  • the gas turbine engine 110 is a generalized example of a turbomachine, in which the invention can be applied.
  • the engine 110 is formed in a conventional manner and comprises in succession an air inlet 111, a fan 112 circulating in a housing, a medium pressure compressor 113, a high pressure compressor 114, a combustion chamber 115, a high pressure turbine 116, a medium pressure turbine 117 and a low pressure turbine 118 and a Exhaust nozzle 119 with an outlet cone, which are all arranged around a central engine center axis 101.
  • the intermediate pressure compressor 113 and the high pressure compressor 114 each include a plurality of stages, each of which includes a circumferentially extending array of fixed stationary vanes 120, commonly referred to as stator vanes, that radially inwardly from the engine casing 121 in an annular flow passage through the compressors 113, 114 protrude.
  • the compressors further include an array of compressor blades 122 projecting radially outward from a rotatable drum or disk 125 coupled to hubs 126 of high pressure turbine 116 and intermediate pressure turbine 117, respectively.
  • the turbine sections 116, 117, 118 have similar stages, comprising an array of fixed vanes 123 projecting radially inward from the housing 121 into the annular flow passage through the turbines 116, 117, 118, and a downstream array of turbine blades 124 projecting outwardly from a rotatable hub 126.
  • the compressor drum or compressor disk 125 and the vanes 122 disposed thereon and the turbine rotor hub 126 and turbine blades 124 disposed thereon rotate about the engine centerline 101 during operation.
  • the Fig. 2 shows a longitudinal sectional view of a known from the prior art combustion chamber wall in an enlarged view.
  • a combustion chamber 1 with a Central axis 9 shown, which includes a combustion chamber head 3, a base plate 8 and a heat shield 2.
  • a burner seal is provided with the reference numeral 4.
  • the combustion chamber 1 has an outer cold combustion chamber wall 7, to which an inner, hot combustion chamber wall 6 is attached.
  • mixed air mixing air holes 5 are provided for supplying mixed air mixing air holes 5 are provided.
  • the presentation of impingement cooling holes and effusion holes has been omitted for clarity.
  • the inner combustion chamber wall 6 is provided with bolts 13, which are designed as threaded bolts and are screwed by means of nuts 14.
  • the storage of the combustion chamber 1 takes place via combustion chamber flanges 12 and combustion chamber suspensions 11.
  • Denoted by 10 is a sealing lip.
  • the Fig. 3 shows in perspective partial view embodiments of the inventive wall 16.
  • cooling air channels 15 are formed on the wall acting as effusion holes.
  • the reference numeral 22 shows an inlet region of the respective cooling air channel 15.
  • the cooling air channels 15 are formed tubular extended.
  • the tubular extensions 19 are inclined at an angle 23 to the surface of a side 17 of the wall 16, which is supplied with cooling air.
  • the tubular extensions 19 are each supported by a rib 21.
  • the rib 21 serves on the one hand to simplify the production of the wall according to the invention.
  • the rib 21 forms an additional surface, in addition to the surface of the tubular extension 19, which is surrounded by cooling air and thus forms a heat transfer surface. Due to the rounded, streamlined inlet region 22, there is an improved inflow into the cooling air channels 15.
  • the Fig. 4 shows a simplified sectional view of the embodiment of Fig. 3
  • a central axis 24 of the rectilinear cooling air channel 15 formed in this embodiment is inclined at an angle 23 to the surface of the side 17 of the wall 16. This angle can be between 15 ° and 45 °.
  • the angle 23 between the side 17 and the dashed outline shown outer contour of the tubular extension 19 located.
  • the Fig. 4 further shows parallel to the wall 16, an outer combustion chamber wall 7. This has to the wall 16, which forms an inner combustion chamber wall (s. Fig. 2 ) at a distance in which cooling air is introduced by not shown impingement cooling holes.
  • the tubular extension 19 additionally forms a spacer between the wall 16 and the Combustion chamber wall 7. In a thermal distortion of the wall 16 is thus always ensured that a sufficient volume for the passage of cooling air is maintained.
  • the inlet region 22 of the tubular extension 19 forms a surface 25 which is inclined at an angle to the surface of the side 17 of the wall 16. Even if a contact between the combustion chamber wall 7 and the tubular extension 19 would occur, the inlet region 22 of the cooling air channel 15 would continue to be free, so that an inflow of cooling air into the cooling air channel is ensured.
  • the Fig. 4 shows by reference numeral 18 a thermally loaded side of the wall 16. This will be described below in connection with the Fig. 4 explained in detail.
  • FIGS. 5 and 6 show a design variant of the tubular extension 19, in which the tubular extension 19 is arranged in its inlet region substantially parallel to the side 17 of the wall 16.
  • This embodiment variant is preferably selected when the cooling air channel 15 is formed adjacent to an edge 26, for example a shingle edge or at the edge of a mixing air hole 5.
  • a straight-line cooling air duct 15, as in Fig. 4 would not lead to optimal inflow of cooling air. Therefore, in the embodiment of the FIGS. 5 and 6 formed the entire cooling air duct 15 bent.
  • the height of the tubular extension 19 is less than the height of the edge 26, so that it is also in a direct contact of the wall 16 with the combustion chamber wall 7, not shown (s. Fig. 4 ) does not lead to a closure of the inlet region 22.
  • the inlet region 22 rounded and designed to optimize flow.
  • the Fig. 7 shows a sectional view through the wall according to the invention, for example according to the embodiment of Fig. 4 ,
  • the cutting direction is chosen so that a diffuser 20 is shown, which opens to the thermally loaded side 18 of the wall 16. From the sectional view of Fig. 7 it follows that the wall thickness ratios are not to scale for the purpose of clarity of illustration.
  • the reference numeral 27 shows with the left arrow the effective cross section of the cooling air duct 15. After a predetermined running length of the cooling air duct 15 in the tubular extension 19 begins, as shown by solid lines, in the region of the reference numeral 28, the diffuser 20.
  • Fig. 8 shows a further embodiment variant of the invention, in which an obstacle 30, for example a mixed air opening, is provided in the wall 16.
  • a plurality of cooling air channels 15 are arranged on the side 17 of the cooling air supply.
  • a central axis 24 of the cooling air channels 15 is arranged at an acute angle 31 to a rib central axis 32.
  • the arrangement of the cooling air channels 15 along the circumference of the obstacle 30 allows sufficient cooling on the thermally loaded side along the circumference of the obstacle.
  • the cooling air channels 15 are each formed with a tubular extension and a diffuser and in Fig. 8 shown only schematically.
  • Fig. 9 shows a further embodiment of the present invention, wherein a plurality of cooling air channels 15 is provided.
  • the central axes 24 of the cooling air channels 15 are as in Fig. 8 shown embodiment arranged at an acute angle 31 to the rib central axis 32.
  • How out Fig. 9 it can be seen, is an orientation of the cooling air channels 15 such that they are parallel to a flow 33 on the thermally loaded side, which in Fig. 9 indicated by the dashed arrow (flow 33).
  • flow 33 flow 33
  • the 10a to 10f show an example of a production of the wall of a component according to the invention.
  • the component is a combustion chamber wall.
  • the method is an additive method, wherein the arrow 34 shows a construction direction of the additive method. How out Fig. 10a it can be seen, the wall 16 is first built up additive. In Fig. 10b it is shown how the starting ribs 21 'are built up. The ribs 21 are in Fig. 10c built up to the beginning of the cooling air duct 15, wherein in Fig. 10c then already the beginning of the construction of the cooling air duct 15 begins. Fig. 10d shows that with further structure in construction direction 34, the cooling air channels slowly arise, the cooling air channels are supported on the rib 21.
  • the further emergence of the cooling air ducts is off 10e and 10f seen.
  • the structure of the rib 21 supports the cooling channel 15.
  • the tubular extension 19 of the cooling air passage 15 extends straight on the rib 21.
  • the construction direction 34 is parallel to the rib central axis 32. This is schematically in the Fig. 8 and 9 located.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung bezieht sich auf eine Wand eines mittels Kühlluft zu kühlenden Bauteils mit zumindest einem Kühlluftkanal 15, welcher zumindest in seinem Ausströmbereich in einem Winkel zur Wandung 16 geneigt angeordnet ist und die Wandung 16 von einer Seite 17, auf welcher Kühlluft zugeführt wird, zu einer thermisch belasteten Seite 18 durchdringt, dadurch gekennzeichnet, dass der Kühlluftkanal 15 auf der Seite 17 der Zufuhr von Kühlluft eine rohrförmige Verlängerung aufweist, wobei die rohrförmige Verlängerung 19 in einem Winkel 23 zur Oberfläche der Wand 16 angeordnet und mittels einer Rippe 21 zur Oberfläche der Wand 16 abgestützt ist, und insbesondere auf eine innere Gasturbinenbrennkammerwand mit Effusionslöchern.

Description

  • Die Erfindung bezieht sich auf eine Wand eines mittels Kühlluft zu kühlenden Bauteils gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Herstellung einer Wand, insbesondere einer Gasturbinenbrennkammerwand.
  • Im Einzelnen bezieht sich die Erfindung auf eine Wand eines Bauteils, welches zur Kühlung mittels Kühlluft mit zumindest einem Kühlluftkanal versehen ist. Der Kühlluftkanal ist zumindest in seinem Ausströmbereich in einem Winkel zur Wand geneigt angeordnet. Die Wand wird von einer Seite aus mit Kühlluft beaufschlagt, durch den Kühlluftkanal strömt die Kühlluft zur anderen Seite der Wand. Dabei kühlt die Kühlluft beim Durchströmen des Kühlluftkanals die Wand und legt sich anschließend als Kühlluftfilm auf die thermisch belastete Seite der Wand, um diese abzuschirmen.
  • Im Einzelnen bezieht sich die Erfindung auf eine Gasturbinenbrennkammerwand und dabei insbesondere auf eine innere Brennkammerwand, welche mit Effusionslöchern versehen ist, um Kühlluft durchzuleiten und die Oberfläche der heißen Seite der inneren Brennkammerwand zu kühlen.
  • Aus dem Stand der Technik ist es bekannt, bei der Kühlung von Wandelementen oder Wänden, die Kühlluftkanäle in einem Winkel anzuordnen, um die wirksame Lauflänge des Kühlluftkanals zu erhöhen. Dieser Ausgestaltung sind jedoch Grenzen gesetzt, da die winkelmäßige Anordnung der Kühlluftkanäle nur bis zu einem Winkel möglich ist, bei dem noch eine ausreichende Durchströmung stattfindet. Als Beispiel wird hierzu auf die US 5,000,005 A verwiesen. Diese Druckschrift zeigt eine Gasturbinenbrennkammer mit Effusionslöchern, welche im Ausströmbereich verbreitert sind und einen Diffusor bilden. Übliche Neigungswinkel von Kühlluftkanälen liegen dabei in einem Winkelbereich zwischen 15° und 45°, gemessen zwischen der Mittelachse des Kühlluftkanals und der Oberfläche der Wand.
  • Um die Gesamtlänge des Kühlluftkanals zu verlängern, wurde vorgeschlagen, die Wanddicke insgesamt zu erhöhen. Dies führt jedoch zu einer erheblichen Gewichtserhöhung und erweist sich deshalb als nachteilig. Hierzu wird auf die WO 95/25932 A1 verwiesen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine mittels Kühlluft zu kühlende Wand eines Bauteils zu schaffen, welche bei einfachem Aufbau und einfacher, kostengünstiger Herstellbarkeit eine optimierte Kühlung gewährleistet.
  • Erfindungsgemäß wird die Aufgabe durch die Merkmalskombination des Anspruchs 1 gelöst, die Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.
  • Erfindungsgemäß ist somit vorgesehen, dass der Kühlluftkanal auf der Seite der Zufuhr von Kühlluft rohrförmig verlängert ausgebildet ist. Der Kühlluftkanal erstreckt sich somit durch die zu kühlende Wandung und ragt in Form eines rohrförmigen Ansatzes über die Oberfläche vor, an der die Kühlluft zugeführt wird. Dies führt zum einen dazu, dass sich die gesamte Länge des Kühlluftkanals erhöht. Der rohrförmige Ansatz bildet somit eine zusätzliche Kühlfläche für die durch den Kühlluftkanal strömende Kühlluft, so dass die Wand insgesamt besser gekühlt werden kann.
  • Weiterhin führt die erfindungsgemäße rohrförmige Verlängerung dazu, dass eine vergrößerte Außenfläche geschaffen wird, nämlich des rohrförmigen Ansatzes, welche ebenfalls zum Wärmeübergang genutzt wird, da diese von der Kühlluft umströmt wird.
  • Um dieser Aufgabe der Wärmeübertragung noch besser nachkommen zu können, wird die rohrförmige Verlängerung mit der dem Heißgas ausgesetzten Wandung durch eine Rippe verbunden, sodass die Wärme auch durch die Rippe von der Wandung in die rohrförmige Verlängerung geleitet werden kann. Dadurch wird die Temperatur der rohrförmigen Verlängerung erhöht und dadurch die Kühlwirkung des Gesamtsystems verbessert. Die rohrförmige Verlängerung ist ferner in einem Winkel zur Oberfläche der Wand angeordnet. Die Rippe stützt die rohrförmige Verlängerung gegenüber der Oberfläche der Wand ab. Der Winkel, in welcher die rohrförmige Verlängerung zur Oberfläche der Wand angeordnet ist, ist vorzugsweise ein spitzer Winkel, insbesondere in einem Winkelbereich zwischen 15° und 45°. Weiter bevorzugt ist eine maximale Breite der rohrförmigen Verlängerung des Kühlluftkanals größer als eine maximale Breite der Rippe. Die Breite der Rippe ist vorzugsweise konstant. Alternativ weist die Rippe am Fußbereich, an welchem die Rippe an der Wand angeordnet ist, eine größere Breite auf als an einem Verbindungsbereich zur rohrförmigen Verlängerung des Kühlluftkanals.
  • Ein zusätzlicher Effekt, der die Kühlung verbessert, liegt darin, dass der rohrförmige Ansatz, welcher über die Oberfläche der Seite der Wand vorsteht, zur Turbulenzbildung der Kühlluft führt. Auch hierdurch wird der Wärmeübergangskoeffizient erhöht.
  • Die rohrförmigen Ansätze oder Verlängerungen können insgesamt ein relativ geringes Volumen aufweisen, so dass das Gesamtgewicht der Wand insgesamt nur unwesentlich größer wird. Dies erweist sich insbesondere bei Bauteilen von Vorteil, deren Gewicht zu minimieren ist.
  • Eine besonders vorteilhafte Anwendung der erfindungsgemäßen Lösung besteht bei inneren, heißen Brennkammerwänden von Brennkammern von Gasturbinen. Aber auch andere, durch Kühlluft zu kühlende Wandelemente können erfindungsgemäß weitergebildet werden, beispielsweise Wandungen von Turbinenschaufeln, welche durch Kühlluftkanäle im Innenraum der Turbinenschaufeln gekühlt werden.
  • In vorteilhafter Weiterbildung der Erfindung ist vorgesehen, dass ein Teil der Strömungslänge des Kühlluftkanals als Diffusor ausgebildet ist, welcher sich im Wesentlichen durch die gesamte Dicke der Wand erstreckt. Bei den aus dem Stand der Technik bekannten Lösungen ist nur eine geringe Länge des Kühlluftkanals als Diffusor nutzbar, da die Wanddicke die Diffusorlänge limitiert. Durch die rohrförmigen Ansätze wird erfindungsgemäß eine Möglichkeit geschaffen, die wirksame Länge des Diffusors wesentlich zu erhöhten, wobei der Diffusor nicht nur über die gesamte Dicke der Wand ausgebildet sein kann, sondern zusätzlich auch über einen Teilbereich des rohrförmigen Ansatzes.
  • Der erfindungsgemäß vorgesehene rohrförmige Ansatz der Wand kann auf unterschiedliche Weise hergestellt sein. Wenn die Wand als Gussteil hergestellt ist, weist der gesamte Kühlluftkanal, auch der Bereich, in dem er sich durch den rohrförmigen Ansatz oder die rohrförmige Verlängerung erstreckt, einen geradlinigen Verlauf mit gerader Achse auf. Die rohrförmige Verlängerung kann dabei leicht konisch ausgebildet sein, um eine für das Gussverfahren geeignete Entformungsschräge aufzuweisen. Der Kühlluftkanal kann dabei mittels Laser oder mittels Funkenerosion erzeugt sein. Die Rippe zwischen Wandung und rohrförmiger Verlängerung erhöht die Stabilität des Wachsmodells für einen Guss in der verlorenen Form und sie bessert auch die Füllung der rohrförmigen Verlängerung während des eigentlichen Gießvorgangs.
  • Auch bei einer generativen Herstellung der erfindungsgemäßen Wand bzw. des mit der Wand versehenen Bauteils (Laserauftragsschweißverfahren oder ähnliches) ist die Abstützung der rohrförmigen Verlängerung mittels einer Rippe hilfreich. Die Rippe sorgt für einen fertigungstechnisch optimierten Aufbau der Geometrie, da keine freistehenden Teile vorhanden sind und daher keine Stützkonstruktionen vorgesehen sein müssen, die nachträglich zu entfernen sind. Erfindungsgemäß wird während der generativen Herstellung zuerst eine Teil der Rippe erzeugt und danach erste die rohrförmige Verlängerung zusammen mit dem Rest der Rippe. Bei einer derartig hergestellten Wandung ist es zudem möglich, den Kühlluftkanal zu krümmen, beispielsweise bogenförmig. Dies bedeutet, dass der Kühlluftkanal an der Seite der Kühlluftzufuhr zu der ihn umgebenden Oberfläche einen größeren Winkel aufweist, als im Austrittsbereich an der thermisch belasteten Seite der Wand. Hierbei ergibt sich die Orientierung der Rippe aus der Richtung des generativen Aufbaus, also im Wesentlichen senkrecht zur Grundplatte, auf der die einzelnen Schichten während der generativen Fertigung erzeugt werden, und sie weicht von dieser Richtung erfindungsgemäß nicht mehr als ±30° ab. Die Richtung der Krümmung des Kühlluftkanals ergibt sich aber aus den Erfordernissen der Bauteilkühlung. Nahe des Brennkammerkopfes oder vor bzw. hinter Wanddurchbrüchen wie Mischluftlöchern oder Zugangslöchern für Zündkerzen, kann es sinnvoll sein, dass der Austritt des Kühlluftkanals einen anderen Winkel zur Achse des Triebwerks hat als der Eintritt, zum Beispiel 30° am Eintritt und 45° am Austritt, um den Kühlluftkanal um solche Wanddurchbrüche herumzuführen. Insgesamt kann also vorteilhaft sein, dass die Rippe und der Kühlluftkanal zwei unterschiedliche Ausrichtungen haben.
  • Bevorzugt sind eine Mittelachse des Kühlluftkanals und eine Rippenmittelachse der Rippe derart vorgesehen, dass diese in einer gemeinsamen Ebene liegen. Dadurch liegt die rohrförmige Verlängerung geradlinig über der Rippe.
  • Alternativ sind gemäß einem weiteren bevorzugten Ausführungsbeispiel der Erfindung die Mittelachse des Kühlluftkanals und die Rippenmittelachse der Rippe derart vorgesehen, dass die beiden Mittelachsen zueinander in einem spitzen Winkel angeordnet sind. Der Winkel liegt bevorzugt zwischen 15° und 45° und beträgt besonders bevorzugt 30°.
  • Weiter bevorzugt umfasst die Wand ein Hindernis, insbesondere eine Öffnung, wie beispielsweise eine Mischluftöffnung oder ein Zugangsloch für eine Zündkerze, wobei entlang des Umfangs des Hindernisses eine Vielzahl von Kühlluftkanälen mit Rippen angeordnet sind. Insbesondere, wenn sich die Mittelachsen des Kühlluftkanals und der Rippe schneiden, kann durch die Anordnung einer Vielzahl von Kühlluftkanälen eine kühlende Umströmung des Hindernisses an der thermisch belasteten Seite der Wand erreicht werden.
  • Weiter bevorzugt ist die Mittelachse des Kühlluftkanals parallel zu einer Strömung gerichtet, welche an der thermisch belasteten Seite der Wand vorhanden ist. Hierdurch ergibt sich eine verbesserte Kühlung der thermisch belasteten Wand.
  • Erfindungsgemäß kann weiterhin der Einlaufbereich der rohrförmigen Verlängerung des Kühlluftkanals strömungsoptimiert ausgebildet sein. Er kann entweder scharfkantig, mit einer Fase oder abgerundet gestaltet sein.
  • Erfindungsgemäß kann der Querschnitt des Kühlluftkanals bei der Verwendung in einer inneren Brennkammerwand beliebige Formen aufweisen, beispielsweise kreisförmig, elliptisch oder in Form eines Langlochs. Im letzteren Fall kann der Kühlluftkanal beispielsweise 0,5 mm x 1,8 mm groß dimensioniert sein.
  • Wie bereits erwähnt, führt die rohrförmige Verlängerung des Kühlluftkanals in Zusammenhang mit der Rippe, zu einer zusätzlichen Verwirbelung der anströmenden Kühlluft und resultiert somit in einem verbesserten Wärmeübergang.
  • Bei Verwendung der erfindungsgemäß ausgestalteten Wand in einer doppelwandigen Gasturbinenbrennkammer ist die Länge der rohrförmigen Verlängerung oder des rohrförmigen Ansatzes des Kühlluftkanals so bemessen, dass diese als Abstandshalter zur äußeren Brennkammerwand dient. Demgemäß ist die Orientierung der durch den Einlaufbereich senkrecht zur Mittelachse des Kühlluftkanals gebildeten Fläche so gewählt, dass sie nicht senkrecht zu der Oberfläche der Seite der Kühlluftzufuhr der Wand ist. Dies würde bei einem Kontakt mit einer äußeren Brennkammerwand zu einem Verschließen des Einlaufbereichs führen. Es ist somit eine winkelmäßige Anordnung vorgesehen, welche sich beispielsweise nur bis ca. 45° erstreckt. Dies ermöglicht eine ausreichend große Einströmfläche auch bei Kontakt mit der äußeren Brennkammerwand. Die Orientierung der Fläche, durch welche die Kühlluft in den Kühlluftkanal einströmt, wird durch das jeweils verwendete Fertigungsverfahren bestimmt. Auch dies führt dazu, dass der Kühlluftkanal nicht senkrecht auf der Oberfläche der Seite der Kühlluftzufuhr der Wand angeordnet ist. Im Falle eines Gussteils wird die Orientierung durch die Entformungsschräge bestimmt. Im Falle einer generativen Erzeugung wird die Orientierung der Fläche durch die Fähigkeit des jeweiligen generativen Verfahrens bestimmt, überhängende Strukturen ohne zusätzliche Stützstruktur zu erzeugen, da eine zusätzliche Stützstruktur später wieder arbeitsintensiv entfernt werden müsste.
  • Wenn die erfindungsgemäße Wand als innere Brennkammerwand einer doppelwandigen Gasturbinenbrennkammer verwendet wird, kann es vorkommen, dass ein Hindernis, wie beispielsweise ein Mischluftloch oder ein vorderer Schindelrand, beispielsweise in Richtung zu einem Brennkammerkopf, im Einströmbereich der rohrförmigen Verlängerung des Kühlluftkanals positioniert ist. In diesem Falle ist es erfindungsgemäß möglich, wie oben stehend bereits angedeutet, die rohrförmige Verlängerung bogenförmig oder stärker gekrümmt auszubilden. In diesem Falle würde die Gesamthöhe der rohrförmigen Verlängerung geringer sein, als der Abstand zwischen der inneren und der äußeren Brennkammerwand. Es würde sich somit ein Abstand ergeben, der 0,5 bis 2 x dem hydraulischen Durchmesser des Kühlluftkanals entspricht. Somit wird vermieden, dass der Einlaufbereich der rohrförmigen Verlängerung bei einem thermischen Verzug blockiert wird, da die innere Brennkammerwand am Rand des Mischluftloches oder am Schindelrand Kontakt mit der äußeren Brennkammerwand bekommen würde. In jedem Falle bleibt der Einlaufbereich für die Kühlluft in den Kühlluftkanal offen.
  • Hinsichtlich der Möglichkeit, in der Wand einen Diffusor auszubilden, ergibt sich erfindungsgemäß somit die Möglichkeit, den Diffusor in einem größeren Abstand von der thermisch belasteten Seite der Wand beginnen zu lassen. Bei gleichem Öffnungswinkel des Diffusors ergibt sich somit, im Vergleich zum Stand der Technik, eine erhebliche Verlängerung des Diffusors, ohne dass eine Erhöhung der Kühlluft-Durchflussmenge erforderlich ist.
  • Wie sich aus oben stehender Beschreibung ergibt, zeichnet sich die Erfindung durch eine Reihe von erheblichen Vorteilen aus:
    • Durch die rohrförmige Verlängerung des Kühlluftkanals wird die innere Oberfläche des Kühlluftkanals vergrößert, so dass sich ein erhöhter Wärmeübergang ergibt.
  • Zusätzlich wird durch die rohrförmige Verlängerung auch die Oberfläche der Seite der Wand, auf welcher die Kühlluftzufuhr erfolgt, vergrößert. Diese Oberfläche wird bei der Verwendung der erfindungsgemäßen Wand in einer Gasturbinenbrennkammer üblicherweise über eine Prallkühlung gekühlt. Durch die Vergrößerung der Oberfläche wird mehr Wärme von der Kühlluft aufgenommen, so dass die Temperatur der Wand insgesamt gesenkt werden kann.
  • Die rohrförmige Verlängerung führt zu einer Erhöhung des Turbulenzgrades der Strömung in der Prallkühlkavität, nämlich dem Zwischenraum zwischen der äußeren und der inneren Brennkammerwand, in welchen Kühlluft durch Prallkühllöcher der äußeren Brennkammerwand zugeführt wird. Auch dies führt zu einem erhöhten Wärmeübergang.
  • Durch die erfindungsgemäß geschaffene Möglichkeit, die wirksame Länge des Diffusors zu erhöhen und diesen bei gleichbleibendem Öffnungswinkel an seinem Austrittsbereich weiter zu öffnen, wird die Strömungsgeschwindigkeit der durch den Kühlluftkanal strömenden Kühlluft vermindert. Durch die geringere Strömungsgeschwindigkeit der Kühlluft wird die Filmkühlwirkung erhöht.
  • Durch die Rippe, mittels derer die rohrförmige Verlängerung an der Oberfläche der Seite der Kühlluftzufuhr an der Wandung abgestützt ist, wird zusätzlich Wärme aus der Wand abgeleitet und in die rohrförmige Verlängerung geleitet. Dort kann sie nach innen in den verlängerten Kühlluftkanal und auch von der rohrförmigen Verlängerung nach außen an die umgebende Luft abgegeben werden. Durch die Umströmung der Rippe durch Kühlluft ergibt sich eine zusätzliche Kühlung der Wand.
  • Bei Verwendung der erfindungsgemäßen Wand in einer doppelwandigen Gasturbinenbrennkammer gewährleistet der rohrförmige Ansatz die Aufrechterhaltung eines Abstandes zwischen der äußeren und der inneren Brennkammerwand. Somit wird sichergestellt, dass auch bei thermischen Verzügen insbesondere der inneren Brennkammerwand die Prallkühlung durch die Prallkühllöcher der äußeren Brennkammerwand ungehindert erfolgen kann, da ein Verschließen der Prallkühllöcher verhindert wird. Somit kann die Kühlluft durch die Prallkühllöcher in den Zwischenbereich zwischen der äußeren und der inneren Brennkammerwand ungehindert einströmen.
  • Die Rippe führt zu dem Vorteil, dass die erfindungsgemäße Wand mit einer bevorzugten Geometrie herstellbar ist, sei es als Gussteil oder in einem generativen Verfahren, um das Wärme von der thermisch belasteten Wand in die rohrförmige Verlängerung geleitet wird und dort von der Luft aufgenommen werden kann.
  • Eine Strömungsoptimierung, beispielsweise eine deutliche Ausrundung des Einlaufbereichs des rohrförmigen Ansatzes gewährleistet, dass die Strömung sich an der gesamten inneren Wandung des Kühlluftkanals anlegt und einen guten Wärmeübergang schafft.
  • Ferner betrifft die Erfindung ein additives Verfahren zur Herstellung einer Wand eines mittels Kühlluft zu kühlenden Bauteils mit zumindest einem Kühlluftkanal mit einer rohrförmigen Verlängerung, welche in einem Winkel zur Oberfläche der Wand angeordnet ist und mittels einer Rippe zur Oberfläche der Wand abgestützt ist, wobei das additive Verfahren derart ausgebildet ist, dass der Kühlluftkanal und die Rippe additiv hergestellt werden, derart, dass die Rippe eine Abstützung des Kühlluftkanals während des Herstellungsverfahrens bereitstellt.
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung beschrieben. Dabei zeigt:
  • Fig. 1
    eine schematische Darstellung eines Gasturbinentriebwerks gemäß der vorliegenden Erfindung,
    Fig. 2
    eine Längs-Schnittansicht einer Brennkammer gemäß dem Stand der Technik,
    Fig. 3
    eine perspektivische Teil-Ansicht zweier Ausgestaltungsvarianten der erfindungsgemäßen Wand mit rohrförmig verlängerten Kühlluftkanälen,
    Fig. 4
    eine vereinfachte Schnittansicht, analog Fig. 3,
    Fig. 5
    eine perspektivische Ansicht einer weiteren Ausgestaltungsvariante der Erfindung,
    Fig. 6
    eine vereinfachte Schnittansicht, analog Fig. 5,
    Fig. 7
    eine weitere Schnittansicht einer Ausgestaltungsvariante zur Darstellung des Diffusors,
    Fig. 8
    eine Draufsicht einer weiteren Ausgestaltungsvariante einer Wand mit einem Hindernis,
    Fig. 9
    eine Draufsicht einer weiteren Ausgestaltungsvariante, und
    Fig. 10a-10f
    schematische Darstellungen eines additiven Verfahrens zur Herstellung einer erfindungsgemäßen Wand eines Bauteils.
  • Das Gasturbinentriebwerk 110 gemäß Fig. 1 ist ein allgemein dargestelltes Beispiel einer Turbomaschine, bei der die Erfindung Anwendung finden kann. Das Triebwerk 110 ist in herkömmlicher Weise ausgebildet und umfasst in Strömungsrichtung hintereinander einen Lufteinlass 111, einen in einem Gehäuse umlaufenden Fan 112, einen Mitteldruckkompressor 113, einen Hochdruckkompressor 114, eine Brennkammer 115, eine Hochdruckturbine 116, eine Mitteldruckturbine 117 und eine Niederdruckturbine 118 sowie eine Abgasdüse 119 mit einem Auslasskonus, die sämtlich um eine zentrale Triebwerksmittelachse 101 angeordnet sind.
  • Der Mitteldruckkompressor 113 und der Hochdruckkompressor 114 umfassen jeweils mehrere Stufen, von denen jede eine in Umfangsrichtung verlaufende Anordnung fester stationärer Leitschaufeln 120 aufweist, die allgemein als Statorschaufeln bezeichnet werden und die radial nach innen vom Triebwerksgehäuse 121 in einem ringförmigen Strömungskanal durch die Kompressoren 113, 114 vorstehen. Die Kompressoren weisen weiter eine Anordnung von Kompressorlaufschaufeln 122 auf, die radial nach außen von einer drehbaren Trommel oder Scheibe 125 vorstehen, die mit Naben 126 der Hochdruckturbine 116 bzw. der Mitteldruckturbine 117 gekoppelt sind.
  • Die Turbinenabschnitte 116, 117, 118 weisen ähnliche Stufen auf, umfassend eine Anordnung von festen Leitschaufeln 123, die radial nach innen vom Gehäuse 121 in den ringförmigen Strömungskanal durch die Turbinen 116, 117, 118 vorstehen, und eine nachfolgende Anordnung von Turbinenschaufeln 124, die nach außen von einer drehbaren Nabe 126 vorstehen. Die Kompressortrommel oder Kompressorscheibe 125 und die darauf angeordneten Schaufeln 122 sowie die Turbinenrotornabe 126 und die darauf angeordneten Turbinenlaufschaufeln 124 drehen sich im Betrieb um die Triebwerksmittelachse 101.
  • Die Fig. 2 zeigt eine Längs-Schnittansicht einer aus dem Stand der Technik bekannten Brennkammerwand in vergrößerter Darstellung. Dabei ist eine Brennkammer 1 mit einer Mittelachse 9 dargestellt, welche einen Brennkammerkopf 3, eine Grundplatte 8 und ein Hitzeschild 2 umfasst. Eine Brennerdichtung ist mit dem Bezugszeichen 4 versehen. Die Brennkammer 1 weist eine äußere kalte Brennkammerwand 7 auf, an welcher eine innere, heiße Brennkammerwand 6 befestigt ist. Zur Zuführung von Mischluft sind Mischluftlöcher 5 vorgesehen. Auf die Darstellung von Prallkühllöchern und Effusionslöchern wurde der Übersichtlichkeit halber verzichtet.
  • Die innere Brennkammerwand 6 ist mit Bolzen 13 versehen, welche als Gewindebolzen ausgeführt sind und mittels Muttern 14 verschraubt sind. Die Lagerung der Brennkammer 1 erfolgt über Brennkammerflansche 12 und Brennkammeraufhängungen 11. Mit 10 ist eine Dichtlippe bezeichnet.
  • Die Fig. 3 zeigt in perspektivischer Teilansicht Ausführungsvarianten der erfindungsgemäßen Wand 16. An der Wand sind als Effusionslöcher wirkende Kühlluftkanäle 15 ausgebildet. Diese können, wie in der rechte Bildhälfte der Fig. 3 dargestellt, einen kreisförmigen Querschnitt aufweisen oder, wie in der linken Bildhälfte dargestellt, mit einem länglichen Querschnitt versehen sein. Das Bezugszeichen 22 zeigt einen Einlaufbereich des jeweiligen Kühlluftkanals 15. Aus den Darstellungen der Fig. 3 ergibt sich, dass die Kühlluftkanäle 15 rohrförmig verlängert ausgebildet sind. Die rohrförmigen Verlängerungen 19 sind in einem Winkel 23 zur Oberfläche einer Seite 17 der Wand 16, welche mit Kühlluft beaufschlagt wird, geneigt. Die rohrförmigen Verlängerungen 19 sind jeweils mittels einer Rippe 21 abgestützt. Die Rippe 21 dient einerseits der Vereinfachung der Herstellung der erfindungsgemäßen Wand. Andererseits bildet die Rippe 21 eine zusätzliche Oberfläche, zusätzlich zur Oberfläche der rohrförmigen Verlängerung 19, welche von Kühlluft umströmt wird und somit eine Wärmeübergangsüberfläche bildet. Durch den abgerundeten, strömungsgünstig ausgebildeten Einlaufbereich 22 erfolgt eine verbesserte Einströmung in die Kühlluftkanäle 15.
  • Die Fig. 4 zeigt eine vereinfachte Schnittdarstellung des Ausführungsbeispiels der Fig. 3 durch eine der rohrförmigen Verlängerungen 19. Dabei ergibt sich, dass eine Mittelachse 24 des bei diesem Ausführungsbeispiel geradlinig ausgebildeten Kühlluftkanals 15 in einem Winkel 23 zur Oberfläche der Seite 17 der Wand 16 geneigt ist. Dieser Winkel kann zwischen 15° und 45° betragen. Zur Vereinfachung ist in Fig. 4 der Winkel 23 zwischen der Seite 17 und der gestrichelt gezeigten Außenkontur der rohrförmigen Verlängerung 19 eingezeichnet.
  • Die Fig. 4 zeigt weiterhin parallel zur Wand 16 eine äußere Brennkammerwand 7. Diese weist zur Wand 16, welche eine innere Brennkammerwand bildet (s. Fig. 2) einen Abstand auf, in welchem Kühlluft durch nicht dargestellte Prallkühllöcher eingeleitet wird. Die rohrförmige Verlängerung 19 bildet zusätzlich einen Abstandshalter zwischen der Wand 16 und der Brennkammerwand 7. Bei einem thermischen Verzug der Wand 16 wird somit stets sichergestellt, dass ein ausreichendes Volumen zur Durchleitung von Kühlluft aufrechterhalten bleibt.
  • Der Einlaufbereich 22 der rohrförmigen Verlängerung 19 bildet eine Fläche 25, welche in einem Winkel zur Oberfläche der Seite 17 der Wand 16 geneigt ist. Selbst wenn ein Kontakt zwischen der Brennkammerwand 7 und der rohrförmigen Verlängerung 19 auftreten würde, wäre der Einlaufbereich 22 des Kühlluftkanals 15 weiterhin frei, sodass eine Einströmung von Kühlluft in den Kühlluftkanal gewährleistet ist.
  • Die Fig. 4 zeigt mit dem Bezugszeichen 18 eine thermisch belastete Seite der Wand 16. Dies wird nachfolgend im Zusammenhang mit der Fig. 4 im Einzelnen erläutert.
  • Die Fig. 5 und 6 zeigen eine Ausgestaltungsvariante der rohrförmigen Verlängerung 19, bei welcher die rohrförmige Verlängerung 19 in ihrem Einlaufbereich im Wesentlichen parallel zur Seite 17 der Wand 16 angeordnet ist. Diese Ausgestaltungsvariante wird bevorzugt dann gewählt, wenn der Kühlluftkanal 15 angrenzend an einem Rand 26, beispielsweise einem Schindelrand oder am Rand eines Mischluftlochs 5 ausgebildet ist. Ein geradliniger Kühlluftkanal 15, wie in Fig. 4 gezeigt, würde zu keiner optimalen Einströmung von Kühlluft führen. Deshalb ist bei dem Ausführungsbeispiel der Fig. 5 und 6 der gesamte Kühlluftkanal 15 gebogen ausgebildet. Es versteht sich, dass die Höhe der rohrförmigen Verlängerung 19 geringer ist, als die Höhe des Randes 26, so dass es auch bei einem direkten Kontakt der Wand 16 mit der nicht dargestellten Brennkammerwand 7 (s. Fig. 4) nicht zu einem Verschluss des Einlaufbereichs 22 führt.
  • Auch bei dem Ausführungsbeispiel der Fig. 5 und 6 ist, wie bei dem vorhergehenden Ausführungsbeispiel, der Einlaufbereich 22 abgerundet und strömungsoptimiert ausgebildet.
  • Die Fig. 7 zeigt eine Schnittansicht durch die erfindungsgemäße Wand, beispielsweise gemäß dem Ausführungsbeispiel der Fig. 4. Dabei ist die Schnittrichtung so gewählt, dass ein Diffusor 20 dargestellt ist, welcher sich zu der thermisch belasteten Seite 18 der Wand 16 öffnet. Aus der Schnittansicht der Fig. 7 ergibt sich die rohrförmige Verlängerung 19. Es versteht sich, dass die Wanddickenverhältnisse zum Zwecke der deutlicheren Darstellung nicht maßstabsgetreu sind. Das Bezugszeichen 27 zeigt mit dem linken Pfeil den wirksamen Querschnitt des Kühlluftkanals 15. Nach einer vorgegebenen Lauflänge des Kühlluftkanals 15 in der rohrförmigen Verlängerung 19 beginnt, wie mit durchgezogenen Linien dargestellt, im Bereich des Bezugszeichens 28 der Diffusor 20. Aus der Darstellung ist ersichtlich, dass bei gleichbleibendem Diffusorwinkel (bezogen auf die Mittelachse 24 des Kühlluftkanals 15) der versetzt angeordnete Beginn des Diffusors 20 zu einer größeren Öffnung und damit zu einem größeren Querschnitt 29 des Kühlluftkanal-Austritts führt.
  • Im Vergleich zeigt die Fig. 7 in gestrichelten Linien die Situation des Standes der Technik. Ohne die erfindungsgemäße rohrförmige Verlängerung 19 wäre es erforderlich, den Querschnitt 27 eines verkürzten Kühlluftkanals über einen Teil der Dicke der Wand 16 aufrechtzuerhalten. Der Beginn des Diffusors wäre dabei in Richtung auf die thermisch belastete Seite 18 zurückversetzt, wodurch sich ein weitaus geringerer Querschnitt 29 im Bereich des Kühlluftaustritts des Kühlluftkanals 15 ergibt.
  • Fig. 8 zeigt eine weitere Ausgestaltungsvariante der Erfindung, bei der ein Hindernis 30, z.B. eine Mischluftöffnung, in der Wand 16 vorgesehen ist. Entlang des Umfangs des Hindernisses sind eine Vielzahl von Kühlluftkanälen 15 auf der Seite 17 der Kühlluftzufuhr angeordnet. Wie aus Fig. 8 ersichtlich ist, ist eine Mittelachse 24 der Kühlluftkanäle 15 in einem spitzen Winkel 31 zu einer Rippenmittelachse 32 angeordnet. Wie aus Fig. 8 ersichtlich ist, ermöglicht die Anordnung der Kühlluftkanäle 15 entlang des Umfangs des Hindernisses 30, dass eine ausreichende Kühlung an der thermisch belasteten Seite entlang des Umfangs des Hindernisses möglich ist. Die Kühlluftkanäle 15 sind dabei jeweils mit einer rohrförmigen Verlängerung und einem Diffusor ausgebildet und in Fig. 8 nur schematisch dargestellt.
  • Fig. 9 zeigt eine weitere Ausgestaltung der vorliegenden Erfindung, wobei eine Vielzahl von Kühlluftkanälen 15 vorgesehen ist. Die Mittelachsen 24 der Kühlluftkanäle 15 sind wie im in Fig. 8 gezeigten Ausführungsbeispiel in einem spitzen Winkel 31 zur Rippenmittelachse 32 angeordnet. Wie aus Fig. 9 ersichtlich ist, ist dabei eine Ausrichtung der Kühlluftkanäle 15 derart, dass diese parallel zu einer Strömung 33 an der thermisch belasteten Seite sind, was in Fig. 9 durch den gestrichelten Pfeil (Strömung 33) angedeutet ist. Hierdurch wird eine besonders gute Kühlung der thermisch belasteten Seite 18 der Wand 16 erreicht.
  • Die Fig. 10a bis 10f zeigen ein Beispiel einer Herstellung der erfindungsgemäßen Wand eines Bauteils. In diesem Ausführungsbeispiel ist das Bauteil eine Brennkammerwand. Das Verfahren ist ein additives Verfahren, wobei der Pfeil 34 eine Aufbaurichtung des additiven Verfahrens zeigt. Wie aus Fig. 10a ersichtlich ist, wird zuerst die Wand 16 additiv aufgebaut. In Fig. 10b ist gezeigt, wie die beginnenden Rippen 21' aufgebaut werden. Die Rippen 21 sind in Fig. 10c bis zum Anfang des Kühlluftkanals 15 aufgebaut, wobei in Fig. 10c dann schon der Beginn des Aufbaus des Kühlluftkanals 15 beginnt. Fig. 10d zeigt, dass mit weiterem Aufbau in Aufbaurichtung 34 die Kühlluftkanäle langsam entstehen, wobei die Kühlluftkanäle sich an der Rippe 21 abstützen. Die weitere Entstehung der Kühlluftkanäle ist aus Fig. 10e und 10f ersichtlich. Somit kann, wie aus den Fig. 10a bis 10f ersichtlich ist, in der Aufbaurichtung 34 eine vertikale Fertigung des Bauteils mittels eines additiven Verfahrens ermöglicht werden. Der Aufbau der Rippe 21 stützt den Kühlkanal 15 ab. In diesem Ausführungsbeispiel verläuft die rohrförmige Verlängerung 19 des Kühlluftkanals 15 geradlinig auf der Rippe 21. Wie in Fig. 3 sind in den Fig. 10a bis 10f beispielhaft zwei Ausführungsvarianten mit unterschiedlichen Querschnitten der Kühlluftkanäle dargestellt. Wenn sich die Mittelachse der Kühlluftkanäle 15 und die Rippenmittelachse 32 schneiden, wie in den Fig. 8 und 9 gezeigt, ist die Aufbaurichtung 34 parallel zur Rippenmittelachse 32. Dies ist schematisch in den Fig. 8 und 9 eingezeichnet.
  • Bezugszeichenliste:
  • 1
    Brennkammer
    2
    Hitzeschild
    3
    Brennkammerkopf
    4
    Brennerdichtung
    5
    Mischluft
    6
    innere, heiße Brennkammerwand/Segment/Schindel
    7
    äußere, kalte Brennkammerwand
    8
    Grundplatte
    9
    Mittelachse
    10
    Dichtlippe
    11
    Brennkammeraufhängung
    12
    Brennkammerflansch
    13
    Bolzen
    14
    Mutter
    15
    Effusionsloch/Kühlluftkanal
    16
    Wand
    17
    Seite der Kühlluftzufuhr
    18
    thermisch belastete Seite
    19
    rohrförmige Verlängerung
    20
    Diffusor
    21
    Rippe
    22
    Einlaufbereich
    23
    Winkel
    24
    Mittelachse
    25
    Fläche
    26
    Rand
    27
    Querschnitt
    28
    Beginn Diffusor
    29
    Querschnitt
    30
    Hindernis/Mischluftöffnung/Zugangsloch
    31
    spitzer Winkel
    32
    Rippenmittelachse
    33
    Strömung an der thermisch belasteten Seite
    34
    Aufbaurichtung des additiven Verfahrens
    101
    Triebwerksmittelachse
    110
    Gasturbinentriebwerk / Kerntriebwerk
    111
    Lufteinlass
    112
    Fan
    113
    Mitteldruckkompressor (Verdichter)
    114
    Hochdruckkompressor
    115
    Brennkammer
    116
    Hochdruckturbine
    117
    Mitteldruckturbine
    118
    Niederdruckturbine
    119
    Abgasdüse
    120
    Leitschaufeln
    121
    Triebwerksgehäuse
    122
    Kompressorlaufschaufeln
    123
    Leitschaufeln
    124
    Turbinenschaufeln
    125
    Kompressortrommel oder -scheibe
    126
    Turbinenrotornabe
    127
    Auslasskonus

Claims (13)

  1. Wand eines mittels Kühlluft zu kühlenden Bauteils mit zumindest einem Kühlluftkanal (15), welcher zumindest in seinem Ausströmbereich in einem Winkel zur Wandung (16) geneigt angeordnet ist und die Wandung (16) von einer Seite (17), auf welcher Kühlluft zugeführt wird, zu einer thermisch belasteten Seite (18) durchdringt, dadurch gekennzeichnet, dass der Kühlluftkanal (15) auf der Seite (17) der Zufuhr von Kühlluft eine rohrförmige Verlängerung (19) aufweist, wobei die rohrförmige Verlängerung (19) in einem Winkel (23) zur Oberfläche der Wand (16) angeordnet ist und mittels einer Rippe (21) zur Oberfläche der Wand (16) abgestützt ist.
  2. Wand nach Anspruch 1, dadurch gekennzeichnet, dass ein Teil der Strömungslänge des Kühlluftkanals (15) als Diffusor (20) ausgebildet ist, welcher sich im Wesentlichen durch die gesamte Dicke der Wand (16) erstreckt.
  3. Wand nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die rohrförmige Verlängerung (19) an ihrer Außenkontur konisch ausgebildet ist.
  4. Wand nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kühlluftkanal (15) geradlinig oder bogenförmig ausgebildet ist.
  5. Wand nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Einlaufbereich (22) der rohrförmigen Verlängerung (19) des Kühlluftkanals (15) strömungsoptimiert ausgebildet ist.
  6. Wand nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Wand (16) als Gussteil ausgebildet ist.
  7. Wand nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Wand (16) als additiv gefertigtes Bauteil ausgebildet ist.
  8. Wand nach einem der vorhergehenden Ansprüche, wobei eine Mittelachse (24) des Kühlluftkanals (15) und eine Rippenmittelachse (32) der Rippe (21) in einer gemeinsamen Ebene liegen.
  9. Wand nach einem der Ansprüche 1 bis 7, wobei die Mittelachse (24) des Kühlluftkanals (15) in einem spitzen Winkel (31) zur Rippenmittelachse (32) der Rippen (21) angeordnet ist.
  10. Wand nach Anspruch 9, ferner umfassend ein Hindernis (30) und insbesondere eine Öffnung, wobei entlang des Umfangs des Hindernisses (30) eine Vielzahl von Kühlluftkanälen (15) mit Rippen (21) angeordnet ist.
  11. Wand nach Anspruch 9 oder 10, wobei die Mittelachses (24) des Kühlluftkanals (15) parallel zu einer Strömung (33) an einer thermisch belasteten Seite der Wand angeordnet ist.
  12. Gasturbinenbrennkammerwand mit einer äußeren Brennkammerwand (7), an welcher in einem Abstand eine innere Brennkammerwand (6) gelagert ist, welche mit mehreren zur inneren Brennkammerwand (6) geneigt angeordneten Effusionslöchern (15) versehen ist, dadurch gekennzeichnet, dass die innere Brennkammerwand (6) gemäß einem der vorhergehenden Ansprüche ausgebildet ist.
  13. Additives Verfahren zur Herstellung einer Wand eines mittels Kühlluft zu kühlenden Bauteils mit zumindest einem Kühlluftkanal (15) mit einer rohrförmigen Verlängerung (19), welche in einem Winkel (23) zur Oberfläche der Wand (16) angeordnet ist und mittels einer Rippe (21) zur Oberfläche der Wand (16) abgestützt ist, wobei das additive Verfahren derart ausgebildet ist, dass der Kühlluftkanal und die Rippe (21) additiv hergestellt werden, derart, dass die Rippe (21) eine Abstützung des Kühlluftkanals (15) während des Herstellungsverfahrens bereitstellt.
EP16203765.9A 2015-12-16 2016-12-13 Wand eines mittels kühlluft zu kühlenden bauteils, insbesondere einer gasturbinenbrennkammerwand Active EP3182011B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015225505.0A DE102015225505A1 (de) 2015-12-16 2015-12-16 Wand eines mittels Kühlluft zu kühlenden Bauteils, insbesondere einer Gasturbinenbrennkammerwand

Publications (2)

Publication Number Publication Date
EP3182011A1 true EP3182011A1 (de) 2017-06-21
EP3182011B1 EP3182011B1 (de) 2019-11-27

Family

ID=57754939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16203765.9A Active EP3182011B1 (de) 2015-12-16 2016-12-13 Wand eines mittels kühlluft zu kühlenden bauteils, insbesondere einer gasturbinenbrennkammerwand

Country Status (3)

Country Link
US (1) US10429069B2 (de)
EP (1) EP3182011B1 (de)
DE (1) DE102015225505A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2933884A1 (en) * 2015-06-30 2016-12-30 Rolls-Royce Corporation Combustor tile
US20180030899A1 (en) * 2016-07-27 2018-02-01 Honda Motor Co., Ltd. Structure for supporting spark plug for gas turbine engine
US10731562B2 (en) * 2017-07-17 2020-08-04 Raytheon Technologies Corporation Combustor panel standoffs with cooling holes
DE102017125051A1 (de) * 2017-10-26 2019-05-02 Man Diesel & Turbo Se Strömungsmaschine
US11371703B2 (en) 2018-01-12 2022-06-28 Raytheon Technologies Corporation Apparatus and method for mitigating particulate accumulation on a component of a gas turbine
DE102018106051A1 (de) * 2018-03-15 2019-09-19 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerbaugruppe mit Brennerdichtung und Düse sowie einer Leitströmungserzeugungseinrichtung
US10823414B2 (en) 2018-03-19 2020-11-03 Raytheon Technologies Corporation Hooded entrance to effusion holes
US10775044B2 (en) * 2018-10-26 2020-09-15 Honeywell International Inc. Gas turbine engine dual-wall hot section structure
US11306918B2 (en) * 2018-11-02 2022-04-19 Chromalloy Gas Turbine Llc Turbulator geometry for a combustion liner
US11085641B2 (en) * 2018-11-27 2021-08-10 Honeywell International Inc. Plug resistant effusion holes for gas turbine engine
US11209162B2 (en) * 2019-01-04 2021-12-28 Raytheon Technologies Corporation Combustor panel stud cooling effusion through heat transfer augmentors
DE102019200985B4 (de) 2019-01-25 2023-12-07 Rolls-Royce Deutschland Ltd & Co Kg Triebwerksbauteil mit mindestens einem Kühlkanal und Herstellungsverfahren
US11306659B2 (en) * 2019-05-28 2022-04-19 Honeywell International Inc. Plug resistant effusion holes for gas turbine engine
DE102019127707A1 (de) * 2019-10-15 2021-04-15 Battenfeld-Cincinnati Germany Gmbh Bauteil für eine Extrusionslinie
DE102019132303A1 (de) * 2019-11-28 2021-06-02 Rolls-Royce Deutschland Ltd & Co Kg Vordralldüsenträger und Verfahren zu dessen Herstellung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000005A (en) 1988-08-17 1991-03-19 Rolls-Royce, Plc Combustion chamber for a gas turbine engine
WO1995025932A1 (en) 1989-08-31 1995-09-28 Alliedsignal Inc. Turbine combustor cooling system
US20110005233A1 (en) * 2009-07-08 2011-01-13 Rolls-Royce Deutschland Ltd & Co Kg Combustion chamber head of a gas turbine
EP2730844A1 (de) * 2012-11-13 2014-05-14 Rolls-Royce Deutschland Ltd & Co KG Brennkammerschindel einer Gasturbine sowie Verfahren zu deren Herstellung
DE102013003444A1 (de) * 2013-02-26 2014-09-11 Rolls-Royce Deutschland Ltd & Co Kg Prall-effusionsgekühlte Schindel einer Gasturbinenbrennkammer mit verlängerten Effusionsbohrungen
US20140338347A1 (en) * 2013-01-23 2014-11-20 Honeywell International Inc. Combustors with complex shaped effusion holes
WO2015050592A2 (en) * 2013-06-14 2015-04-09 United Technologies Corporation Gas turbine engine combustor liner panel
US20150128602A1 (en) * 2013-11-14 2015-05-14 Rolls-Royce Deutschland Ltd & Co Kg Heat shield for a gas turbine combustion chamber

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US680924A (en) * 1901-05-20 1901-08-20 John H Kelley Casting.
FR962862A (de) * 1946-10-26 1950-06-22
US4132066A (en) * 1977-09-23 1979-01-02 United Technologies Corporation Combustor liner for gas turbine engine
GB2244673B (en) * 1990-06-05 1993-09-01 Rolls Royce Plc A perforated sheet and a method of making the same
FR2668246B1 (fr) * 1990-10-17 1994-12-09 Snecma Chambre de combustion munie d'un dispositif de refroidissement de sa paroi.
CA2056592A1 (en) * 1990-12-21 1992-06-22 Phillip D. Napoli Multi-hole film cooled combustor liner with slotted film starter
FR2752916B1 (fr) * 1996-09-05 1998-10-02 Snecma Chemise de protection thermique pour chambre de combustion de turboreacteur
US6675582B2 (en) * 2001-05-23 2004-01-13 General Electric Company Slot cooled combustor line
US9127551B2 (en) * 2011-03-29 2015-09-08 Siemens Energy, Inc. Turbine combustion system cooling scoop
US8887461B2 (en) * 2013-02-19 2014-11-18 Ctb Midwest, Inc. Structural tube
JP5997831B2 (ja) * 2012-04-23 2016-09-28 ゼネラル・エレクトリック・カンパニイ 局所的な壁厚さ制御を伴うタービン翼
US9127403B2 (en) * 2013-05-28 2015-09-08 Andritz Inc. Flash tank with flared inlet insert and method for introducing flow into a flash tank
DE102013221286B4 (de) * 2013-10-21 2021-07-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammer, insbesondere Gasturbinenbrennkammer, z. B. für ein Luftfahrttriebwerk
DE102014204472A1 (de) 2014-03-11 2015-09-17 Rolls-Royce Deutschland Ltd & Co Kg Brennkammerschindel einer Gasturbine
US9970319B2 (en) * 2014-05-05 2018-05-15 United Technologies Corporation Reducing variation in cooling hole meter length
US10101030B2 (en) * 2014-09-02 2018-10-16 Honeywell International Inc. Gas turbine engines with plug resistant effusion cooling holes
US9976441B2 (en) * 2015-05-29 2018-05-22 General Electric Company Article, component, and method of forming an article
US10072846B2 (en) * 2015-07-06 2018-09-11 General Electric Company Trapped vortex cavity staging in a combustor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000005A (en) 1988-08-17 1991-03-19 Rolls-Royce, Plc Combustion chamber for a gas turbine engine
WO1995025932A1 (en) 1989-08-31 1995-09-28 Alliedsignal Inc. Turbine combustor cooling system
US20110005233A1 (en) * 2009-07-08 2011-01-13 Rolls-Royce Deutschland Ltd & Co Kg Combustion chamber head of a gas turbine
EP2730844A1 (de) * 2012-11-13 2014-05-14 Rolls-Royce Deutschland Ltd & Co KG Brennkammerschindel einer Gasturbine sowie Verfahren zu deren Herstellung
US20140338347A1 (en) * 2013-01-23 2014-11-20 Honeywell International Inc. Combustors with complex shaped effusion holes
DE102013003444A1 (de) * 2013-02-26 2014-09-11 Rolls-Royce Deutschland Ltd & Co Kg Prall-effusionsgekühlte Schindel einer Gasturbinenbrennkammer mit verlängerten Effusionsbohrungen
WO2015050592A2 (en) * 2013-06-14 2015-04-09 United Technologies Corporation Gas turbine engine combustor liner panel
US20150128602A1 (en) * 2013-11-14 2015-05-14 Rolls-Royce Deutschland Ltd & Co Kg Heat shield for a gas turbine combustion chamber

Also Published As

Publication number Publication date
EP3182011B1 (de) 2019-11-27
DE102015225505A1 (de) 2017-06-22
US20170176006A1 (en) 2017-06-22
US10429069B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
EP3182011B1 (de) Wand eines mittels kühlluft zu kühlenden bauteils, insbesondere einer gasturbinenbrennkammerwand
EP2770260B1 (de) Gasturbinenbrennkammer mit Prall-effusionsgekühlter Schindel
EP1113145B1 (de) Schaufel für Gasturbinen mit Drosselquerschnitt an Hinterkante
DE69932688T2 (de) Kühlungsöffnungen für Gasturbinenkomponenten
DE102011054388B4 (de) Einleiteinrichtung für ein Gasturbinensystem und Gasturbinensystem mit derartiger Einleiteinrichtung
EP3093447B1 (de) Rotor einer turbine einer gasturbine mit verbesserter kühlluftführung
EP2927594B1 (de) Brennkammer einer Gasturbine
DE4441507A1 (de) Turbinenkühlschaufel
EP2886961A1 (de) Unterlegscheibe einer Brennkammerschindel einer Gasturbine
DE102010037862A1 (de) Wirbelkammern zur Spaltströmungssteuerung
DE102014103005A1 (de) Verfahren und Vorrichtung zur Verbesserung der Wärmeübertragung in Turbinenabschnitten von Gasturbinen
EP1165939A1 (de) Kühlmitteldurchströmte, gegossene gasturbinenschaufel sowie vorrichtung und verfahren zur herstellung eines verteilerraums der gasturbinenschaufel
EP2966352A1 (de) Brennkammer einer gasturbine mit verschraubtem brennkammerkopf
EP3361157A1 (de) Wandbauteil einer gasturbine mit verbesserter kühlung
EP2818724A1 (de) Strömungsmaschine, Zirkulationsstruktur und Verfahren
EP2628900A1 (de) Turbinenleitschaufel mit einem Drosselelement
DE2127454A1 (de) Gasturbine
EP2886807B1 (de) Gekühlte flanschverbindung eines gasturbinentriebwerks
EP3245451B1 (de) Gasturbinenbrennkammer mit wandkonturierung
EP3159487B1 (de) Stator einer turbine einer gasturbine mit verbesserter kühlluftführung
DE102004042295A1 (de) Rotor für ein Triebwerk
DE102016212649A1 (de) Brennerdichtung einer Gasturbine und Verfahren zu deren Herstellung
EP2871418B1 (de) Gasturbinenbrennkammer sowie Verfahren zu deren Herstellung
EP1644614A1 (de) Gekühlte schaufel für eine gasturbine
EP1717416A1 (de) Turbinenschaufel, Verwendung einer Turbinenschaufel und Verfahren zur Herstellung einer Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016007720

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F23R0003060000

Ipc: F23R0003000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/00 20060101AFI20190513BHEP

Ipc: F23R 3/06 20060101ALI20190513BHEP

INTG Intention to grant announced

Effective date: 20190529

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERENDAS, MIKLOS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20191016

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERENDAS, MIKLOS, DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016007720

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1207091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200228

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016007720

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213

26N No opposition filed

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161213

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1207091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 8