EP3098433A1 - Fuel injector - Google Patents

Fuel injector Download PDF

Info

Publication number
EP3098433A1
EP3098433A1 EP16165945.3A EP16165945A EP3098433A1 EP 3098433 A1 EP3098433 A1 EP 3098433A1 EP 16165945 A EP16165945 A EP 16165945A EP 3098433 A1 EP3098433 A1 EP 3098433A1
Authority
EP
European Patent Office
Prior art keywords
armature
nozzle needle
fuel injector
armature shaft
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16165945.3A
Other languages
German (de)
French (fr)
Other versions
EP3098433B1 (en
Inventor
Manfred Mack
Michael Kurz
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3098433A1 publication Critical patent/EP3098433A1/en
Application granted granted Critical
Publication of EP3098433B1 publication Critical patent/EP3098433B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/70Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger
    • F02M2200/703Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic
    • F02M2200/708Linkage between actuator and actuated element, e.g. between piezoelectric actuator and needle valve or pump plunger hydraulic with hydraulic chambers formed by a movable sleeve

Definitions

  • the invention relates to a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine having the features of the preamble of claim 1.
  • a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine which comprises a magnetic actuator for direct control of a preferably needle-shaped injection valve member, via the lifting movement at least one injection valve opening of the fuel injector is releasable or closable.
  • the magnetic actuator cooperates with a lifting armature element for controlling the control pressure in a control volume which is limited in the axial direction by a first hydraulic active surface formed on the injection valve member.
  • a second hydraulic active surface is formed, which is opposite to the hydraulic active surface of the injection valve member on the control volume.
  • a third hydraulic active surface is formed on a hydraulic booster, which limits the control space together with the injection valve member and the anchor element.
  • the area ratio of the hydraulic active surfaces is designed such that during a first stage when opening a force gain and during a second stage, a path gain is achieved. In this way, an adjustment of the actuator force to the changing with the stroke of the injection valve member required opening force.
  • the closing force required for closing is provided by a spring which is supported on the anchor element and the anchor element in the direction of the injection valve member loaded. The spring force causes the armature element strikes on its return to the injection valve member and this returns to its sealing seat.
  • the closing forces are comparatively low. This has the consequence that the anchor tends to bounce when closing. This means that it swings back after striking the injection valve member and the contact with the injection valve member is lost, so that it is not completely reset. This in turn leads to quantity deviations, which must be avoided.
  • the bouncing of the armature is particularly disadvantageous in the case of multiple injections, that is to say in the case of injections which follow one another at different time intervals.
  • the present invention seeks to provide a Krafstoffinjektor for injecting fuel into a combustion chamber of an internal combustion engine, which has over the prior art, a more stable closing behavior and thus a higher injection accuracy.
  • the fuel injector proposed for injecting fuel into a combustion chamber of an internal combustion engine comprises a nozzle needle, which is received in a liftable manner for releasing and closing at least one injection opening in a high-pressure bore of a nozzle body. Furthermore, the fuel injector comprises an annular magnetic coil for acting on a liftable armature, which is hydraulically coupled via an armature shaft with the nozzle needle. According to the invention, one of the nozzle needle facing end face of the armature shaft or connected to the armature shaft contact element has at least one elevation for contacting a lower stroke stop for the armature forming abutment surface, so that the end face cooperates with the stop surface forming a nip.
  • a squeezing gap causes a damping of the armature movement shortly before reaching the lower stroke stop forming abutment surface. Because in the region of the nip forms a damping fluid cushion. The damping of the armature movement leads to a reduced kinetic energy when striking the armature on the stop surface, so that the bounce of the armature is lower. This in particular has the advantage of multiple injections, since the armature has already returned to its starting position before initiating a subsequent injection.
  • the elevation of the end face of the armature shaft or the contact element connected to the armature shaft has the advantage that the contact surface of the armature is reduced with the abutment surface serving as a lower stroke stop. This counteracts hydraulic adhesive effects, so that the required opening force or the energy required for opening remains largely unchanged.
  • end face of the armature shaft facing the nozzle needle or the contact element connected to the armature shaft has a single projection, this is preferably arranged centrally, that is to say centrally with respect to the respective end face. This measure prevents lateral forces acting on the armature when striking or contacting the stop surface.
  • the plurality of elevations for contacting the stop surface forming the lower stroke stop are then preferably arranged in a decentralized manner.
  • the plurality of decentralized elevations are arranged at the same angular distance from one another and / or at the same radial distance relative to the center of the respective end face.
  • the at least one elevation having end face of the armature shaft or a contact element connected to the armature shaft is preferably made flat.
  • it is aligned substantially parallel to the stop surface, with which it cooperates forming a nip.
  • the abutment surface forming the lower stroke stop for the armature is an end face of the nozzle needle.
  • the nozzle needle also serves as a lower stroke stop for the anchor.
  • the stop surface may also be an end face of a stop element inserted into the nozzle needle. In this case, the stop element forms the lower stroke stop for the anchor.
  • the invention proposes that the stop element inserted into the end face of the nozzle needle is formed partially spherical and inserted into a preferably part-spherical recess of the nozzle needle. This measure ensures that the stop surface is tiltable with respect to a (imaginary) radial plane and automatically aligns with eccentric load. That is, in this case, the end face of the armature shaft or the contact element connected to the armature shaft ideally has a plurality of decentrally arranged elevations.
  • the nozzle needle may also have a conical recess for receiving the stop element, which also allows automatic alignment.
  • the inner contour of the recess of the outer contour of the stop element is adapted so that the contact area between the stop element and the nozzle needle is as large as possible. Because then acts in the contact area, a holding force that holds the stop element in contact with the nozzle needle.
  • the armature in the direction of the nozzle needle is acted upon by the spring force of an armature spring which is supported on the housing side on the one hand and on the spring plate connected to the armature shaft of the armature on the other hand.
  • the provision for resetting anchor spring can be arranged in this way - as seen in the closing direction - as far forward on the armature or armature shaft, so that the risk of tilting of the armature is reduced.
  • the spring plate facilitates the assembly of the fuel injector, since it is preferably connected only after the insertion of the armature in a body member of the fuel injector and placing the armature spring on the armature shaft with the armature shaft of the armature. The connection can be made in a simple manner by means of pressing.
  • the armature shaft passes through a coupler plate which is supported on the nozzle body and acted upon in the direction of the nozzle body by the spring force of a coupler spring.
  • the coupler plate is used to limit a coupler space, which is further limited by the armature shaft, the nozzle needle and the nozzle needle surrounding partially sealing sleeve.
  • the armature shaft can be coupled or coupled hydraulically to the nozzle needle via the coupler space, so that, depending on the size ratio of the surfaces delimiting the coupler space, it is possible to increase the actuator force during opening in order, for example, to provide the initially high opening force required.
  • the support of the coupler plate on the nozzle body should be made in such a way that it is mounted displaceably in the radial direction relative to the nozzle body in order to compensate, if necessary, an axial offset between the armature shaft and the nozzle needle.
  • the nozzle needle is acted upon in the closing direction by the spring force of a nozzle spring.
  • the nozzle spring supports the closing process.
  • the nozzle spring is supported on the one hand on the nozzle needle and on the other hand on the sealing sleeve, so that the spring force of the nozzle spring axially biases the sealing sleeve against the coupler plate.
  • the axial bias ensures the sealing effect of the sealing sleeve, so that an effective separation of the coupler space is achieved by the high-pressure bore.
  • the upper stroke stop for the anchor is preferably a stop surface, which is formed by a réellepolelasticity.
  • the inner pole body is part of a magnetic circuit comprising the magnetic coil, wherein the arrangement takes place radially inwardly with respect to the annular magnetic coil. In this way, a magnetic circuit can be created, which extends over the entire outer diameter of the fuel injector, so that high magnetic forces can be achieved.
  • the anchor is designed in this case as a plunger anchor.
  • a central bore is designed as a fuel inlet channel in the inner pole body.
  • the supply of fuel is therefore centrally, so that the fuel injector is uniformly acted upon by high pressure.
  • the fuel inlet channel also opens preferably into an armature space, in which the armature is at least partially excluded. The armature space is thus part of the inlet and thus also subjected to high pressure.
  • the armature space is preferably connected via a connecting channel to a high-pressure chamber.
  • the coupler plate is preferably accommodated, wherein furthermore preferably the high-pressure chamber is connected to the high-pressure bore via at least one flow opening formed in the coupler plate.
  • the in the FIGS. 1 and 2 each shown in longitudinal section fuel injector comprises a nozzle body 5 with a high-pressure bore 4, in which a nozzle needle 2 for releasing and closing a plurality of injection openings 3 is received in a liftable manner.
  • a nozzle needle 2 for releasing and closing a plurality of injection openings 3 is received in a liftable manner.
  • the injection openings 3 are released, so that fuel under high pressure is injected into a combustion chamber 1.
  • a magnetic actuator comprising a magnetic coil 6.
  • the magnet coil 6 cooperates with an armature 7, which has an armature shaft 8 for hydraulic coupling to the nozzle needle 2.
  • the nozzle needle 2 facing the end of the armature shaft 8 is guided by a supported on the nozzle body 5 coupler plate 16 which defines a coupler space 19 together with the armature shaft 8, the nozzle needle 2 and a nozzle needle 2 end surrounding sealing sleeve.
  • the coupler plate 16 is acted upon in the direction of the nozzle body 5 by the spring force of a coupler spring 17.
  • the sealing sleeve 18 in turn is axially biased by the spring force of a nozzle spring 20 against the coupler plate 16.
  • the coupler plate 16 passing through the end of the armature shaft 8 has an outer diameter D 1 , which is chosen to be significantly smaller than the outer diameter D 2 of the nozzle needle 2.
  • the area ratio of the opposite to the coupler space 19 Hydraulic active surfaces is therefore chosen such that the power transmission is accompanied by a power boost.
  • the inflow of fuel takes place via a central bore 23, which is formed in the inner pole body 21 and opens into an armature space 24.
  • the armature space 24 is connected via a laterally arranged connecting channel 25 with a high pressure chamber 26 in which the coupler plate 16 is received.
  • Via at least one flow opening 27 provided in the coupler plate 16 a connection of the high-pressure chamber 26 to the high-pressure bore 4 of the nozzle body 5 is produced, in which the injection openings 3 are formed.
  • the energization of the solenoid 6 is terminated, so that the magnetic force F M is reduced.
  • the force acting in the closing direction spring force F A of the armature spring 14 is in the sequence the armature 7 back to its original position.
  • the armature shaft 8 immersed again deeper into the coupler space 19 and reduces the volume, resulting in a pressure increase in the coupler space 19. If the spring force F D of the nozzle spring 20 acting in the closing direction on the nozzle needle 2 exceeds the resulting hydraulic opening force F hydOff , the closing movement of the nozzle needle 2 begins.
  • Stop element 13 comes with a stop surface 11 which forms a lower stroke stop for the armature 7.
  • the stop element 13 inserted into the nozzle needle 2 is designed in the form of a partial sphere and inserted into a part-spherical recess of the nozzle needle 2.
  • the stop element 13 is therefore mounted such that the stop surface 11 is tiltable relative to a radial plane E, in order to align them with respect to the armature shaft. Alignment takes place automatically with each striking of the armature shaft 8 on the stop element 13, since the end face A 1 of the armature shaft 8 has three decentralized elevations 10, which are arranged at the same angular distance from each other (see Fig. 3 ).
  • the reduction of the contact area to the contact surfaces A K of the three elevations 10 also has the consequence that hydraulic adhesive effects when opening the fuel injector are largely avoided. That is, no increased opening force is required to release the armature 7 from the abutment surface 11.
  • the contact surface of the stop element 13 with the nozzle needle 2 is chosen to be as large as possible in order to prevent the stop element 13 from being released from the nozzle needle 2 when opening. This means that the release force F L1 acting between the stop element 13 and the nozzle needle 2 must be greater than the release force F L acting between the armature 7 and the stop element 13.
  • FIGS. 1 and 2 A modification of the embodiment of the FIGS. 1 and 2 is in the Fig. 4 shown.
  • the elevations 10 are not formed on the armature shaft 8, but on a contact element 9 connected to the armature shaft 8 (see Fig. 5 ).
  • the armature shaft 8 thus passes only indirectly via the contact element 9 in contact with the stop surface 11 of the stop element 13.
  • the contact element 9 is in the present cup-shaped and pressed onto the nozzle needle-side end of the armature shaft 8.
  • the past end face A 2 now interacts with the stop surface 11, the nip 12 forming together. Since the end face A 2 of the contact element 9 is larger than the end face A 1 of the armature shaft, an even greater damping effect can be achieved in this embodiment.
  • a recess 28 is formed in this.
  • FIG. 6 Another variation is the Fig. 6 refer to.
  • a stop element 13 has been omitted in this embodiment.
  • the stop surface 11 is formed by the nozzle needle 2 itself.
  • the armature shaft 8 has at its nozzle needle end again a pressed-contact element 9 for contacting the stop surface 11.
  • this has only one central elevation 10, which is also formed like a pin, so that the contact surface A K is reduced to a single contact point (see Fig. 7 ). Due to the central arrangement of the elevation 10 is also irrelevant whether the armature shaft 8 is aligned exactly coaxial with the nozzle needle 2. This explains why an inserted into the nozzle needle 1, tiltable stop member 13 is dispensable in the present case.
  • a single central elevation 10 can be made simpler and thus less expensive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum (1) einer Brennkraftmaschine, umfassend eine Düsennadel (2), die zum Freigeben und Verschließen mindestens einer Einspritzöffnung (3) in einer Hochdruckbohrung (4) eines Düsenkörpers (5) hubbeweglich aufgenommen ist, ferner umfassend eine ringförmige Magnetspule (6) zur Einwirkung auf einen hubbeweglichen Anker (7), der über einen Ankerschaft (8) mit der Düsennadel (2) hydraulisch koppelbar ist. Erfindungsgemäß besitzt eine der Düsennadel (2) zugewandte Stirnfläche (A 1 , A 2 ) des Ankerschafts (8) oder eines mit dem Ankerschaft (8) verbundenen Kontaktelements (9) mindestens eine Erhebung (10) zur Kontaktierung einer den unteren Hubanschlag für den Anker (7) ausbildenden Anschlagfläche (11), so dass die Stirnfläche (A 1 , A 2 ) mit der Anschlagfläche (11) einen Quetschspalt (12) ausbildend zusammenwirkt.The invention relates to a fuel injector for injecting fuel into a combustion chamber (1) of an internal combustion engine, comprising a nozzle needle (2) which is received for lifting and closing at least one injection port (3) in a high-pressure bore (4) of a nozzle body (5) , further comprising an annular magnetic coil (6) for acting on a liftable armature (7), which is hydraulically coupled via an armature shaft (8) with the nozzle needle (2). According to the invention, one of the nozzle needle (2) facing end face (A 1, A 2) of the armature shaft (8) or connected to the armature shaft (8) contact element (9) has at least one elevation (10) for contacting a lower stroke stop for the armature (7) forming stop surface (11), so that the end face (A 1, A 2) cooperating with the stop surface (11) forming a nip (12).

Description

Die Erfindung betrifft einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit den Merkmalen des Oberbegriffs des Anspruchs 1.The invention relates to a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine having the features of the preamble of claim 1.

Stand der TechnikState of the art

Aus der Offenlegungsschrift DE 10 2010 028 835 A1 geht ein Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine hervor, der einen Magnetaktor zur direkten Steuerung eines vorzugsweise nadelförmigen Einspritzventilgliedes umfasst, über dessen Hubbewegung wenigstens eine Einspritzventilöffnung des Kraftstoffinjektors freigebbar oder verschließbar ist. Der Magnetaktor wirkt dabei mit einem hubbeweglichen Ankerelement zur Steuerung des Steuerdrucks in einem Steuervolumen zusammen, das in axialer Richtung von einer am Einspritzventilglied ausgebildeten ersten hydraulischen Wirkfläche begrenzt wird. Am Ankerelement ist eine zweite hydraulische Wirkfläche ausgebildet, die der hydraulischen Wirkfläche des Einspritzventilglieds am Steuervolumen gegenüber liegt. Eine dritte hydraulische Wirkfläche ist an einem hydraulischen Übersetzer ausgebildet, der gemeinsam mit dem Einspritzventilglied und dem Ankerelement den Steuerraum begrenzt. Das Flächenverhältnis der hydraulischen Wirkflächen ist derart ausgelegt, dass während einer ersten Stufe beim Öffnen eine Kraftverstärkung und während einer zweiten Stufe eine Wegverstärkung erzielt wird. Auf diese Weise erfolgt eine Anpassung der Aktorkraft an die sich mit dem Hub des Einspritzventilglieds ändernde erforderliche Öffnungskraft. Die zum Schließen erforderliche Schließkraft wird von einer Feder bereit gestellt, die am Ankerelement abgestützt ist und das Ankerelement in Richtung des Einspritzventilglieds belastet. Die Federkraft bewirkt, dass das Ankerelement bei seiner Rückstellung am Einspritzventilglied anschlägt und dieses in seinen Dichtsitz zurückstellt.From the publication DE 10 2010 028 835 A1 a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, which comprises a magnetic actuator for direct control of a preferably needle-shaped injection valve member, via the lifting movement at least one injection valve opening of the fuel injector is releasable or closable. The magnetic actuator cooperates with a lifting armature element for controlling the control pressure in a control volume which is limited in the axial direction by a first hydraulic active surface formed on the injection valve member. At the anchor element, a second hydraulic active surface is formed, which is opposite to the hydraulic active surface of the injection valve member on the control volume. A third hydraulic active surface is formed on a hydraulic booster, which limits the control space together with the injection valve member and the anchor element. The area ratio of the hydraulic active surfaces is designed such that during a first stage when opening a force gain and during a second stage, a path gain is achieved. In this way, an adjustment of the actuator force to the changing with the stroke of the injection valve member required opening force. The closing force required for closing is provided by a spring which is supported on the anchor element and the anchor element in the direction of the injection valve member loaded. The spring force causes the armature element strikes on its return to the injection valve member and this returns to its sealing seat.

Bei Kraftstoffinjektoren der vorstehend genannten Art sind die Schließkräfte vergleichsweise gering. Dies hat zur Folge, dass der Anker beim Schließen zum Prellen neigt. Das heißt, dass er nach dem Anschlagen an dem Einspritzventilglied zurückschwingt und der Kontakt zum Einspritzventilglied verloren geht, so dass dieses nicht vollständig zurückgestellt wird. Dies wiederum führt zu Mengenabweichungen, die es zu vermeiden gilt. Besonders nachteilig wirkt sich das Prellen des Ankers bei Mehrfacheinspritzungen aus, das heißt bei Einspritzungen, die in unterschiedlichen Zeitabständen aufeinander folgen.In fuel injectors of the type mentioned above, the closing forces are comparatively low. This has the consequence that the anchor tends to bounce when closing. This means that it swings back after striking the injection valve member and the contact with the injection valve member is lost, so that it is not completely reset. This in turn leads to quantity deviations, which must be avoided. The bouncing of the armature is particularly disadvantageous in the case of multiple injections, that is to say in the case of injections which follow one another at different time intervals.

Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Krafstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine anzugeben, der gegenüber dem Stand der Technik ein stabileres Schließverhalten und somit eine höhere Einspritzgenauigkeit besitzt.Based on the above-mentioned prior art, the present invention seeks to provide a Krafstoffinjektor for injecting fuel into a combustion chamber of an internal combustion engine, which has over the prior art, a more stable closing behavior and thus a higher injection accuracy.

Zur Lösung der Aufgabe wird der Kraftstoffinjektor mit den Merkmalen des Anspruchs 1 angegeben. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.To achieve the object of the fuel injector with the features of claim 1 is given. Advantageous developments of the invention can be found in the dependent claims.

Offenbarung der ErfindungDisclosure of the invention

Der zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine vorgeschlagene Kraftstoffinjektor umfasst eine Düsennadel, die zum Freigeben und Verschließen mindestens einer Einspritzöffnung in einer Hochdruckbohrung eines Düsenkörpers hubbeweglich aufgenommen ist. Ferner umfasst der Kraftstoffinjektor eine ringförmige Magnetspule zur Einwirkung auf einen hubbeweglichen Anker, der über einen Ankerschaft mit der Düsennadel hydraulisch koppelbar ist. Erfindungsgemäß besitzt eine der Düsennadel zugewandte Stirnfläche des Ankerschafts oder eines mit dem Ankerschaft verbundenen Kontaktelements mindestens eine Erhebung zur Kontaktierung einer den unteren Hubanschlag für den Anker ausbildenden Anschlagfläche, so dass die Stirnfläche mit der Anschlagfläche einen Quetschspalt ausbildend zusammenwirkt.The fuel injector proposed for injecting fuel into a combustion chamber of an internal combustion engine comprises a nozzle needle, which is received in a liftable manner for releasing and closing at least one injection opening in a high-pressure bore of a nozzle body. Furthermore, the fuel injector comprises an annular magnetic coil for acting on a liftable armature, which is hydraulically coupled via an armature shaft with the nozzle needle. According to the invention, one of the nozzle needle facing end face of the armature shaft or connected to the armature shaft contact element has at least one elevation for contacting a lower stroke stop for the armature forming abutment surface, so that the end face cooperates with the stop surface forming a nip.

Die Ausbildung eines Quetschspalts bewirkt eine Dämpfung der Ankerbewegung kurz vor Erreichen der den unteren Hubanschlag ausbildenden Anschlagfläche. Denn im Bereich des Quetschspalts bildet sich ein dämpfendes Fluidkissen aus. Die Dämpfung der Ankerbewegung führt zu einer verringerten kinetischen Energie beim Aufschlagen des Ankers auf der Anschlagfläche, so dass die Prellneigung des Ankers geringer ist. Dies wirkt sich insbesondere als Vorteil bei Mehrfacheinspritzungen aus, da der Anker bereits vor Einleitung einer nachfolgenden Einspritzung wieder seine Ausgangslage eingenommen hat.The formation of a squeezing gap causes a damping of the armature movement shortly before reaching the lower stroke stop forming abutment surface. Because in the region of the nip forms a damping fluid cushion. The damping of the armature movement leads to a reduced kinetic energy when striking the armature on the stop surface, so that the bounce of the armature is lower. This in particular has the advantage of multiple injections, since the armature has already returned to its starting position before initiating a subsequent injection.

Die Erhebung der Stirnfläche des Ankerschafts bzw. des mit dem Ankerschaft verbundenen Kontaktelements weist den Vorteil auf, dass die Kontaktfläche des Ankers mit der als unterer Hubanschlag dienenden Anschlagfläche reduziert wird. Dies wirkt hydraulischen Klebeeffekten entgegen, so dass die erforderliche Öffnungskraft bzw. der zum Öffnen erforderliche Energiebedarf weitgehend unverändert bleibt.The elevation of the end face of the armature shaft or the contact element connected to the armature shaft has the advantage that the contact surface of the armature is reduced with the abutment surface serving as a lower stroke stop. This counteracts hydraulic adhesive effects, so that the required opening force or the energy required for opening remains largely unchanged.

Besitzt die der Düsennadel zugewandte Stirnfläche des Ankerschafts oder des mit dem Ankerschaft verbundenen Kontaktelements eine einzige Erhebung, ist diese bevorzugt zentral, das heißt mittig in Bezug auf die jeweilige Stirnfläche, angeordnet. Diese Maßnahme verhindert, dass beim Anschlagen bzw. Kontaktieren der Anschlagfläche Querkräfte auf den Anker einwirken.If the end face of the armature shaft facing the nozzle needle or the contact element connected to the armature shaft has a single projection, this is preferably arranged centrally, that is to say centrally with respect to the respective end face. This measure prevents lateral forces acting on the armature when striking or contacting the stop surface.

Alternativ können auch mehrere Erhebungen zur Kontaktierung der den unteren Hubanschlag ausbildenden Anschlagfläche vorgesehen sein, die dann bevorzugt dezentral angeordnet sind. Vorzugsweise sind die mehreren dezentralen Erhebungen in gleichem Winkelabstand zueinander und/oder in gleichem radialen Abstand bezogen auf die Mitte der jeweiligen Stirnfläche angeordnet. Auch diese Maßnahmen dienen - jeweils allein oder in Kombination - der Vermeidung von auf den Anker einwirkenden Querkräften. Denn die mehreren Erhebungen bewirken eine möglichst gleichmäßige Kraftverteilung.Alternatively, it is also possible to provide a plurality of elevations for contacting the stop surface forming the lower stroke stop, which are then preferably arranged in a decentralized manner. Preferably, the plurality of decentralized elevations are arranged at the same angular distance from one another and / or at the same radial distance relative to the center of the respective end face. These measures also serve - each alone or in combination - the avoidance of transverse forces acting on the armature. Because the several surveys cause a uniform distribution of force.

Die die mindestens eine Erhebung aufweisende Stirnfläche des Ankerschafts oder eines mit dem Ankerschaft verbundenen Kontaktelements ist vorzugsweise eben ausgeführt. Vorteilhafterweise ist sie im Wesentlichen parallel zur Anschlagfläche ausgerichtet, mit der sie einen Quetschspalt ausbildend zusammenwirkt.The at least one elevation having end face of the armature shaft or a contact element connected to the armature shaft is preferably made flat. Advantageously, it is aligned substantially parallel to the stop surface, with which it cooperates forming a nip.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist die den unteren Hubanschlag für den Anker ausbildende Anschlagfläche eine Stirnfläche der Düsennadel. Das heißt, dass die Düsennadel zugleich als unterer Hubanschlag für den Anker dient. Alternativ kann die Anschlagfläche auch eine Stirnfläche eines in die Düsennadel eingesetzten Anschlagelements sein. In diesem Fall bildet das Anschlagelement den unteren Hubanschlag für den Anker aus. Durch Vorsehen eines separaten Anschlagelements kann die Ausrichtung der Anschlagfläche in Bezug auf den Anker optimiert werden. Die Ausrichtung kann einmalig bei der Montage erfolgen, um beispielsweise Fertigungs- und/oder Montagetoleranzen auszugleichen.According to a preferred embodiment of the invention, the abutment surface forming the lower stroke stop for the armature is an end face of the nozzle needle. This means that the nozzle needle also serves as a lower stroke stop for the anchor. Alternatively, the stop surface may also be an end face of a stop element inserted into the nozzle needle. In this case, the stop element forms the lower stroke stop for the anchor. By providing a separate stop member, the alignment of the stop surface with respect to the anchor can be optimized. The alignment can be done once during assembly, for example, to compensate for manufacturing and / or assembly tolerances.

Um ein automatisches Ausrichten der Anschlagfläche in Bezug auf den Anker bei jedem Anschlagen zu ermöglichen, wird in Weiterbildung der Erfindung vorgeschlagen, dass das in die Stirnfläche der Düsennadel eingesetzte Anschlagelement teilkugelförmig ausgebildet und in eine vorzugsweise teilkugelförmige Ausnehmung der Düsennadel eingesetzt ist. Durch diese Maßnahme ist gewährleistet, dass die Anschlagfläche gegenüber einer (gedachten) Radialebene kippbar ist und sich bei exzentrischer Belastung automatisch ausrichtet. Das heißt, dass in diesem Fall die Stirnfläche des Ankerschafts oder des mit dem Ankerschaft verbundenen Kontaktelements idealerweise mehrere dezentral angeordnete Erhebungen besitzt.In order to enable automatic alignment of the stop surface with respect to the anchor at each impact, the invention proposes that the stop element inserted into the end face of the nozzle needle is formed partially spherical and inserted into a preferably part-spherical recess of the nozzle needle. This measure ensures that the stop surface is tiltable with respect to a (imaginary) radial plane and automatically aligns with eccentric load. That is, in this case, the end face of the armature shaft or the contact element connected to the armature shaft ideally has a plurality of decentrally arranged elevations.

Anstelle einer teilkugelförmigen Ausnehmung kann die Düsennadel auch eine kegelförmige Ausnehmung zur Aufnahme des Anschlagelements besitzen, welche ebenfalls ein automatisches Ausrichten ermöglicht. Bevorzugt ist jedoch die Innenkontur der Ausnehmung der Außenkontur des Anschlagelements angepasst, damit die Kontaktfläche zwischen dem Anschlagelement und der Düsennadel möglichst groß ist. Denn dann wirkt im Kontaktbereich eine Haltekraft, die das Anschlagelement in Kontakt mit der Düsennadel hält.Instead of a part-spherical recess, the nozzle needle may also have a conical recess for receiving the stop element, which also allows automatic alignment. Preferably, however, the inner contour of the recess of the outer contour of the stop element is adapted so that the contact area between the stop element and the nozzle needle is as large as possible. Because then acts in the contact area, a holding force that holds the stop element in contact with the nozzle needle.

Durch das automatische Ausrichten der den unteren Hubanschlag für den Anker ausbildenden Anschlagfläche in Bezug auf den Anker können exemplarische Einflüsse auf die angestrebte Dämpfungswirkung weitgehend ausgeschlossen werden.By automatically aligning the lower stroke stop for the anchor forming stop surface with respect to the anchor exemplary influences on the desired damping effect can be largely excluded.

Des Weiteren wird vorgeschlagen, dass der Anker in Richtung der Düsennadel von der Federkraft einer Ankerfeder beaufschlagt ist, die einerseits gehäuseseitig und andererseits an einem mit dem Ankerschaft des Ankers verbundenen Federteller abgestützt ist. Die zur Rückstellung vorgesehene Ankerfeder kann auf diese Weise - in Schließrichtung gesehen - möglichst weit vorne am Anker bzw. Ankerschaft angeordnet werden, so dass die Gefahr eines Verkippens des Ankers reduziert wird. Der Federteller erleichtert die Montage des Kraftstoffinjektors, da er vorzugsweise erst nach dem Einsetzen des Ankers in ein Körperbauteil des Kraftstoffinjektors und Aufsetzen der Ankerfeder auf den Ankerschaft mit dem Ankerschaft des Ankers verbunden wird. Die Verbindung kann in einfacher Weise mittels Aufpressen erfolgen.Furthermore, it is proposed that the armature in the direction of the nozzle needle is acted upon by the spring force of an armature spring which is supported on the housing side on the one hand and on the spring plate connected to the armature shaft of the armature on the other hand. The provision for resetting anchor spring can be arranged in this way - as seen in the closing direction - as far forward on the armature or armature shaft, so that the risk of tilting of the armature is reduced. The spring plate facilitates the assembly of the fuel injector, since it is preferably connected only after the insertion of the armature in a body member of the fuel injector and placing the armature spring on the armature shaft with the armature shaft of the armature. The connection can be made in a simple manner by means of pressing.

Bevorzugt durchsetzt der Ankerschaft eine Kopplerplatte, die am Düsenkörper abgestützt und in Richtung des Düsenkörpers von der Federkraft einer Kopplerfeder beaufschlagt ist. Die Kopplerplatte dient der Begrenzung eines Kopplerraums, der ferner vom Ankerschaft, von der Düsennadel und einer die Düsennadel bereichsweise umgebenden Dichthülse begrenzt wird. Über den Kopplerraum ist der Ankerschaft mit der Düsennadel hydraulisch gekoppelt bzw. koppelbar, so dass in Abhängigkeit vom Größenverhältnis der den Kopplerraum begrenzenden Flächen eine Verstärkung der Aktorkraft beim Öffnen bewirkbar ist, um beispielsweise die anfänglich hohe erforderliche Öffnungskraft bereit zu stellen. Die Abstützung der Kopplerplatte am Düsenkörper sollte in der Weise erfolgen, dass sie in radialer Richtung verschiebbar gegenüber dem Düsenkörper gelagert ist, um ggf. einen Achsversatz zwischen dem Ankerschaft und der Düsennadel auszugleichen.Preferably, the armature shaft passes through a coupler plate which is supported on the nozzle body and acted upon in the direction of the nozzle body by the spring force of a coupler spring. The coupler plate is used to limit a coupler space, which is further limited by the armature shaft, the nozzle needle and the nozzle needle surrounding partially sealing sleeve. The armature shaft can be coupled or coupled hydraulically to the nozzle needle via the coupler space, so that, depending on the size ratio of the surfaces delimiting the coupler space, it is possible to increase the actuator force during opening in order, for example, to provide the initially high opening force required. The support of the coupler plate on the nozzle body should be made in such a way that it is mounted displaceably in the radial direction relative to the nozzle body in order to compensate, if necessary, an axial offset between the armature shaft and the nozzle needle.

Bevorzugt ist die Düsennadel in Schließrichtung von der Federkraft einer Düsenfeder beaufschlagt. Die Düsenfeder unterstützt den Schließvorgang. Vorzugsweise ist die Düsenfeder einerseits an der Düsennadel und andererseits an der Dichthülse abgestützt, so dass die Federkraft der Düsenfeder die Dichthülse gegen die Kopplerplatte axial vorspannt. Die axiale Vorspannung stellt die Dichtwirkung der Dichthülse sicher, so dass eine wirksame Trennung des Kopplerraums von der Hochdruckbohrung erzielt wird.Preferably, the nozzle needle is acted upon in the closing direction by the spring force of a nozzle spring. The nozzle spring supports the closing process. Preferably, the nozzle spring is supported on the one hand on the nozzle needle and on the other hand on the sealing sleeve, so that the spring force of the nozzle spring axially biases the sealing sleeve against the coupler plate. The axial bias ensures the sealing effect of the sealing sleeve, so that an effective separation of the coupler space is achieved by the high-pressure bore.

Als oberer Hubanschlag für den Anker dient vorzugsweise eine Anschlagfläche, die von einem Innenpolkörper ausgebildet wird. Der Innenpolkörper ist Teil eines die Magnetspule umfassenden Magnetkreises, wobei die Anordnung radial innenliegend in Bezug auf die ringförmige Magnetspule erfolgt. Auf diese Weise kann ein Magnetkreis geschaffen werden, der sich über den gesamten Außendurchmesser des Kraftstoffinjektors erstreckt, so dass hohe Magnetkräfte erzielbar sind. Der Anker ist in diesem Fall als Tauchanker ausgebildet.As the upper stroke stop for the anchor is preferably a stop surface, which is formed by a Innenpolkörper. The inner pole body is part of a magnetic circuit comprising the magnetic coil, wherein the arrangement takes place radially inwardly with respect to the annular magnetic coil. In this way, a magnetic circuit can be created, which extends over the entire outer diameter of the fuel injector, so that high magnetic forces can be achieved. The anchor is designed in this case as a plunger anchor.

In Weiterbildung der Erfindung wird vorgeschlagen, dass im Innenpolkörper eine zentrale Bohrung als Kraftstoffzulaufkanal ausgebildet ist. Der Zulauf von Kraftstoff erfolgt demnach zentral, so dass der Kraftstoffinjektor gleichmäßig von Hochdruck beaufschlagt ist. Der Kraftstoffzulaufkanal mündet weiterhin bevorzugt in einen Ankerraum, in dem der Anker zumindest bereichsweise ausgenommen ist. Der Ankerraum ist somit Teil des Zulaufs und somit ebenfalls von Hochdruck beaufschlagt.In a further development of the invention, it is proposed that a central bore is designed as a fuel inlet channel in the inner pole body. The supply of fuel is therefore centrally, so that the fuel injector is uniformly acted upon by high pressure. The fuel inlet channel also opens preferably into an armature space, in which the armature is at least partially excluded. The armature space is thus part of the inlet and thus also subjected to high pressure.

Um den Zulauf von Kraftstoff in Richtung der mindestens einen Einspritzöffnung sicherzustellen, ist bevorzugt der Ankerraum über einen Verbindungskanal mit einem Hochdruckraum verbunden. Im Hochdruckraum ist vorzugsweise die Kopplerplatte aufgenommen, wobei weiterhin vorzugsweise der Hochdruckraum über mindestens eine in der Kopplerplatte ausgebildete Durchströmöffnung mit der Hochdruckbohrung verbunden ist.In order to ensure the inflow of fuel in the direction of the at least one injection opening, the armature space is preferably connected via a connecting channel to a high-pressure chamber. In the high-pressure chamber, the coupler plate is preferably accommodated, wherein furthermore preferably the high-pressure chamber is connected to the high-pressure bore via at least one flow opening formed in the coupler plate.

Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen:

  • Fig. 1 einen schematischen Längsschnitt durch einen erfindungsgemäßen Kraftstoffinjektor gemäß einer ersten bevorzugten Ausführungsform in Schließstellung,
  • Fig. 2 einen schematischen Längsschnitt durch den Kraftstoffinjektor der Fig. 1 in einer Offenstellung,
  • Fig. 3 einen schematischen Längsschnitt durch das düsennadelseitige Ende des Ankerschafts des Kraftstoffinjektors der Fig. 1 in vergrößerter Darstellung,
  • Fig. 4 einen schematischen Längsschnitt durch einen erfindungsgemäßen Kraftstoffinjektor gemäß einer zweiten bevorzugten Ausführungsform in Schließstellung,
  • Fig. 5 einen schematischen Längsschnitt durch das düsennadelseitige Ende des Ankerschafts des Kraftstoffinjektors der Fig. 4 in vergrößerter Darstellung,
  • Fig. 6 einen schematischen Längsschnitt durch einen erfindungsgemäßen Kraftstoffinjektor gemäß einer dritten bevorzugten Ausführungsform in Schließstellung und
  • Fig. 7 einen schematischen Längsschnitt durch das düsennadelseitige Ende des Ankerschafts des Kraftstoffinjektors der Fig. 6 in vergrößerter Darstellung,
Preferred embodiments of the invention are explained below with reference to the accompanying drawings. These show:
  • Fig. 1 a schematic longitudinal section through a fuel injector according to the invention according to a first preferred embodiment in the closed position,
  • Fig. 2 a schematic longitudinal section through the fuel injector of Fig. 1 in an open position,
  • Fig. 3 a schematic longitudinal section through the nozzle needle end of the armature shaft of the fuel injector of Fig. 1 in an enlarged view,
  • Fig. 4 a schematic longitudinal section through a fuel injector according to the invention according to a second preferred embodiment in the closed position,
  • Fig. 5 a schematic longitudinal section through the nozzle needle end of the armature shaft of the fuel injector of Fig. 4 in an enlarged view,
  • Fig. 6 a schematic longitudinal section through a fuel injector according to the invention according to a third preferred embodiment in the closed position and
  • Fig. 7 a schematic longitudinal section through the nozzle needle end of the armature shaft of the fuel injector of Fig. 6 in an enlarged view,

Ausführliche Beschreibung der ZeichnungenDetailed description of the drawings

Der in den Figuren 1 und 2 jeweils im Längsschnitt dargestellte Kraftstoffinjektor umfasst einen Düsenkörper 5 mit einer Hochdruckbohrung 4, in welcher eine Düsennadel 2 zum Freigeben und Verschließen mehrerer Einspritzöffnungen 3 hubbeweglich aufgenommen ist. Bei angehobener Düsennadel 2 werden die Einspritzöffnungen 3 freigegeben, so dass unter hohem Druck stehender Kraftstoff in einen Brennraum 1 eingespritzt wird.The in the FIGS. 1 and 2 each shown in longitudinal section fuel injector comprises a nozzle body 5 with a high-pressure bore 4, in which a nozzle needle 2 for releasing and closing a plurality of injection openings 3 is received in a liftable manner. When the nozzle needle 2 is raised, the injection openings 3 are released, so that fuel under high pressure is injected into a combustion chamber 1.

Die Betätigung der Düsennadel 2 erfolgt über einen Magnetaktor, der eine Magnetspule 6 umfasst. Die Magnetspule 6 wirkt hierbei mit einem Anker 7 zusammen, der einen Ankerschaft 8 zur hydraulischen Kopplung mit der Düsennadel 2 besitzt. Hierzu ist das der Düsennadel 2 zugewandte Ende des Ankerschafts 8 durch eine am Düsenkörper 5 abgestützte Kopplerplatte 16 geführt, die gemeinsam mit dem Ankerschaft 8, der Düsennadel 2 und einer die Düsennadel 2 endseitig umgebenden Dichthülse 18 einen Kopplerraum 19 begrenzt. Zur Abdichtung des Kopplerraums 19 gegenüber der Hochdruckbohrung 4 ist die Kopplerplatte 16 in Richtung des Düsenkörpers 5 von der Federkraft einer Kopplerfeder 17 beaufschlagt. Die Dichthülse 18 ist wiederum durch die Federkraft einer Düsenfeder 20 gegen die Kopplerplatte 16 axial vorgespannt. Das die Kopplerplatte 16 durchsetzende Ende des Ankerschafts 8 besitzt einen Außendurchmesser D1, der deutlich kleiner als der Außendurchmesser D2 der Düsennadel 2 gewählt ist. Das Flächenverhältnis der sich am Kopplerraum 19 gegenüber liegenden hydraulischen Wirkflächen ist demnach derart gewählt, dass die Kraftübertragung mit einer Kraftverstärkung einhergeht.The actuation of the nozzle needle 2 via a magnetic actuator comprising a magnetic coil 6. In this case, the magnet coil 6 cooperates with an armature 7, which has an armature shaft 8 for hydraulic coupling to the nozzle needle 2. For this purpose, the nozzle needle 2 facing the end of the armature shaft 8 is guided by a supported on the nozzle body 5 coupler plate 16 which defines a coupler space 19 together with the armature shaft 8, the nozzle needle 2 and a nozzle needle 2 end surrounding sealing sleeve. To seal the coupler space 19 with respect to the high-pressure bore 4, the coupler plate 16 is acted upon in the direction of the nozzle body 5 by the spring force of a coupler spring 17. The sealing sleeve 18 in turn is axially biased by the spring force of a nozzle spring 20 against the coupler plate 16. The coupler plate 16 passing through the end of the armature shaft 8 has an outer diameter D 1 , which is chosen to be significantly smaller than the outer diameter D 2 of the nozzle needle 2. The area ratio of the opposite to the coupler space 19 Hydraulic active surfaces is therefore chosen such that the power transmission is accompanied by a power boost.

Wird die Magnetspule 6 des Magnetaktors bestromt, bildet sich ein Magnetfeld aus, dessen Magnetkraft FM den Anker 7 - entgegen der Federkraft FA einer Ankerfeder 14, die an einem auf den Ankerschaft 8 aufgepressten Federteller 15 abgestützt ist - in Richtung eines Innenpolkörpers 21 zieht. Der Ankerschaft 8 zieht sich dabei aus dem Kopplerraum 19 zurück, so dass sich das Volumen im Kopplerraum 19 vergrößert. Die Volumenvergrößerung wiederum bewirkt einen Druckabfall im Kopplerraum 19. Je weiter der Anker 7 in Richtung des Innenpolkörpers 21 verfährt, desto weiter baut sich der Druck im Kopplerraum 19 ab, und zwar soweit bis sich die Düsennadel 2 entgegen der Federkraft FD der Düsenfeder 20 und der resultierenden hydraulischen Schließkraft Fhydschheß aus ihrem Sitz 29 bewegt. Der Anker 7 verfährt maximal bis zu einer Anschlagfläche 22, die am Innenpolkörper 21 ausgebildet ist und als oberer Hubanschlag dient. Die Düsennadel 2 folgt der Bewegung in einem untersetzten Verhältnis, das durch das Flächenverhältnis der am Ankerschaft 8 und an der Düsennadel 2 ausgebildeten hydraulischen Wirkflächen vorgegeben ist. Bei erreichtem Maximalhub des Ankers 7 kann eine ungedrosselte Einspritzung über die Einspritzöffnungen 3 stattfinden. Der Zulauf von Kraftstoff erfolgt über eine zentrale Bohrung 23, die im Innenpolkörper 21 ausgebildet ist und in einen Ankerraum 24 mündet. Der Ankerraum 24 ist über einen seitlich angeordneten Verbindungskanal 25 mit einem Hochdruckraum 26 verbunden, in dem die Kopplerplatte 16 aufgenommen ist. Über mindestens eine in der Kopplerplatte 16 vorgesehene Durchströmöffnung 27 ist eine Verbindung des Hochdruckraums 26 mit der Hochdruckbohrung 4 des Düsenkörpers 5 hergestellt, in dem die Einspritzöffnungen 3 ausgebildet sind.When the magnetic coil 6 of the magnetic actuator is energized, forms a magnetic field whose magnetic force F M the armature 7 - against the spring force F A an armature spring 14 which is supported on a pressed onto the armature shaft 8 spring plate 15 - in the direction of Innenpolkörpers 21 pulls , The armature shaft 8 retracts from the coupler space 19, so that the volume in the coupler space 19 increases. The increase in volume in turn causes a pressure drop in the coupler space 19. The further the armature 7 moves in the direction of Innenpolkörpers 21, the more the pressure in the coupler chamber 19 decreases, and as far as the nozzle needle 2 against the spring force F D of the nozzle spring 20 and the resulting hydraulic closing force F hydschheß moved from its seat 29. The armature 7 moves maximally to a stop surface 22, which is formed on the inner pole body 21 and serves as an upper stroke stop. The nozzle needle 2 follows the movement in a reduced ratio, which is determined by the area ratio of the hydraulic active surfaces formed on the armature shaft 8 and on the nozzle needle 2. When the maximum stroke of the armature 7 is reached, an unthrottled injection can take place via the injection openings 3. The inflow of fuel takes place via a central bore 23, which is formed in the inner pole body 21 and opens into an armature space 24. The armature space 24 is connected via a laterally arranged connecting channel 25 with a high pressure chamber 26 in which the coupler plate 16 is received. Via at least one flow opening 27 provided in the coupler plate 16, a connection of the high-pressure chamber 26 to the high-pressure bore 4 of the nozzle body 5 is produced, in which the injection openings 3 are formed.

Zum Beenden der Einspritzung wird die Bestromung der Magnetspule 6 beendet, so dass die Magnetkraft FM abgebaut wird. Die in Schließrichtung wirkende Federkraft FA der Ankerfeder 14 stellt in der Folge den Anker 7 in seine Ausgangsposition zurück. Dabei taucht der Ankerschaft 8 wieder tiefer in den Kopplerraum 19 ein und verkleinert das Volumen, was zu einem Druckanstieg im Kopplerraum 19 führt. Übersteigt die in Schließrichtung auf die Düsennadel 2 wirkende Federkraft FD der Düsenfeder 20 die resultierende hydraulische Öffnungskraft FhydÖff beginnt die Schließbewegung der Düsennadel 2. Wegen der prinzipbedingten Leckage vom Hochdruckbereich in den Kopplerraum 19, und zwar über die Führung des Ankerschafts 8 in der Kopplerplatte 16 bzw. über die Führung der Düsennadel 2 in der Dichthülse 18, erreicht die Düsennadel 2 ihren Sitz 29 bevor der Ankerschaft 8 zur Anlage an der Düsennadel 2 bzw. an ein hierin eingesetztes Anschlagelement 13 mit einer Anschlagfläche 11 gelangt, das einen unteren Hubanschlag für den Anker 7 ausbildet.To end the injection, the energization of the solenoid 6 is terminated, so that the magnetic force F M is reduced. The force acting in the closing direction spring force F A of the armature spring 14 is in the sequence the armature 7 back to its original position. In this case, the armature shaft 8 immersed again deeper into the coupler space 19 and reduces the volume, resulting in a pressure increase in the coupler space 19. If the spring force F D of the nozzle spring 20 acting in the closing direction on the nozzle needle 2 exceeds the resulting hydraulic opening force F hydOff , the closing movement of the nozzle needle 2 begins. Because of the principle-induced leakage from the high-pressure region into the coupler space 19, via the leadership of the armature shaft 8 in the coupler plate 16 and on the leadership of the nozzle needle 2 in the sealing sleeve 18, the nozzle needle 2 reaches its seat 29 before the armature shaft 8 for engagement with the nozzle needle 2 and an inserted herein Stop element 13 comes with a stop surface 11 which forms a lower stroke stop for the armature 7.

Das in die Düsennadel 2 eingesetzte Anschlagelement 13 ist teilkugelförmig ausgeführt und in eine teilkugelförmige Ausnehmung der Düsennadel 2 eingesetzt. Das Anschlagelement 13 ist demnach derart gelagert, dass die Anschlagfläche 11 gegenüber einer Radialebene E kippbar ist, um diese in Bezug auf den Ankerschaft auszurichten. Das Ausrichten erfolgt automatisch mit jedem Anschlagen des Ankerschafts 8 am Anschlagelement 13, da die Stirnfläche A1 des Ankerschafts 8 drei dezentrale Erhebungen 10 besitzt, die in gleichem Winkelabstand zueinander angeordnet sind (siehe Fig. 3). Nimmt der Anker 7 eine Schräglage gegenüber der Düsennadel 2 bzw. dem hierin eingesetzten Anschlagelement 13 ein, gelangt lediglich eine Erhebung 10 über eine Kontaktfläche AK in Kontakt mit der Anschlagfläche 11. Aufgrund der dezentralen Anordnung der Erhebungen 10 bewirkt dieses exzentrische Anschlagen ein Kippen des Anschlagelements 13 bis alle drei Erhebungen 10 über Kontaktflächen AK zur Anlage am Anschlagelement 13 gelangen.The stop element 13 inserted into the nozzle needle 2 is designed in the form of a partial sphere and inserted into a part-spherical recess of the nozzle needle 2. The stop element 13 is therefore mounted such that the stop surface 11 is tiltable relative to a radial plane E, in order to align them with respect to the armature shaft. Alignment takes place automatically with each striking of the armature shaft 8 on the stop element 13, since the end face A 1 of the armature shaft 8 has three decentralized elevations 10, which are arranged at the same angular distance from each other (see Fig. 3 ). If the armature 7 assumes an inclined position relative to the nozzle needle 2 or the abutment element 13 inserted therein, only one elevation 10 comes into contact with the abutment surface 11 via a contact surface A K. Due to the decentralized arrangement of the elevations 10, this eccentric abutment causes the eccentric abutment Stop element 13 to reach all three elevations 10 via contact surfaces A K to rest on the stop element 13.

Durch die Erhebungen 10 liegt die Stirnfläche A1 des Ankerschafts 8 gegenüber den Kontaktflächen AK zurück. Dies hat zur Folge, dass zwischen der Stirnfläche A1 und der Anschlagfläche 11 ein Quetschspalt 12 ausgebildet wird, der die Bewegung des Ankers 7 kurz vor dem Aufschlagen auf die Anschlagfläche 11 abbremst bzw. dämpft. Die Dämpfungswirkung steigt mit Annäherung des Ankers 7 an die Anschlagfläche 11. Denn je geringer die Höhe des Quetschspalts 12 ist, desto mehr Arbeit muss verrichtet werden, um Kraftstoff aus dem Quetschspalt 12 zu verdrängen. Aufgrund der Dämpfung neigt der Anker 7 weniger zum Prellen.By the elevations 10, the end face of the armature shaft A 1 8 is opposite the contact surfaces A K back. This has the consequence that between the end face A 1 and the stop surface 11, a squish gap 12 is formed, which slows down or damps the movement of the armature 7 shortly before striking the stop surface 11. The damping effect increases with approach of the armature 7 to the stop surface 11. Because the lower the height of the nip 12, the more work must be done to displace fuel from the nip 12. Due to the damping of the armature 7 tends to bounce less.

Die Reduzierung des Kontaktbereichs auf die Kontaktflächen AK der drei Erhebungen 10 hat ferner zur Folge, dass hydraulische Klebeeffekte beim Öffnen des Kraftstoffinjektors weitgehend vermieden werden. Das heißt, dass keine erhöhte Öffnungskraft erforderlich ist, um den Anker 7 von der Anschlagfläche 11 zu lösen.The reduction of the contact area to the contact surfaces A K of the three elevations 10 also has the consequence that hydraulic adhesive effects when opening the fuel injector are largely avoided. That is, no increased opening force is required to release the armature 7 from the abutment surface 11.

Die Kontaktfläche des Anschlagelements 13 mit der Düsennadel 2 ist demgegenüber möglichst groß gewählt, um beim Öffnen ein Lösen des Anschlagelements 13 von der Düsennadel 2 zu verhindern. Das heißt, dass die zwischen dem Anschlagelement 13 und der Düsennadel 2 wirkende Lösekraft FL1 größer als die zwischen dem Anker 7 und dem Anschlagelement 13 wirkende Lösekraft FL sein muss.In contrast, the contact surface of the stop element 13 with the nozzle needle 2 is chosen to be as large as possible in order to prevent the stop element 13 from being released from the nozzle needle 2 when opening. This means that the release force F L1 acting between the stop element 13 and the nozzle needle 2 must be greater than the release force F L acting between the armature 7 and the stop element 13.

Eine Abwandlung der Ausführungsform der Figuren 1 und 2 ist in der Fig. 4 dargestellt. Hier sind die Erhebungen 10 nicht am Ankerschaft 8, sondern an einem mit dem Ankerschaft 8 verbundenen Kontaktelement 9 ausgebildet (siehe Fig. 5). Der Ankerschaft 8 gelangt demnach nur mittelbar über das Kontaktelement 9 in Kontakt mit der Anschlagfläche 11 des Anschlagelements 13. Das Kontaktelement 9 ist vorliegend topfförmig ausgebildet und auf das düsennadelseitige Ende des Ankerschafts 8 aufgepresst. Die zurückliegende Stirnfläche A2 wirkt nunmehr mit der Anschlagfläche 11 den Quetschspalt 12 ausbildend zusammen. Da die Stirnfläche A2 des Kontaktelements 9 größer als die Stirnfläche A1 des Ankerschafts ist, kann in dieser Ausführungsform eine noch größere Dämpfungswirkung erzielt werden. Um eine Kollision des auf den Ankerschaft 8 aufgepressten Kontaktelements 9 mit der Kopplerplatte 16 zu verhindern, ist in dieser eine Ausnehmung 28 ausgebildet.A modification of the embodiment of the FIGS. 1 and 2 is in the Fig. 4 shown. Here, the elevations 10 are not formed on the armature shaft 8, but on a contact element 9 connected to the armature shaft 8 (see Fig. 5 ). The armature shaft 8 thus passes only indirectly via the contact element 9 in contact with the stop surface 11 of the stop element 13. The contact element 9 is in the present cup-shaped and pressed onto the nozzle needle-side end of the armature shaft 8. The past end face A 2 now interacts with the stop surface 11, the nip 12 forming together. Since the end face A 2 of the contact element 9 is larger than the end face A 1 of the armature shaft, an even greater damping effect can be achieved in this embodiment. In order to prevent a collision of the pressed against the armature shaft 8 contact element 9 with the coupler plate 16, a recess 28 is formed in this.

Eine weitere Abwandlung ist der Fig. 6 zu entnehmen. Auf ein Anschlagelement 13 wurde bei dieser Ausführungsform verzichtet. Die Anschlagfläche 11 wird von der Düsennadel 2 selbst ausgebildet. Der Ankerschaft 8 weist an seinem düsennadelseitigen Ende wiederum ein aufgepresstes Kontaktelement 9 zur Kontaktierung der Anschlagfläche 11 auf. Dieses weist vorliegend jedoch nur eine zentrale Erhebung 10 auf, die zudem dornartig ausgebildet ist, so dass die Kontaktfläche AK auf einen einzelnen Kontaktpunkt reduziert wird (siehe Fig. 7). Aufgrund der zentralen Anordnung der Erhebung 10 ist auch unerheblich, ob der Ankerschaft 8 exakt koaxial zur Düsennadel 2 ausgerichtet ist. Dies erklärt, warum ein in die Düsennadel 1 eingesetztes, kippbares Anschlagelement 13 vorliegend entbehrlich ist. Zudem lässt sich eine einzelne zentrale Erhebung 10 einfacher und somit kostengünstiger herstellen.Another variation is the Fig. 6 refer to. On a stop element 13 has been omitted in this embodiment. The stop surface 11 is formed by the nozzle needle 2 itself. The armature shaft 8 has at its nozzle needle end again a pressed-contact element 9 for contacting the stop surface 11. In the present case, however, this has only one central elevation 10, which is also formed like a pin, so that the contact surface A K is reduced to a single contact point (see Fig. 7 ). Due to the central arrangement of the elevation 10 is also irrelevant whether the armature shaft 8 is aligned exactly coaxial with the nozzle needle 2. This explains why an inserted into the nozzle needle 1, tiltable stop member 13 is dispensable in the present case. In addition, a single central elevation 10 can be made simpler and thus less expensive.

Es versteht sich von selbst, dass die Abwandlung gemäß der Fig. 6 auch ohne Kontaktelement 9 realisierbar ist. In diesem Fall ist die eine zentrale Erhebung 10 unmittelbar am Ankerschaft 8 ausgebildet.It goes without saying that the modification according to the Fig. 6 Even without contact element 9 can be realized. In this case, a central elevation 10 is formed directly on the armature shaft 8.

Claims (9)

Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum (1) einer Brennkraftmaschine, umfassend eine Düsennadel (2), die zum Freigeben und Verschließen mindestens einer Einspritzöffnung (3) in einer Hochdruckbohrung (4) eines Düsenkörpers (5) hubbeweglich aufgenommen ist, ferner umfassend eine ringförmige Magnetspule (6) zur Einwirkung auf einen hubbeweglichen Anker (7), der über einen Ankerschaft (8) mit der Düsennadel (2) hydraulisch koppelbar ist,
dadurch gekennzeichnet, dass eine der Düsennadel (2) zugewandte Stirnfläche (A1, A2) des Ankerschafts (8) oder eines mit dem Ankerschaft (8) verbundenen Kontaktelements (9) mindestens eine Erhebung (10) zur Kontaktierung einer den unteren Hubanschlag für den Anker (7) ausbildenden Anschlagfläche (11) besitzt, so dass die Stirnfläche (A1, A2) mit der Anschlagfläche (11) einen Quetschspalt (12) ausbildend zusammenwirkt.
A fuel injector for injecting fuel into a combustion chamber (1) of an internal combustion engine, comprising a nozzle needle (2) liftably received for releasing and closing at least one injection port (3) in a high pressure bore (4) of a nozzle body (5), further comprising annular magnet coil (6) for acting on a liftable armature (7), which is hydraulically coupled via an armature shaft (8) with the nozzle needle (2),
characterized in that one of the nozzle needle (2) facing end face (A 1 , A 2 ) of the armature shaft (8) or one with the armature shaft (8) connected contact element (9) at least one elevation (10) for contacting a lower stroke stop for has the stopper (11) forming the armature (7), so that the end face (A 1 , A 2 ) cooperates with the stop face (11) forming a nip (12).
Kraftstoffinjektor nach Anspruch 1,
dadurch gekennzeichnet, dass die der Düsennadel (2) zugewandte Stirnfläche (A1, A2) des Ankerschafts (8) oder des mit dem Ankerschaft (8) verbundenen Kontaktelements (9) eine zentrale Erhebung (10) oder mehrere dezentrale Erhebungen (10) zur Kontaktierung der den unteren Hubanschlag ausbildenden Anschlagfläche (11) besitzt.
Fuel injector according to claim 1,
characterized in that the nozzle needle (2) facing end face (A 1 , A 2 ) of the armature shaft (8) or connected to the armature shaft (8) contact element (9) has a central elevation (10) or more decentralized elevations (10) for contacting the lower stroke stop forming stop surface (11) has.
Kraftstoffinjektor nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die den unteren Hubanschlag für den Anker (7) ausbildende Anschlagfläche (11) eine Stirnfläche der Düsennadel (2) oder eines hierin eingesetzten Anschlagelements (13) ist.
Fuel injector according to claim 1 or 2,
characterized in that the lower stroke stop for the armature (7) forming abutment surface (11) is an end face of the nozzle needle (2) or a stop element (13) inserted therein.
Kraftstoffinjektor nach Anspruch 3,
dadurch gekennzeichnet, dass das in die Stirnfläche der Düsennadel (2) eingesetzte Anschlagelement (13) teilkugelförmig ausgebildet und in eine vorzugsweise teilkugelförmige Ausnehmung der Düsennadel (2) eingesetzt ist, so dass die Anschlagfläche (11) gegenüber einer Radialebene (E) kippbar ist.
Fuel injector according to claim 3,
characterized in that the in the end face of the nozzle needle (2) inserted stop element (13) is formed partially spherical and in a preferably part-spherical recess of the nozzle needle (2), so that the stop surface (11) relative to a radial plane (E) is tilted.
Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Anker (7) in Richtung der Düsennadel (2) von der Federkraft einer Ankerfeder (14) beaufschlagt ist, die einerseits gehäuseseitig und andererseits an einem mit dem Ankerschaft (8) des Ankers (7) verbundenen Federteller (15) abgestützt ist.
Fuel injector according to one of the preceding claims,
characterized in that the armature (7) in the direction of the nozzle needle (2) by the spring force of an armature spring (14) is acted on the one hand housing side and on the other hand on a with the armature shaft (8) of the armature (7) connected spring plate (15) is supported.
Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Ankerschaft (8) eine Kopplerplatte (16) durchsetzt, die am Düsenkörper (5) abgestützt und in Richtung des Düsenkörpers (5) von der Federkraft einer Kopplerfeder (17) beaufschlagt ist, wobei die Kopplerplatte (16) gemeinsam mit dem Ankerschaft (8), der Düsennadel (2) und einer die Düsennadel (2) bereichsweise umgebenden Dichthülse (18) einen Kopplerraum (19) begrenzt.
Fuel injector according to one of the preceding claims,
characterized in that the armature shaft (8) passes through a coupler plate (16) which is supported on the nozzle body (5) and acted upon in the direction of the nozzle body (5) by the spring force of a coupler spring (17), wherein the coupler plate (16) together with the armature shaft (8), the nozzle needle (2) and a sealing sleeve (18) surrounding the nozzle needle (2) in certain regions define a coupler space (19).
Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Düsennadel (2) in Schließrichtung von der Federkraft einer Düsenfeder (20) beaufschlagt ist, die vorzugsweise einerseits an der Düsennadel (2) und andererseits an der Dichthülse (18) abgestützt ist, so dass die Federkraft der Düsenfeder (20) die Dichthülse (18) gegen die Kopplerplatte (16) axial vorspannt.
Fuel injector according to one of the preceding claims,
characterized in that the nozzle needle (2) in the closing direction of the spring force of a nozzle spring (20) is acted upon, on the one hand on the nozzle needle (2) and on the other hand on the sealing sleeve (18) is supported, so that the spring force of the nozzle spring (20 ) biases the sealing sleeve (18) axially against the coupler plate (16).
Kraftstoffinjektor nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass ein Innenpolkörper (21) eine Anschlagfläche (22) als oberer Hubanschlag für den Anker (7) ausbildet, wobei vorzugsweise im Innenpolkörper (21) eine zentrale Bohrung (23) als Kraftstoffzulaufkanal ausgebildet ist, der in einen Ankerraum (24) mündet.
Fuel injector according to one of the preceding claims,
characterized in that a Innenpolkörper (21) forms a stop surface (22) as the upper stroke stop for the armature (7), wherein preferably in Innenpolkörper (21) has a central bore (23) is designed as a fuel inlet channel in an armature space (24) empties.
Kraftstoffinjektor nach Anspruch 8,
dadurch gekennzeichnet, dass der Ankerraum (24) über einen Verbindungskanal (25) mit einem Hochdruckraum (26) verbunden ist, in dem vorzugsweise die Kopplerplatte (16) aufgenommen ist, wobei weiterhin vorzugsweise der Hochdruckraum (26) über mindestens eine in der Kopplerplatte (16) ausgebildete Durchströmöffnung (27) mit der Hochdruckbohrung (4) verbunden ist.
Fuel injector according to claim 8,
characterized in that the armature space (24) is connected via a connecting channel (25) to a high-pressure chamber (26), in which preferably the coupler plate (16) is received, wherein furthermore preferably the high-pressure space (26) via at least one in the coupler plate (26). 16) formed through-flow opening (27) with the high-pressure bore (4) is connected.
EP16165945.3A 2015-05-22 2016-04-19 Fuel injector Not-in-force EP3098433B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015209505.3A DE102015209505A1 (en) 2015-05-22 2015-05-22 fuel injector

Publications (2)

Publication Number Publication Date
EP3098433A1 true EP3098433A1 (en) 2016-11-30
EP3098433B1 EP3098433B1 (en) 2018-03-07

Family

ID=55759553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16165945.3A Not-in-force EP3098433B1 (en) 2015-05-22 2016-04-19 Fuel injector

Country Status (2)

Country Link
EP (1) EP3098433B1 (en)
DE (1) DE102015209505A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028835A1 (en) 2010-05-11 2011-11-17 Robert Bosch Gmbh fuel injector
DE102012210424A1 (en) * 2012-06-20 2013-12-24 Robert Bosch Gmbh Injector
EP2806150A2 (en) * 2013-05-24 2014-11-26 Robert Bosch GmbH Electromagnetically actuated valve
DE102013221534A1 (en) * 2013-10-23 2015-04-23 Robert Bosch Gmbh fuel injector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010028835A1 (en) 2010-05-11 2011-11-17 Robert Bosch Gmbh fuel injector
DE102012210424A1 (en) * 2012-06-20 2013-12-24 Robert Bosch Gmbh Injector
EP2806150A2 (en) * 2013-05-24 2014-11-26 Robert Bosch GmbH Electromagnetically actuated valve
DE102013221534A1 (en) * 2013-10-23 2015-04-23 Robert Bosch Gmbh fuel injector

Also Published As

Publication number Publication date
EP3098433B1 (en) 2018-03-07
DE102015209505A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
EP2021617B1 (en) Fuel injector comprising a pressure-compensated control valve
EP1266135B1 (en) Electrovalve for controlling an injection valve in an internal combustion engine
EP2634413B1 (en) Injector
EP2092187B1 (en) Injector for injecting fuel
WO2002033246A1 (en) Magnetic valve for controlling an injection valve of an internal combustion engine
EP2743493B1 (en) Fuel injector
WO2007141094A1 (en) Fuel injection device for an internal combustion engine
EP2454467A1 (en) Valve arrangement
EP2276922A1 (en) Fuel injector with solenoid valve
EP2547895B1 (en) Fuel injector
EP3098433B1 (en) Fuel injector
EP3095998B1 (en) Fuel injector
EP2893182A1 (en) Injection valve
EP2473728A1 (en) Injector for injecting fuel
EP2438288B1 (en) Switching valve
EP1911966A2 (en) Fuel injector for a combustion engine
EP3060789A1 (en) Fuel injector
WO2016062594A1 (en) Fuel injector
DE102012224247A1 (en) Fuel injector i.e. common-rail injector, for use with self-ignition engine, has magnet armature indirectly connected with coupler, which delimits adjusting element over coupling element by spring element
EP1179675A2 (en) Solenoid valve controlling the injection valve of an internal combustion engine and electromagnet for it
WO2018028865A1 (en) Electromagnetically actuable intake valve and high-pressure fuel pump
WO2009138279A1 (en) Solenoid valve having an armature slot configuration
WO2017067715A1 (en) Electromagnetically operable inlet valve and high-pressure pump having an inlet valve
WO2009146974A1 (en) Fuel injector with perforated seat nozzle
WO2017108343A1 (en) Electromagnetically actuatable inlet valve and high-pressure pump having an inlet valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170530

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 976829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016000628

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180307

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180608

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180607

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016000628

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180709

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

26N No opposition filed

Effective date: 20181210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180307

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180707

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200419

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 976829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220420

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220627

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016000628

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103