EP3147393A1 - Textile bewehrung mittels garn und verfahren zur vorbereitung eines garns - Google Patents

Textile bewehrung mittels garn und verfahren zur vorbereitung eines garns Download PDF

Info

Publication number
EP3147393A1
EP3147393A1 EP16190540.1A EP16190540A EP3147393A1 EP 3147393 A1 EP3147393 A1 EP 3147393A1 EP 16190540 A EP16190540 A EP 16190540A EP 3147393 A1 EP3147393 A1 EP 3147393A1
Authority
EP
European Patent Office
Prior art keywords
yarn
reinforcement
mineral
plasma
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16190540.1A
Other languages
English (en)
French (fr)
Other versions
EP3147393B1 (de
Inventor
Matthias Lieboldt
Frank Schladitz
Manfred Curbach
Viktor Mechtcherine
Maik Fröhlich
Urte Kellner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Plasmaforschung und Technologie eV
Original Assignee
Leibnitz-Institut fur Plasmaforschung und Technologie EV
TECHNISCHE UNIVERSITAT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibnitz-Institut fur Plasmaforschung und Technologie EV, TECHNISCHE UNIVERSITAT filed Critical Leibnitz-Institut fur Plasmaforschung und Technologie EV
Publication of EP3147393A1 publication Critical patent/EP3147393A1/de
Application granted granted Critical
Publication of EP3147393B1 publication Critical patent/EP3147393B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/08Organic compounds
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/166Connectors or means for connecting parts for reinforcements the reinforcements running in different directions

Definitions

  • the invention relates to a textile reinforcement by means of yarn, so that a component comprising a matrix material and the reinforcement is formed.
  • An aqueous, mineral matrix material for example concrete, is also suitable as the matrix material.
  • the invention furthermore relates to a method for preparing a yarn, in particular multifilament yarn, which can be used as textile reinforcement, in particular in an aqueous, mineral matrix material.
  • the building material concrete is very well suited for absorbing pressure loads. However, it has only a low absorption capacity in terms of tensile stress and shows a pronounced brittle material failure. Therefore, concrete components for receiving tensile stresses, for example resulting from bending moments or from forced stresses (eg shrinkage, temperature), require reinforcement.
  • the combination of concrete and tension-absorbing reinforcement creates a high-performance building material.
  • the reinforcement can be installed in various geometric arrangements, with lattice-shaped structures or bars generally being used.
  • Structural steel has hitherto been used as the material, which must be protected against corrosion depending on existing exposures with concrete coverages of up to 5.5 cm.
  • corrosion-resistant materials such as carbon or alkali-resistant glass (AR glass) have been researched for several years, and reinforcements made from these materials are being prepared for a wide practical application.
  • a first step was achieved with the composite material textile concrete.
  • Textile concrete or textile-reinforced concrete is a composite material made of concrete and a textile fabric (scrim).
  • the textile fabric used as reinforcement preferably consists of multifilament yarns, the materials used being AR glass, carbon and / or basalt.
  • the individual multifilament yarns, referred to below as roving are composed of several thousand filaments.
  • the filament diameters are in a range between about 7 ⁇ m (carbon) and 20 ⁇ m (AR glass). If you were to place the rovings uncoated in the concrete, only the outer filaments of the rovings would connect with the concrete.
  • the inner filaments have no regular connection to the concrete matrix. Thus, primarily only the outer filaments will participate in the load transfer and the potential carrying capacity of the yarns will not be exploited.
  • the coating materials used today are predominantly styrene butadiene and epoxy resin.
  • the composite behavior between the inner filaments of the yarns is improved, and thus the load-bearing reserves of the yarn material are utilized to a greater extent.
  • the bond between yarn and surrounding fine concrete is increased.
  • the load-bearing capacity of the coated structures is thus significantly higher than that of uncoated rovings or textiles. In the same way, the load transfer takes place even with rod-shaped reinforcements made of fiber-reinforced plastic.
  • the typically used reinforcing materials, such as carbon, and also the concrete as the matrix material are significantly more temperature resistant and durable than the plastic coating that wraps and bonds the reinforcing material to each other and to the matrix material.
  • the coating which is decisive as a boundary layer, in particular for the decisive bond to the surrounding matrix of the component, therefore essentially determines the temperature or fire behavior, the creep behavior and the time-dependent deformation behavior of textile concrete under load (creep). Therefore, the properties of the coating material is of great importance.
  • the current reinforcements similar to fiber-reinforced plastics, have a coating or a bonding matrix in flat or rod-shaped form, which, however, is neither very temperature-resistant nor durable.
  • the problem of the plastics used so far is that they are usually very susceptible to temperature, depending on the system used. From temperatures between 40 ° C and 120 ° C, the positive effect of the coating decreases. Softening significantly reduces their function. When proving a component for a fire, a temperature resistance of the coating of up to 600 ° C is usually required. Furthermore, a continuous loading of the plastics can lead to pronounced creep of the coating and thus to the unwanted, very significant increase in the deformation of the composite component. The durability given to plastics for a limited time can lead to embrittlement and / or aging, in particular due to the alkaline environment in the concrete.
  • the polymer dispersions used to increase the utilization of the theoretical yarn strength can be applied to the yarn structures relatively favorably in terms of production technology and are also able to more easily infiltrate the structures.
  • the properties of the coated reinforcement structures can be adjusted specifically to the requirements of the handling. This concerns for example the deformability.
  • the polymers are usually applied in the form of dispersions on coating rollers on flat textile structures and thermally dried by infrared radiation and crosslinked.
  • Rod-shaped fiber reinforcements are made by pultruding with suitable systems of thermoplastic or thermosetting resins. Such a method describes by way of example the document US 4,728,387 A. ,
  • Suitable coating materials with regard to their properties in the concrete are, for example, aqueous suspensions of mineral inorganic binders.
  • a technological problem with the aforementioned approach is therefore that the uncoated fiber surfaces of multifilament yarns (eg carbon) are not affine towards the aqueous suspensions of mineral inorganic binders.
  • the known solutions for application of the polymeric coatings can therefore not be transferred in particular to aqueous mineral coatings and matrix systems without adjustments and / or extensions of the technology. Due to the low affinity properties of the multifilament yarns compared to the suspensions, only an insufficient coating and / or embedding in the mineral matrix is achieved. Due to the reduced composite, the carrying reserves of the fiber structures are only insufficiently utilized.
  • the object of the invention is therefore to improve the wettability of multifilament yarns in a simple and cost-effective manner, especially for aqueous mineral coatings, so that additional mineral or metallic layers can be applied to the fiber surface.
  • a method or a method is to be made available with which the fiber surface of reinforcing structures can be designed affine or more hydrophilic compared to aqueous suspensions of mineral, inorganic binder matrices.
  • a textile reinforcement with improved wettability and a reinforced component to be offered.
  • additional measures can be carried out, for example by profiling the yarns or structures. These can be carried out by a local application with resin systems, which in turn behave problematic in terms of higher temperatures and / or fire.
  • the object of the invention is further achieved by a plasma-chemical process.
  • a specific modification of the fiber surface for example, carbon, AR glass, basalt
  • a further substance here for example in the form of an aqueous suspension with mineral fines carried out.
  • an interaction of the plasma with the fiber surfaces or with the production-technologically applied fiber size takes place.
  • the surface energy can be selectively adjusted by the interaction plasma surface in the form of changes of the molecular structures on the surface and the associated increase in the polar binding fraction , which leads to an improvement of wettability or reactivity with the coating / impregnation material.
  • boundary conditions are especially process parameters, such as composition of process gases, process time, excitation frequency and power, pressure and gas flow rate.
  • the approach to the activation of fiber surfaces can thus be transferred to other matrix systems, such as polymer dispersions or various resin systems in addition to mineral-based systems such as reinforced concrete.
  • the composite behavior of the reinforcement structures can be improved by the deposition of ceramic layers.
  • the process of applying a layer is based on plasma-chemical processes (PECVD), in which a precursor corresponding to the ceramic material, e.g. HMDSO (hexamethyldisiloxane) or TEOS (tetraethyl orthosilicate) is used.
  • PECVD plasma-chemical processes
  • HMDSO hexamethyldisiloxane
  • TEOS tetraethyl orthosilicate
  • Electrically conductive contacts of carbon structures are, so far known, previously produced by pressing metallic sleeves or bands.
  • metallic layers which is done by means of PVD process, electrically conductive yarns (carbon) can be permanently contacted.
  • the PVD process is based on the sputtering of conductive material, which is condensed on the yarn structure during the coating process and thus deposited there.
  • the sputtering process is magnetron sputtering with argon as working gas.
  • the essence of the invention lies above all in the possibility of plasma technology for modifying the surface properties of materials, which in itself has been known for several decades.
  • the practical and commercial application for industrial problem solutions has increased significantly over time.
  • the fields of application are very different.
  • the surface modification (inter alia by means of layer application) also plays an important role in improving the performance characteristics, for example scratch protection, mirroring, printability, barrier protection, etc.
  • the use of plasma technology for the modification of fiber surfaces in multifilament yarns with the aim of better wettability (hydrophilization) with aqueous mineral suspensions despite the long knownness of the underlying technology is not known and represents the essence of the present invention with its surprising effect.
  • the ultimate goal for the primary application is to increase the bond properties between the individual filaments and the mineral matrix both within the yarns and outside of the surrounding mineral matrix in cementitious components.
  • the mineral matrix instead of the mineral matrix, other matrix systems are also conceivable.
  • PECVD Plasma-enhanced chemical vapor deposition
  • CVD chemical vapor deposition
  • the plasma can burn directly on the substrate to be coated (direct plasma method) or in a separate chamber (remote plasma method).
  • the order can be made over the entire surface or gradually.
  • the gradual or sectional application allows a metered introduction of the composite forces in order to control the load-deformation behavior and failure behavior of the material according to the respective requirements.
  • end anchorages of prestressed reinforcement structures can be produced by the application of ceramic layers.
  • prestressed reinforcement structures for example carbon, AR glass, basalt
  • these have the additional advantage of reducing the transverse pressure sensitivity for gripping the reinforcements.
  • the electrical contacting of carbon by applying metals allows a low-resistance and durable connection.
  • the object of the invention is also achieved by a textile reinforcement according to claim 8 and such a reinforced component according to claim 13.
  • Fig. 1 schematically shows an embodiment of a reinforcement according to the invention comprising a yarn 1 and a detail of the yarn 1, in particular a multifilament yarn.
  • the multifilament yarns or rovings form a scrim.
  • the treatment according to the invention of the roving takes place only as a partial modification 2 in order to allow the application of mineral layers, here a ceramic as an additional mineral layer 3, at the nodal points of the layer.
  • Fig. 2 schematically shows an embodiment of a yarn 1 according to the invention, which has the modification 2 instead of a full-surface modification 2, ie treatment of the surface or order of a further material, also in sections or only at the end. It is of importance how the forces are transferred to the matrix material, especially while avoiding tearing out of matrix material by overload.
  • the treatment in the end area provides for an improved final anchorage 4. Shown is the coating order of a ceramic as an additional mineral layer 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Textile Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Vorbereitung eines Garns, insbesondere ein Multifilamentgarn, für einen Einsatz als textile Bewehrung in einem Matrixmaterial, insbesondere einem mineralischen Matrixmaterial, eine textile Bewehrung und ein Bauteil, umfassend diese Bewehrung. Aufgabe der Erfindung ist es, die Benetzbarkeit von Multifilamentgarnen zu verbessern, vor allem für wässrige mineralische Beschichtungen. Zur Lösung wird die Oberfläche des Garns mittels eines plasmachemischen und/oder plasmaphysikalischen Prozesses in der Weise modifiziert wird, dass durch die resultierende Modifikation zumindest die Benetzbarkeit verbessert wird.

Description

  • Die Erfindung betrifft eine textile Bewehrung mittels Garn, so dass ein ein Matrixmaterial und die Bewehrung umfassendes Bauteil gebildet wird. Als Matrixmaterial kommt auch ein wässriges, mineralisches Matrixmaterial, beispielsweise Beton, in Betracht. Die Erfindung betrifft weiterhin ein Verfahren zur Vorbereitung eines Garns, insbesondere Multifilamentgarn, das als textile Bewehrung insbesondere in einem wässrigen, mineralischen Matrixmaterial zum Einsatz kommen kann.
  • Der Baustoff Beton ist sehr gut geeignet zur Aufnahme von Druckbelastungen. Er besitzt jedoch nur ein geringes Aufnahmevermögen hinsichtlich einer Zugbeanspruchung und zeigt ein ausgeprägt sprödes Materialversagen. Daher benötigen Betonbauteile zur Aufnahme von Zugspannungen, beispielsweise resultierend aus Biegemomenten oder aus Zwangsspannungen (z. B. Schwinden, Temperatur), eine Bewehrung. Durch die Kombination von Beton und zugkraftaufnehmender Bewehrung entsteht ein hochleistungsfähiger Baustoff. Die Bewehrung kann hierbei in verschiedenen geometrischen Anordnungen eingebaut werden, wobei meistens gitterförmige Strukturen oder Stäbe zur Anwendung kommen. Als Material wird bisher Baustahl eingesetzt, der in Abhängigkeit vorliegender Expositionen mit Betonüberdeckungen von bis zu 5,5 cm gegen Korrosion geschützt werden muss. Zur Reduzierungen der Betonüberdeckungen wird deshalb seit mehreren Jahren an korrosionsunempfindlichen Materialien wie Carbon oder alkaliresistentem Glas (AR-Glas) geforscht und es werden Bewehrungen aus diesen Materialien für eine breite baupraktische Anwendung vorbereitet. Ein erster Schritt wurde mit dem Verbundmaterial Textilbeton erreicht.
  • Textilbeton oder auch textilbewehrter Beton ist ein Verbundwerkstoff aus Beton und einem textilen Flächengebilde (Gelege). Das als Bewehrung dienende Textilgelege besteht bevorzugt aus Multifilamentgarnen, wobei als Werkstoffe AR-Glas, Carbon und/oder Basalt eingesetzt werden. Die einzelnen Multifilamentgarne, nachfolgend als Roving bezeichnet, sind aus mehreren tausend Filamenten zusammengesetzt. Die Filamentdurchmesser liegen in einem Bereich zwischen ca. 7 µm (Carbon) und 20 µm (AR-Glas). Würde man die Rovings unbeschichtet in den Beton einlegen, würden sich lediglich die äußeren Filamente der Rovings mit dem Beton verbinden. Die inneren Filamente haben regelmäßig keine Verbindung zur Betonmatrix. Somit werden sich in erster Linie nur die äußeren Filamente an der Lastabtragung beteiligen und die potenzielle Tragfähigkeit der Garne wird nicht ausgenutzt.
  • Zur gewünschten Beteiligung aller Filamente am Lastabtrag wird der Roving bzw. das Textil mit einer Polymerbeschichtung bezüglich der Filamente bzw. einer Imprägnierung des gesamten Rovings versehen, die in die Struktur infiltriert. Als Beschichtungsmaterialien kommen heute überwiegend Stryrolbutadien und Epoxidharz zum Einsatz. Das Verbundverhalten zwischen den inneren Filamenten der Garne wird verbessert und damit werden die Tragreserven des Garnmaterials stärker ausgenutzt. Gleichzeitig wird auch der Verbund zwischen Garn und umgebendem Feinbeton gesteigert. Die Tragfähigkeit der beschichteten Strukturen ist damit deutlich höher als die der unbeschichteten Rovings bzw. Textilien. In gleicher Weise erfolgt die Lastabtragung auch bei stabförmigen Bewehrungen aus faserverstärktem Kunststoff.
  • Die typischerweise verwendeten Bewehrungsmaterialien, wie beispielsweise Carbon, und auch der Beton als Matrixmaterial sind deutlich temperaturbeständiger und dauerhafter als die Kunststoffbeschichtung, die das Bewehrungsmaterial umhüllt und untereinander und mit dem Matrixmaterial verbindet. Die Beschichtung, die als Grenzschicht insbesondere für den entscheidenden Verbund zur umgebenden Matrix des Bauteils maßgebend ist, bestimmt daher wesentlich das Temperatur- bzw. Brandverhalten, das Dauerstandverhalten und das zeitabhängige Verformungsverhalten von Textilbeton unter Last (Kriechen). Deshalb kommt den Eigenschaften des Beschichtungsmaterials eine hohe Bedeutung zu.
  • Neben den vielen herstellungstechnologischen und gebrauchstechnischen Vorteilen besitzen die aktuellen Bewehrungen, vergleichbar mit faserverstärkten Kunststoffen, in flächiger oder stabförmiger Form eine Beschichtung bzw. eine Bindematrix, welche allerdings weder sehr temperaturbeständig noch dauerhaft ist. Das Problem der bisher verwendeten Kunststoffe ist, dass diese in Abhängigkeit des verwendeten Systems zumeist sehr temperaturanfällig sind. Ab Temperaturen zwischen 40 °C und 120 °C lässt die positive Wirkung der Beschichtung nach. Durch Erweichen wird ihre Funktion erheblich gemindert. Bei einem Bauteilnachweis für den Brandfall ist meist eine Temperaturbeständigkeit der Beschichtung von bis zu 600 °C erforderlich. Des Weiteren kann eine andauernde Belastung der Kunststoffe zum ausgeprägten Kriechen der Beschichtung und damit zur ungewollten, sehr deutlichen Verformungszunahme des Verbundbauteils führen. Die Dauerhaftigkeit, die bei Kunststoffen für eine begrenzte Zeit gegeben ist, kann insbesondere durch das alkalische Milieu im Beton zu einer Versprödungen und/oder Alterung führen.
  • Die zur Erhöhung der Ausnutzung der theoretischen Garnfestigkeit eingesetzten Polymerdispersionen lassen sich herstellungstechnologisch relativ günstig auf die Garnstrukturen auftragen und sind auch in der Lage, die Strukturen leichter zu infiltrieren. Durch Modifikation und Anpassung der Polymere können die Eigenschaften der beschichteten Bewehrungsstrukturen gezielt an die Erfordernisse des Handlings eingestellt werden. Dies betrifft beispielsweise die Verformbarkeit. Die Polymere werden meist in Form von Dispersionen über Beschichtungswalzen auf flächige textile Strukturen aufgetragen und mittels Infrarotstrahlung thermisch getrocknet und vernetzt. Stabförmige Faserbewehrungen werden durch Pultrudieren mit geeigneten Systemen aus thermoplastischen oder duroplastischen Harzen hergestellt. Ein solches Verfahren beschreibt beispielhaft die Druckschrift US 4 728 387 A .
  • Während die nach dem Stand der Technik genutzten Polymere eine gute Beschichtung auch von Rovings zulassen, ist dies bei alternativen Materialien, die sehr temperaturbeständig und dauerhaft sind und auch im alkalischen Milieu im Beton nicht zu einer Versprödungen oder Alterung, nicht der Fall. Hinsichtlich ihrer Eigenschaften im Beton gut geeignete Beschichtungsmaterialien sind beispielsweise wässrige Suspensionen mineralischer anorganischer Bindemittel.
  • Es wäre somit sinnvoll eine Methode zu entwickeln, mit der auf die polymere Kunststoffbeschichtung verzichtet werden kann und die Bindung der einzelnen Filamente durch temperaturbeständige Matrices, beispielsweise auf mineralischer Basis, erfolgt. Dies ist vor allem für die Sicherstellung des Hochtemperaturverhaltens (Feuerwiderstand) von hoher Bedeutung. Wenn dazu Multifilamentgarne in kompakter Form durch eine mineralische Bindemittelsuspension geführt werden, erfolgt aufgrund der Partikelgröße der Bindemittelbestandteile eine Infiltrierung nur im äußeren Bereich des Garns, so dass die inneren Filamente unbenetzt bleiben. Ein Lösungsversuch wird mit der Druckschrift US 6 174 5959 B1 angeboten, mit der eine nichtrostende Umhüllung von Stäben, Leitungen oder Rohren erreicht werden soll und die auch als mineralisches Matrixmaterial Zement (vgl. Sp. 8, Z. 63) vorsieht. Dabei kommt es nicht auf statische Aspekte, sondern auf die Dichtheit der Umhüllung an. Dafür werden die Filamentbündel jedoch verdrillt oder nochmals quer zur Hauptfaserrichtung umwickelt. Beides würde Carbonfasern angesichts der geringen Festigkeit quer zur Längsrichtung zerstören. Zweifel an der Ausführbarkeit bleiben daher bestehen, soweit die Offenbarung auf mineralisches Matrixmaterial bzw. auf Carbonfasern (vgl. Sp. 14, Z. 14 - 17) abstellt. Wie hingegen eine für statische Anwendungen wichtige sichere Anbindung zwischen den Fasern und der umgebenden Matrix erreicht werden soll, wird nicht dargelegt, sondern nur behauptet (vgl. Sp. 8, Z. 38 - 39; Sp. 10, Z. 16 - 17). Tatsächlich wird es bisher ungelöste Probleme damit geben, eine angemessene Benetzung der Fasern mit dem Matrixmaterial zu erreichen, sofern ein wässriges, mineralisches Matrix- bzw. Beschichtungsmaterial Verwendung finden soll.
  • Ein technologisches Problem bei dem zuvor genannten Lösungsansatz besteht folglich darin, dass die unbeschichteten Faseroberflächen von Multifilamentgarnen (beispielsweise Carbon) sich nicht affin gegenüber den wässrigen Suspensionen mineralischer anorganischer Bindemittel verhalten. Die bekannten Lösungen zum Auftrag der polymeren Beschichtungen können daher insbesondere nicht ohne Anpassungen und/oder Erweiterungen der Technologie auf wässrige mineralische Beschichtungen und Matrixsysteme übertragen werden. Auf Grund der wenig affinen Eigenschaften der Multifilamentgarne gegenüber den Suspensionen wird eine nur unzureichende Umhüllung und/oder Einbettung in die mineralische Matrix erzielt. Durch den verminderten Verbund werden die Tragreserven der Faserstrukturen nur unzureichend ausgenutzt.
  • Aufgabe der Erfindung ist es daher, die Benetzbarkeit von Multifilamentgarnen auf einfache und kostengünstige Weise zu verbessern, vor allem für wässrige mineralische Beschichtungen, damit auf die Faseroberfläche zusätzliche mineralische oder metallische Schichten aufgetragen werden können. Es soll eine Methode oder ein Verfahren zur Verfügung gestellt werden, womit die Faseroberfläche von Bewehrungsstrukturen affiner bzw. hydrophiler gegenüber wässrigen Suspensionen von mineralischen, anorganischen Bindemittelmatrices gestaltet werden kann. Weiterhin sollen eine textile Bewehrung mit verbesserter Benetzbarkeit und ein bewehrtes Bauteil angeboten werden.
  • Die Aufgabe der Erfindung wird gelöst durch ein Verfahren gemäß Anspruch 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.
  • Zwar sind plasmachemische bzw. plasmaphysikalische Prozesse an sich bekannt aus dem Stand der Technik:
  • Käppler, Iris; Hund, Rolf-Dieter, Cherif, Chokri: Surface modification of carbon fibres using plasma technique. Autex Research Journal, Band 14, Heft 1, Seiten 34-38, ISSN (Print) 1470-9589, 001: 10.2478/v10304-012-0048-y, March 2014.
    Hier werden jedoch nur die Oberflächeneigenschaften mittels Plasma manipuliert mit dem Ziel einer besseren Benetzbarkeit der Filamente zum Kleben der Garne, was als Ersatz für die textiltechnische Bindung dienen soll.
  • Lee, Seung-Wook; Lee, Hwa-Young; Jang, Sung-Yeon; Jo, Seong-Mu; Lee Hun-Soo; and Le, Sungho: Tensile Properties and Morphology of Carbon Fibers Stabilized by Plasma Treatment. Carbon Letters, Vol. 12, No. 1 March 2011, pp. 16-20.
    Hierbei dient jedoch die Plasmabehandlung nur einer Modifikation des Herstellungsprozesses einer Faser. Durch eine Nachbehandlung mit Plasma sollen dabei die mechanischen Eigenschaften verbessert werden.
  • Überraschend zeigte sich nach der erfindungsgemäßen Anpassung und Anwendung derartiger Prozesse auf Garne, insbesondere Multifilamentgarne, für den Einsatz als textile Bewehrung, dass ein verbesserter Verbund der Fasern zur Beschichtung oder zur umgebenden (insbesondere mineralischen) Matrix durch eine Vorbehandlung der Fasern, die eine Modifizierung der Oberfläche zum Ergebnis hat, erreicht werden konnte. Der Ansatz der vorliegenden Erfindung besteht darin, an sich bekannte Methoden und Verfahren auf Basis plasmachemischer und -physikalischer Prozesse zur Verfügung zu stellen und derart zu modifizieren, so dass mit ihnen:
    • die Faseroberfläche von Multifilamentgarnen affiner/hydrophiler gegenüber den wässrigen Suspensionen von mineralischen anorganischen Bindemittelmatrices gestaltet werden kann,
    • auf der Faseroberfläche von Multifilamentgarnen zusätzliche mineralische Schichten (beispielsweise Keramik) zur Steigerung des Verbundes aufgetragen werden können,
    • auf der Faseroberfläche von Multifilamentgarnen zusätzliche elektrisch leitfähige Schichten zur Kontaktierung aufgetragen werden können (beispielsweise für Heizgelege, Sensorik etc.).
  • Durch die verbesserte Benetzbarkeit der Filamente oder das Auftragen mineralischer Schichten kann das Verbundverhalten bzw. der Lastabtrag von Bewehrungsstrukturen aus Multifilamentgarnen generell entscheidend gesteigert werden.
  • Einen vielversprechenden positiven Effekt im Hinblick auf die Steigerung des Verbundverhaltens zeigte sich bei der Plasmabehandlung von Carbongarnen zur Oberflächenmodifizierung (Hydrophilierung), welche nachfolgend in mineralischen Matrices eingebettet wurden. Für die technologische Umsetzung zeigte sich als besonders vorteilhaft, dass sich auf der Faseroberfläche und zwischen den Filamenten im Faserbündel leichter kristalline Strukturen herausbilden können.
  • Zur Verbesserung der Verbundeigenschaften können zusätzliche Maßnahmen, beispielweise durch Profilierung der Garne bzw. Strukturen ausgeführt werden. Diese können durch einen lokalen Auftrag mit Harzsystemen ausgeführt werden, welche sich wiederum problematisch in Bezug auf höhere Temperaturen und/oder Brandeinwirkung verhalten.
  • Die Aufgabe der Erfindung wird weiterhin gelöst durch einen plasmachemischen Prozess. Dabei wird eine gezielte Modifizierung der Faseroberfläche (beispielsweise Carbon, AR-Glas, Basalt) für einen nachfolgenden Auftrag mit einem weiteren Stoff, hier beispielsweise in Form einer wässrigen Suspension mit mineralischen Feinststoffen, ausgeführt. Im Rahmen der plasmabasierten Modifizierung erfolgt eine Wechselwirkung des Plasmas mit den Faseroberflächen bzw. mit der herstellungstechnologisch aufgebrachten Faserschlichte. In Abhängigkeit der gewählten Prozessparameter (Zusammensetzung der Prozessgase, Prozesszeit, Anregungsfrequenz und -leistung, Druck und Gasdurchsatz) kann durch die Interaktion Plasma - Oberfläche in Form von Änderung der Molekülstrukturen an der Oberfläche und der damit verbundenen Erhöhung des polaren Bindungsanteils die Oberflächenenergie gezielt eingestellt werden, was zu einer Verbesserung der Benetzungsfähigkeit bzw. Reaktionsfähigkeit mit dem Beschichtungs-/ Imprägnierungsmaterial führt.
  • Neben der erwähnten wässrigen mineralischen Suspension sind durch Anpassungen der Prozessbedingungen und der technologischen Randbedingungen auch andere Arten von Beschichtungs-/ Matrixmaterialien denkbar. Solche Randbedingungen sind vor allem Prozessparameter, wie Zusammensetzung der Prozessgase, Prozesszeit, Anregungsfrequenz und -leistung, Druck und Gasdurchsatz.
  • Der Ansatz zur Aktivierung der Faseroberflächen kann somit neben mineralisch basierten Systemen wie bewehrten Beton auch auf andere Matrixsysteme, wie beispielsweise Polymerdispersionen oder verschiedene Harzsysteme übertragen werden.
  • Weiterhin kann das Verbundverhalten der Bewehrungsstrukturen durch die Abscheidung von keramischen Lagen verbessert werden. Der Prozess des Schichtauftrags basiert auf plasmachemischen Prozessen (PECVD-Verfahren, englisch: plasma-enhanced chemical vapour deposition), bei denen ein dem keramischen Material entsprechender Präkursor, z.B. HMDSO (Hexamethyldisiloxan) oder TEOS (Tetraethylorthosilicat), zur Anwendung kommt. Der Auftrag kann abschnittsweise bzw. lokal begrenzt erfolgen (beispielsweise Knoten), so dass der Vorteil der Flexibilität der Bewehrungsstrukturen aus Multifilamentgarnen erhalten bleibt.
  • Elektrisch leitfähige Kontaktierungen von Carbonstrukturen (Heizgelegen) werden, soweit bekannt, bisher durch Aufpressen von metallischen Hülsen oder Bändern hergestellt. Durch den Auftrag von metallischen Schichten, der mittels PVD-Verfahren erfolgt, können elektrische leitende Garne (Carbon) dauerhaft kontaktiert werden. Das PVD- Verfahren basiert auf der Zerstäubung von leitendem Material, welches im Laufe des Beschichtungsprozesses auf der Garnstruktur kondensiert und somit dort abgeschieden wird. Als Zerstäubungsprozess kommt das Magnetronsputtern mit Argon als Arbeitsgas zum Einsatz.
  • Der Kern der Erfindung liegt vor allem in der Möglichkeit der Plasmatechnologie zur Modifikation der Oberflächeneigenschaften von Materialien, die an sich zwar seit mehreren Jahrzehnten bekannt ist. Die praktische und kommerzielle Anwendung für industrielle Problemlösungen ist mit der Zeit deutlich angestiegen. Die Anwendungsfelder sind dabei sehr verschieden. Neben der Oberflächenmodifikation zum Fügen verschiedener Materialien spielt auch die Oberflächenmodifikation (u. a. mittels Schichtauftrag) zur Verbesserung der Gebrauchseigenschaften eine große Rolle, beispielsweise Kratzschutz, Verspiegelung, Bedruckbarkeit, Barriereschutz etc. Demgegenüber ist der Einsatz der Plasmatechnologie zur Modifikation von Faseroberflächen in Multifilamentgarnen mit dem Ziel einer besseren Benetzbarkeit (Hydrophilierung) mit wässrigen mineralischen Suspensionen trotz der langen Bekanntheit der zugrundeliegenden Technologie nicht bekannt und stellt mit seinem überraschenden Effekt das Wesentliche der vorliegenden Erfindung dar.
  • Das finale Ziel für den vorrangigen Anwendungszweck ist die Erhöhung der Verbundeigenschaften zwischen den einzelnen Filamenten und der mineralischen Matrix sowohl innerhalb der Garne als auch außerhalb zur umgebenden mineralischen Matrix in zementgebundenen Bauteilen. Anstelle der mineralischen Matrix sind auch andere Matrixsysteme denkbar.
  • Eine weitere Neuheit besteht in dem Auftrag mineralischer Schichten (Keramik) mittels PECVD-Verfahren auf (Carbon-) Bewehrungsstrukturen. Die plasmaunterstützte chemische Gasphasenabscheidung (englisch plasma-enhanced chemical vapour deposition, PECVD; auch engl. plasma-assisted chemical vapour deposition, PACVD, genannt) ist eine Sonderform der chemischen Gasphasenabscheidung (CVD), bei der die chemische Abscheidung durch ein Plasma unterstützt wird. Das Plasma kann direkt beim zu beschichtenden Substrat (Direktplasma-Methode) oder in einer getrennten Kammer (Remote-Plasma-Methode) brennen.
  • Der Auftrag kann vollflächig oder graduell erfolgen. Der graduelle bzw. abschnittsweise Auftrag ermöglicht eine dosierte Einleitung der Verbundkräfte, um das Last-Verformungsverhalten und Versagensverhalten des Materials den jeweiligen Anforderungen entsprechend zu steuern.
  • Ebenso können Endverankerungen von vorgespannten Bewehrungsstrukturen (beispielsweise Carbon, AR-Glas, Basalt) durch den Auftrag von keramischen Schichten hergestellt werden. Bei Carbon haben diese den zusätzlichen Vorteil, dass die Querdruckempfindlichkeit zum Fassen der Bewehrungen reduziert wird.
  • Die elektrische Kontaktierung von Carbon durch Auftragen von Metallen ermöglicht eine widerstandsarme und dauerhafte Verbindung.
  • Die Aufgabe der Erfindung wird auch gelöst durch eine textile Bewehrung gemäß Anspruch 8 und ein derart bewehrtes Bauteil gemäß Anspruch 13.
  • Wesentliche Vorteile sind beispielsweise:
    • bessere Benetzbarkeit der Filamentoberflächen von Multifilamentgarnen mit wässrigen mineralischen Suspensionen (Hydrophilierung);
    • keine chemische Behandlung zur Aktivierung der Faseroberflächen erforderlich;
    • Anwendbarkeit in einem großtechnischen Herstellungsprozess;
    • eine zusätzliche Kunststoffbeschichtung zwischen Beton und Garnen oder Filamenten ist nicht notwendig;
    • die Bewehrungsstrukturen sind damit temperaturbeständiger und dauerhafter als bisherige Lösungen;
    • durch vollständiges oder graduelles Auftragen keramischer Schichten kann das Verbundverhalten gesteuert werden;
    • eine gradueller Schichtauftrag ermöglicht den Erhalt der Flexibilität der Bewehrung beim Handling;
    • durch Abscheidung metallischer Schichten können Carbonstrukturen leitfähig kontaktiert werden (beispielsweise Heizmatten);
    • die Bewehrungsstrukturen besitzen einen hervorragenden Verbund zum später umgebenden Beton (chemisch kompatible Matrices von Bewehrung und Beton).
  • Durch die verbesserte Benetzbarkeit der einzelnen Filamente werden das Verbundverhalten bzw. der Lastabtrag der finalen Bewehrungsstruktur entscheidend gesteigert. Hierdurch ist eine hohe Ausnutzung der Tragreserven der Garnstrukturen bei der Einbettung in mineralischen Matrixsystemen insbesondere im Hinblick auf das Verhalten von Verbundbauteilen (z. B. aus Textilbeton) bei erhöhten Temperaturen (einschließlich Brandbeanspruchung) erreichbar. Als Bewehrungsstrukturen sind sowohl Stäbe als auch gitterförmigen Strukturen vorgesehen.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezugnahme auf die zugehörigen Zeichnungen.
  • Fig. 1 zeigt schematisch eine Ausführungsform einer erfindungsgemäßen Bewehrung umfassend ein Garn 1 sowie ein Detail des Garns 1, insbesondere eines Multifilamentgarns. Die Multifilamentgarne bzw. Rovings, bilden ein Gelege. Die erfindungsgemäße Behandlung des Rovings erfolgt nur als partielle Modifikation 2, um an den Knotenpunkten des Geleges, um dort den Auftrag von mineralischen Schichten, hier einer Keramik als zusätzlicher mineralischer Schicht 3, zu ermöglichen.
  • Fig. 2 zeigt schematisch eine Ausführungsform eines erfindungsgemäßen Garns 1, das anstelle einer vollflächigen Modifikation 2, also Behandlung der Oberfläche oder Auftrag eines weiteren Materials, auch abschnittsweise oder nur am Ende die Modifikation 2 aufweist. Dabei ist von Bedeutung, wie die Kräfte auf das Matrixmaterial übertragen werden, v. a. unter Vermeidung eines Herausreißens von Matrixmaterial durch Überlast. Die Behandlung im Endbereich sorgt für eine verbesserte Endverankerung 4. Dargestellt ist der beschichtende Auftrag einer Keramik als zusätzlicher mineralischer Schicht 3.

Claims (14)

  1. Verfahren zur Vorbereitung eines Garns, insbesondere ein Multifilamentgarn, für einen Einsatz als textile Bewehrung in einem Matrixmaterial, insbesondere einem mineralischen Matrixmaterial, dadurch gekennzeichnet, dass die Oberfläche des Garns (1) mittels eines plasmachemischen und/oder plasmaphysikalischen Prozesses in der Weise modifiziert wird, dass durch die resultierende Modifikation (2) zumindest die Benetzbarkeit verbessert wird.
  2. Verfahren nach Anspruch 1, wobei die Faseroberfläche des Garns (1) affiner und/oder hydrophiler gegenüber wässrigen Suspensionen von mineralischen anorganischen Bindemittelmatrices gestaltet wird, indem durch einen plasmachemischen und/oder plasmaphysikalischen Prozess die Oberflächenenergie der Filamente im Garn so beeinflusst wird, dass eine verbesserte Durchdringung einer wässrigen mineralischen Beschichtung innerhalb des Garns (1) erfolgt und damit eine sichere Anbindung an ein mineralisches Matrixmaterial möglich ist.
  3. Verfahren nach Anspruch 1, wobei die Faseroberfläche des Garns (1) affiner und/oder hydrophiler gegenüber Polymerdispersionen oder Harzsystemen gestaltet wird, indem durch einen plasmachemischen und/oder plasmaphysikalischen Prozess die Oberflächenenergie der Filamente im Garn (1) so beeinflusst wird, dass eine verbesserte Durchdringung von Polymerdispersionen oder Harzsystemen innerhalb des Garns erfolgt und damit eine sichere Anbindung an das Matrixmaterial möglich ist.
  4. Verfahren nach Anspruch 1, wobei die Faseroberfläche des Garns (1) derart vorbereitet wird, dass vollflächig oder graduell wenigstens eine zusätzliche mineralische Schicht (3) zur Steigerung des Verbundes mit der Beschichtung und/oder dem Matrixmaterial aufgetragen werden können, wobei der Auftrag durch das PECVD-Verfahren erfolgt und ein dem mineralischen Material entsprechender Präkursor zur Anwendung kommt.
  5. Verfahren nach Anspruch 4, wobei als zusätzliche mineralische Schicht (3) eine Keramik vorgesehen ist.
  6. Verfahren nach Anspruch 5, wobei als Präkursor HMDSO oder TEOS vorgesehen sind.
  7. Verfahren nach Anspruch 1, wobei die Faseroberfläche des Garns (1) derart vorbereitet wird, dass auf der Faseroberfläche des Garns (1) wenigstens eine zusätzliche elektrisch leitfähige Schicht, geeignet zur elektrischen Kontaktierung, aufgetragen werden können, indem der Auftrag von metallischen Schichten mittels PVD-Verfahrens erfolgt, wobei als Zerstäubungsprozess das Magnetronsputtern mit Argon als Arbeitsgas vorgesehen ist.
  8. Textile Bewehrung, umfassend ein Garn, insbesondere Multifilamentgarn, dadurch gekennzeichnet, dass das Multifilamentgarn mit einem Verfahren nach einem der Ansprüche 1 bis 7 behandelte Filamente umfasst.
  9. Bewehrung nach Anspruch 8, wobei auf die Faseroberfläche des Garns (1) wenigstens eine zusätzliche mineralische Schicht (3) zur Steigerung des Verbundes mit der Beschichtung und/oder dem Matrixmaterial auftragen ist.
  10. Bewehrung nach Anspruch 9, wobei als zusätzliche mineralische Schicht (3) eine Keramik vorgesehen ist.
  11. Bewehrung nach einem der Ansprüche 8 bis 10, wobei auf die Faseroberfläche des Garns (1) wenigstens eine zusätzliche elektrisch leitfähige Schicht (3), geeignet zur elektrischen Kontaktierung, aufgetragen ist.
  12. Bewehrung nach Anspruch 11, wobei das als Bewehrung dienende Garn (1) zusätzlich als elektrisch aktives Bauteil eines Heizgeleges oder einer Sensoranordnung eingesetzt wird.
  13. Bauteil, umfassend ein Matrixmaterial und ein Garn, insbesondere Multifilamentgarn, als Bewehrung, dadurch gekennzeichnet, dass die Bewehrung ein Garn (1) nach einem der Ansprüche 8 bis 12 umfasst.
  14. Bauteil nach Anspruch 13, wobei das Bauteil als ein Betonbauteil, umfassend Beton als Matrixmaterial, ausgeführt ist.
EP16190540.1A 2015-09-25 2016-09-26 Textile bewehrung mittels garn und verfahren zur vorbereitung eines garns Active EP3147393B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015116222 2015-09-25

Publications (2)

Publication Number Publication Date
EP3147393A1 true EP3147393A1 (de) 2017-03-29
EP3147393B1 EP3147393B1 (de) 2022-02-09

Family

ID=57137819

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16190540.1A Active EP3147393B1 (de) 2015-09-25 2016-09-26 Textile bewehrung mittels garn und verfahren zur vorbereitung eines garns

Country Status (2)

Country Link
EP (1) EP3147393B1 (de)
DK (1) DK3147393T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133755A1 (de) * 2019-12-10 2021-06-10 Technische Universität Chemnitz Verfahren und Vorrichtung zur Herstellung eines faser- und/oder textilbewehrten, mineralischen Bauteils

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062491A2 (de) * 1981-04-04 1982-10-13 National Research Development Corporation Polymere in Materialverstärkung
US4728387A (en) 1986-12-15 1988-03-01 General Electric Company Resin impregnation of fiber structures
US6060163A (en) * 1996-09-05 2000-05-09 The Regents Of The University Of Michigan Optimized geometries of fiber reinforcement of cement, ceramic and polymeric based composites
US6174595B1 (en) 1998-02-13 2001-01-16 James F. Sanders Composites under self-compression
US20090305038A1 (en) * 2005-11-10 2009-12-10 Saint-Gobain Materiaux De Construction S.A.S Method for functionalising a polymer fibre surface area
US20150038618A1 (en) * 2012-02-29 2015-02-05 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
DE102014102861A1 (de) * 2014-03-04 2015-09-10 Technische Universität Dresden Bewehrungsgitter für den Betonbau, Hochleistungsfilamentgarn für den Betonbau und Verfahren zu deren Herstellung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372192B1 (en) * 2000-01-28 2002-04-16 Ut-Battelle, Inc. Carbon fiber manufacturing via plasma technology
US8227051B1 (en) * 2004-06-24 2012-07-24 UT-Battle, LLC Apparatus and method for carbon fiber surface treatment
FR2899224B1 (fr) * 2006-03-31 2009-12-04 Saint Gobain Vetrotex Procede de fonctionnalisation d'un renfort verrier pour materiau composite
JP2009197143A (ja) * 2008-02-21 2009-09-03 Honda Motor Co Ltd 炭素繊維強化複合材料の製造方法
CN105074080B (zh) * 2013-03-12 2017-11-17 仓敷纺绩株式会社 纤维强化树脂用纤维及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062491A2 (de) * 1981-04-04 1982-10-13 National Research Development Corporation Polymere in Materialverstärkung
US4728387A (en) 1986-12-15 1988-03-01 General Electric Company Resin impregnation of fiber structures
US6060163A (en) * 1996-09-05 2000-05-09 The Regents Of The University Of Michigan Optimized geometries of fiber reinforcement of cement, ceramic and polymeric based composites
US6174595B1 (en) 1998-02-13 2001-01-16 James F. Sanders Composites under self-compression
US20090305038A1 (en) * 2005-11-10 2009-12-10 Saint-Gobain Materiaux De Construction S.A.S Method for functionalising a polymer fibre surface area
US20150038618A1 (en) * 2012-02-29 2015-02-05 Daiwabo Holdings Co., Ltd. Fiber for reinforcing cement, and cured cement produced using same
DE102014102861A1 (de) * 2014-03-04 2015-09-10 Technische Universität Dresden Bewehrungsgitter für den Betonbau, Hochleistungsfilamentgarn für den Betonbau und Verfahren zu deren Herstellung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KÄPPLER, IRIS; HUND, ROLF-DIETER; CHERIF, CHOKRI: "Surface modification of carbon fibres using plasma technique", AUTEX RESEARCH JOURNAL, vol. 14, March 2014 (2014-03-01), pages 34 - 38
LEE, SEUNG-WOOK; LEE, HWA-YOUNG; JANG, SUNG-YEON; JO, SEONG-MU; LEE HUN-SOO; LE, SUNGHO: "Tensile Properties and Morphology of Carbon Fibers Stabilized by Plasma Treatment.", CARBON LETTERS, vol. 12, no. 1, March 2011 (2011-03-01), pages 16 - 20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019133755A1 (de) * 2019-12-10 2021-06-10 Technische Universität Chemnitz Verfahren und Vorrichtung zur Herstellung eines faser- und/oder textilbewehrten, mineralischen Bauteils

Also Published As

Publication number Publication date
EP3147393B1 (de) 2022-02-09
DK3147393T3 (da) 2022-05-16

Similar Documents

Publication Publication Date Title
EP2427309B1 (de) Verfahren und vorrichtung zur herstellung eines fadens aus einer mehrzahl von einzelfilamenten
EP2260011B1 (de) Beständige werkstoffe und beschichtungen aus anorganischen bindemitteln mit faserverstärkung
EP3245349B1 (de) Bewehrungsstab aus filamentverbund und verfahren zu dessen herstellung
DE2046432B2 (de) Verfahren zur Herstellung faserverstärkter Bauelemente
WO2015018598A2 (de) Verfahren zur herstellung eines verbundformteils, verbundformteil, sandwichbauteil und rotorblattelement und windenergieanlage
EP3147393B1 (de) Textile bewehrung mittels garn und verfahren zur vorbereitung eines garns
EP3088556A1 (de) Kohlefaser-metall-verbundwerkstoff
DE102015119700A1 (de) Verfahren zur Konditionierung der Oberflächen pultrudierter und/oder anderweitig durch Harze oder Kleber zusammengefasster Carbonfasern zu Carbonfaserprofilen oder Carbonfaserflächen und Anordnung zur Durchführung des Verfahrens
EP2870304B1 (de) Faserverstärkter mineralischer baustoff
EP3162546B1 (de) Zugelement aus faserverstärktem kunststoff und verfahren
DE102018113587B4 (de) Faserprofile zum Einsatz als Bewehrung in Betonbaten für hohe brandschutztechnische Anforderungen und Verfahren zu ihrer Herstellung
WO2013087803A1 (de) Lasttragende armierung von innendruckbeaufschlagten hohlkörpern
DE102011055285B3 (de) Verfahren zum Herstellen eines Wickelprodukts und Wickelprodukt
EP3707303B1 (de) Faserprodukte mit einer beschichtung aus wässrigen polymerdispersionen
WO2008098838A1 (de) Verfahren zur herstellung eines faserverstärkten carbidkeramischen bauteils und ein carbidkeramisches bauteil
DE102010010876A1 (de) Verlorener Formkern zur Herstellung von Bauteilen aus polymeren Faserverbundwerkstoffen sowie Verfahren zur Herstellung desselben und Verfahren zur Herstellung von Bauteilen aus polymeren Faserverbundwerkstoffen mit einem verlorenen Formkern
US20180071958A1 (en) Carbon Fiber Reinforcements for Sheet Molding Composites
CH630818A5 (de) Verfahren zum herstellen einer schutzschicht auf rohren.
WO2018130561A1 (de) Strangprofil und verfahren zum herstellen eines strangprofils
DE102016201153A1 (de) Imprägnierwerkzeug zur Fertigung von thermoplastischen Faserverbundwerkstoffen
DE102015122621A1 (de) Verfahren zur Einstellung der Elastizität eines Werkstoffs und mit diesem Verfahren hergestelltes Werkstück
WO2013120644A1 (de) Filamente enthaltender faserverbundwerkstoff und herstellungsverfahren
DE10232142A1 (de) Verfahren zur Herstellung von textilbewehrten Betonumhüllungen
DE102008006981B3 (de) Verfahren zum Herstellen eines Kernverbundes, insbesondere eines Kernverbundes im Luft- und Raumfahrtbereich
DE102010008633A1 (de) Herstellungsverfahren eines winkelstarren Körpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170907

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER PLASMAFORSCHUNG UND TECHNOLO

Owner name: TECHNISCHE UNIVERSITAET

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER PLASMAFORSCHUNG UND TECHNOLOGIE E.V.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1467561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014488

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016014488

Country of ref document: DE

Representative=s name: SCHULZ JUNGHANS PATENTANWAELTE PARTGMBB, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220509

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220209

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220922

Year of fee payment: 7

Ref country code: NO

Payment date: 20220921

Year of fee payment: 7

Ref country code: NL

Payment date: 20220922

Year of fee payment: 7

Ref country code: IE

Payment date: 20220919

Year of fee payment: 7

Ref country code: GB

Payment date: 20220927

Year of fee payment: 7

Ref country code: FI

Payment date: 20220919

Year of fee payment: 7

Ref country code: DK

Payment date: 20220926

Year of fee payment: 7

Ref country code: DE

Payment date: 20220920

Year of fee payment: 7

Ref country code: AT

Payment date: 20220919

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014488

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220920

Year of fee payment: 7

Ref country code: BE

Payment date: 20220921

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20221110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220928

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220926

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016014488

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230926

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20231001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1467561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230926

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231001

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230926