EP3105118A1 - Rudder driving system and method - Google Patents

Rudder driving system and method

Info

Publication number
EP3105118A1
EP3105118A1 EP15703974.4A EP15703974A EP3105118A1 EP 3105118 A1 EP3105118 A1 EP 3105118A1 EP 15703974 A EP15703974 A EP 15703974A EP 3105118 A1 EP3105118 A1 EP 3105118A1
Authority
EP
European Patent Office
Prior art keywords
rudder
main drives
hydraulic
drive system
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15703974.4A
Other languages
German (de)
French (fr)
Other versions
EP3105118B1 (en
Inventor
Hendrik SCHÄDEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MacGregor Germany GmbH and Co KG
Original Assignee
Macgregor Hatlapa Gmbh&co KG
MacGregor Hatlapa GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macgregor Hatlapa Gmbh&co KG, MacGregor Hatlapa GmbH and Co KG filed Critical Macgregor Hatlapa Gmbh&co KG
Publication of EP3105118A1 publication Critical patent/EP3105118A1/en
Application granted granted Critical
Publication of EP3105118B1 publication Critical patent/EP3105118B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/18Transmitting of movement of initiating means to steering engine
    • B63H25/22Transmitting of movement of initiating means to steering engine by fluid means

Definitions

  • the invention relates to a rudder drive system 1 for operating a rudder system of watercraft according to the preamble of patent claim 1 and to a method for actuating a rudder system of vessels.
  • rudder drive systems have two identically designed redundant hydraulic main drives, each consisting of an electric motor-driven hydraulic pump, a so-called motor track group, an associated power and control electronics and hydraulic peripherals.
  • the size of the motor pump groups shall be sized in accordance with the construction specifications of the classification societies so that the rudder can be moved in 28 seconds over an angular range of 65 ° (35 ° one side to 30 ° the other).
  • the rudder idling time or rudder loading speed must be achieved with only one or both motor pump groups.
  • the size of the Hydraulikp mps is determined in first approximation by the required Qlvolumenstrom, whereas the size of the electric motors by the hydraulic power, ie the flow rate and the pressure difference of the hydraulic oil is determined.
  • the hydraulic pumps are operated by electric motors, which are designed with a fixed speed, so that the required var he driving power on the motor
  • Torque vary ka.
  • the motor pump group runs at approximately constant and maximum speed. Since the friction-induced mechanical power loss is a func tion of the speed, therefore, the full power loss n each operating condition is generated, even if, for example, no rudder Versannon and therefore no oil flow erforderl me. If the hydraulic pumps are designed as constant pumps, the hydraulic friction also contributes to the power loss. In addition, running an electric motor in, for example, asynchronous design at lower power than the rated power at very unfavorable performance factors, so that significantly higher effective currents than would be required for the performance flow. Consequently, the electrical power losses are relatively high, especially at low power levels.
  • a rudder drive system which has to maintain a maneuverability in the event of unforeseen failure of both eiektrohydrauli Image main drives a powered via a hydro nose thruster, by means of which by pressure relief the rudder ka n.
  • the object of the invention is to provide a Ruderant iebsSystem that eliminates the aforementioned disadvantages and enables efficient operation. Furthermore, it is an object of the invention to provide a method for. efficient operation of a steering gear to shadow.
  • Rudder system of watercraft has at least one rudder and two redundant electro-hydraulic main rudders, which are independently operable.
  • the rudder drive system has an electric power-assisted auxiliary drive for rudder engagement which can be operated independently of the main drives and has an electric motor with frequency converter for driving a hydraulic pump.
  • the electric motor is powered by a frequency converter, their speed and direction can steplessly steer between standstill and rated speed as well as with reduced torque beyond the Ifennnaviere. Consequently, the speed can be selected exactly according to the required flow rate.
  • the rudder is stationary and the drive is ranked, so that no power loss is generated as in an idling main drive.
  • the power factor can be set and, consequently, chosen to be very high even at low speeds, so that the loss-tolerant currents can be kept as low as in the nominal point of the electric motor.
  • the auxiliary drive causes a one-time investment cost, due to the small size of the frequency inverter in general, it is lower than, for example, the additional procurement of two frequency converters for the main drives. Possible failures of the frequency converter are not a disadvantage in the solution according to the invention because the required according to the classification requirements main drives are available in the same way and can be used in case of failure of the frequency converter to one or both main drives.
  • the rudder drive system thus enables the efficient operation of a steering gear, especially when in low-load operation, for example, in a high-altitude autopilot drive, in the small rudder angle in a long time and a small power requirement, the rudder is placed on the auxiliary drive.
  • the main drives are then at a standstill.
  • rated load operation for example, when driving on a turf, when driving through bad weather, when large rudder angles are required in a short time and a large power requirement, ruddering can take place via one or both main drives.
  • the PTO is then at a standstill,
  • the rudder drive system is technically very easy to perform when the hydraulic pump of Mauai is a constant displacement pump with a constant displacement.
  • the efficiency of the rudder drive system can be further increased if the secondary drive is reduced in performance compared to the main drives.
  • Low power means doing the same thing.
  • Nominal pressure a lower rated power and a lower oil flow rate, so that the auxiliary drive at full rated pressure promotes less oil flow rate than each of the main drives.
  • the power take off may be such that it can deliver between 5% to 30%, notably 10% to 20%, of the oil flow rate of each main engine at full rated pressure. Somi is then in this embodiment, the rated power of the PTO between 5 to 30%, mainly between 10% to 20%, the rated power of each main drive.
  • a technical embodiment of the rudder drive system is that, for example, at least the hydraulic pumps d r main drives constant turning with ei em constant flow rate.
  • hydraulic pumps of the main drives are displacement pumps with variable displacement.
  • At least the hydraulic pump of the auxiliary drive has two conveying directions.
  • two redundant main drives and a power take-off are operated separately from each other, wherein in the Nennlastbe rubbed the power take-off is at a standstill and eie rudder by a the main drives are performed, and in low load operation, the main drives are at a standstill and a Troderiegung is performed by the power take-off.
  • the secondary drive with the frequency-controlled hydraulic pump when the rudder is at a standstill or at small required rudder speeds, the secondary drive with the frequency-controlled hydraulic pump is in operation, as is usually the case for a large proportion of time during stationary straight-ahead driving and slight course corrections of a ship.
  • the main drives are at standstill, but can be switched on at any time.
  • the speed of the hydraulic pump can be controlled between standstill and nominal value. At low, required Riederrnomenten and consequently at low oil pressures of the power take-off can be operated even at higher than the rated speed when the frequency converter rom the Elek in an operating state of the field weakening leads.
  • This mode of operation is advantageous when the electric motor of the auxiliary drive is operated at optimum power factor and consequently at low electrical losses. Furthermore, the mechanical and hydraulic power loss, which is anyway much lower than that of the main drives due to the small size, also dependent on the speed and thus only generated when hydraulic useful power is needed. The comparatively large main drives are then at a standstill and thus generate neither electrical, mechanical or hydraulic power loss, nor do they consume operating time, so that wear and maintenance costs are significantly reduced. In nominal load operation at required rudder speed, which exceed the power capability of the NeJoen drive, at least one of the main drives is put into operation and the PTO is shut down.
  • FIG. 1 shows a first embodiment of a rudder drive system for actuating a rudder system
  • FIG. 1 shows a first embodiment of a rudder drive system for actuating a rudder system
  • Figure 2 shows a second embodiment of the rudder drive system.
  • FIG. 1 schematically illustrates a first exemplary embodiment of an inventive rowing drive system 2 for actuating a steering gear 4 of a watercraft.
  • the rudder system 4 has a rudder or rudder blade € which is adjustable about a rotational axis 7 perpendicular to the plane of the page by a specific angle of rotation. It is attached to a cross member 8, which can be pivoted about two respective diametrically opposed cylinder piston units 10, 12 and 14, 16 to the respective angle of rotation.
  • the Zylinderkolbenemitz 10 » 12, 14, 16 are each with a working line 18, 20, 22, 24 with a connecting line 26, 28 between the rudder 4 and the rudder drive system 2 in Fiurdriv.
  • the Ruderantriebssystetn 2 has individually controllable elektrohyd- raulische main drives 30, 32 and a individually controllable elektrohydrauli chen Mauan rubbed 34.
  • the main drives 30, 32 are redundant, so that in the following, for reasons of clarity, only the left according to de representation in Figure 1 main drive 30 is representative of both main drives 30, 32.
  • the main drives 30, 32 essentially have one each
  • Hydraulic pump 36 an electric motor 38, a valve device 40 and a tank 42.
  • the hydraulic pump 36 via an input side conveyor line 44, the working fluid or fluid, especially a hydraulic oil, from the tank 42 and an output side pumping line 46 to a pump port P of the valve device 40.
  • a hydraulic line 48 is guided back to the hydraulic pump 36.
  • a check valve 50 which is blocked in the tank passage is arranged in the delivery line 44.
  • a relief line 52 extends from the pump line 46 to the tank 42, in which a pilot-controlled pressure limiting valve 11 54 is arranged.
  • the hydraulic pump 36 is provided with an opening into the tank 42 leakage oil line 56.
  • the hydraulic pumps 36 of the main drives 30, 32 are designed here as constant pumps with ei e constant flow. They have a conveying direction.
  • the respective hydraulic pump 36 driving electric motor 38 is a rotary drum motor and in particular an asynchronous motor.
  • valve means 40 of the main drives 30, 32 as a, 3/4-Wegeventi le with a two-stage elektrohydraui ischen actuation executed.
  • the valve devices 40 and 3/4 Wegeventi le each have three switch positions 1 »II» III, wherein the switching position I is the already mentioned basic position or a spring-centered center position.
  • the valve devices 40 each have a work A and a Häanschiuss B, which each have a. Connecting line 58, 60 with one of the connecting lines 26, 28 in F1u ⁇ dverbi extension. In the switching position 11, the valve device 66 is opened and the pump port P is connected to the Häanschiuss B in combination.
  • the hydraulic connection H is then in fluid connection with the working flange A.
  • the valve device 66 is also opened, in which case the pump flange P is in fluid communication with the working flange A and the hydraulic connection H is in fluid communication with the working flange B.
  • the seemslei tions 26 » 28 are at one end with two parallel and oppositely acting pilot operated pressure relief valves 62, 64 for pressure relief
  • the control lines 4 provided, for example, when hitting the rudder blade against an underwater obstacle, with their respective other end, the connecting lines 26, 28 each having a working port C, D of a below-explained valve device 66 of the auxiliary drive 34.
  • the auxiliary drive 34 has next to the vent. il sensible 66, which will be explained in more detail below, a hydraulic pump 68, an electric motor 70 and a Frequenzunirichter 72nd
  • the hydraulic pump 68 is on the output side connected by a pump line 74 to a pump port P of the valve device 66.
  • a hydraulic line 76 which extends from a hydraulic connection H of the valve device 66, opens into the hydraulic pump 68.
  • the pump connection P and the hydraulic connection H are short-circuited.
  • 74 and in the hydraulic line 76 a Jerusalem Strukturbares check valve 78, 80 is arranged both in the Punipenle.
  • a control pressure for controlling the check valves 78, 80 is tapped via a respective control line 82, 84 from the pump line 74 and the hydraulic line 76.
  • a respective discharge line 86, 88 extends from the latter into the tank 42, in each of which a pilot-operated pressure relief valve 90, 32 which can be opened in the tank direction is arranged.
  • the hydraulic pump 68 has an opening into the tank 42 leakage oil - line 94 for discharging leakage oil.
  • the hydraulic pump 68 is executed in the embodiment shown here as a cons pum e with two flow directions. It is driven by the electric motor 70, preferably a three-phase AC motor in Asynchronbauweise, the de frequency converter 72 is assigned.
  • the power take-off 34 is reduced in power compared to the main drives 30, 32.
  • the frequency converter 72 allows the speed and direction of rotation of the electric motor 70 to be steplessly controlled between standstill and rated speed and with reduced torque above the rated speed. As a result, the rotational speed can be accurately selected according to the required flow rate of the hydraulic pump 68.
  • the power factor is set by means of the frequency converter. As a result, this can be selected to be very high even at low speeds, so that lossy currents are kept as low as at the nominal point of the electric motor 70.
  • the valve device 66 is a 4/2 way valve with the two aforementioned scarf positions IV and V.
  • the valve device 66 is electrically actuated and spring-biased in the switching position IV or, basic position IV. It has the two working ports C, D at which, as mentioned above, the connecting lines 26, 28 are connected.
  • In the basic position IV of the power take-off 34 is hydraulically ge of the steering gear 4 ge.
  • the valve device 66 is opened.
  • the pump connection P is then in fluid connection with the working connection C and the hydraulic connection H with the working connection D,
  • this operation in Schwachias operation, for example, in an autopilot trip on the high seas, in the small Ruderwinke.i in a long time and a small power requirement, operated via the PTO 34.
  • the main drives 30 » 32 are then at a standstill.
  • the valve means 66 is preferably turned on ⁇ switch position V) and the ent i 1einrichtu conditions 40 of the main drives 30, 32 are controlled (basic position I).
  • the operation of the steering gear 4 is preferred
  • the auxiliary drive 34 is then at a standstill. Accordingly, the valve device 40 of the activated main drive .30 »32 is then opened ⁇ shift position II or III) and the valve device 66 of the auxiliary drive 34 is closed ⁇ basic position IV).
  • the valve device 40 of the activated main drive 30, 32 is in the switching position II or in the switching position III,
  • FIG. 2 shows a second embodiment of the steering gear system 2 according to the invention for actuating a steering gear 4 of a watercraft.
  • the rudder drive system 2 has two redundantly and independently controllable electric main drives 30, 32 and an auxiliary drive 34 that can be actuated separately from the main drives 30, 32. Fluidically, the main drives 30, 32 and the auxiliary drive 34 are over two connecting lines 26, 28 according to the first embodiment of Figure 1 in fluid communication can be brought.
  • the main drives 30, 32 each have no constant pump as hydraulic pump 36, but hydraulic pumps with a variable delivery volume which also have two delivery directions.
  • the valve devices 40 are simplified in the form of an electrically operable 4 / -way valve with 2 switching positions VI, VII and two working ports A, B.
  • the switching position VII corresponds to a spring-biased closed position in which the valve device is turned on.
  • the switching position VI corresponds to an open position in the vent l sensible 40 is turned on.
  • In the switching position or opening position VI is a extending away from the hydraulic pump 36 and connected to a pump port P of the valve device 40 pump line 46 via an Ar Working connection A of the valve device 40 with the connecting line 26 in fluid communication.
  • the connecting line 28 is then in fluid communication via a working connection B of the valve device 40 with a hydraulic line 48 extending from a hydraulic connection H to the hydraulic pump 36.
  • the pump line 46 and the hydraulic line 48 via the pump port P and the. Hydraulic connection H short-circuited and thus the main drives 30 » 32 of the connecting lines 26, 28 and thus separated from the steering gear 4 fluidly.
  • the pump line 46 and the hydraulic line 48 are connected to one another via in each case one as a bypass to the hydraulic pump 36 extending short-circuit line 36, 98, in each of which a pilot-operated pressure relief valve 100, 102 is arranged, each acting in opposite directions.
  • the respective hydraulic pump 68 driven by an electric motor 38 in particular an asynchronous motor designed as a three-phase motor, has a leakage oil line 56 discharging into the tank 42 for discharging leakage oil.
  • the Supersinkr eb 34 is unchanged from the power take-off 34 according to the first embodiment shown in FIG.
  • the auxiliary drive 34 thus has a Frequenzumri chte r 72 for driving an electric motor 70 for driving a hydraulic pump 76.
  • the hydraulic pump 76 is designed as a variable displacement pump with adjustable delivery volume and two delivery directions.
  • a valve device 66 is similar to the first embodiment of Figure 1 as a. electrically operated 4/2 Wegeven il running, which has a spring-stored basic position IV and a switch position V and two working ports C, D, a pump port P and a shorted to the pump port P in the basic position IV hydraulic connection H has.
  • FIG. 2 shows the same operating state of the rudder drive system 2 as shown in FIG.
  • valve devices 40 of the main drives 30, 32 are closed ⁇ closed position VII) and the valve device 66 of the auxiliary drive 34 is opened (switching position v).
  • the PTO 34 is at a standstill, i. the valve device 66 is controlled ⁇ basic position IV) and the rudder is made via one of the main drives 30, 32, to which the valve device 40 of the respectively provided main drive 30, 32 is then turned on ⁇ open position I),
  • a rudder drive system for operating a rudder system of watercraft, with at least one rudder and with two redundant eiektrohydrauli see main drives put on the rude, which are independently operable, the rudder drive system has an independently operable from the main drives e.1ektrohydrau1 hehe lift drive for rudder, comprising an electric motor with frequency converter driving a hydraulic pump, and a method of operating such a rudder drive system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

Disclosed is a rudder driving system (2) for actuating a rudder assembly (4) in watercraft, comprising at least one rudder (6) and two redundant, independently operable electro-hydraulic main drives (30, 32) for positioning the rudder(s). The rudder driving system includes an electro-hydraulic secondary drive (34) for positioning the rudder(s), said secondary drive (34) being operable independently of the main drives and being equipped with an electric motor (70) having a frequency converter (72) for driving a hydraulic pump (68). Also disclosed is a method for operating a rudder driving system of said type.

Description

Ruderantriebesystem und Verfahren  Rudder drive system and method
Die Erfindung betrifft ein Ruderantriebssystem 1 zum Betätigen einer Ruderanlage von Wasserfahrzeugen nach dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zum Betätigen einer Ruderanlage von Wasserfahrzeugen - The invention relates to a rudder drive system 1 for operating a rudder system of watercraft according to the preamble of patent claim 1 and to a method for actuating a rudder system of vessels.
Ruderanlagen von Schiffen werden üblicherweise mit elektrohyd- raulischen RuderantriebsSystemen ausgestat et. Bekannte RuderantriebsSys eme haben zwei identisch ausgeführte redu dante elek ohydraulische Hauptantriebe, jeweils bestehend aus einer elektromotorisch angetriebenen Hydraulikpumpe, einer sogenannten Motorpurapengruppe, einer zugehörigen Leistungs- und Steuerungselektronik sowie hydraulischer Peripherie. Die Größe der Motorpumpengruppen wird gemäß den Bauvorschriften der Klassifi - kat lonsgesel lschaften so bemessen, dass das Ruder in 28 Sekunden über einen Winkelbereich von 65° (35° einer Seite nach 30° der andere Seite) bewegt werden kan . Dabei muss die Ruder le- gezeit bzw. Ruderlegegeschwindigkeit je nach Schiffstyp mit nur einer oder mit beiden Motorpumpengruppen erreicht werden. Die Größe der Hydraulikp mpen wird in erster Näherung durch den erforderlichen Qlvolumenstrom bestimmt, wohingegen die Größe der Elektromotoren durch die hydraulische Leistung, d.h. den Volumenstrom und die Druckdifferenz des Hydrauliköls, bestimmt wird. Die Hydraulikpumpen werden mit Elektromotoren betrieben, die mit einer festen Nenedrehzahl ausgeführt werden, so dass die erforderl che var itriebsleistung über das motorischeSteering systems of ships are usually equipped with electrohydraulic rudder propulsion systems. Known rudder drive systems have two identically designed redundant hydraulic main drives, each consisting of an electric motor-driven hydraulic pump, a so-called motor track group, an associated power and control electronics and hydraulic peripherals. The size of the motor pump groups shall be sized in accordance with the construction specifications of the classification societies so that the rudder can be moved in 28 seconds over an angular range of 65 ° (35 ° one side to 30 ° the other). Depending on the type of ship, the rudder idling time or rudder loading speed must be achieved with only one or both motor pump groups. The size of the Hydraulikp mps is determined in first approximation by the required Qlvolumenstrom, whereas the size of the electric motors by the hydraulic power, ie the flow rate and the pressure difference of the hydraulic oil is determined. The hydraulic pumps are operated by electric motors, which are designed with a fixed speed, so that the required var he driving power on the motor
Drehmoment variieren ka . Torque vary ka.
Die beschriebenen Eigenschaften der Kombinationen aus Elektromotor und Hydraulikpumpe führen zu betrieblichen Nachteilen, Die Motorpumpengruppe läuft bei annähernd gleichbleibender und maximaler Drehzahl . Da die reibungsbedingte mechanische Verlustleistung eine Funk ion der Drehzahl ist , wird demnach die volle Verlustleistung n jedem Betriebszustand erzeugt, auch wenn beispielsweise keine Ruderversteilung und folglich kein ölstrom erforderl ich ist. Im Falle der Ausführung der Hydraulikpumpen als Konstantpumpen trägt zudem die hydraul ische Reibung zur Verlustleistung bei . Zudem läuft ein Elektromotor in beispielsweise Asynchronbauweise bei kleineren Leistungen als der Nennleistung bei sehr ungünstigen Leistungsfaktoren, so dass deutliche höhere effektive Ströme , als für die Leistung erforderlich wären, fließe . Folglich sind die elektrischen Leistungsverluste besonders bei kleinen Leis ungen verhältnismäßig hoch . The described properties of the combinations of electric motor and hydraulic pump lead to operational disadvantages, the motor pump group runs at approximately constant and maximum speed. Since the friction-induced mechanical power loss is a func tion of the speed, therefore, the full power loss n each operating condition is generated, even if, for example, no rudder Versteilung and therefore no oil flow erforderl me. If the hydraulic pumps are designed as constant pumps, the hydraulic friction also contributes to the power loss. In addition, running an electric motor in, for example, asynchronous design at lower power than the rated power at very unfavorable performance factors, so that significantly higher effective currents than would be required for the performance flow. Consequently, the electrical power losses are relatively high, especially at low power levels.
Die beschriebenen Zusammenhänge führen dazu, dass ein Ruderantriebssystem besonders in Betriebszuständen kleiner Leistung bzw. im Leerlauf sehr hohe Verlustleistungen erzeug , die durchaus im Bereich von 10% bis 20% der Nennleistung liegen können. Im Hinblick auf die Gesamteffizien de Ruderanlage sind diese Betriebszustände besonders kritisch, weil das Ruderantriebssystem zum überwiegenden Teil de gesamten Betriebs - zeit aufgrund kleiner benötigter Ruderkorrekturen i der Geradeausfahrt nur sehr wenig Nutzleistung, also hydraulische Leistung, erfordert. Die vorbeschriebene bekannte Ausführung ha sich, zwar in Sachen Zuverlässigkeit sowie der Sicherheit bewährt, jedoch zeigt sich, dass diese Technik nicht effizient ist. Auf See sind nur sehr kleine Ruderwinkel zu bewältigen und somit wird nur wenig Leistung der Hydraulikpumpen abgefordert. Dadurch läuft die jeweilige Hydraulikpumpe die meiste Zeit im Leerlauf und verbraucht somit unnötig Energie, da der sie antreibende Elektromotor nicht optimal ausgenutzt wird. Außerdem ist eine konstant hohe Ruderlegegeschwindigkeit im Manövrierbetrieb zwar wünschenswert, für die Propulsionsgüte bei Geradeausfahrt aber unter Umständen hinderlich. The described relationships lead to a rudder drive system producing very high power losses, especially in low-power or idling operating states, which can well be in the range of 10% to 20% of the nominal power. With regard to the overall efficiency of the steering gear, these operating states are particularly critical, because the steering drive system requires only very little net power, ie hydraulic power, for the overwhelming part of the entire operating time owing to small required rudder corrections. Although the above-described known design has proven itself in terms of reliability and safety, it turns out that this technique is not efficient. At sea, only very small rudder angle to cope and thus only little power of the hydraulic pumps is required. As a result, the respective hydraulic pump idles most of the time and thus unnecessarily consumes energy since the electric motor driving it is not optimally utilized. In addition, while a constant high Rudder lay speed in maneuvering while desirable, for the Propulsionsgüte when driving straight but possibly a hindrance.
Zudem ist ein Ruderantriebssystem bekannt, das zur Erhaltung einer Manövrierfähigkeit beim unvorhergesehenen Ausfall von beiden eiektrohydraulisehen Hauptantrieben einen über einen Hydrospeieher gespeisten Nebenantrieb aufweist, mittels dem durch Druckentlastung das Ruder gelegt werden ka n . In addition, a rudder drive system is known, which has to maintain a maneuverability in the event of unforeseen failure of both eiektrohydraulisehen main drives a powered via a hydro nose thruster, by means of which by pressure relief the rudder ka n.
Aufgabe der Erfindung ist es, ein Ruderant iebsSystem zu schaffen, das die vorgenannten Nachteile beseitigt und einen effizienten Betrieb ermöglicht. Des Weiteren ist es Aufgabe der Erfindung, ein Verfahren zum. effizienten Betätigen einer Ruderanlage zu schatten. The object of the invention is to provide a Ruderant iebsSystem that eliminates the aforementioned disadvantages and enables efficient operation. Furthermore, it is an object of the invention to provide a method for. efficient operation of a steering gear to shadow.
Diese Aufgabe wird gelöst durch ein Ruderantriebssystem mit denThis object is achieved by a rudder drive system with the
Merkmalen des Patentanspruchs 1 und durch ein Verfahren mit den Merkmalen des Patentanspruchs 9 , Features of claim 1 and by a method having the features of claim 9,
Ein erfindungsgemäßes Ruderantriebssystem zum Betätigen einerAn inventive rudder drive system for actuating a
Ruderanlage von Wasserfahrzeugen hat zumindest ein Ruder und zwei redundante elektrohydraulische Hauptantriebe zum Ruderlegen, die unabhängig voneinander betreibbar sind. Erfindungsgemäß weist das RuderantriebsSystem einen von den Hauptantrieben unabhängig betreibbaren eiektrohydraulisehen Nebenantrieb zum Ruderlegen auf , der einen Elektromotor mit Frequenzumrichter zum Antreiben einer Hydraulikpumpe aufweist. Dadurch, dass ein Nebenantrieb bereitgestellt ist, dessen Elektromotor über einen Frequenzumrichter gespeist wird, lässt sich deren Drehzahl und Drehrichtung stufenlos zwischen Stillstand und Nenndrehzahl sowie bei reduziertem Drehmoment über die Ifenndrehzahl hinaus steuern . Demzufolge kann die Drehzahl genau entsprechend der erforderlichen Fördermenge gewählt werden. Insbesondere bei stehendem Ruder steht auch der Antriebes rang, so dass keine Verlustleistung wie bei einem leerlaufenden Hauptantrieb erzeugt wird. Ferner kann mit Hilfe des F e- quenzurr.richters der Leistungsfaktor eingestellt und folglich auch bei niedrigen Drehzahlen sehr hoch gewählt werden, so dass auch die verlustbehaf eten Ströme so gering wie im Nennpunkt des Elektromotors gehalten werden können. Durch den Nebenantrieb werden zwar einmalige Investitionskosten verursacht, die aufgrund der kleinen Größe vor allem des Frequenzumrichters insgesamt aber geringer ausfallen als beispielsweise für die zusätzliche Beschaffung von zwei Frequenzumrichtern für die Hauptantriebe, Eventuelle Ausf llrisiken des Frequenzumrichters stellen bei der erfindungsgemäSen Lösung keinen Nachteil dar, weil die gemäß den Klassifikationsvorschriften erforderlichen Hauptantriebe in unveränderter Weise vorhanden sind und im Versagensfall des Frequenzumrichters auf einen oder beide Hauptantriebe zurückgegriffen werden kann. Das erfindungsgemäße Ruderantriebssystem ermöglicht somit den effizienten Betrieb einer Ruderanlage, insbesondere dann, wenn beim Schwachlastbetrieb, beispielsweise bei einer Autopilotfahrt auf hoher See, bei dem kleine Ruderwinkel in langer Zeit und ein kleiner Leistungsbedarf besteht, das Ruder legen über den Nebenantrieb erfolgt. Die Hauptantriebe befinden sich dann im Stillstand. Im Nennlastbetrieb hingegen, beispielsweise bei einer Revierfahrt, bei einer Fahrt durch schlechtes Wetter, wenn große Ruderwinkel in kurzer Zeit sowie ein großer Leistungsbedarf erforderlich sind, kann das Ruderlegen über einen oder beide Hauptantriebe erfolgen. Der Nebenantrieb befindet sich dann im Stillstand, Rudder system of watercraft has at least one rudder and two redundant electro-hydraulic main rudders, which are independently operable. According to the invention, the rudder drive system has an electric power-assisted auxiliary drive for rudder engagement which can be operated independently of the main drives and has an electric motor with frequency converter for driving a hydraulic pump. The fact that a PTO is provided, the electric motor is powered by a frequency converter, their speed and direction can steplessly steer between standstill and rated speed as well as with reduced torque beyond the Ifenndrehzahl. Consequently, the speed can be selected exactly according to the required flow rate. Especially when the rudder is stationary and the drive is ranked, so that no power loss is generated as in an idling main drive. Furthermore, with the aid of the frequency converter, the power factor can be set and, consequently, chosen to be very high even at low speeds, so that the loss-tolerant currents can be kept as low as in the nominal point of the electric motor. Although the auxiliary drive causes a one-time investment cost, due to the small size of the frequency inverter in general, it is lower than, for example, the additional procurement of two frequency converters for the main drives. Possible failures of the frequency converter are not a disadvantage in the solution according to the invention because the required according to the classification requirements main drives are available in the same way and can be used in case of failure of the frequency converter to one or both main drives. The rudder drive system according to the invention thus enables the efficient operation of a steering gear, especially when in low-load operation, for example, in a high-altitude autopilot drive, in the small rudder angle in a long time and a small power requirement, the rudder is placed on the auxiliary drive. The main drives are then at a standstill. On the other hand, in rated load operation, for example, when driving on a turf, when driving through bad weather, when large rudder angles are required in a short time and a large power requirement, ruddering can take place via one or both main drives. The PTO is then at a standstill,
Das Ruderantriebssystem lässt sich technisch sehr einfach ausführen, wenn die Hydraulikpumpe des Nebenai eine Konstantpumpe mit einem konstanten Fördervolumen ist. Die Effizienz des Ruderantriebssystems lässt sich weiter steigern, wenn der Nebenan rieb im Vergleich zu den Hauptantrieben leistungsreduziert ist. Leistungsreduziert bedeutet dabei, bei einem gleichen. Nenndruck eine geringere Nennleistung und einen geringeren Ölvolumenstrom, so dass der Nebenantrieb bei vollem Nenndruck weniger Ölvolumenstrom als jeder der Hauptantriebe fördert. Beispielsweise kann der Nebenantrieb so bei^:;;i eil sein, dass er zwischen 5% bis 30%, vornehmlich 10% bis 20%, von dem Ölvolumenstrom jedes Hauptantriebs bei vollem Nenndruck fördern kann . Somi beträgt dann auch bei diesem Ausführungsbeispiel die Nennleistung des Nebenantriebs zwischen 5 bis 30 %, vornehmlich zwischen 10% bis 20%, der Nennleistung jedes Hauptantriebs . The rudder drive system is technically very easy to perform when the hydraulic pump of Nebenai is a constant displacement pump with a constant displacement. The efficiency of the rudder drive system can be further increased if the secondary drive is reduced in performance compared to the main drives. Low power means doing the same thing. Nominal pressure a lower rated power and a lower oil flow rate, so that the auxiliary drive at full rated pressure promotes less oil flow rate than each of the main drives. For example, the power take off may be such that it can deliver between 5% to 30%, notably 10% to 20%, of the oil flow rate of each main engine at full rated pressure. Somi is then in this embodiment, the rated power of the PTO between 5 to 30%, mainly between 10% to 20%, the rated power of each main drive.
Eine technische Ausführung des Ruderantriebssystem besteht darin, dass beispielsweise zumindest die Hydraulikpumpen d r Hauptantriebe Konstantpurnpen mit ei em konstanten Fördervolumen sind. A technical embodiment of the rudder drive system is that, for example, at least the hydraulic pumps d r main drives constant turning with ei em constant flow rate.
Bei einem alternativen Ausführungsbeispiel sind Hydraulikpumpen der Hauptantriebe Verste1 Ipumpen mit verstellbarem Fördervolumen . In an alternative embodiment, hydraulic pumps of the main drives are displacement pumps with variable displacement.
Bei einem Ausführungsbeispiel hat zumindest die Hydraulikpumpe des Nebenantriebs zwei Förderrichtungen. In one embodiment, at least the hydraulic pump of the auxiliary drive has two conveying directions.
Bei einem erfindungsgemäßen Verfahren zum Betätigen einer Ruderanlage von Wasserfahrzeugen mit einem Ruderantriebssystem, insbesondere mit einem Ruderantriebssystem nach einem der vorhergehenden Ansprüche , werden zwei redundante Hauptantriebe und ein Nebenantrieb getrennt voneinander betrieben, wobei sich im Nennlastbe rieb der Nebenantrieb im Stillstand befindet und eie Ruderlegung durch einen der Hauptantriebe durchgeführt wird, und sich im Schwachlastbetrieb die Hauptantriebe im Stillstand befinden und eine Rüderiegung durch den Nebenantrieb durchgeführt wird. Erfi dungsgemäß befindet sich bei Stillstand des Ruders oder bei kleinen erforderlichen Ruder1 egegeschwindi gkei ,en , wie es üblicherweise zu einem großen Zeitanteil während einer stationären Geradeausfahrt und bei leichten Kurskorrekturen eines Schiffes der Fall ist, der Nebenantrieb mit der frequenzgere- gelten Hydraulikpumpe im Betrieb . Die Hauptantriebe befinden sich im Stillstand, können, abe jederzeit zugeschaltet werden. Entsprechend von erforderlicher Ruderlegegeschwindigkeit und Ruderlegewinkel kann die Drehzahl der Hydraul ikpumpe zwischen Stillstand und Nennwert gesteuert werden. Bei geringen, erforderlichen Rüderrnomenten und folglich bei geringen Öldrücken kann der Nebenantrieb sogar bei höheren als der Nenndrehzahl betrieben werden, wenn der Frequenzumrichter den Elek romotor in einem Betriebszustand der Feldschwächung führt. Diese Betriebsart ist vorteilhaft, wenn der Elektromotor des Nebenantriebs bei optimalem Leistungsfaktor und folglich bei geringen elektrischen Verlusten betrieben wird . Ferner wird die mechanische und hydraulische Verlustleistung, die aufgrund der kleinen Baugröße ohnehin deutlich geringer als die der Hauptantriebe ist, zudem drehzahlabhängig und damit nur dann erzeugt, wenn auch hydraulische Nutzleistung benötigt wird. Die vergleichsweise großen Hauptantriebe befinden sich dann im Stillstand und erzeugen damit weder elektrische, mechanische oder hydraulische Verlustleistung, noch verbrauchen sie Betriebszeit , so dass Verschleiß- und Wartungskosten erheblich reduziert werden. Im Nennlastbetrieb bei erforderlichen Ruder1egegeschwindigkei e , die üb r die Leistungsmöglichkeit des NeJoenantriebs hinausgehen, wird, wenigstens einer der Hauptantriebe in Betrieb genommen und der Nebenantrieb abgeschaltet. In a method according to the invention for operating a rudder system of watercraft with a rudder drive system, in particular with a rudder drive system according to one of the preceding claims, two redundant main drives and a power take-off are operated separately from each other, wherein in the Nennlastbe rubbed the power take-off is at a standstill and eie rudder by a the main drives are performed, and in low load operation, the main drives are at a standstill and a Rüderiegung is performed by the power take-off. According to the invention, when the rudder is at a standstill or at small required rudder speeds, the secondary drive with the frequency-controlled hydraulic pump is in operation, as is usually the case for a large proportion of time during stationary straight-ahead driving and slight course corrections of a ship. The main drives are at standstill, but can be switched on at any time. According to the required Rudder launch speed and Rudder angle, the speed of the hydraulic pump can be controlled between standstill and nominal value. At low, required Riederrnomenten and consequently at low oil pressures of the power take-off can be operated even at higher than the rated speed when the frequency converter rom the Elek in an operating state of the field weakening leads. This mode of operation is advantageous when the electric motor of the auxiliary drive is operated at optimum power factor and consequently at low electrical losses. Furthermore, the mechanical and hydraulic power loss, which is anyway much lower than that of the main drives due to the small size, also dependent on the speed and thus only generated when hydraulic useful power is needed. The comparatively large main drives are then at a standstill and thus generate neither electrical, mechanical or hydraulic power loss, nor do they consume operating time, so that wear and maintenance costs are significantly reduced. In nominal load operation at required rudder speed, which exceed the power capability of the NeJoen drive, at least one of the main drives is put into operation and the PTO is shut down.
Sonstige vorteilhafte Ausführungsbeispiele der Erfindung sind Gegens and weiterer Unteransprüche, Other advantageous embodiments of the invention are against and further subclaims,
Im Folgenden werden bevorzugte Ausführungsbeispiele der Erfindung anhand schemati scher Schaltbilder näher erläutert. Es zeigen; Figur 1 ein erstes Aus füh ungsbeispiel eines Ruderantriebs- Systems zum Betätigen einer Ruderanlage, und In the following, preferred embodiments of the invention are explained in more detail with reference to schemati shear diagrams. Show it; 1 shows a first embodiment of a rudder drive system for actuating a rudder system, and FIG
Figur 2 ein zweites Ausfuhrungsbeispiel des Ruderantriebssystems . Figure 2 shows a second embodiment of the rudder drive system.
In Figur 1 ist ein erstes Ausführungsbeispiel eines erfindungsgemäßen RuderantriebsSystems 2 zum Betätigen einer Ruderanlage 4 eines Wasserfahrzeugs schematisch skizziert. FIG. 1 schematically illustrates a first exemplary embodiment of an inventive rowing drive system 2 for actuating a steering gear 4 of a watercraft.
Die Ruderanlage 4 hat ein Ruder bzw. Ruderblatt €« das um eine senkrecht zur Blattebene stehende Drehachse 7 um einen bestimmten Drehwinkel verstellbar ist . Es ist an einer Traverse 8 befestigt , die über zwei jeweils diametral gegenüberliegende Zylinderkolbeneinheiten 10, 12 bzw. 14 , 16 um den jeweiligen Drehwinkel verschwenkt werden kann . Die Zylinderkolbenemheiten 10» 12, 14 , 16 stehen jeweils mit einer Arbeitsleitung 18, 20, 22, 24 mit einer Verbindungsleitung 26, 28 zwischen der Ruderanlage 4 und dem Ruderantriebssystem 2 in Fiurdverbindung . The rudder system 4 has a rudder or rudder blade € which is adjustable about a rotational axis 7 perpendicular to the plane of the page by a specific angle of rotation. It is attached to a cross member 8, which can be pivoted about two respective diametrically opposed cylinder piston units 10, 12 and 14, 16 to the respective angle of rotation. The Zylinderkolbenemheiten 10 » 12, 14, 16 are each with a working line 18, 20, 22, 24 with a connecting line 26, 28 between the rudder 4 and the rudder drive system 2 in Fiurdverbindung.
Das Ruderantriebssystetn 2 hat einzeln ansteuerbare elektrohyd- raulische Hauptantriebe 30 , 32 sowie einen einzeln ansteuerbaren elektrohydraul ischen Nebenan rieb 34. Die Hauptantriebe 30 , 32 sind redundant ausgebildet, so dass im Folgenden aus Gründen der Übersichtlichkeit lediglich der gemäß de Darstellung in Figur 1 linke Hauptantrieb 30 stellvertretend für beide Haupt - antriebe 30 , 32 beziffert wird. The Ruderantriebssystetn 2 has individually controllable elektrohyd- raulische main drives 30, 32 and a individually controllable elektrohydrauli chen Nebenan rubbed 34. The main drives 30, 32 are redundant, so that in the following, for reasons of clarity, only the left according to de representation in Figure 1 main drive 30 is representative of both main drives 30, 32.
Die Hauptantriebe 30 , 32 haben im Wesentlichen jeweils eineThe main drives 30, 32 essentially have one each
Hydraulikpumpe 36, einen Elektromotor 38, eine Ventileinrichtung 40 sowie einen Tank 42. Die Hydraulikpumpe 36 fördert über eine eingangsseitige Förderleitung 44 das Arbeitsmedium bzw. Fluid, insbesondere ein Hydrauliköl, aus dem Tank 42 und über eine ausgangsseitige Pumpleitung 46 zu einem Pumpenanschluss P der Ventileinrichtung 40. Von einem mit dem Pumpenanschluss P in Grundstellung I der Ventileinrichtung 40 kurzgeschlossenen Hydraul ikanschluss H der Ventileinrichtung 40 ist eine Hydraulikleitung 48 zurück zur Hydraulikpumpe 36 geführt . Um ein Rückströmen des Fluids aus der Hydrau1 kleitung 48 in den Tank 42 zu verhindern, ist in der Förderleitung 44 ein in. Tankrieii- tung gesperrtes Rückschlagventil 50 angeordnet. Zur Druckentlastung der Pumpen1e11ung 46 in Grundstellung I der Ventileinrichtung 40 erstreckt sich von der Pumpenleitung 46 zum Tank 42 eine Entlastungsleitung 52, in der ein vorgesteuertes Druckbe- grenzungsven i 1 54 angeordnet ist. Zum Abführen von Leckageöl ist die Hydraulikpumpe 36 mit einer in den Tank 42 mündenden Lecköl ieitung 56 versehen. Hydraulic pump 36, an electric motor 38, a valve device 40 and a tank 42. The hydraulic pump 36 via an input side conveyor line 44, the working fluid or fluid, especially a hydraulic oil, from the tank 42 and an output side pumping line 46 to a pump port P of the valve device 40. From a shorted to the pump port P in the basic position I of the valve device 40 Hydraulic connection H of the valve device 40, a hydraulic line 48 is guided back to the hydraulic pump 36. To one To prevent backflow of the fluid from the hydraulic line 48 into the tank 42, a check valve 50 which is blocked in the tank passage is arranged in the delivery line 44. To depressurize the pump inlet 46 in the basic position I of the valve device 40, a relief line 52 extends from the pump line 46 to the tank 42, in which a pilot-controlled pressure limiting valve 11 54 is arranged. For discharging leakage oil, the hydraulic pump 36 is provided with an opening into the tank 42 leakage oil line 56.
Die Hydraulikpumpen 36 der Hauptantriebe 30, 32 sind hier als Konstantpumpen mit ei e konstanten Fördermenge ausgeführt. Dabei weisen sie eine Förderrichtung auf. Der die jeweilige Hydraulikpumpe 36 antreibende Elektromotor 38 ist ein Drehs rommotor und insbesondere ein Asynchronmotor. The hydraulic pumps 36 of the main drives 30, 32 are designed here as constant pumps with ei e constant flow. They have a conveying direction. The respective hydraulic pump 36 driving electric motor 38 is a rotary drum motor and in particular an asynchronous motor.
Zu Ermöglichung einer Ruderlegung in beide Drehrichtungen ist die Ventileinrichtung 40 der Hauptantriebe 30, 32 als ein, 3/4- Wegeventi le mit einer zweistufigen elektrohydraui ischen Betätigung ausgeführt. Die Ventileinrichtungen 40 bzw. 3/4- Wegeventi le haben jeweils drei Schaltstellungen 1» II» III, wobei die Schaltstellung I die bereits vorerwähnte Grundstellung bzw. eine federzentrierte Mittelstellung ist. Die Ventileinrichtungen 40 haben jeweils einen Arbeit sanschluss A und einen Arbeitsanschiuss B , der über jeweils eine . Anschlussleitung 58 , 60 mit einer der Verbindungsleitungen 26, 28 in F1uιdverbi dung steht. In der Schaltstellung 11 ist die Ventileinrichtung 66 aufgesteuert und der Pumpenanschluss P steht mit dem Arbeitsanschiuss B in Verbindung. Der Hydraulikanschluss H steht dann mit dem Arbeitsanschiuss A in Fluidverbindung , In der Schalt - Stellung III ist die Ventileinrichtung 66 ebenfalls aufgesteuert, wobei dann der Pumpenansch1usε P mit dem Arbeitsanschiuss A, und der Hydraulikanschluss H mit dem Arbeitsanschiuss B in Fluidverbindung steht. To allow a rudder in both directions of rotation, the valve means 40 of the main drives 30, 32 as a, 3/4-Wegeventi le with a two-stage elektrohydraui ischen actuation executed. The valve devices 40 and 3/4 Wegeventi le each have three switch positions 1 »II» III, wherein the switching position I is the already mentioned basic position or a spring-centered center position. The valve devices 40 each have a work A and a Arbeitsanschiuss B, which each have a. Connecting line 58, 60 with one of the connecting lines 26, 28 in F1uιdverbi extension. In the switching position 11, the valve device 66 is opened and the pump port P is connected to the Arbeitsanschiuss B in combination. The hydraulic connection H is then in fluid connection with the working flange A. In the switching position III, the valve device 66 is also opened, in which case the pump flange P is in fluid communication with the working flange A and the hydraulic connection H is in fluid communication with the working flange B.
Die Verbindungslei ungen 26» 28 sind an ihrem einen Ende mit zwei parallel geschalteten und entgegengesetzt wirkenden vorgesteuerten Druckbegrenzungsventilen 62, 64 zur Druckentlastung der Ruderanlage 4 versehen, beispielweise beim Schlagen des Ruderblattes gegen ein Unterwasserhindernis, Mit ihrem jeweils anderen Ende sind die Verbindungsleitungen 26, 28 mit jeweils einem Arbeitsanschluss C, D einer im Folgenden noch erläuterten Ventileinrichtung 66 des Nebenantriebs 34 verbunden. The Verbindungslei tions 26 » 28 are at one end with two parallel and oppositely acting pilot operated pressure relief valves 62, 64 for pressure relief The control lines 4 provided, for example, when hitting the rudder blade against an underwater obstacle, with their respective other end, the connecting lines 26, 28 each having a working port C, D of a below-explained valve device 66 of the auxiliary drive 34.
Der Nebenantrieb 34 hat neben der Vent. ileinrichtung 66, die im Folgenden noch näher erläutert wird, eine Hydraulikpumpe 68, einen Elektromotor 70 und einen Frequenzunirichter 72. The auxiliary drive 34 has next to the vent. ileinrichtung 66, which will be explained in more detail below, a hydraulic pump 68, an electric motor 70 and a Frequenzunirichter 72nd
Die Hydraul ikpumpe 68 ist ausgangssei ig durch eine Pumpenleitung 74 mit einem Pumpenanschluss P der Ventileinrichtung 66 verbunden. Eingangsseitig mündet in die Hydraulikpumpe 68 eine Hydraulikleitung 76, die sich von einem Hydraulikanschluss H der Ventileinrichtung 66 erstreckt. In einer Grundstellung IV sind der Pumpenanschluss P und der Hydraulikanschluss H kurzgeschlossen. Um in einer Schaltstellung V ein Rückströmen des Fluids aus den Verbindungs.1eitungen 26, 28 zu verhindern, ist sowohl in der Punipenle itung 74 als auch in der Hydraulikleitung 76 ein aufsteuerbares Rückschlagventil 78, 80 angeordnet. Ein Steuerdruck zum Aufsteuern des Rückschlagventile 78, 80 wird dabei über jeweils eine Steuerleitung 82, 84 von der Pumpenleitung 74 bzw. der Hydraulikleitung 76 abgegriffen. Zur Druckent- lastung der Pumpenl i ung 74 und der Hydraulikleitung 76 erstreckt sich von diesen in den Tank 42 jeweils eine Entlastungsleitung 86, 88, in denen jeweils ein vorgesteuertes und in Tankrichtung aufsteuerbares Druckbegrenzungsventil 90, 32 angeordnet ist , The hydraulic pump 68 is on the output side connected by a pump line 74 to a pump port P of the valve device 66. On the input side, a hydraulic line 76, which extends from a hydraulic connection H of the valve device 66, opens into the hydraulic pump 68. In a basic position IV, the pump connection P and the hydraulic connection H are short-circuited. In order to prevent a return flow of the fluid from the Verbindungs.1 lines 26, 28 in a switching position V, 74 and in the hydraulic line 76 a aufsteuerbares check valve 78, 80 is arranged both in the Punipenle. A control pressure for controlling the check valves 78, 80 is tapped via a respective control line 82, 84 from the pump line 74 and the hydraulic line 76. For depressurization of the pump inlet 74 and the hydraulic line 76, a respective discharge line 86, 88 extends from the latter into the tank 42, in each of which a pilot-operated pressure relief valve 90, 32 which can be opened in the tank direction is arranged.
Die Hydraulikpumpe 68 hat eine in den Tank 42 mündende Lecköl - leitung 94 zum Abführen von Leckageöl . Die Hydraulikpumpe 68 ist in dem hier gezeigten Ausführungsbeispiel als eine Kons an pum e mit zwei Förderrichtungen ausgeführt. Sie wird durch den Elektromotor 70, bevorzugterweise ein Drehstrommotor in Asynchronbauweise , angetrieben, dem de Frequenzumrichter 72 zugeordnet ist . Bevorzugterweise ist der Nebenantrieb 34 im Vergleich zu den Hauptantrieben 30 , 32 leistungsreduziert. Der Frequenzumrichter 72 ermöglicht, dass die Drehzahl und Drehrichtung des Elektromotors 70 stufenlos zwischen Stillstand und Nenndrehzahl sowie bei reduziertem Drehmoment über die Nenndrehzahl hinaus gesteuert werden kann. Demzufolge kann die Drehzahl genau entsprechend der erforderlichen Fördermenge der Hydraulikpumpe 68 gewählt werden. Ferner wird mit Hilfe des Frequenzumrichters der Leistungsfaktor eingestellt. Hierdurch kann dieser auch bei niedrigen Drehzahlen sehr hoch gewählt werden, so dass auch verlustbehaftete Ströme so gering wie im Nennpunkt des Elektromotors 70 gehalten werden. The hydraulic pump 68 has an opening into the tank 42 leakage oil - line 94 for discharging leakage oil. The hydraulic pump 68 is executed in the embodiment shown here as a cons pum e with two flow directions. It is driven by the electric motor 70, preferably a three-phase AC motor in Asynchronbauweise, the de frequency converter 72 is assigned. Preferably, the power take-off 34 is reduced in power compared to the main drives 30, 32. The frequency converter 72 allows the speed and direction of rotation of the electric motor 70 to be steplessly controlled between standstill and rated speed and with reduced torque above the rated speed. As a result, the rotational speed can be accurately selected according to the required flow rate of the hydraulic pump 68. Furthermore, the power factor is set by means of the frequency converter. As a result, this can be selected to be very high even at low speeds, so that lossy currents are kept as low as at the nominal point of the electric motor 70.
Die Ventileinrichtung 66 ist ein 4/2 -Wegeventil mit den beiden vorerwähnte Schal Stellungen IV und V. Die Ventileinrichtung 66 ist elektrisch betätigbar und in der Schaltstellung IV bzw, Grundstellung IV federvorgespannt. Sie hat die beiden Arbeitsanschlüsse C, D an denen wie vorerwähnt die Verbindungsleitungen 26, 28 angeschlossen sind. In der Grundstellung IV ist der Nebenantrieb 34 von der Ruderanlage 4 hydraulisch ge rennt . In der SchaltStellung V ist die Ventileinrichtung 66 aufgesteuert . De Pumpenanschluss P steht dann mit dem Arbeitsanschluss C und der Hydraul ikanschluss H mit dem Arbeitsanschi ss D in Fluid- Verbindung , The valve device 66 is a 4/2 way valve with the two aforementioned scarf positions IV and V. The valve device 66 is electrically actuated and spring-biased in the switching position IV or, basic position IV. It has the two working ports C, D at which, as mentioned above, the connecting lines 26, 28 are connected. In the basic position IV of the power take-off 34 is hydraulically ge of the steering gear 4 ge. In the switching position V, the valve device 66 is opened. The pump connection P is then in fluid connection with the working connection C and the hydraulic connection H with the working connection D,
Bei einem bevorzugten Verfahren zum Betreiben bzw. Betätigen der Ruderanlage 4 wird diese im Schwachias betrieb, beispielsweise bei einer Autopilotfahrt auf hoher See, bei dem kleine Ruderwinke.i in langer Zeit und ein kleiner Leistungsbedarf besteht, über den Nebenantrieb 34 betätigt. Die Hauptantriebe 30» 32 befinden sich dann im Stillstand. Wie in Figur 1 gezeigt, ist im Schwachlastbetrieb die Ventileinrichtung 66 bevorzugterweise aufgesteuert {Schaltstellung V) und die ent i 1einrichtu gen 40 der Hauptantriebe 30 , 32 sind zugesteuert (Grundstellung I) . In a preferred method for operating or operating the steering gear 4, this operation in Schwachias operation, for example, in an autopilot trip on the high seas, in the small Ruderwinke.i in a long time and a small power requirement, operated via the PTO 34. The main drives 30 » 32 are then at a standstill. As shown in Figure 1, in low load operation, the valve means 66 is preferably turned on {switch position V) and the ent i 1einrichtu conditions 40 of the main drives 30, 32 are controlled (basic position I).
Im Hermlastbe rieb hingegen, beispielsweise bei einer Revierfahrt , bei einer Fahrt durch schlechtes Wetter, wenn, große Ruderwinkel in kurzer Zeit sowi ein großer Leistungsbedarf erforderlich sind, erfolgt der Betrieb der Ruderanlage 4 bevor- zug erweise über einen der Hauptantriebe 30, 32. Der Nebenantrieb 34 befindet sich dann im Stillstand, Entsprechend ist dann die Ventileinrichtung 40 des aktivierten Hauptantriebs .30» 32 aufgesteuert {Schaltstellung II oder III) und die Ventileinrichtung 66 des Nebenantriebs 34 ist zugesteuert {Grundstellung IV) . In Abhängigkeit von der Drehrichtung des Ruderblattes 6 befindet sich die Ventileinrichtung 40 des aktivierten Hauptantriebs 30, 32 in der Schaltstellung II oder in der Schaltstellung III, In Hermlastbe rubbed, however, for example, in a Revierfahrt, when driving through bad weather, when, large rudder angle in a short time sowi a large power requirement are required, the operation of the steering gear 4 is preferred The auxiliary drive 34 is then at a standstill. Accordingly, the valve device 40 of the activated main drive .30 »32 is then opened {shift position II or III) and the valve device 66 of the auxiliary drive 34 is closed {basic position IV). Depending on the direction of rotation of the rudder blade 6, the valve device 40 of the activated main drive 30, 32 is in the switching position II or in the switching position III,
In Figur 2 ist ein zweites Ausführiingsbeispiel des e f indungs - gemäßen Ruderantriebssystems 2 zum Betätigen einer Ruderanlage 4 eines Wasserfahrzeugs gezeigt. Das Ruderantriebssystem 2 hat wie beim ersten Ausführungsbeispiel zwei redundant und unabhängig voneinander betre bbare e lektrohydraul sche Hauptantriebe 30, 32 sowie einen separat von den Hauptantrieben 30, 32 betätigbaren elektrohydraul!sehen Nebenantrieb 34 , Fluidtechnisch sind die Hauptantriebe 30, 32 und der Nebenantrieb 34 über zwei Verbindungsleitungen 26, 28 gemäß dem ersten Ausführungsbei - spiel nach Figur 1 in Fluidverbindung bringbar. FIG. 2 shows a second embodiment of the steering gear system 2 according to the invention for actuating a steering gear 4 of a watercraft. As in the first exemplary embodiment, the rudder drive system 2 has two redundantly and independently controllable electric main drives 30, 32 and an auxiliary drive 34 that can be actuated separately from the main drives 30, 32. Fluidically, the main drives 30, 32 and the auxiliary drive 34 are over two connecting lines 26, 28 according to the first embodiment of Figure 1 in fluid communication can be brought.
Im Unterschied zum RuderantriebsSystem 2 nach dem ersten Aus - fuhrungsbexspiel gemäß Figur 1 haben die Hauptantriebe 30, 32 jeweils keine Konstantpumpe als Hydraulikpumpe 36, sondern hydraulische Vers ellpumpen mit einem veränderbaren Fördervolumen» die zudem zwei Förderrichtungen aufweisen. Entsprechend der Ausführung der Hydraulikpumpe 36 als Verstellpumpen sind die Ventileinrichtungen 40 vereinfacht als jeweils ein elektrisch betätigbares 4/ -Wegeventil mit 2 Schaltstellungen VI, VII und zwei Arbeitsanschlüssen A, B ausgeführt. In contrast to the rudder drive system 2 after the first extension ex play according to FIG. 1, the main drives 30, 32 each have no constant pump as hydraulic pump 36, but hydraulic pumps with a variable delivery volume which also have two delivery directions. Corresponding to the design of the hydraulic pump 36 as variable displacement pumps, the valve devices 40 are simplified in the form of an electrically operable 4 / -way valve with 2 switching positions VI, VII and two working ports A, B.
Die Schaltstellung VII entspricht einer federvorgespannten Schließstellung, in der die Ventileinrichtung aufgesteuert ist . Die Schaltstellung VI entspricht einer Öffnungsstellung, in die Vent leinrichtung 40 aufgesteuert ist . In der SchaltStellung bzw. Öffnungsstellung VI steht eine sich von der Hydraulikpumpe 36 weg erstreckende und an einem Pumpenanschluss P der Ventileinrichtung 40 angeschlossene Pumpenleitung 46 über einen Ar- beitsanschluss A der Ventileinrichtung 40 mit der Verbindungs- leitung 26 in Fluidverbindung . Die Verbindungsleitung 28 steht dann über einen Arbeitsanschluss B der Ventileinrichtung 40 mit einer sich von einem Hydraulikanschluss H zur Hydraulikpumpe 36 erstreckenden Hydraulikleitung 48 in Fluidverbindung. In der Schaltsteliung bzw. Schließstellung VII sind die Pumpenleitung 46 und die Hydraulikleitung 48 über den Pumpenanschluss P und den. Hydraulikanschluss H kurzgeschlossen und somit die Hauptantriebe 30» 32 von den Verbindungsleitungen 26 , 28 und somit von der Ruderanlage 4 fluidtechnisch getrennt . The switching position VII corresponds to a spring-biased closed position in which the valve device is turned on. The switching position VI corresponds to an open position in the vent leinrichtung 40 is turned on. In the switching position or opening position VI is a extending away from the hydraulic pump 36 and connected to a pump port P of the valve device 40 pump line 46 via an Ar Working connection A of the valve device 40 with the connecting line 26 in fluid communication. The connecting line 28 is then in fluid communication via a working connection B of the valve device 40 with a hydraulic line 48 extending from a hydraulic connection H to the hydraulic pump 36. In the Schaltsteliung or closed position VII, the pump line 46 and the hydraulic line 48 via the pump port P and the. Hydraulic connection H short-circuited and thus the main drives 30 » 32 of the connecting lines 26, 28 and thus separated from the steering gear 4 fluidly.
Die Pumpenleitung 46 sowie die Hydraulikleitung 48 sind über jeweils eine als Bypass zur Hydraulikpumpe 36 verlaufende Kurzschlussleitung 36, 98 miteinander verbunden, wobei in dieser jeweils ein vorgesteuertes Druckbegrenzungsventil 100 , 102 angeordnet ist , die jeweils in entgegengesetzte Richtungen wirken . The pump line 46 and the hydraulic line 48 are connected to one another via in each case one as a bypass to the hydraulic pump 36 extending short-circuit line 36, 98, in each of which a pilot-operated pressure relief valve 100, 102 is arranged, each acting in opposite directions.
Die jeweilige von einem Elektromotor 38, insbesondere ein als Drehstrommotor ausgeführter Asynchronmotor, angetriebene Hydraulikpumpe 68 hat eine in den Tank 42 mündende Leckölleitung 56 zum Abführen von Leckageöl » The respective hydraulic pump 68 driven by an electric motor 38, in particular an asynchronous motor designed as a three-phase motor, has a leakage oil line 56 discharging into the tank 42 for discharging leakage oil.
Der Nebenantr eb 34 ist gegenüber dem Nebenantrieb 34 nach dem ersten Ausführungsbeispiel gemäß Figur 1 unverändert. Der Nebenantrieb 34 weist somit einen Frequenzumri chte r 72 zum Ansteuern eines Elektromotors 70 zum Antreiben eine Hydraulikpumpe 76 auf . Die Hydraulikpumpe 76 ist als Verstellpumpe mit verstellbaren Fördervolumen und zwei Förderrichtungen ausgeführt. Eine Ventileinrichtung 66 ist gleich dem ersten Ausführungsbeispiel nach den Figur 1 als ein. elektrisch betätigbares 4/2 Wegeven il ausgeführt , das eine federvorgesparmten Grundstellung IV und eine Schaltstellung V sowie zwei Arbeitsanschlüsse C, D, einen Pumpenanschluss P und einen mit dem Pumpenanschluss P in der Grunds ellung IV kurzgeschlossenen Hyd- raulikanschluss H aufweist . In Figur 2 ist der gleiche Betriebszustand des Ruderantriebs - Systems 2 wie in Figur 1 gezeigt. Die Ventileinrichtungen 40 der Hauptantriebe 30, 32 sind zugesteuert {Schließstellung VII) und die Ventileinrichtung 66 des Nebenantriebs 34 ist aufgesteuert (SchaltStellung v) . Somit wird die Ruderanlage 4 über den. Nebenantrieb 34 gespeist und hierdurch ein Schwachlastbetrieb, in dem sich die Hauptantriebe 30, 32 im Stillstand befinden, symbolisiert . The Nebenantr eb 34 is unchanged from the power take-off 34 according to the first embodiment shown in FIG. The auxiliary drive 34 thus has a Frequenzumri chte r 72 for driving an electric motor 70 for driving a hydraulic pump 76. The hydraulic pump 76 is designed as a variable displacement pump with adjustable delivery volume and two delivery directions. A valve device 66 is similar to the first embodiment of Figure 1 as a. electrically operated 4/2 Wegeven il running, which has a spring-stored basic position IV and a switch position V and two working ports C, D, a pump port P and a shorted to the pump port P in the basic position IV hydraulic connection H has. FIG. 2 shows the same operating state of the rudder drive system 2 as shown in FIG. The valve devices 40 of the main drives 30, 32 are closed {closed position VII) and the valve device 66 of the auxiliary drive 34 is opened (switching position v). Thus, the steering gear 4 on the. Power supply 34 fed and thereby a low load operation in which the main drives 30, 32 are at a standstill symbolizes.
Im Nennlastbetrieb befindet sich der Nebenantrieb 34 im Stillstand, d.h. die Ventileinrichtung 66 ist zugesteuert {Grundstellung IV) und das Ruderlegen erfolgt über einen der Hauptantriebe 30, 32, wozu die Ventileinrichtung 40 des jeweils vorgesehenen Hauptantriebs 30, 32 dann aufgesteuert ist {Öffnungsstellung I) , In nominal load operation, the PTO 34 is at a standstill, i. the valve device 66 is controlled {basic position IV) and the rudder is made via one of the main drives 30, 32, to which the valve device 40 of the respectively provided main drive 30, 32 is then turned on {open position I),
Während bei dem ersten Ausführungsbeis iel nach Figur 1 beim Betrieb einer der Hauptantriebe 30, 32 eine Drehr ichtungsände - rung des Ruderblattes 6 in eine über eine Veränderung der Schaltstellungen II, III der Ventileinrichtungen 40 erfolgt, wird beim zweiten Ausführungsbeis ie.1 nach Figur 2 zur Dreh- riehtungsänderung des Ruderblattes 6 analog zum Nebenantrieb 34 die Förderrichtung der jeweiligen Hydraulikpumpe 36, 68 umgedreht . While in the first exemplary embodiment of FIG. 1 a rotation change of the rudder blade 6 takes place during operation of one of the main drives 30, 32 into a change in the switch positions II, III of the valve devices 40, the second embodiment of FIG in order to change the rotation of the rudder blade 6 analogously to the auxiliary drive 34, the conveying direction of the respective hydraulic pump 36, 68 is reversed.
Offenbart ist ein Ruderantriebssystem zum Betätigen einer Ruderanlage von Wasserfahrzeugen, mit zumindest einem Ruder und mit zwei redundanten eiektrohydrauli sehen Hauptantrieben zum Rude legen, die unabhängig voneinander betreibbar sind, wobei das Ruderantriebssystem einen von den Hauptantrieben unabhängig betreibbaren e.1ektrohydrau1 ische Hebenantrieb zum Ruderlegen hat, der einen Elektromotor mit Frequenzumrichter sum Antreiben einer Hydrau1 ikpumpe aufweist, sowie ein Verfahren 2um Betreiben eines derartigen Ruderantriebssystems . Bezugszeichenliste Disclosed is a rudder drive system for operating a rudder system of watercraft, with at least one rudder and with two redundant eiektrohydrauli see main drives put on the rude, which are independently operable, the rudder drive system has an independently operable from the main drives e.1ektrohydrau1 hehe lift drive for rudder, comprising an electric motor with frequency converter driving a hydraulic pump, and a method of operating such a rudder drive system. LIST OF REFERENCE NUMBERS
2 Ruderantriebssystem2 rudder drive system
4 Ruderanlage 4 steering gear
6 Ruderblatt  6 rudder blade
7 Drehachse  7 axis of rotation
8 Joch  8 yoke
10 Zy1inderkolbeneinheit 10 cylinder piston unit
12 Zy1inderkoIbensinheίt12 Cylinder block
14 Zyl inderkolbeneinhei t14 cylindrical piston unit
16 Zyl inderkolbeneinheit16 cylindrical piston unit
18 Arbeitsleitung 18 work management
20 Arbeitsleitung  20 work management
22 Arbeitsleitung  22 work management
24 Arbei slei ung  24 working party
26 Verbindungs1eitung 26 connection line
28 Verbindungs1eitung28 connection line
30 Hauptantrieb 30 main drive
32 Hau tantrieb  32 Hau tantrieb
34 Nebenantrieb  34 PTO
36 Hydraulikpumpe  36 hydraulic pump
38 Elek romo or 38 Elek romo or
0 Ven ileinric tung 0 Hospitality
42 Tank42 tank
4 Nachsauge1eitung 6 Pumpenleitung A 4 After-suction line 6 Pump line A
8 Pumpenleitung B  8 pump line B
50 Rückschlagventi1 50 check valves1
52 Entlastungsleitung 4 Druckbegrenzungsventi152 Relief line 4 Pressure limiting valve1
56 Leckölleitung56 drain line
8 Anschlusslei ung 0 Anschlussleitung 2 Druckbegrenzungsventi 1 4 Druckbegrenzungsven i1 6 Ventileinrichtung 68 Hydrau1 ikputnpe 8 Connection cable 0 Connecting line 2 Pressure limiting valve 1 4 Pressure limiting valve i1 6 Valve device 68 Hydraulic hub
70 Elektromotor  70 electric motor
72 Frequenzumrichter  72 frequency converters
74 Purapenleitung A  74 Purapenleitung A
76 Pumpenleitung B  76 Pump line B
78 Rückschlagventil  78 check valve
80 Rückschlagventil 80 check valve
82 Steuerleitung 82 control line
84 Steuerleitung  84 control line
86 Ent1as tungs 1e it ng  86 Delay 1 ng
88 Entlastungsleituxig88 Relief guide
0 Druckbegrenzungsventil  0 pressure relief valve
92 Druckbegrenzungsven il  92 Pressure limiting valve
94 Leckölleitung  94 Leakage pipe
96 Kurzschiussieicung  96 Short Skiing
98 Kurzschlussleitung  98 short circuit cable
100 Druckbegrenzungsvent i 1  100 pressure limiting valve i 1
102 Druckbegrenzungsventil  102 pressure relief valve
A Arbeitsanschluss A work connection
B Arbeitsanschluss  B work connection
C Arbeitsanschluss  C work connection
D Arbei sanschluss  D workmanship
H Hydraul ikanschluss  H Hydraulic connection
P Pumpenanschluss  P pump connection
I Schaltsteilung / Grundstellung / Mittenstellung I Switching division / basic position / center position
II Schaltsteilung II switching division
III SchaltStellung  III switching position
IV Schaltsteilung / Grundstellung  IV switching division / basic position
¥ Schaltsteilung ¥ switching division
vi Schaltsteilung / Öffnungsstellung vi switching division / opening position
VII SchaltStellung / Schließstellung  VII Switch position / closed position

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Ruderantriebssystem (2) zum Betätigen einer Ruderanlage {4} von Wasserfahrzeugen, mit zumindest einem luder {6} und mit zwei redundanten elek.tronydraul ischen Hauptantrieben (30, 32) zum Ruderlegen, die unabhängig voneinander betreibbar sind» gekennzeichnet durch einen von den Hauptantrieben {30, 32} unabhängig betreibbaren e1ek rohyd au1 seben Nebenantrieb (34) zum Ruderlegen, der einen Elektromotor {685 mit FrequenzunirichterA rudder drive system (2) for operating a rudder system {4} of watercraft, comprising at least one beater {6} and two redundant electric rudder hydraulic main drives (30, 32) independently operable »characterized by one of The main drives {30, 32} independently operable e1ek rohyd au1 seben side drive (34) for rudder laying, the electric motor {685 with frequency tune
(74) zum Antreiben einer Hydraulikpumpe (68) aufweist. (74) for driving a hydraulic pump (68).
2 . Ruderantriebssystem nach Anspruch 1, wobei die Hydraulikpumpe (68) des Nebenantriebs (34) eine Konstantpumpe mit einem konstanten Fördervo1umen ist, 2. A rudder drive system according to claim 1, wherein the hydraulic pump (68) of the auxiliary drive (34) is a constant displacement pump having a constant displacement volume,
3. RuderantriebsSystem nach Ansp uch 1 oder 2, wobei der Nebenantrieb (34) im Vergleich zu den Hauptantrieben (30, 32) leistungsreduziert ist. 3. RuderantriebsSystem according Ansp 1 or 2, wherein the power take-off (34) compared to the main drives (30, 32) is reduced in power.
4. Ruderantriebssystem nach Anspruch 1, 2 oder 3, wobei Hydraulikpumpen (36) der Hauptantriebe (30, 32) Konstantpumpen mit konstanten Fördervoiumen sind. 4. Rudder drive system according to claim 1, 2 or 3, wherein hydraulic pumps (36) of the main drives (30, 32) are constant displacement pumps with constant Fördervoiumen.
5. Ruderantriebssys em nach Anspruch 1» 2 oder 3, wobei Hydrau- likpumpen. (36) der Hauptantriebe (30 , 32) Verstellpumpen mit verstellbaren Fördervolumen sind, 5. Rudderantriebssys em according to claim 1 »2 or 3, wherein hydraulic pumps. (36) the main drives (30, 32) are variable displacement variable displacement pumps,
6. RuderantriebsSystem nach Anspruch 4 oder 5 , wobei die Hauptantriebe {30, 32) jeweils einen polumschaltbaren Elektromotoren (38) zum Antreiben ihrer jeweiligen Hydraulikpumpe (36) haben. 6. Rudder drive system according to claim 4 or 5, wherein the main drives {30, 32) each have a pole-changing electric motors (38) for driving their respective hydraulic pump (36).
7. Ruderantriebssystem nach einem der vorhergehenden Ansprüche, wobei zumindest die Hydraulikpurape (68) des Nebenantriebs (34) zwei Förder ichtungen hat. 7. Rudder drive system according to one of the preceding claims, wherein at least the Hydraulikpurape (68) of the auxiliary drive (34) has two conveying directions.
3, Ruderantriebssystem nach einem der vorhergehenden Ansprüche, wobei die Hydraul kpumpen {36) der Hauptantriebe (30, 32) zwei3, rudder drive system according to one of the preceding claims, wherein the hydraulic pumps {36) of the main drives (30, 32) two
Förderrichtungen haben. Have funding directions.
3, Verfahren zum Betätigen einer Ruderanlage (4) von Wasserfahrzeugen mit einem Ruderantriebssystem (2 ) , insbesondere mit einem Ruderantriebssystem nach einem der vorhergehenden Ansprüche, wobei zwei redundante Hauptantriebe (30, 32) und ein Nebenantrieb (34) getrennt voneinander betrieben werden, wobei sich im Nennlastbetrieb der Nebenantrieb (34) im Stillstand befindet und eine Ruderlegung durch einen der Hauptantriebe (30, 32) durchgeführt wird und sich im Schwachlastbetrieb die Hauptantriebe {30, 32) im Stillstand befinden und eine Ruderlegung durch den Nebenantrieb (34) durchgeführt wird. 3, method for operating a rudder (4) of watercraft with a rudder drive system (2), in particular with a rudder drive system according to one of the preceding claims, wherein two redundant main drives (30, 32) and a power take-off (34) are operated separately, wherein in nominal load operation, the auxiliary drive (34) is at a standstill and a rudder is performed by one of the main drives (30, 32) and in low load operation, the main drives {30, 32) are at a standstill and a rudder placement by the power take-off (34) is performed ,
EP15703974.4A 2014-02-13 2015-02-10 Rudder driving system and method Not-in-force EP3105118B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014002034.7A DE102014002034A1 (en) 2014-02-13 2014-02-13 Rudder drive system and method
PCT/EP2015/052715 WO2015121233A1 (en) 2014-02-13 2015-02-10 Rudder driving system and method

Publications (2)

Publication Number Publication Date
EP3105118A1 true EP3105118A1 (en) 2016-12-21
EP3105118B1 EP3105118B1 (en) 2018-03-28

Family

ID=52469033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15703974.4A Not-in-force EP3105118B1 (en) 2014-02-13 2015-02-10 Rudder driving system and method

Country Status (6)

Country Link
EP (1) EP3105118B1 (en)
JP (1) JP2016518288A (en)
KR (1) KR20160013016A (en)
CN (1) CN105247226A (en)
DE (1) DE102014002034A1 (en)
WO (1) WO2015121233A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660205B2 (en) * 2016-02-22 2020-03-11 三菱重工業株式会社 Hydraulic steering device and ship
US10850824B2 (en) * 2018-12-21 2020-12-01 Robert Boyes Redundant steering system for waterborne vessels
CN114620214B (en) * 2020-12-08 2024-04-30 南京中船绿洲机器有限公司 Electrical control system and method based on rotary vane steering engine
CN112747895A (en) * 2020-12-29 2021-05-04 中国航天空气动力技术研究院 Loading test device of position feedback-free steering engine

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145897A (en) * 1974-10-15 1976-04-19 Mitsubishi Heavy Ind Ltd YUATSUSHIKIKAJITORIKYOKUDOSHIRINDASEIGYOSOCHI
GB2025875A (en) * 1978-07-21 1980-01-30 Vickers Ltd Improvements in or Relating to Steering Gear for Ships
GB2040246B (en) * 1979-01-25 1983-01-26 Donkin & Co Ltd Steering apparatus
GB2086333A (en) * 1980-10-30 1982-05-12 Vickers Ltd Improved steering gear for ships
JPS58161696A (en) * 1982-03-19 1983-09-26 Hitachi Zosen Corp Oil-hydraulic steering device
JPH08207893A (en) * 1995-02-08 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd Electric propulsion device for ship
JP2888779B2 (en) * 1995-08-02 1999-05-10 日本操舵システム株式会社 Ship propulsion control system using electric propulsion and double rudder
ES2200104T3 (en) * 1996-10-25 2004-03-01 Airbus Deutschland Gmbh ENERGY CONVERTER SYSTEM FOR BIDIRECTIONAL TRANSFORMATION BETWEEN HYDRAULIC AND ELECTRICAL ENERGY.
FI108119B (en) * 1999-01-26 2001-11-30 Abb Azipod Oy Turning a propulsion unit
CN101476543B (en) * 2009-01-24 2010-12-08 哈尔滨工业大学 Off-course driving device of non-off course gear used for aerogenerator
CN201547061U (en) * 2009-11-17 2010-08-11 中航力源液压股份有限公司 Variable-frequency control type hydraulic steering engine driving device
KR101609882B1 (en) * 2009-12-17 2016-04-06 두산인프라코어 주식회사 Hydraulic system for construction machinery
JP2012136148A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Ship steering gear and ship steering method
JP5816019B2 (en) * 2011-07-29 2015-11-17 Ntn株式会社 Control device for steer-by-wire steering system with redundancy function
CN202226052U (en) * 2011-08-16 2012-05-23 无锡市东舟船舶附件有限公司 Frequency-conversion valve-controlled hydraulic system of steering engine for ship
KR101291138B1 (en) * 2011-09-16 2013-08-01 삼성중공업 주식회사 Rudder for ship and ship having the same
CN102700706A (en) * 2012-05-31 2012-10-03 西北工业大学 Dual-redundancy actuator system and control method

Also Published As

Publication number Publication date
WO2015121233A1 (en) 2015-08-20
KR20160013016A (en) 2016-02-03
JP2016518288A (en) 2016-06-23
CN105247226A (en) 2016-01-13
EP3105118B1 (en) 2018-03-28
DE102014002034A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
EP1967739B1 (en) Device for hydraulic adjustment of the rotor blades of a wheel of an axial ventilator
DE102006060351B3 (en) Hydraulic circuit arrangement for battery-driven industrial truck, has priority valve arranged to distribute volume flow flowing from pump to cylinder and load, and motor and pumps designed as motor-dual pump assembly
DE112010002887B4 (en) Control device for hybrid construction machine
DE60028189T2 (en) TURNING DEVICE FOR A DRIVE UNIT
EP3105118B1 (en) Rudder driving system and method
DE102014207669A1 (en) Control system for a hydraulic machine
EP3601805A1 (en) Apparatus for controlling a hydraulic machine
DE102010019444A1 (en) rotor blade
EP2871356A1 (en) Actuating device for the impeller blade of a turbine
EP2981458B1 (en) Helm machine
DE102017106700B3 (en) Device for controlling a hydraulic machine
DE3433896C2 (en)
DE19654781A1 (en) Auxiliary unit to provide redundancy for power supply of flying controls actuator
WO2011012187A1 (en) Slewing gear drive
EP2333351B1 (en) Electro-hydraulic lifting module
DE102019003342A1 (en) Hydraulic drive system
DE102016204359A1 (en) Electrohydraulic control system of a drive unit of a watercraft
DE2301622C3 (en) Electro-hydraulic rudder control device
DE102010055716B4 (en) Hydraulic drive
DE4001306A1 (en) Hydraulic system for vehicle - has controlling fluid pressure and speed of hydromotor driving variable-speed pump
EP2341190A1 (en) Hydraulic assembly
DE102019109118B3 (en) Hydropower plant
EP3940227B1 (en) Wind energy system and method for operating a wind energy system
DE102013100500B4 (en) Electric hydraulic pump device of an industrial truck
DE102011121524A1 (en) Rotor head structure for wind-power plant, has electro-hydraulic drive device and electromechanical drive unit to hydraulically and mechanically drive hydraulically driven adjusting device changing angle of incidence at rotor blades

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20151104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MACGREGOR GERMANY GMBH & CO. KG

INTG Intention to grant announced

Effective date: 20171130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 983163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015003614

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180328

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180730

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015003614

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

26N No opposition filed

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190210

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190730

Year of fee payment: 5

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015003614

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 983163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328