EP3164529A1 - Revêtement latéral d'isolation pour cuve d'électrolyse - Google Patents

Revêtement latéral d'isolation pour cuve d'électrolyse

Info

Publication number
EP3164529A1
EP3164529A1 EP15814096.2A EP15814096A EP3164529A1 EP 3164529 A1 EP3164529 A1 EP 3164529A1 EP 15814096 A EP15814096 A EP 15814096A EP 3164529 A1 EP3164529 A1 EP 3164529A1
Authority
EP
European Patent Office
Prior art keywords
elements
electrolytic cell
thermally insulating
wedging
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15814096.2A
Other languages
German (de)
English (en)
Other versions
EP3164529B1 (fr
EP3164529A4 (fr
Inventor
Denis TINKA
Philippe Carpentier
Yves Caratini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP3164529A1 publication Critical patent/EP3164529A1/fr
Publication of EP3164529A4 publication Critical patent/EP3164529A4/fr
Application granted granted Critical
Publication of EP3164529B1 publication Critical patent/EP3164529B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts

Definitions

  • the present invention relates to an electrolytic cell for the production of aluminum by electrolysis.
  • Aluminum is conventionally produced in aluminum smelters, by electrolysis, according to the Hall-Héroult process.
  • an electrolysis cell comprising a box and an inner lining of refractory material.
  • the electrolytic cell also comprises cathode blocks arranged at the bottom of the box, traversed by conductive bars intended to collect the electrolysis current and to lead it to a subsequent electrolysis cell.
  • the electrolytic cell also comprises at least one anode block suspended on an anode support, such as a rod and a cross member, the anode block being partially immersed in an electrolytic bath, above the cathode blocks.
  • a sheet of liquid aluminum is formed under the electrolytic bath by covering the cathode blocks as and when the reaction.
  • the flow of current is from the anode carrier to the cathode via the anode block, the electrolytic bath to a temperature of about 970 ° C in which the alumina is dissolved, and the metal sheet.
  • the electrolytic bath to a temperature of about 970 ° C in which the alumina is dissolved, and the metal sheet.
  • internal facing blocks of carbon material which is superimposed on the inner lining of the box.
  • the heat loss through the walls of the box remains very significant, which is detrimental to the overall energy efficiency, the life of the tank, and the good operation of the electrolysis process.
  • the invention proposes an electrolysis cell intended to contain an electrolytic bath, the electrolysis cell comprising a box having lateral walls, and a lateral insulation coating covering the side walls, the lateral coating of insulation comprising:
  • refractory lining elements having at least one side face, the thermally insulating elements and the wedging elements being affixed alternately against at least one side wall of the box, and
  • the wall of the box is partly covered with thermally insulating elements that can be compressible material, which greatly limit the heat losses and protect the wall of the box of high heat released by the electrolytic bath and liquid aluminum.
  • the refractory wedging elements interposed between the thermally insulating elements of compressible material make it possible to limit or avoid the settling of the thermally insulating elements during the construction and operation of the tank, without forming a thermal conduction bridge. detrimental to the wall of the box.
  • thermally insulating elements do not undergo damaging compression between the side wall of the box and the internal cladding blocks, so that they are not crushed and retain their thermal insulation capacity.
  • the use of thermally insulating elements made of compressible material thus made possible makes it possible to limit the costs of raw material and of implementation for an improved and easily adjustable heat balance.
  • thermally insulating element compressible material means any element that would be crushed, and therefore degraded by the inner facing blocks, during manufacture or operation of the tank, without the presence of wedging elements.
  • the thermally insulating elements of compressible material may be of ventilated structure, in particular based on fibers.
  • each wedging element has a thickness equal to or greater than the thickness of the thermally insulating elements.
  • the insulating side coating further comprises refractory protection elements disposed between the thermally insulating elements and the inner cladding blocks. These protection elements protect the thermally insulating elements behind against possible impregnation of electrolytic bath through the inner cladding blocks so that the protection of the thermal insulation is reinforced over time.
  • the space between two adjacent wedging elements houses protection elements.
  • the protection elements do not cover the wedging elements but only the thermally insulating elements.
  • each wedging element has a thickness substantially identical to the cumulative thickness of a protective element and a thermally insulating element so that the thermally insulating elements are free of compression.
  • the thermally insulating elements have a higher thermal insulation coefficient than that of the wedging elements and that of the protection elements.
  • thermally insulating elements of small thickness. Their presence impacts very little the residual internal volume of the box for an effective thermal insulation.
  • these elements make it possible to reduce the thermal losses at the side walls of the box without the need to reduce the dimensions of the cathode blocks present in the box and therefore the efficiency of the electrolysis process.
  • each thermally insulating element measured along the longitudinal axis of the respective wall of the box, is greater than that of each wedging element. This arrangement optimizes the thermal insulation of the box and limit thermal bridges.
  • each thermally insulating element measured along the longitudinal axis of the respective wall of the box, is at least four times greater than that of each wedging element.
  • the insulating side coating further comprises outer facing plates, preferably silicon carbide (SiC), extending against the at least one side wall of the box and arranged vertically above the elements. cushioning, thermally insulating elements, and if necessary protective elements. These plates thus protect the thermally insulating elements from above and the box from corrosion. They also promote the localized and controlled evacuation of the heat flow at a chosen surface.
  • outer facing plates preferably silicon carbide (SiC)
  • each outer facing plate has a thickness substantially identical to that of each wedging element.
  • the lateral edges of the thermally insulating elements and, if appropriate, the protective elements are covered and protected vertically from the corrosive environment of the electrolytic cell.
  • the outer cladding plates are integrally formed with the inner cladding blocks.
  • the compressible material of the thermally insulating component is fibrous material, such as a material of glass fibers, carbon fibers, rock fibers, or hemp fibers. It can also be super-micro-porous type or based on perlite, diatomite or calcium silicate.
  • the compressible material of the thermally insulating elements has a thermal conductivity lower than 0.5W / mK (measured via the ASTM C201 method at room temperature).
  • the thermally insulating elements of compressible material are surrounded by a layer of material resistant to corrosion by electrolyte vapor. Highly corrosive electrolyte vapors can in fact infiltrate and propagate during the life of the electrolytic cell against the side walls of the box and degrade the compressible material of the thermally insulating element. Closing the compressible material in a layer of corrosion-resistant material by electrolyte vapor (or vapor barrier) makes it possible to protect it and widen the range of materials that can be used for producing the thermally insulating element.
  • the layer of material resistant to corrosion by electrolyte vapor is advantageously formed of an aluminum film.
  • the wedging elements show a compressive strength greater than 10 MPa.
  • the wedging elements have a thermal conductivity lower than the thermal conductivity of the internal cladding blocks and, where appropriate, external cladding plates.
  • the wedging elements therefore do not form damaging thermal conduction bridges towards the wall of the box between the thermally insulating elements.
  • the wedging elements have a thermal conductivity of less than 2 W / m.K (measured via the ASTM C201 method at room temperature).
  • the wedging elements consist of refractory bricks, for example silico-aluminous, or mica plates, which have good compressive strength and low thermal conductivity.
  • the protection elements are made of identical material, or of identical type, to that of the wedging elements.
  • the inner facing blocks consist of carbon-based material, and more particularly based on SiC, which ensure the box to achieve good longevity despite very corrosive electrolysis conditions.
  • FIG. 1 illustrates a partial schematic view of the inside of an electrolytic cell according to one embodiment of the invention.
  • FIG. 2 illustrates another partial schematic view of the interior of an electrolytic cell according to one embodiment of the invention.
  • FIG. 3 further illustrates a partial schematic view of the interior of an electrolytic cell according to one embodiment of the invention.
  • FIG. 4 is a view in partial section of the inside of an electrolysis cell according to the embodiment of the invention illustrated in FIG.
  • the electrolytic cell 100 comprises a box 200 and a lateral insulation coating comprising thermally insulating elements 1 and setting elements 2 affixed alternately against a lateral wall 3 of the box 200.
  • thermally insulating elements 1 are covered with protection elements 4 (FIG.
  • External facing plates 6 also extend against the side wall 3 of the box 200 and above the setting elements 2, thermally insulating elements 1 and protection elements 4.
  • the thermally insulating elements 1 are protected against compression between the side wall of the box 200 and the inner facing blocks 5 by the arrangement of the wedging elements 2 so that they can be made of a compressible heat-insulating material.
  • the compressible heat-insulating material may for example be a fibrous material consisting of glass fibers, carbon fibers, rock fibers, or hemp fibers.
  • the compressible heat-insulating material may for example be of super-microporous super-insulation type or else based on perlite, diatomite or calcium silicate.
  • the thermally insulating elements 1 of compressible material have a high coefficient of thermal insulation so that a small thickness of this compressible material is sufficient to ensure good thermal insulation of the wall of the box they cover.
  • the wedging elements 2 comprise a refractory material, such as silico-aluminous refractory brick or mica plates.
  • the wedging elements must protect the thermally insulating elements from crushing and contribute advantageously to the thermal insulation.
  • These wedging elements 2, as well as the protection elements 4 generally have thermal insulation properties lower than those of thermally insulating elements 1, even if they remain good insulators. They have a thermal conductivity lower than 2 W / mK
  • the length of each thermally insulating element 1, measured along the longitudinal axis of the wall 3 of the box 200 (x-axis, FIG. 1), is then chosen to be larger than that of each wedging element 2. Typically, a length ratio of one to four and preferably one to five is applied to obtain an optimal reduction of thermal loss at the walls 3 of the box 200.
  • each wedging element 2 is equal to or greater than that of the thermally insulating element 1.
  • the planned distance between two adjacent wedging elements 2 is less than the length of a facing block internal 5 along the longitudinal axis x of the wall 3 of the box 200 so that an inner facing block 5 can bear against at least two wedging elements 2.
  • each inner facing block 5 rests against at least two 2.
  • the latter have a compressive strength greater than 10 MPa so that they are sufficiently rigid and incompressible to prevent the inner cladding blocks 5 from tamping the thermally insulating elements 1 of compressible material which would otherwise have thermal insulation properties decreased.
  • the inner cladding block 5 is made of a carbon-based material. Its purpose is to help protect the wall 3 of the box 200 and the thermally insulating elements 1 from corrosion by liquid aluminum and / or the electrolytic bath of very high temperature. It is intended to cover all the thermally insulating elements 1, wedging elements 2 and at least a part of the outer facing elements 6.
  • protection elements 4 may be introduced between the thermally insulating elements 1 and the inner facing blocks 5, in the space provided between two adjacent wedging elements 2.
  • Each wedging element 2 has indeed a thickness substantially identical to the cumulative thickness of a protective element 4 and a thermally insulating element 1.
  • the protection elements 4 may be of the same composition as the wedging elements 2.
  • outer facing plates 6 made of silicon carbide (SiC) material, of a thickness substantially identical to that of the wedging elements 2, cover the upper lateral edge of the thermally insulating elements 1, wedging elements 2 and protection elements 4 between the inner wall 3 of the casing 200 and the inner facing blocks 5.
  • SiC silicon carbide
  • the box 200 has an optimal thermal profile.
  • FIG. 4 is a partial sectional view of the electrolytic cell illustrating the caisson 200, the thermally insulating elements 1 directly affixed to a wall 3 of the caisson 200 and adjacent to the protection elements 4, protected by internal cladding blocks 5 and outer cladding plates 6.
  • the present invention provides an "electrolytic cell with a side cladding insulation to effectively reduce heat loss through optimal space saving insulation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Cuve d'électrolyse (100) qui comprend un caisson (200) comportant des parois latérales (3), et un revêtement latéral d'isolation recouvrant les parois latérales (3), le revêtement latéral d'isolation comprenant : des éléments thermiquement isolants (1) en matériau compressible, des éléments de calage (2) en matériau réfractaire présentant au moins une face latérale, les éléments thermiquement isolants (1) et les éléments de calage (2) étant apposés de façon alternée contre au moins une paroi latérale (3) du caisson (200), et des blocs de parement interne (5) agencés de sorte que chaque bloc de parement interne (5) prend appui contre la face latérale d'au moins deux éléments de calage (2). Le revêtement latéral d'isolation peut également comprendre des éléments de protection (4) en matériau réfractaire ou des plaques de parement externe (6).

Description

REVÊTEMENT LATÉRAL D'ISOLATION POUR CUVE D'ÉLECTROLYSE
La présente invention concerne une cuve d'électrolyse pour la production d'aluminium par électrolyse.
L'aluminium est classiquement produit dans des alumineries, par électrolyse, selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse comprenant un caisson et un revêtement intérieur en matériau réfractaire. La cuve d'électrolyse comprend également des blocs cathodiques agencés au fond du caisson, parcourus par des barres conductrices destinées à collecter le courant d'électrolyse et à le conduire à une cuve d'électrolyse suivante. La cuve d'électrolyse comprend également au moins un bloc anodique suspendu à un support anodique, tel qu'une tige et une traverse, le bloc anodique étant plongé partiellement dans un bain électrolytique, au-dessus des blocs cathodiques. Une nappe d'aluminium liquide se forme sous le bain électrolytique en recouvrant les blocs cathodiques au fur et à mesure de la réaction. Le passage du courant s'effectue du support d'anode vers la cathode via le bloc anodique, le bain électrolytique à une température d'environ 970°C dans lequel l'alumine est dissoute, et la nappe de métal. Afin de limiter la corrosion des parois du caisson, du fait de la composition chimique du bain électrolytique et de sa température, il est connu d'utiliser des blocs de parement interne en matériau carboné que l'on superpose au revêtement intérieur du caisson. Toutefois, malgré la présence de ces blocs de parement interne et du revêtement intérieur, la perte thermique au travers des parois du caisson reste très importante, ce qui est préjudiciable au rendement énergétique général, à la durée de vie de la cuve, et au bon fonctionnement du procédé d'électrolyse.
Un des buts de la présente invention vise à pallier cet inconvénient. Pour ce faire, l'invention propose une cuve d'électrolyse destinée à contenir un bain électrolytique, la cuve d'électrolyse comprenant un caisson comportant des parois latérales, et un revêtement latéral d'isolation recouvrant les parois latérales, le revêtement latéral d'isolation comprenant :
des éléments thermiquement isolants en matériau compressible,
des éléments de calage en matériau réfractaire présentant au moins une face latérale, les éléments thermiquement isolants et les éléments de calage étant apposés de façon alternée contre au moins une paroi latérale du caisson, et
des blocs de parement interne agencés pour protéger le caisson, les éléments thermiquement isolants et les éléments de calage du bain électrolytique, la distance entre deux éléments de calage adjacents étant adaptée de sorte que chaque bloc de parement interne prend appui contre la face latérale d'au moins deux éléments de calage. Dans cette configuration, la paroi du caisson est en partie recouverte d'éléments thermiquement isolants pouvant être en matériau compressible, qui limitent fortement les pertes thermiques et protègent la paroi du caisson des fortes chaleurs dégagées par le bain électrolytique et l'aluminium liquide. Par ailleurs, les éléments de calage réfractaire intercalés entre les éléments thermiquement isolants en matériau compressible permettent de limiter ou d'éviter le tassement des éléments thermiquement isolants lors de la construction et le fonctionnement de la cuve, sans pour autant former un pont de conduction thermique préjudiciable vers la paroi du caisson. Les éléments thermiquement isolants ne subissent pas de compression préjudiciable entre la paroi latérale du caisson et les blocs de parement interne, de sorte qu'ils ne sont pas écrasés et conservent leur capacité d'isolation thermique. L'utilisation d'éléments thermiquement isolants en matériau compressible ainsi rendue possible permet de limiter les coûts de matière première et de mise en œuvre pour un bilan thermique amélioré et facilement ajustable.
Par élément thermiquement isolant en matériau compressible, on entend tout élément qui serait écrasé, et donc dégradé par les blocs de parement interne, lors de la fabrication ou du fonctionnement de la cuve, sans la présence des éléments de calage. Les éléments thermiquement isolants en matériau compressible peuvent être de structure aérée, notamment à base de fibres.
Avantageusement, chaque élément de calage présente une épaisseur égale ou supérieure à l'épaisseur des éléments thermiquement isolants.
Avantageusement, le revêtement latéral d'isolation comprend en outre des éléments de protection en matériau réfractaire, disposés entre les éléments thermiquement isolants et les blocs de parement interne. Ces éléments de protection protègent les éléments thermiquement isolants disposés derrière contre une éventuelle imprégnation de bain électrolytique au travers des blocs de parement interne de sorte que la protection de l'isolation thermique est renforcée dans le temps.
Selon une disposition, l'espace entre deux éléments de calage adjacents loge des éléments de protection. Dans cette configuration, les éléments de protection ne recouvrent pas les éléments de calage mais seulement les éléments thermiquement isolants.
De préférence, chaque élément de calage présente une épaisseur sensiblement identique à l'épaisseur cumulée d'un élément de protection et d'un élément thermiquement isolant de sorte que les éléments thermiquement isolants sont libres de compression. Cet agencement permet ainsi de conserver la tenue et la capacité d'isolation thermique des éléments thermiquement isolants en matériau compressible pendant toute la durée de la vie de la cuve. Les éléments thermiquement isolants présentent un coefficient d'isolation thermique supérieur à celui des éléments de calage et à celui des éléments de protection. Ainsi il est possible d'utiliser des éléments thermiquement isolants de faible épaisseur. Leur présence impacte très peu le volume intérieur résiduel du caisson pour une isolation thermique efficace. Ainsi, ces éléments permettent de diminuer les pertes thermiques au niveau des parois latérales du caisson sans nécessiter de réduire les dimensions des blocs cathodiques présents dans le caisson et donc l'efficacité du procédé d'électrolyse.
Avantageusement, la longueur de chaque élément thermiquement isolant, mesurée selon l'axe longitudinal de la paroi respective du caisson, est supérieure à celle de chaque élément de calage. Cette disposition permet d'optimiser l'isolation thermique du caisson et de limiter les ponts thermiques.
Typiquement, la longueur de chaque élément thermiquement isolant, mesurée selon l'axe longitudinal de la paroi respective du caisson, est au moins quatre fois plus importante que celle de chaque élément de calage.
De préférence, le revêtement latéral d'isolation comprend en outre des plaques de parement externe, avantageusement en carbure de silicium (SiC), s'étendant contre la au moins une paroi latérale du caisson et disposées à l'aplomb au-dessus des éléments de calage, des éléments thermiquement isolants, et le cas échéant des éléments de protection. Ces plaques protègent ainsi de la corrosion les éléments thermiquement isolants par au-dessus, et le caisson. Elles favorisent en outre l'évacuation localisée et contrôlée du flux de chaleur au niveau d'une surface choisie.
Avantageusement, chaque plaque de parement externe présente une épaisseur sensiblement identique à celle de chaque élément de calage. Ainsi, les tranches latérales des éléments thermiquement isolants et le cas échéant des éléments de protection sont recouvertes et protégées verticalement de l'environnement corrosif de la cuve d'électrolyse.
Avantageusement, les plaques de parement externe sont formées de façon monobloc avec les blocs de parement interne.
Selon une possibilité, le matériau compressible de l'élément thermiquement isolant est en 'matériau fibreux, tel qu'un matériau de fibres de verre, de fibres de carbone, de fibres de roche, ou de fibres de chanvre. Il peut aussi être de type super isolant micro-poreux ou encore à base de perlite, diatomite ou silicate de calcium.
Avantageusement, le matériau compressible des éléments thermiquement isolants présente une conductivité thermique inférieure à 0.5W/m.K (mesure via la méthode ASTM C201 à température ambiante). Avantageusement, les éléments thermiquement isolants en matériau compressible sont entourés d'une couche de matériau résistant à la corrosion par des vapeurs d'électrolyte. Des vapeurs d'électrolyte fortement corrosives peuvent en effet s'infiltrer et se propager au cours de la vie de la cuve d'électrolyse contre les parois latérales du caisson et dégrader le matériau compressible de l'élément thermiquement isolant. Enfermer le matériau compressible dans une couche de matériau résistant à la corrosion par des vapeurs d'électrolyte (ou pare-vapeur) permet de le protéger et élargir la gamme de matériaux utilisables pour la réalisation de l'élément thermiquement isolant.
La couche de matériau résistant à la corrosion par des vapeurs d'électrolyte est avantageusement formé d'un film d'aluminium.
Avantageusement, les éléments de calage montrent une résistance à la compression supérieure à 10 MPa.
Avantageusement, les éléments de calage présentent une conductivité thermique inférieure à la conductivité thermique des blocs de parement interne et, le cas échéant des plaques de parement externe.
Les éléments de calage ne forment donc pas de ponts de conduction thermique préjudiciables vers la paroi du caisson entre les éléments thermiquement isolants.
Selon une possibilité, les éléments de calage présentent une conductivité thermique inférieure à 2 W/m.K (mesure via la méthode ASTM C201 à température ambiante).
Avantageusement, les éléments de calage sont constitués de briques réfractaires, par exemple silico-alumineuses, ou de plaques de mica, qui présentent une bonne résistance à la compression et une faible conductivité thermique.
Typiquement, les éléments de protection sont en matériau identique, ou de type identique, à celui des éléments de calage.
Avantageusement, les blocs de parement interne sont constitués de matériau à base de carbone, et plus particulièrement à base de SiC, qui assurent au caisson d'atteindre une bonne longévité malgré les conditions d'électrolyse très corrosives. D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description suivante d'un mode de réalisation de celle-ci, donnée à titre d'exemple non limitatif et faite en référence aux dessins annexés. Les figures ne respectent pas nécessairement l'échelle de tous les éléments représentés de sorte à améliorer leur lisibilité. Dans la suite de la description, par souci de simplification, des éléments identiques, similaires ou équivalents des différentes formes de réalisation portent les mêmes références numériques. La figure 1 illustre une vue schématique partielle de l'intérieur d'une cuve d'électrolyse selon un mode de réalisation de l'invention.
La figure 2 illustre une autre vue schématique partielle de l'intérieur d'une cuve d'électrolyse selon un mode de réalisation de l'invention.
La figure 3 illustre encore une vue schématique partielle de l'intérieur d'une cuve d'électrolyse selon un mode de réalisation de l'invention.
La figure 4 est une vue en section partielle de l'intérieur d'une cuve d'électrolyse selon le mode de réalisation de l'invention illustré à la figure 3.
Comme illustré à la figure 1 , la cuve d'électrolyse 100 comprend un caisson 200 et un revêtement d'isolation latéral comprenant des éléments thermiquement isolants 1 et des éléments de calage 2 apposés en alternance contre une paroi 3 latérale du caisson 200.
Ces éléments thermiquement isolants 1 sont recouverts d'éléments de protection 4 (figure
2) que viennent à leur tour recouvrir des blocs de parement interne 5 prenant appui contre les éléments de calage 2 (figure 3). Des plaques de parement externe 6 s'étendent également contre la paroi 3 latérale du caisson 200 et à l'aplomb au-dessus des éléments de calage 2, des éléments thermiquement isolants 1 et des éléments de protection 4.
(figure 3).
Les éléments thermiquement isolants 1 sont protégés contre une compression entre la paroi latérale du caisson 200 et les blocs de parement interne 5 par la disposition des éléments de calage 2 de sorte qu'ils peuvent être réalisés en un matériau thermiquement isolant compressible. Le matériau thermiquement isolant compressible peut être par exemple un matériau fibreux constitué de fibres de verre, de fibres de carbone, de fibres de roche, ou de fibres de chanvre. Le matériau thermiquement isolant compressible peut encore être par exemple de type super isolant micro-poreux ou encore à base de perlite, diatomite ou silicate de calcium.
Les éléments thermiquement isolants 1 en matériau compressible présentent un coefficient d'isolation thermique élevé de sorte qu'une faible épaisseur de ce matériau compressible suffit à assurer une bonne isolation thermique de la paroi du caisson qu'ils recouvrent.
Les éléments de calage 2 comprennent un matériau réfractaire, tel que de la brique réfractaire silico-alumineuse ou des plaques de mica. Les éléments de calage doivent protéger les éléments thermiquement isolants d'un écrasement et contribuer avantageusement à l'isolation thermique. Ces éléments de calage 2, de même que les éléments de protection 4, présentent globalement des propriétés d'isolation thermique inférieures à celles des éléments thermiquement isolants 1 , même s'ils restent de bons isolants. Ils présentent une conductivité thermique inférieure à 2 W/m.K. La longueur de chaque élément thermiquement isolant 1 , mesurée selon l'axe longitudinal de la paroi 3 du caisson 200 (axe x, figure 1 ), est alors choisie pour être plus importante que celle de chaque élément de calage 2. Typiquement, un rapport de longueur de un pour quatre et de préférence de un pour cinq est appliqué pour l'obtention d'une réduction optimale de perte thermique au niveau des parois 3 du caisson 200.
Par ailleurs, l'épaisseur de chaque élément de calage 2 est égale ou supérieure à celle de l'élément thermiquement isolant 1. De plus, la distance prévue entre deux éléments de calage 2 adjacents est inférieure à la longueur d'un bloc de parement interne 5 selon l'axe longitudinal x de la paroi 3 du caisson 200 de sorte qu'un bloc de parement interne 5 peut prendre appui contre au moins deux éléments de calage 2. Ainsi, chaque bloc de parement interne 5 repose contre au moins deux éléments de calage 2. Ces derniers présentent une résistance à la compression supérieure à 10 MPa de sorte qu'ils sont suffisament rigides et incompressibles pour éviter que les blocs de parement interne 5 ne tassent les éléments thermiquement isolants 1 en matériau compressible qui présenteraient sinon des propriétés d'isolation thermiques diminuées.
Le bloc de parement interne 5 est en un matériau à base de carbone. Il a pour vocation de contribuer à protéger la paroi 3 du caisson 200 et les éléments thermiquement isolants 1 de la corrosion par l'aluminium liquide et/ou le bain électrolytique de température très élevée. Il est destiné à recouvrir la totalité des éléments thermiquement isolants 1 , des éléments de calage 2 et au moins une partie des éléments de parement externe 6.
Comme illustré à la figure 2, des éléments de protection 4 peuvent être introduits entre les éléments thermiquement isolants 1 et les blocs de parement interne 5, dans l'espace ménagé entre deux éléments de calage 2 adjacents. Chaque élément de calage 2 présente en effet une épaisseur sensiblement identique à l'épaisseur cumulée d'un élément de protection 4 et d'un élément thermiquement isolant 1. Ces éléments de protection 4 , qui sont en matériau réfractaire, permettent de protéger l'isolation dans le temps et de compléter l'isolation thermique fournie par les éléments thermiquement isolants 1. Les éléments de protection 4 peuvent être de même composition que les éléments de calage 2.
Comme illustré à la figure 3, des plaques de parement externe 6 en matériau à base de carbure de silicium (SiC), d'une épaisseur sensiblement identique à celle des éléments de calage 2, recouvrent la tranche latérale supérieure des éléments thermiquement isolants 1 , des éléments de calage 2 et des éléments de protection 4 entre la paroi 3 intérieure du caisson 200 et les blocs de parement interne 5. Cet agencement permet de protéger les différents éléments vis-à-vis de la corrosion et d'assurer à l'endroit approprié un échange thermique approprié entre le bain électrolytique, la paroi du caisson et l'atmosphère extérieure pour la création d'un talus de cryolithe protégeant les blocs de parement interne 5.
Selon une possibilité non illustrée, toutes les parois 3 latérales du caisson sont recouvertes par les éléments thermiquement isolants 1 , les éléments de calage 2, les éléments de protection 4, les blocs de parement interne 5 et les plaques de parement externe 6 . Ainsi, le caisson 200 présente un profil thermique optimale.
La figure 4 est une vue partielle en section de la cuve d'électrolyse illustrant le caisson 200, les éléments thermiquement isolants 1 apposés directement contre une paroi 3 du caisson 200 et adjacents à des éléments de protection 4, protégés par des blocs de parement interne 5 et des plaques de parement externe 6.
Ainsi, la présente invention propose une" cuve d'électrolyse dotée d'un revêtement latéral d'isolation permettant de réduire efficacement la perte thermique grâce à une isolation optimale et peu encombrante.
Il va de soi que l'invention n'est pas limitée aux modes de réalisation décrits ci-dessus à titre d'exemples mais qu'elle comprend tous les équivalents techniques et les variantes des moyens décrits ainsi que leurs combinaisons.

Claims

REVENDICATIONS
1. Cuve d'électrolyse (100) destinée à contenir un bain électrolytique comprenant un caisson (200) comportant des parois latérales (3) et un revêtement latéral d'isolation recouvrant les parois latérales (3), caractérisée en ce que le revêtement latéral d'isolation comprend : des éléments thermiquement isolants (1) en matériau compressible , et des éléments de calage (2) en matériau réfractaire présentant au moins une face latérale, les éléments thermiquement isolants (1 ) et les éléments de calage (2) étant apposés de façon alternée contre au moins une paroi latérale (3) du caisson (200), et des blocs de parement interne (5) agencés pour protéger le caisson (200), les éléments thermiquement isolants (1) et les éléments de calage (2) du bain électrolytique, la distance entre deux éléments de calage (2) adjacents étant adaptée de sorte que chaque bloc de parement interne (5) prend appui contre la face latérale d'au moins deux éléments de calage (2).
2. Cuve d'électrolyse (100) selon la revendication 1 , dans laquelle chaque élément de calage (2) présente une épaisseur égale ou supérieure à l'épaisseur des éléments thermiquement isolants (1 ).
3. Cuve d'électrolyse (100) selon l'une des revendications 1 à 2, dans laquelle le revêtement latéral d'isolation comprend en outre des éléments de protection (4) en matériau réfractaire disposés entre les éléments thermiquement isolants (1 ) et les blocs de parement interne (5).
4. Cuve d'électrolyse (100) selon la revendication 3, dans laquelle l'espace entre deux éléments de calage (2) adjacents loge des éléments de protection (4).
5. Cuve d'électrolyse (100) selon l'une des revendications 3 à 4, dans laquelle chaque élément de calage (2) présente une épaisseur sensiblement identique à l'épaisseur cumulée d'un élément thermiquement isolant (1) et d'un élément de protection (4) de sorte que les éléments thermiquement isolants (1) sont libres de compression.
6. Cuve d'électrolyse (100) selon l'une des revendications 3 à 5, dans laquelle les éléments thermiquement isolants (1) présentent un coefficient d'isolation thermique supérieur à celui des éléments de calage (2) et à celui des éléments de protection (4).
7. Cuve d'électrolyse (100) selon l'une des revendications 1 à 6, dans laquelle la longueur de chaque élément thermiquement isolant (1 ), mesurée selon l'axe longitudinal de la paroi (3) respective du caisson (200), est supérieure à celle de chaque élément de calage (2).
5 8. Cuve d'électrolyse (100) selon l'une des revendications 1 à 7, dans laquelle la longueur de chaque élément thermiquement isolant (1 ), mesurée selon l'axe longitudinal de la paroi (3) respective du caisson (200), est au moins quatre fois plus importante que celle de chaque élément de calage (2).
9. Cuve d'électrolyse (100) selon l'une des revendications 1 à 8, dans laquelle le m revêtement latéral d'isolation comprend en outre des plaques de parement externe
(6) s'étendant contre la au moins une paroi (3) latérale du caisson (200) et disposées à l'aplomb au-dessus des éléments de calage (2) et des éléments thermiquement isolants (1).
10. Cuve d'électrolyse (100) selon la revendication 9, dans laquelle les plaques de 15 parement externe (6) sont en carbure de silicium.
11. Cuve d'électrolyse (100) selon l'une des revendications 9 ou 10, dans laquelle chaque plaque de parement externe (6) présente une épaisseur sensiblement identique à celle de chaque élément de calage (2).
12. Cuve d'électrolyse (100) selon l'une des revendications 9 à 1 1 , dans laquelle les 0 plaques de parement externe (6) sont formées de façon monobloc avec les blocs de parement interne (5).
13. Cuve d'électrolyse (100) selon l'une des revendications 1 à 11 , dans laquelle le matériau compressible des éléments thermiquement isolants (1) est en matériau fibreux, tel qu'un matériau de fibres de verre, de fibres de carbone, de fibres de 5 roche, ou de fibres de chanvre de type super isolant micro-poreux ou à base de perlite, diatomite ou silicate de calcium.
14. Cuve d'électrolyse (100) selon l'une des revendications 1 à 12, dans laquelle les éléments de calage (2) montrent une résistance à la compression supérieure à 10MPa. 0
15. Cuve d'électrolyse (100) selon l'une des revendications 1 à 13, dans laquelle les éléments de calage (2) présentent une conductivité thermique inférieure à la conductivité thermique des blocs de parement interne (5) et, le cas échéant des plaques de parement externe (6).
16. Cuve d'électrolyse (100) selon l'une des revendications 1 à 15, dans laquelle les éléments de calagae (2) présentent une conductivité thermique inférieure à 2 W/m.K
17. Cuve d'électrolyse (100) selon l'une des revendications 1 à 16, dans laquelle les éléments de calage (2) sont constitués de briques réfractaires silico-alumineuse ou de plaques de mica.
18. Cuve d'électrolyse (100) selon l'une des revendications 1 à 17, dans laquelle le matériau compressible des éléments thermiquement isolants (1 ) présente une conductivité thermique inférieure à 0.5W/m.K .
19. Cuve d'électrolyse (100) selon l'une des revendications 1 à 18, dans laquelle les éléments thermiquement isolants (1) en matériau compressible est entouré d'une couche de matériau résistant à la corrosion par des vapeurs d'électrolyte.
20. Cuve d'électrolyse (100) selon l'une des revendications 1 à 19, dans laquelle les blocs de parement interne (5) sont à base de carbone.
EP15814096.2A 2014-07-04 2015-07-01 Revêtement latéral d'isolation pour cuve d'électrolyse Active EP3164529B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401518A FR3023301B1 (fr) 2014-07-04 2014-07-04 Cuve d'electrolyse
PCT/IB2015/001116 WO2016001743A1 (fr) 2014-07-04 2015-07-01 Revêtement latéral d'isolation pour cuve d'électrolyse

Publications (3)

Publication Number Publication Date
EP3164529A1 true EP3164529A1 (fr) 2017-05-10
EP3164529A4 EP3164529A4 (fr) 2018-01-24
EP3164529B1 EP3164529B1 (fr) 2019-04-24

Family

ID=51483483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15814096.2A Active EP3164529B1 (fr) 2014-07-04 2015-07-01 Revêtement latéral d'isolation pour cuve d'électrolyse

Country Status (7)

Country Link
EP (1) EP3164529B1 (fr)
CN (1) CN106661747B (fr)
AU (1) AU2015282394B2 (fr)
CA (1) CA2950692C (fr)
FR (1) FR3023301B1 (fr)
RU (1) RU2689292C2 (fr)
WO (1) WO2016001743A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233196A1 (fr) * 2022-06-03 2023-12-07 Vedanta Limited (Aluminium & Power) Conception de revêtement de cellule électrolytique dans un dispositif de fusion d'aluminium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129157A1 (fr) * 2021-11-18 2023-05-19 Rio Tinto Alcan International Limited Système de revêtement intérieur pour cuve d’électrolyse

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399786A3 (fr) * 1989-05-25 1992-05-27 Alcan International Limited Revêtements réfractaires résistants au sodium et aux sels de sodium
US5560809A (en) * 1995-05-26 1996-10-01 Saint-Gobain/Norton Industrial Ceramics Corporation Improved lining for aluminum production furnace
RU2186880C1 (ru) * 2001-03-05 2002-08-10 Общество с ограниченной ответственностью "АЛКОРУС ИНЖИНИРИНГ" Боковая футеровка алюминиевого электролизера
CN2721655Y (zh) * 2004-08-31 2005-08-31 贵阳铝镁设计研究院 电解槽侧部内衬材料的配置结构
CN100415938C (zh) * 2004-12-27 2008-09-03 沈阳铝镁设计研究院 一种铝电解槽内衬结构
RU2294404C1 (ru) * 2005-09-20 2007-02-27 Открытое акционерное общество "Сибирский научно-исследовательский, конструкторский и проектный институт алюминиевой и электродной промышленности" (ОАО "СибВАМИ") Катодное устройство алюминиевого электролизера
FR2893329B1 (fr) * 2005-11-14 2008-05-16 Aluminium Pechiney Soc Par Act Cuve d'electrolyse avec echangeur thermique.
CN201195753Y (zh) * 2008-04-29 2009-02-18 东北大学设计研究院(有限公司) 一种铝电解槽纵向端头格栅板绝缘结构
CN101423955A (zh) * 2008-11-21 2009-05-06 中国铝业股份有限公司 一种大型铝电解槽内衬结构
CN101709486B (zh) * 2009-12-18 2012-05-30 中国铝业股份有限公司 一种铝电解槽
CN201793762U (zh) * 2010-07-30 2011-04-13 任必军 用于铝电解槽的锁能结构
CN201908138U (zh) * 2010-12-17 2011-07-27 贵阳铝镁设计研究院有限公司 一种铝电解槽的保温内衬结构
CN202116666U (zh) * 2011-06-24 2012-01-18 贵阳铝镁设计研究院有限公司 一种精铝槽的内衬的侧部结构
CN103122463B (zh) * 2011-11-21 2015-07-22 沈阳铝镁设计研究院有限公司 一种保温型铝电解槽槽内衬侧部复合块
CA2893476C (fr) * 2012-12-13 2018-01-16 Sgl Carbon Se Pierre laterale pour une paroi dans une cellule d'electrolyse servant a la reduction de l'aluminium
CN203307449U (zh) * 2013-06-29 2013-11-27 贵阳铝镁设计研究院有限公司 精铝槽侧部内衬结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233196A1 (fr) * 2022-06-03 2023-12-07 Vedanta Limited (Aluminium & Power) Conception de revêtement de cellule électrolytique dans un dispositif de fusion d'aluminium

Also Published As

Publication number Publication date
CA2950692C (fr) 2022-07-26
CA2950692A1 (fr) 2016-01-07
EP3164529B1 (fr) 2019-04-24
FR3023301A1 (fr) 2016-01-08
FR3023301B1 (fr) 2016-07-01
AU2015282394A1 (en) 2017-01-12
WO2016001743A1 (fr) 2016-01-07
RU2017103537A3 (fr) 2019-01-28
RU2017103537A (ru) 2018-08-06
EP3164529A4 (fr) 2018-01-24
RU2689292C2 (ru) 2019-05-24
CN106661747A (zh) 2017-05-10
CN106661747B (zh) 2018-08-07
AU2015282394B2 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
RU2227178C2 (ru) Способ изготовления многослойной катодной структуры
EP3164529B1 (fr) Revêtement latéral d'isolation pour cuve d'électrolyse
FR2985007A1 (fr) Regenerateur.
JP4969627B2 (ja) 高温タンクの基礎構造及び基礎工法
CN201885245U (zh) 湿法脱硫后钢筋混凝土单筒烟囱的防腐***
LU84042A1 (fr) Rigole de coulee pour metaux liquides
EP2013381B1 (fr) Cuve d'électrolyse d'obtention d'aluminium
EP2751051A1 (fr) Masse à damer pour le revêtement réfractaire d'un récipient métallurgique, procédé pour sa mise en uvre et récipient métallurgique, notamment haut-fourneau, comportant un revêtement utilisant la dite masse à damer
EP0126700B1 (fr) Ecran sous-cathodique comportant des zones déformables pour les cuves d'électrolyse Hall-Héroult
ES2744204T3 (es) Crisol reutilizable para la fabricación de material cristalino
CA2935452C (fr) Ensemble anodique et procede de fabrication associe
Yurkov Refractories and carbon cathode materials for the aluminum industry.
CN202023291U (zh) 一种保温复合墙砖
NO832497L (no) Katodekar for aluminium-elektrolysecelle
Pardo et al. Cathode performance evaluation at Votorantim Metais—CBA
US20130183102A1 (en) Slip formed concrete structure
Jansson et al. Fire in storehouse 6 in the free port of Stockholm.”
CN201184480Y (zh) 步进梁式炉水冷管纤维包扎结构
RU2754560C1 (ru) Способ футеровки катодного устройства электролизера для получения алюминия
BR112017025769B1 (pt) Métodos para forrar um conjunto de cátodos de uma célula de redução para produção de alumínio primário (variantes)
CN110821261A (zh) 一种水泥电杆对接钢板圈的防腐加固方法
LU88629A1 (fr) Garnissage de protection en briques rétractaires pour un caisson de refroidissement d'un four industriel
EP1139049A1 (fr) Garnissage réfractaire pour des fours contenant du métal en fusion

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180103

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/08 20060101AFI20171220BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015029024

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1124264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015029024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015029024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230712

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240624

Year of fee payment: 10