EP3176534B1 - Vorrichtung und verfahren zur reinigung eines wärmetauschers - Google Patents

Vorrichtung und verfahren zur reinigung eines wärmetauschers Download PDF

Info

Publication number
EP3176534B1
EP3176534B1 EP16201397.3A EP16201397A EP3176534B1 EP 3176534 B1 EP3176534 B1 EP 3176534B1 EP 16201397 A EP16201397 A EP 16201397A EP 3176534 B1 EP3176534 B1 EP 3176534B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
evaporation module
cleaning
cleaning device
feed pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16201397.3A
Other languages
English (en)
French (fr)
Other versions
EP3176534A2 (de
EP3176534A3 (de
Inventor
Josef Frauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frauscher Holding GmbH
Original Assignee
Frauscher Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frauscher Holding GmbH filed Critical Frauscher Holding GmbH
Publication of EP3176534A2 publication Critical patent/EP3176534A2/de
Publication of EP3176534A3 publication Critical patent/EP3176534A3/de
Application granted granted Critical
Publication of EP3176534B1 publication Critical patent/EP3176534B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/16Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris
    • F28G1/166Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris from external surfaces of heat exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs

Definitions

  • the invention is in the field of heat exchangers and relates in particular to the purification of heat exchangers which come into contact with flue gases.
  • a combined heat and power by means of Stirling engines has the advantage that the hot flue gases (eg flue gases produced in biomass combustion plants) are separated from the process gas of the engine and the heat transfer to the process gas takes place via a heat exchanger to which However, accumulate for the reasons described above, ash particles and other particles contained in the flue gas, which deteriorates the heat transfer in the heat exchanger.
  • the hot flue gases eg flue gases produced in biomass combustion plants
  • the publication DE 10 2010 036 749 A1 describes a device according to the preamble of claim 1 and a method for reducing deposits on boiler tubes in boilers with a fluidized bed furnace. In this case, water or steam is injected by means of a lance into the combustion chamber in the vicinity of the boiler tubes.
  • the publication US 2,115,885 describes a sootblower system for boilers, heat exchangers and the like, wherein steam is passed via nozzles under pressure to the parts to be cleaned.
  • the publication DE 10 2008 036 383 A1 also describes a sootblower, which is also blown with steam on the parts to be cleaned.
  • the publication DD 33 945 describes a probe for cleaning fly ash and slag steam generators, wherein a cleaning medium, after complete or partial evaporation, exits into the steam generator space or is used for cleaning purposes.
  • the publication DE 10 2010 061 072 A1 relates to the cleaning of a heat exchanger of a Stirling engine.
  • the cleaning of the heat exchanger is carried out by means of an automatically controlled cleaning lance, the front end has a nozzle head, which can be introduced into the heat exchanger.
  • the nozzle head rotates about the longitudinal axis of the cleaning lance and in an angularly oriented direction of movement, so that it is ensured by this superposition of the two different movements that all surfaces of the heat exchanger are wetted with the cleaning liquid.
  • the publication DE 10 2005 004 007 A1 also relates to the cleaning of a heat exchanger in a Stirling engine by means of a sandblasting process. For many applications, this method is not suitable due to the abrasion caused.
  • the publication US 2010/0257857 A1 relates generally to a two-cylinder Stirling Alpha-type arcuate heat exchanger machine.
  • the object underlying the invention can be seen to provide an improved apparatus and an improved method for cleaning a heat exchanger in a cogeneration machine.
  • the cleaning device has an evaporation module which is arranged in the vicinity of the heat exchanger, so that it is exposed to the same gas flow as the heat exchanger.
  • the cleaning device further comprises a supply line, which is connected to the evaporation module and via which a liquid can be passed into the evaporation module.
  • the evaporation module has outlet nozzles which are arranged so that the vapor, which is formed in the evaporation module by evaporation of the liquid, can exit through the outlet nozzles in the direction of the heat exchanger.
  • Stirling engine This has, according to an embodiment of the invention, a heat exchanger (heater), which is flowed through by hot hot gas, so that the heating gas gives off heat to the heat exchanger.
  • the Stirling engine further includes the above-described cleaning device located near the heat exchanger.
  • the method comprises the method of feeding a defined amount of liquid into the evaporation module, wherein the liquid in vaporizes the evaporation module and steam exits through outlet nozzles of the evaporation module in the direction of the heat exchanger.
  • the embodiments of a cleaning device described here are designed to generate high-pressure steam within an evaporation module of the cleaning device and to direct it via outlet nozzles to the heat exchanger to be cleaned.
  • the embodiments described here relate to a cleaning device for cleaning a heat exchanger of a Stirling engine.
  • the cleaning device can also be used in other environments for cleaning heat exchangers.
  • the evaporation module of the cleaning device can be arranged, for example, where the heating gases that heat the heat exchanger, leaving this.
  • the module assumes the temperature of the exiting hot gases, which in the case of Stirling machines or other thermodynamic machines can be up to 700 degrees Celsius.
  • a defined amount of liquid eg water
  • the steam then exits the module at high pressure on nozzles with the nozzles aligned so that the steam is directed onto the surface of the heat exchanger to be cleaned.
  • This process can be cyclically controlled, for example, time-dependent or depending on the degree of contamination of the heat exchanger.
  • the cleaning device described here offers the possibility of pivoting the evaporation module about its longitudinal axis in order to gradually spray the surface of the heat exchanger with only a limited number of nozzles, which causes a particularly intensive partial cleaning.
  • the cleaning can be done without interrupting the operation of the machine and the superheated steam jet does not cause a damaging temperature shock at the heat exchanger.
  • the invention is eminently suitable for removing dust and particulate deposits from the heat exchanger without the use of external energy. Rather, the temperature level of the flue gases is used when exiting the heat exchanger to heat the evaporation module of the cleaning device. While the hot gases (flue gases) can flow with temperatures of over 1200 degrees Celsius on the heat exchanger, they cool at the surfaces of the heat exchanger whose temperatures are about 600 to 650 degrees C, to about 700 degrees C from. Depending on the design of the Stirling engine as a medium or high-temperature machine, this value can still vary significantly upwards or downwards. In any case, however, it is a temperature level at which on the one hand materials such as steels are still available with considerable strengths, on the other hand, a highly superheated steam with pressures of more than 100 bar can be generated.
  • the evaporation module is, for example, a cuboid or cylindrical body comprising a housing, for example of heat-resistant steel.
  • the housing is filled with a material with high heat capacity, for example made of alloy steel, and is immediately (relative to the flow direction of the hot gases) arranged behind the heat exchanger, so that the evaporation module is heated by the hot gases over time substantially to their temperature.
  • a material with high heat capacity for example made of alloy steel
  • the input side are connected to a water supply line and the output side with one or more outlet nozzles.
  • the nozzles may be arranged in rows and are directed to the heat exchanger.
  • the evaporation module is supplied via a pipe, in the course of which is a check valve, cyclically supplied via a water supply device with a defined amount of water.
  • the check valve protects the water supply device against pressure surges (shock waves) that may arise during the evaporation process in the evaporation module.
  • the water supply may optionally comprise a high-pressure line, a pump or a pump cylinder, which emits the defined amount of water to the evaporation module.
  • a high-pressure shut-off valve may allow the controlled supply of certain amounts of water at certain time intervals, which are adapted to the cleaning requirements of the heat exchanger. In the case of the application of a pump cylinder, a high-pressure shut-off valve (solenoid valve 3.2) is unnecessary, since the supply of a defined amount of water depends directly on the stroke of the pump cylinder.
  • the number of exit nozzles on the evaporation module and their orientation can be chosen so that they cover the entire heat exchanger. It may be advantageous in view of a short-term Schugasumledge to clean only a portion of the heat exchanger.
  • the concomitant reduction in the number of nozzles can be used for faster pressure build-up and higher final pressure resulting in significantly more concentrated cleaning.
  • To operate the entire heat exchanger surface it may be provided to pivot or displace the evaporator continuously or stepwise.
  • the water supply can be done via a flexible hose or a rotary feedthrough. Such are known per se and therefore require no further explanation here, as well as a swivel or Verschubmechanismus for the evaporation module by step or pivot motors here requires no further explanation.
  • cleaning the heat exchanger does not require service interruption and that the purge jet is superheated steam, so that there is no thermal shock on the heat exchanger surface is triggered, as would be the case for example with cold compressed air or even with cold liquids.
  • FIG. 1 schematically shows a simple example of the cleaning device 3.0 generally described above, which is in the vicinity of a heat exchanger 1.7 (which may be part of a Stirling machine 1.0, for example, see also Fig. 2 ).
  • the hot fuel gas 2.2 is generated by a furnace 2.0, not shown.
  • FIG. 1 shows right longitudinal section through the evaporation module 3.5 of the cleaning device 3.0 and left a corresponding cross-section.
  • the evaporation module 3.5 has a housing 3.9, which can be made of heat-resistant steel, for example.
  • the housing 3.9 is filled with a material 3.10 high heat capacity (eg alloy steel), are provided in the channels 3.6.
  • the water supplied via the supply line 3.4 to the evaporation module 3.5 is vaporized while the channels 3.6. flows through abruptly, and the resulting steam exits through the outlet nozzle 3.7, in which the channels open 3.6, from.
  • the resulting steam jet 3.8 is directed to the heat exchanger 1.7 and frees it from the aforementioned deposits.
  • the volume of water supplied to the evaporation module 3.5 is determined via the valves 3.2 and 3.3 connected in series.
  • the valve 3.2 may be, for example, a solenoid valve which is driven at regular intervals to open the valve for a short time.
  • the second valve 3.3 is a check valve, which closes due to the resulting in the sudden evaporation of the supplied water pressure wave in the supply line 3.4 and prevents backflow of the water in the supply line 3.4.
  • the solenoid valve 3.2 and the water supply is protected from the pressure wave.
  • the water supply 3.1 can also consist of a pump cylinder 3.11, which is cyclically actuated and a metered amount of water to the evaporation module 3.5 supplies (see also Fig. 4 ).
  • FIG. 2 shows a longitudinal section along the cylinder axes and Fig. 3 a corresponding cross section through the cleaning device 3.0.
  • the Stirling engine 1.0 includes two cylinders 1.3 and 1.4, in each of which a piston is guided.
  • the pistons are mechanically coupled to the crankshaft 1.2 so that the linear motion of the pistons is converted into rotational motion of the crankshaft.
  • the pistons move linearly along the cylinder axes, which are approximately parallel in the present example (which need not necessarily be the case).
  • the cylinder 1.3 is “hot” and the cylinder 1.4 is “cold”, wherein the cold cylinder 1.3 lags the hot by a certain phase angle (based on the rotation angle of the crankshaft 1.2).
  • the crankshaft 1.2 is arranged in a housing, the crankcase 1.1.
  • a regenerator 1.6 is arranged at the cylinder end of the cold cylinder 1.4.
  • the high-temperature heat exchanger 1.7 (heater) is arranged, which comes into operation during operation with the hot fuel gas 2.2 (eg over 1000 ° C.) and thus by deposits of dust, ash and other particles , which carries the fuel gas 2.2 with it, is charged.
  • the heating gas 2.2 gives heat to the heat exchanger 1.7, thereby cooling to e.g. around 700 ° C.
  • the cooled, but still warm fuel gas is designated by the reference numeral 2.3.
  • Around the heat exchanger 1.7 around a heating gas 2.1 is arranged, which ensures that the heating gas flows through the heat exchanger 1.7.
  • the operation of a Stirling machine in alpha configuration is known per se and will not be explained further here.
  • the heater or heat exchanger 1.7 extends arcuately (approximately semicircular in longitudinal section Fig. 2 ) between the two cylinders 1.3 and 1.4, and consists of several channels, which are traversed by the process gas of the Stirling engine. Other than arcuate compounds may be advantageous in specific applications, but do not affect the idea of the invention.
  • the cleaning device 3.0 is arranged in the immediate vicinity of the heat exchanger 1.7, that it is flowed around by the warm (cooled to eg about 700 ° C.) heating gas and heated. In operation, therefore, the cleaning device 3.0 has approximately the same temperature as the warm fuel gas 2.3.
  • the heat exchanger 1.7 extends arcuately in such a way that at least partially surrounds the cleaning direction 3.0.
  • the longitudinal axis of the cleaning device 3.0 is approximately in the center of the arc.
  • FIG. 4 shows the same example Fig. 1 with an alternative water supply instead of a pressure port of the check valve 3.3 is preceded by a pump cylinder 3.11.
  • the solenoid valve 3.2 can be omitted in this case.
  • the evaporation module 3.5 Upon actuation of the pump cylinder 3.11 the evaporation module 3.5 a defined amount of liquid via the check valve 3.3 is supplied. This defined amount of liquid depends directly on the geometry (cross-sectional area and stroke) of the pumping cylinder 3.11, which can be matched to the evaporation module 3.5.
  • the cleaning process may be cyclically controlled (for example, time dependent or depending on the degree of fouling of the heat exchanger), with the pump cylinder being operated once in each cycle to inject the defined amount of liquid into the evaporation module 3.5.
  • Fig. 4 identical with Fig. 1 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung liegt auf dem Gebiet der Wärmetauscher und betrifft insbesondere die Reinigung von Wärmetauschern, die mit Rauchgasen in Berührung kommen.
  • HINTERGRUND
  • Die direkte Nutzung der heißen Rauchgase aus Biomasse-Verbrennungsanlagen für Kraft-Wärme-Kopplungsmaschinen bedeutet eine dramatische Systemvereinfachung im Vergleich zu beispielsweise einem Holzgas-Blockheizkraftwerk. Letzteres benötigen eine Vergaseranlage, eine Gaskühlung und eine Teerkondensationsanlage, bevor das resultierende Gas einem Ottomotor zugeführt werden kann. Abgesehen davon, dass wegen der Gaskühlung der elektrische Gesamtwirkungsgrad sinkt, steigt infolge der Anzahl der Systemkomponenten der Aufwand für Wartung und Instandhaltung. Jedoch auch andere Brennstoffe, wie beispielsweise Deponie- oder Klärgase (Schwachgase) beinhalten Reststoffe, die bei der Verbrennung zu Ablagerungen am Wärmetauscher führen. Typisches Beispiel dafür sind Siloxane in Klärgasen, die bei der Verbrennung in Form von Siliciumdioxid ausfallen.
  • Eine Kraft-Wärme-Kopplung mittels Stirling-Motoren hat den Vorteil, dass die heißen Rauchgase (z.B. Rauchgase, die in Biomasse-Feuerungsanlagen entstehen) von dem Prozessgas des Motors getrennt sind und die Wärmeübertragung auf das Prozessgas über einen Wärmetauscher erfolgt, an dem sich jedoch aus den oben beschriebenen Gründen Ascheteile und andere im Rauchgas enthaltenen Partikel anlagern, was die Wärmeübertragung im Wärmetauscher verschlechtert.
  • Es sind verschiedene Reinigungsvorrichtungen zur Reinigung von Wärmetauscher bekannt, die beispielsweise mechanisch wirken oder mit Druckluft oder Dampf betrieben werden. Der Aufsatz Marinitsch et al.: "Development of a hot gas heat exchanger an a cleaning system for a 35 kWel hermetic four cylinder stirling engine for solid biomass", in: Proceedings of the 12th ISEC, Sept. 2005, beschreibt die automatische Reinigung eines Wärmetauschers mittels Pressluft. An anderen Stellen wird auf den schädlichen Einfluss von Siloxanen berichtet, die in Verbrennungsmotoren in Form von Quarzstaub ausfallen und zu erheblichen Schäden, jedenfalls zu erhöhtem Instandsetzungsaufwand führen. In der Publikation EP 1 988 352 A2 ist ein System beschrieben, bei dem der Wärmetauscher mit einer Art Bürste mechanisch gereinigt wird. Die Publikation DE 10 2010 036 749 A1 beschreibt eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zur Verringerung von Ablagerungen an Kesselrohren in Kesseln mit einer Wirbelschicht-Feuerung. Dabei wird Wasser oder Dampf mittels einer Lanze in den Brennraum in der Näher der Kesselrohre eingespritzt. Die Publikation US 2,115,885 beschreibt eine Rußbläseranlage für Boiler, Wärmetauscher und dergleichen, wobei über Düsen Dampf unter Druck auf die zu reinigenden Teile geleitet wird. Die Publikation DE 10 2008 036 383 A1 beschreibt ebenfalls einen Rußbläser, bei dem ebenfalls mit Dampf auf die zu reinigenden Teile geblasen wird. Die Publikation DD 33 945 beschreibt eine Sonde zur Reinigung von Dampferzeugern von Flugasche und Schlacke, wobei ein Reinigungsmedium nach vollständiger oder teilweiser Verdampfung in den Dampferzeugerraum austritt oder zu Reinigungszwecken benutzt wird. Die Publikation DE 10 2010 061 072 A1 betrifft die Reinigung eines Wärmetauschers eines Stirling-Motors. Die Reinigung des Wärmetauschers erfolgt dabei mittels einer automatisch gesteuerten Reinigungslanze, deren vorderes Ende einen Düsenkopf aufweist, der in den Wärmetauscher eingebracht werden kann. Der Düsenkopf rotiert um die Längsachse der Reinigungslanze sowie in einer dazu winklig ausgerichteten Bewegungsrichtung, so dass durch diese Überlagerung der zwei unterschiedlichen Bewegungen sichergestellt ist, dass sämtliche Flächen des Wärmetauschers mit der Reinigungsflüssigkeit benetzt werden. Die Publikation DE 10 2005 004 007 A1 betrifft ebenfalls die Reinigung eines Wärmetauschers in einem Stirling-Motor mittels eines Sandstrahlverfahrens. Für viele Anwendungen ist diese Methode aufgrund des verursachten Abriebs nicht geeignet. Die Publikation US 2010/0257857 A1 betrifft allgemein eine zweizylindrige Stirling-Maschine vom Alpha-Typ mit bogenförmigem Wärmetauscher.
  • Die der Erfindung zugrunde liegende Aufgabe kann darin gesehen werden ein eine verbesserte Vorrichtung sowie eine verbessertes Verfahren zur Reinigung eines Wärmetauschers in einer Kraft-Wärme-Kopplungs-Maschine zu schaffen.
  • ZUSAMMENFASSUNG
  • Die oben genannte Aufgabe wird durch eine Vorrichtung gemäß Anspruch 1 und 8 sowie durch ein Verfahren gemäß Anspruch 11 gelöst. Verschiedene Ausführungsformen und Weiterentwicklungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Es wird eine Vorrichtung zur Reinigung eines Wärmetauschers beschrieben. Gemäß einem Ausführungsbeispiel der Erfindung weist die Reinigungsvorrichtung ein Verdampfungsmodul auf, das in der Nähe des Wärmetauschers angeordnet ist, sodass es derselben Gasströmung ausgesetzt ist wie der Wärmetauscher. Die Reinigungsvorrichtung weist des Weiteren eine Zuleitung auf, die mit dem Verdampfungsmodul verbunden ist und über die eine Flüssigkeit in das Verdampfungsmodul geleitet werden kann. Das Verdampfungsmodul weist Auslassdüsen auf, die so angeordnet sind, das Dampf, der in dem Verdampfungsmodul durch Verdampfen der Flüssigkeit entsteht, durch die Auslassdüsen in Richtung des Wärmetauschers austreten kann.
  • Des Weiteren wird ein Stirling-Motor beschrieben. Dieser weist gemäß einem Ausführungsbeispiel der Erfindung einen Wärmetauscher (Erhitzer) auf, der von heißem Heizgas angeströmt wird, sodass das Heizgas Wärme an den Wärmetauscher abgibt. Der Stirling-Motor weist des Weiteren die oben beschriebene Reinigungsvorrichtung auf, die in der Nähe des Wärmetauschers angeordnet ist.
  • Schließlich wird ein Verfahren zur Reinigung eines Wärmetauschers beschrieben. Dazu wird ein Verdampfungsmodul verwendet, welches in der Nähe des Wärmetauschers angeordnet ist, sodass es derselben Gasströmung ausgesetzt ist wie der Wärmetauscher. Gemäß einem Beispiel der Erfindung umfasst das Verfahren das Verfahren das Zuführen einer definierten Flüssigkeitsmenge in das Verdampfungsmodul, wobei die Flüssigkeit in dem Verdampfungsmodul verdampft und Dampf durch Auslassdüsen des Verdampfungsmoduls in Richtung des Wärmetauschers austritt.
  • KURZE BESCHREIBUNG DER ABBILDUNGEN
  • Die Erfindung wird nachfolgend anhand von den in den Abbildungen dargestellten Beispielen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Erfindung beschränkt sich nicht nur auf die dargestellten Aspekte. Vielmehr wird Wert darauf gelegt, die der Erfindung zugrunde liegenden Prinzipien darzustellen. Zu den Abbildungen:
    • Figur 1 zeigt das Reinigungssystem in tlw. vereinfachter Darstellung.
    • Figur 2 zeigt beispielhaft eine Anwendung der Erfindung an einer Stirling-Maschine in Alpha-Konfiguration.
    • Figur 3 zeigt einen Längsschnitt durch die Stirling-Maschine gemäß Fig. 2.
    • Figur 4 zeigt das Beispiel aus Fig. 1 mit einer alternativen Wasserversorgung.
  • In den Abbildungen bezeichnen gleiche Bezugszeichen gleiche oder Ähnliche Komponenten mit gleicher oder ähnlicher Bedeutung.
  • DETAILIERTE BESCHREIBUNG
  • Die hier beschriebenen Ausführungsbeispiele einer Reinigungsvorrichtung sind dazu ausgebildet, innerhalb eines Verdampfungsmoduls der Reinigungsvorrichtung Hochdruckdampf zu generieren und diesen über Austrittsdüsen auf den zu reinigenden Wärmetauscher zu leiten. Die hier beschriebenen Ausführungsbeispiele betreffen eine Reinigungsvorrichtung zum Reinigen eines Wärmetauschers einer Stirling-Maschine. Die Reinigungsvorrichtung kann jedoch auch in anderen Umgebungen zur Reinigung von Wärmetauschern eingesetzt werden.
  • Das Verdampfungsmodul der Reinigungsvorrichtung kann beispielsweise dort angeordnet werden, wo die Heizgase, die den Wärmetauscher heizen, diesen verlassen. Im Betrieb nimmt nach einer gewissen Zeit das Modul die Temperatur der austretenden Heizgase an, die im Fall von Stirling-Maschinen oder anderen thermodynamischen Maschinen bis zu 700 Grad Celsius betragen können. Gemäß den hier beschriebenen Ausführungsbeispielen wird dem heißen Modul eine definierte Menge Flüssigkeit (z.B. Wasser) zugeführt, die in Kanälen, welche innerhalb des Moduls vorgesehen sind, schlagartig zu Dampf umgewandelt wird. Der Dampf tritt dann mit hohem Druck an Düsen aus dem Modul aus, wobei die Düsen so ausgerichtet sind, dass der Dampf auf die zu reinigende Oberfläche des Wärmetauschers geleitet wird. Dieser Vorgang kann zyklisch gesteuert werden, beispielsweis zeitabhängig oder abhängig vom Grad der Verschmutzung des Wärmetauschers. Darüber hinaus bietet die hier beschriebene Reinigungsvorrichtung die Möglichkeit, das Verdampfungsmodul um seine Längsachse zu schwenken, um nur mit einer begrenzten Anzahl an Düsen schrittweise die Oberfläche des Wärmetauschers zu besprühen, was eine besonders intensive Teilreinigung bewirkt. Die Reinigung kann ohne Betriebsunterbrechung der Maschine erfolgen und der überhitzte Dampfstrahl bewirkt keinen schädlichen Temperaturschock am Wärmetauscher.
  • Die Erfindung eignet sich hervorragend dafür, staub- und partikelartige Ablagerungen vom Wärmetauscher ohne den Einsatz von externer Energie zu entfernen. Vielmehr wird das Temperaturniveau der Rauchgase beim Austritt aus dem Wärmetauscher genutzt, um das Verdampfungsmodul der Reinigungsvorrichtung zu heizen. Während die Heizgase (Rauchgase) mit Temperaturen von über 1200 Grad Celsius auf den Wärmetauscher zuströmen können, kühlen sie an den Oberflächen des Wärmetauschers, deren Temperaturen etwa 600 bis 650 Grad C betragen, auf etwa 700 Grad C ab. Je nach Auslegung der Stirling-Maschine als Mittel- oder Hochtemperaturmaschine, kann dieser Wert noch erheblich nach oben oder nach unten variieren. In jedem Fall handelt es sich jedoch um ein Temperaturniveau, bei dem einerseits Werkstoffe wie Stähle noch mit erheblichen Festigkeiten verfügbar sind, andererseits ein hoch überhitzter Dampf mit Drücken von mehr als 100 bar erzeugbar ist.
  • Das Verdampfungsmodul ist beispielsweise ein quaderförmiger oder zylindrischer Körper umfassend ein Gehäuse, z.B. aus warmfestem Stahl. Das Gehäuse ist ausgefüllt mit einem Material mit hoher Wärmekapazität, z.B. aus legiertem Stahl, und ist unmittelbar (bezogen auf die Strömungsrichtung der Heizgase) hinter dem Wärmetauscher angeordnet, sodass das Verdampfungsmodul von den Heizgasen im Laufe der Zeit im Wesentlichen auf deren Temperatur erhitzt wird. Im Inneren des Zylinders befinden sich im Bereich des Materials mit hoher Wärmekapazität Kanäle mit möglichst hoher Oberfläche, die eingangsseitig mit einer Wasserzuleitung und ausgangsseitig mit einer oder mehreren Austrittdüsen verbunden sind. Die Düsen können in Reihen angeordnet sein und sind auf den Wärmetauscher gerichtet.
  • Das Verdampfungsmodul wird über eine Rohrleitung, in deren Verlauf sich ein Rückschlagventil befindet, zyklisch über eine Wasserversorgungseinrichtung mit einer definierten Wassermenge versorgt. Das Rückschlagventil schützt die Wasserversorgungseinrichtung vor Druckschlägen (Stoßwellen), die während des Verdampfungsvorganges in dem Verdampfungsmodul entstehen können. Die Wasserversorgung kann wahlweise eine Hochdruckleitung, eine Pumpe oder einen Pumpenzylinder umfassen, welche bzw. welcher die definierte Wassermenge an das Verdampfungsmodul abgibt. Ein Hochdruck-Absperrventil kann die gesteuerte Zuführung von bestimmten Wassermengen in bestimmten Zeitintervallen, die dem Reinigungsbedarf des Wärmetauschers angepasst sind, ermöglichen. Im Falle der Anwendung eines Pumpzylinders erübrigt sich ein Hochdruck-Absperrventil (Magnetventil 3.2), da die Zuführung einer definierten Wassermenge direkt vom Hub des Pumpzylinders abhängt.
  • Die Anzahl der Austrittdüsen am Verdampfungsmodul und deren Ausrichtung können so gewählt werden, dass sie den gesamten Wärmetauscher erfassen. Es kann im Hinblick auf eine kurzfristige Heizgasumkehr vorteilhaft sein, jeweils nur einen Teil des Wärmetauschers zu reinigen. Die einhergehende Reduzierung der Anzahl der Düsen kann für einen rascheren Druckaufbau und einen höheren Enddruck genutzt werden, was zu einer erheblich konzentrierteren Reinigung führt. Um die gesamte Wärmetauscherfläche zu bedienen, kann vorgesehen sein, den Verdampfer kontinuierlich oder schrittweise zu schwenken oder zu verschieben. Die Wasserzuführung kann dabei über einen flexiblen Schlauch oder über eine Drehdurchführung erfolgen. Solche sind an sich bekannt und bedürfen daher hier keiner weiteren Erläuterung, wie auch ein Schwenk- oder Verschubmechanismus für das Verdampfungsmodul mittels Schritt- oder Schwenkmotoren hier keiner weiteren Erläuterungen bedarf.
  • Abhängig von der Anwendung kann es vorteilhaft sein, dass die Reinigung des Wärmetauschers keine Betriebsunterbrechung erfordert und dass der Reinigungsstrahl aus überhitztem Dampf besteht, sodass kein thermischer Schock auf der Wärmetauscheroberfläche ausgelöst wird, wie dies beispielsweise bei kalter Pressluft oder gar bei kalten Flüssigkeiten der Fall wäre.
  • Figur 1 zeigt schematisch ein einfaches Beispiel der oben allgemein beschriebenen Reinigungsvorrichtung 3.0, die in der Nähe eines Wärmetauschers 1.7 (die z.B. Teil einer Stirling-Maschine 1.0 sein kann, siehe auch Fig. 2). Das heiße Heizgas 2.2 wird von einer nicht näher dargestellten Feuerungsanlage 2.0 erzeugt. Figur 1 zeigt rechts einen Längsschnitt durch das Verdampfungsmodul 3.5 der Reinigungsvorrichtung 3.0 und links einen korrespondierenden Querschnitt. Wie oben erwähnt weist das Verdampfungsmodul 3.5 ein Gehäuse 3.9 auf, das z.B. aus warmfesten Stahl bestehen kann. Das Gehäuse 3.9 ist mit einem Material 3.10 hoher Wärmekapazität (z.B. legierter Stahl) gefüllt, in dem Kanäle 3.6 vorgesehen sind. Im Betrieb verdampft das über die Zuleitung 3.4 dem Verdampfungsmodul 3.5 zugeführte Wasser während es die Kanäle 3.6. durchströmt schlagartig, und der entstehende Dampf tritt über die Austrittsdüsen 3.7, in die die Kanäle 3.6 münden, aus. Der resultierende Dampfstrahl 3.8 ist auf den Wärmetauscher 1.7 gerichtet und befreit diesen von den erwähnten Ablagerungen.
  • Über die Zuleitung 3.4 wird Wasser von einem Druckanschluss einer Wasserversorgungseinrichtung 3.1 zu dem Verdampfungsmodul 3.5 geleitet werden. Die dem Verdampfungsmodul 3.5 zugeführte Wassermenge wird über die hintereinander geschalteten Ventile 3.2 und 3.3 festgelegt. Das Ventil 3.2 kann z.B. ein Magnetventil sein, welches in regelmäßigen Zeitabständen angesteuert wird, um das Ventil für kurze Zeit zu öffnen. Das zweite Ventil 3.3 ist ein Rückschlagventil, welches aufgrund der bei der schlagartigen Verdampfung des zugeführten Wassers entstehende Druckwelle in der Zuleitung 3.4 schließt und ein Zurückfließen des Wassers in der Zuleitung 3.4 verhindert. Gleichzeitig wird das Magnetventil 3.2 und die Wasserversorgung vor der Druckwelle geschützt. Die Wasserversorgung 3.1 kann auch aus einem Pumpzylinder 3.11 bestehen, der zyklisch betätigt wird und eine dosierte Wassermenge dem Verdampfungsmodul 3.5 zuführt (siehe auch Fig. 4).
  • In den Figuren 2 und 3 ist die Anwendung der Reinigungsvorrichtung 3.0 in einer Stirling-Maschine 1.0 in Alpha-Konfiguration dargestellt, wobei Fig. 2 einen Längsschnitt entlang der Zylinderachsen zeigt und Fig. 3 einen korrespondierenden Querschnitt durch die Reinigungsvorrichtung 3.0. Die Stirling-Maschine 1.0 umfasst zwei Zylinder 1.3 und 1.4, in denen jeweils ein Kolben geführt ist. Die Kolben sind mit der Kurbelwelle 1.2 mechanisch so gekoppelt, dass die Linearbewegung der Kolben in eine Drehbewegung der Kurbelwelle umgewandelt wird. Die Kolben bewegen sich linear entlang der Zylinderachsen, die im vorliegenden Beispiel annähernd parallel liegen (was nicht notwendigerweise der Fall sein muss). Der Zylinder 1.3 ist "heiß" und der Zylinder 1.4 ist "kalt", wobei der kalte Zylinder 1.3 dem heißen um einen gewissen Phasenwinkel (bezogen auf den Drehwinkel der Kurbelwelle 1.2) nacheilt. Die Kurbelwelle 1.2 ist in einem Gehäuse, dem Kurbelgehäuse 1.1, angeordnet.
  • Am Zylinderende des kalten Zylinders 1.4 ist ein Niedertemperatur-Wärmetauscher 1.5 und daran anschließend (auf der dem Zylinder abgewandten Seite des Wärmetauschers 1.5) ein Regenerator 1.6 angeordnet. Zwischen dem Regenerator 1.6 und dem heißen Zylinder 1.3 ist der Hochtemperatur-Wärmetauscher 1.7 (Erhitzer) angeordnet, der im Betrieb mit dem heißen Heizgas 2.2 (z.B. über 1000° C.) in Berührung kommt und folglich durch Ablagerungen von Staub, Asche und sonstigen Partikel, die das Heizgas 2.2 mit sich führt, belastet ist. Das Heizgas 2.2 gibt Wärme an den Wärmetauscher 1.7 und kühlt dabei auf z.B. rund 700° C. ab. Das abgekühlte, jedoch noch warme Heizgas ist mit dem Bezugszeichen 2.3 bezeichnet. Um den Wärmetauscher 1.7 herum ist eine Heizgasführung 2.1 angeordnet, die dafür sorgt, dass das Heizgas den Wärmetauscher 1.7 durchströmt. Die Funktionsweise einer Stirling-Maschine in Alpha-Konfiguration ist an sich bekannt und wird hier nicht weiter erläutert.
  • Der Erhitzer bzw. Wärmetauscher 1.7 erstreckt sich bogenförmig (annähernd halbkreisförmig im Längsschnitt gemäß Fig. 2) zwischen den beiden Zylindern 1.3 und 1.4, und besteht aus mehreren Kanälen, die von dem Prozessgas der Stirling-Maschine durchströmt werden. Andere als kreisbogenförmige Verbindungen können in speziellen Anwendungsfällen von Vorteil sein, beeinflussen aber nicht den erfindungsgemäßen Gedanken. Die Reinigungsvorrichtung 3.0 ist so in unmittelbarer Nähe des Wärmetauschers 1.7 angeordnet, dass sie von dem warmen (auf z.B. etwa 700° C. abgekühlten) Heizgas umströmt und aufgeheizt wird. Im Betrieb hat somit die Reinigungsvorrichtung 3.0 annähernd die gleiche Temperatur wie das warme Heizgas 2.3. Wie bereits erwähnt erstreckt sich der Wärmetauscher 1.7 bogenförmig und zwar so, dass der zumindest teilweise die Reinigungsrichtung 3.0 umschließt. Bei einem (um einen Mittelpunkt) halbkreisförmig ausgestalteten Wärmetauscher 1.7 liegt die Längsachse der Reinigungsvorrichtung 3.0 annähernd im Mittelpunkt des Kreisbogens. Durch eine einfache Drehung der Reinigungsvorrichtung kann somit der gesamte Wärmetauscher 1.7 gereinigt werden. Die Auslassdüsen (siehe Fig. 1) der Reinigungsvorrichtung sind zu dem Wärmetauscher 1.7 hin orientiert, sodass der austretende Dampf direkt auf die Oberfläche des Wärmetauschers 1.7 anströmt.
  • Figur 4 zeigt das gleiche Beispiel aus Fig. 1 mit einer alternativen Wasserversorgung statt eines Druckanschlusses ist dem Rückschlagventil 3.3 ein Pumpzylinder 3.11 vorgeschaltet. Das Magnetventil 3.2 kann in diesem Fall weggelassen werden. Bei Betätigung des Pumpzylinder 3.11 wird dem Verdampfungsmodul 3.5 eine definierte Menge Flüssigkeit über das Rückschlagventil 3.3 zugeführt. Diese definierte Menge Flüssigkeit hängt unmittelbar von der Geometrie (Querschnittsfläche und Hub) des Pumpzylinders 3.11 ab, die auf das Verdampfungsmodul 3.5 abgestimmt sein kann. Wie oben erwähnt kann der Reinigungsvorgang zyklisch gesteuert (beispielsweis zeitabhängig oder abhängig vom Grad der Verschmutzung des Wärmetauschers) gesteuert werden, wobei der Pumpzylinder in jedem Zyklus einmal betätigt wird, um die definierte Menge Flüssigkeit in das Verdampfungsmodul 3.5 zu injizieren. Abgesehen von der Wasserversorgung ist Fig. 4 identisch mit Fig. 1.

Claims (11)

  1. Vorrichtung zur Reinigung eines Wärmetauschers (1.7), die folgendes aufweist:
    ein Verdampfungsmodul (3.5), welches in der Nähe des Wärmetauschers angeordnet ist, sodass es derselben Gasströmung ausgesetzt ist wie der Wärmetauscher (1.7),
    eine Wasserversorgungseinrichtung (3.1), die dazu ausgebildet ist, über eine Zuleitung (3.4) eine definierte Menge an Flüssigkeit in das Verdampfungsmodul (3.5) zu leiten, wobei die Zuleitung (3.4) die Wasserversorgungseinrichtung (3.1) mit dem Verdampfungsmodul (3.5) verbindet,
    dadurch gekennzeichnet, dass das Verdampfungsmodul (3.5) ein Gehäuse (3.9) aufweist, in dem ein Material (3.10) hoher Wärmekapazität angeordnet ist, in dem Kanäle (3.6) vorgesehen sind,
    wobei die Kanäle (3.6) in Auslassdüsen (3.7) münden, die zum Wärmetauschers (1.7) hin ausgerichtet sind, sodass Dampf, der in dem Verdampfungsmodul (3.5) durch Verdampfen der Flüssigkeit in den Kanälen (3.6) entsteht, durch die Auslassdüsen (3.7) in Richtung des Wärmetauschers (1.7) austreten kann.
  2. Vorrichtung gemäß Anspruch 1,
    wobei in der Zuleitung (3.4) ein Rückschlagventil (3.3) angeordnet ist.
  3. Vorrichtung gemäß Anspruch 2,
    wobei in der Zuleitung (3.4) in Serie zu dem Rückschlagventil (3.3) ein elektrisch ansteuerbares Magnetventil (3.2) angeordnet ist.
  4. Vorrichtung gemäß einem der Ansprüche 1 bis 2,
    wobei die Zuleitung (3.4) mit einem Pumpzylinder (3.11) der Wasserversorgungseinrichtung (3.1) verbunden ist.
  5. Vorrichtung gemäß einem der Ansprüche 1 bis 4,
    wobei die Reinigungsvorrichtung (3.0) verschiebbar oder schwenkbar gelagert ist.
  6. Vorrichtung gemäß Anspruch 3 oder 4, die weiter aufweist:
    einen mechanischen Antrieb, der dazu ausgebildet ist, das Verdampfungsmodul (3.5) schrittweise zu drehen oder zu verschieben,
    wobei der mechanischer Antrieb und das Magnetventil (3.2) so angesteuert werden, dass in jedem Schritt, bei dem das Verdampfungsmodul (3.5) gedreht bzw. verschoben wird, eine definierte Menge Flüssigkeit dem Verdampfungsmodul (3.5) zugeführt wird.
  7. Stirling-Motor, der folgendes aufweist:
    einen Wärmetauscher (1.7), der von heißem Heizgas (2.2) angeströmt wird, sodass das Heizgas (2.2) Wärme an den Wärmetauscher (1.7) abgibt,
    eine Reinigungsvorrichtung (3.0) gemäß einem der Ansprüche 1 bis 5.
  8. Stirling-Motor gemäß Anspruch 7, wobei die Reinigungsvorrichtung (3.0) benachbart zu dem Wärmetauscher (1.7) so angeordnet ist, dass das Heizgas (2.2) zuerst den Wärmetauscher (1.7) und danach die Reinigungsvorrichtung (3.0) anströmt.
  9. Stirling-Motor gemäß Anspruch 7 oder 8, der weiter aufweist:
    zwei Zylinder (1.3, 1.4), wobei der Wärmetauscher (1.7) zwischen den beiden Zylindern (1.3, 1.4) bogenförmig angeordnet ist,
    wobei die Reinigungsvorrichtung (3.0) so angeordnet ist, dass der Wärmetauscher (1.7) diese zumindest teilweise umschließt.
  10. Stirling-Motor gemäß Anspruch 7 oder 8, der weiter aufweist:
    zwei Zylinder (1.3, 1.4), wobei der Wärmetauscher (1.7) zwischen den beiden Zylindern (1.3, 1.4) bogenförmig um einen Mittelpunkt angeordnet ist,
    wobei die Reinigungsvorrichtung (3.0) so angeordnet ist, dass deren Längsachse durch den Mittelpunkt verläuft.
  11. Verfahren zur Reinigung eines Wärmetauschers (1.7) mit einem Verdampfungsmodul (3.5), welches in der Nähe des Wärmetauschers angeordnet ist, sodass es derselben Gasströmung ausgesetzt ist wie der Wärmetauscher (1.7); das Verfahren weist auf;
    Zuführen einer definierten Flüssigkeitsmenge in das Verdampfungsmodul (3.5) über eine Zuleitung (3.4), wobei die Flüssigkeit in dem Verdampfungsmodul (3.5) verdampft und Dampf durch in einem Material mit hoher Wärmekapazität im Inneren eines Gehäuses (3.9) des Verdampfungsmoduls (3.5) verlaufende Kanäle (3.6) hin zu Auslassdüsen (3.7) des Verdampfungsmoduls (3.5) strömt und in Richtung des Wärmetauschers (1.7) austritt.
EP16201397.3A 2015-12-01 2016-11-30 Vorrichtung und verfahren zur reinigung eines wärmetauschers Active EP3176534B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015120801.6A DE102015120801B3 (de) 2015-12-01 2015-12-01 Stirling-Motor mit einem Wärmetauscher und Verfahren zur Reinigung eines Wärmetauschers in einem Stirling-Motor

Publications (3)

Publication Number Publication Date
EP3176534A2 EP3176534A2 (de) 2017-06-07
EP3176534A3 EP3176534A3 (de) 2017-06-14
EP3176534B1 true EP3176534B1 (de) 2019-05-01

Family

ID=57471673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16201397.3A Active EP3176534B1 (de) 2015-12-01 2016-11-30 Vorrichtung und verfahren zur reinigung eines wärmetauschers

Country Status (2)

Country Link
EP (1) EP3176534B1 (de)
DE (1) DE102015120801B3 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115885A (en) * 1935-06-11 1938-05-03 Simpson John William Leslie Soot blowing and cleaning apparatus for boilers, economizers, or the like
DD33945A1 (de) * 1964-01-16 1964-11-25 Heinz Siebeck Sonde zur Reinigung von Dampferzeugern
DE102005004007B4 (de) * 2005-01-27 2007-08-30 Isenmann, Hermann, Dipl.-Ing. (FH) Reinigung des Brennraums einer Wärmekraftmaschine, insbesondere eines Stirlingmotors
AT504666B1 (de) * 2007-05-03 2008-07-15 Frauscher Josef Wärmetauscher
DE102008036686B4 (de) * 2008-08-06 2011-03-17 BRÜNDERMANN, Georg Rußbläser
JP4650580B2 (ja) * 2009-04-09 2011-03-16 トヨタ自動車株式会社 スターリングエンジン
DE102010036749A1 (de) * 2010-07-19 2012-01-19 Heizkraftwerksgesellschaft Cottbus Mbh Verfahren zur Leistungssteigerung bei gleichzeitiger Verminderung von Ablagerungen in Kesseln mit Wirbelschicht-Feuerung
DE102010061072B4 (de) * 2010-08-05 2015-01-15 Qalovis Farmer Automatic Energy Gmbh Reinigung eines mit einem Aggregat verbundenen Wärmetauschers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102015120801B3 (de) 2017-03-09
EP3176534A2 (de) 2017-06-07
EP3176534A3 (de) 2017-06-14

Similar Documents

Publication Publication Date Title
DE10054022A1 (de) Verfahren zum Betreiben einer Wärmekraftmaschine
EP1692450A1 (de) Kompakter russbl ser
DE19541914A1 (de) Kühlluftkühler für Kraftwerksanlagen
DE102012102368A1 (de) Kombikraftwerk
DE3406516C2 (de)
EP0523466B1 (de) Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage und Anlage zur Durchführung des Verfahrens
WO1986006464A1 (en) Device and process for cleaning a recirculation-type regenerative heat exchanger
DE2630456A1 (de) Brennkraftmaschine
AT504666B1 (de) Wärmetauscher
DE10358233A1 (de) Luftspeicherkraftanlage
EP3176534B1 (de) Vorrichtung und verfahren zur reinigung eines wärmetauschers
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
DE102008032831A1 (de) Vorrichtung und Verfahren zur Gewinnung von mechanischer Energie aus heißen Gasströmen insbesondere eines Verbrennungsmotors
DE3213287C2 (de) Dampfkraftanlage
DE4409338C2 (de) Dampferzeuger
DE102006052615B4 (de) Einrichtung zum Bestrahlen von Reinigungsgut mit Flüssigkeit in einer Bestrahlungskammer
EP2549185B1 (de) Reinigungsgerät für einen Konvektionsabschnitt einer Wärmekraftanlage
DE4303692A1 (de) Freikolben-Exergie-Verbrennungsmotor mit verringertem Brennstoffbedarf
DE102006021928A1 (de) Vorrichtung zur Erzeugung mechanischer Energie
DE654640C (de) Hochleistungsdampferzeuger mit Zwangdurchlauf des Arbeitsmittels
DE632897C (de) Verfahren zur Erzeugung mechanischer Arbeit mit Hilfe der Ausdehnung von Fluessigkeiten
DE102010061072B4 (de) Reinigung eines mit einem Aggregat verbundenen Wärmetauschers
DE572395C (de) Verfahren zur Gewinnung eines Druckmittels zur Fernkraftuebertragung
WO2010045925A2 (de) Kolbenmaschine mit einem teiltoruszylinder und einem teiltoruskolben
EP2620703A1 (de) Wassereinspritzvorrichtung für ein Umleitdampfsystem einer Kraftwerksanlage

Legal Events

Date Code Title Description
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F02G 1/055 20060101ALI20170509BHEP

Ipc: F28G 1/16 20060101AFI20170509BHEP

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171214

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1127521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004409

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004409

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161130

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 8

Ref country code: CH

Payment date: 20231202

Year of fee payment: 8

Ref country code: AT

Payment date: 20231117

Year of fee payment: 8