EP3086377B1 - Led-treiberschaltung und verfahren zur steuerung der led-treiberschaltung - Google Patents

Led-treiberschaltung und verfahren zur steuerung der led-treiberschaltung Download PDF

Info

Publication number
EP3086377B1
EP3086377B1 EP13899599.8A EP13899599A EP3086377B1 EP 3086377 B1 EP3086377 B1 EP 3086377B1 EP 13899599 A EP13899599 A EP 13899599A EP 3086377 B1 EP3086377 B1 EP 3086377B1
Authority
EP
European Patent Office
Prior art keywords
led
terminal
voltage
switch element
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13899599.8A
Other languages
English (en)
French (fr)
Other versions
EP3086377A4 (de
EP3086377A1 (de
Inventor
Keisuke Kobayashi
Akihiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Publication of EP3086377A1 publication Critical patent/EP3086377A1/de
Publication of EP3086377A4 publication Critical patent/EP3086377A4/de
Application granted granted Critical
Publication of EP3086377B1 publication Critical patent/EP3086377B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs

Definitions

  • the present invention relates to an LED driver circuit and a method of controlling the LED driver circuit.
  • a conventional LED driver circuit that drives an LED circuit has a plurality of LED elements connected in series with each other (see Japanese Patent Laid-Open No. 2008-218457 , for example).
  • DE 10 2011 003 519 A1 describes a method and circuit for regulating a current flow through a series connection of electrical lighting elements.
  • One or more values of a forward voltage is received via an interface to a tapping point of the forward voltage.
  • One or more reference values are determined for one or more current controllers to control the current flow through the series connection based on the value of the forward voltage.
  • a conventional LED driver circuit 100a includes a first constant-current power supply (a voltage boosting circuit or a voltage lowering circuit, for example) Ia that supplies a constant current for turning on an LED element to a first LED circuit "LC1a” via a high-side terminal "TIa”, a second constant-current power supply (a voltage boosting circuit or a voltage lowering circuit, for example) "Ib” that supplies a constant current for turning on an LED element to a second LED circuit "LC2a” via a low-side terminal "TIb”, a controlling part “Xa” that controls the first and second constant-current power supplies "Ia” and “Ib”, and a power supply “Sa” that supplies an electric power to the first and second constant-current power supplies "Ia” and “Ib” and the controlling part “Xa” (see Figure 2 ).
  • Ia a constant-current power supply
  • Ib a voltage boosting circuit or a voltage lowering circuit, for example
  • Ib that supplies a constant current for turning on an LED
  • a positive electrode of a battery “Ba” is connected to the power supply “Sa” via a main switch “MSWa” and a battery terminal “TBa”.
  • a negative electrode of the battery “Ba” is connected to the controlling part "Xa” via a ground terminal "TGa”.
  • the positive electrode of the battery “Ba” is connected to one end of a load “LOa” via a relay "REa", and the negative electrode of the battery “Ba” is connected to another end of the load "LOa”.
  • a first LED switch "LS1a” capable of being turned on and off by a user is connected in series with the first LED circuit “LC1a” between the high-side terminal "TIa” (an output of the first constant-current power supply “Ia”) and the ground terminal "TGa”.
  • a second LED switch "LS2a” capable of being turned on and off by a user is connected in series with the second LED circuit "LC2a" between the low-side terminal "TIb” (an output of the second constant-current power supply “Ib") and the ground terminal "TGa”.
  • the first LED circuit "LC1a”, the second LED circuit “LC2a”, the first LED switch “LS1a” and the second LED switch “LS2a” form a head lamp unit 101a.
  • a switch detecting part “Da” detects states (on or off) of the first and second LED switches “LS1a” and “LS2a” switched by the user and outputs the detection result to the controlling part "Xa” via switching information terminals "TD1" and "TD2".
  • the controlling part "Xa” performs a control to make the first and second constant-current power supplies "Ia” and “Ib” supply a constant current to the LED elements, based on the detection result (an external signal) from the switch detecting part “Da” that is indicative of the states (on/off) of the first and second LED switches “LS1a” and “LS2a” switched by the user.
  • the controlling part “Xa” controls current supply as described above, thereby performing switching between a high beam and a low beam of the head lamp unit 101a (that is, a control to turn on and off the first and second LED circuits "LC1a” and “LC2a”).
  • a conventional overheat protection circuit protects a transistor that controls an output of a constant-current power supply from overheating (see Japanese Patent Laid-Open No. 2010-277226 , for example).
  • the conventional LED driver circuit requires the first and second constant-current power supplies, such as a voltage boosting circuit or a voltage lowering circuit.
  • the conventional LED driver circuit 100a requires the switch detecting part "Da” and requires information (an external signal) on switching (on/off) of the first and second LED switches “LS1a” and “LS2a” connected in series with the first and second LED circuits “LC1a” and “LC2a”, respectively.
  • the conventional LED driver circuit 100a requires a terminal and wiring for the external signal.
  • the conventional LED driver circuit 100a has a problem that the circuit footprint is large, and the manufacturing cost is high.
  • the overheat protection circuit described above is not designed to protect the transistor in accordance with the voltage of the LED elements.
  • An LED driver circuit is an LED driver circuit that drives a first LED circuit and a second LED circuit, the first LED circuit having one LED element or a plurality of LED elements connected in series with each other and being connected to a positive electrode of a battery at an anode side thereof, and the second LED circuit having one LED element or a plurality of LED elements connected in series with each other and being connected to the positive electrode of the battery at an anode side thereof, the LED driver circuit comprising:a first LED terminal to which a cathode side of the first LED circuit is connected; a second LED terminal to which a cathode side of the second LED circuit is connected;a ground terminal connected to a negative electrode of the battery;a first switch element connected between the first LED terminal and the ground terminal;a second switch element connected between the second LED terminal and the ground terminal;a first voltage detecting circuit that detects a first terminal voltage at the first LED terminal;a second voltage detecting circuit that detects a second terminal voltage at the second LED terminal; anda controlling part that controls the first switch element and the
  • the controlling part turns off the first switch element if the first potential difference is equal to or lower than a third predefined value lower than the first predefined value, and turns off the second switch element if the second potential difference is equal to or lower than a fourth predefined value lower than the second predefined value.
  • the controlling part determines that a breakage has occurred in an LED element of the first LED circuit if the first terminal voltage is equal to or lower than a preset first determination value, and determines that a breakage has occurred in an LED element of the second LED circuit if the second terminal voltage is equal to or lower than a preset second determination value.
  • the first determination value and the second determination value are the ground voltage.
  • the first on-duty ratio and the third on-duty ratio are an on-duty ratio of 100%.
  • a second LED switch capable of being turned on and off by a user is connected in series with the second LED circuit between the positive electrode of the battery and the second LED terminal.
  • a first end of a relay is connected to the positive electrode of the battery, and a second end of the relay is connected to the anode side of the first LED circuit and the anode side of the second LED circuit, a load is connected between the second end of the relay and the negative electrode of the battery, the first LED circuit and the second LED circuit are LEDs of a headlamp of a motorcycle, and the load is an ignition device of an engine of the motorcycle.
  • the first switch element is a first MOS transistor that is connected between the first LED terminal and the ground terminal and whose gate voltage is controlled by the controlling part
  • the second switch element is a second MOS transistor that is connected between the second LED terminal and the ground terminal and whose gate voltage is controlled by the controlling part
  • the LED driver circuit further comprises:
  • a method of controlling an LED driver circuit is a method of controlling an LED driver circuit, the LED driver circuit that drives a first LED circuit and a second LED circuit, the first LED circuit having one LED element or a plurality of LED elements connected in series with each other and being connected to a positive electrode of a battery at an anode side thereof, the second LED circuit having one LED element or a plurality of LED elements connected in series with each other and being connected to the positive electrode of the battery at an anode side thereof, and the LED driver circuit comprising a first LED terminal to which a cathode side of the first LED circuit is connected, a second LED terminal to which a cathode side of the second LED circuit is connected, a ground terminal connected to a negative electrode of the battery, a first switch element connected between the first LED terminal and the ground terminal, a second switch element connected between the second LED terminal and the ground terminal, a first voltage detecting circuit that detects a first terminal voltage at the first LED terminal, a second voltage detecting circuit that detects a second
  • An LED driver circuit includes a first switch element connected between a first LED terminal and a ground terminal, a second switch element connected between a second LED terminal and the ground terminal, a first voltage detecting circuit that detects a first terminal voltage at the first LED terminal, a second voltage detecting circuit that detects a second terminal voltage at the second LED terminal, and a controlling part that controls the first switch element and the second switch element in accordance with the first terminal voltage and the second terminal voltage.
  • a first LED switch capable of being turned on and off by a user is connected in series with the first LED circuit between a positive electrode of a battery and the first LED terminal.
  • the controlling part controls the first switch element with a first on-duty ratio if the first terminal voltage is lower than a preset first upper limit value, controls the first switch element with a second on-duty ratio smaller than the first on-duty ratio if the first terminal voltage reaches the first upper limit value, controls the second switch element with a third on-duty ratio if the second terminal voltage is lower than a preset second upper limit value, and controls the second switch element with a fourth on-duty ratio smaller than the third on-duty ratio if the second terminal voltage reaches the second upper limit value.
  • the LED driver circuit according to the present invention requires no information on switching of the switches and therefore requires no external signal.
  • the LED driver circuit requires no constant-current power supply.
  • the number of terminals, wires and the like of the LED driver circuit can be reduced.
  • the LED driver circuit according to the present invention can reduce heat generation of the MOS transistors and prevent the LED elements from suddenly going out, although the light intensity of the LED elements decreases.
  • the controlling part lowers the on-duty ratio of the first switch element. If a second potential difference between the battery voltage and the second terminal voltage is equal to or lower than a second predefined value, the controlling part lowers the on-duty ratio of the second switch element.
  • the on-duty ratio of the switch element (MOS transistor) can be lowered to reduce heat generation of the switch element (MOS transistor).
  • the controlling part determines that a breakage has occurred in an LED element of the first LED circuit if the first terminal voltage is equal to or lower than a preset first determination value, and determines that a breakage has occurred in an LED element of the second LED circuit if the second terminal voltage is equal to or lower than a preset second determination value.
  • a breakage of an LED element for the high beam and the low beam can be detected.
  • an LED driver circuit 100 is configured to drive a first LED circuit "LC1" and a second LED circuit “LC2" that have one LED element or a plurality of LED elements connected in series with each other ( Figure 1 ).
  • a positive electrode “BP” of the battery “B” is connected to a controlling part “X” via a main switch “MSW” and a battery terminal “TB".
  • a negative electrode “BN” of the battery “B” is connected to the controlling part “X” via a ground terminal "TG”. That is, the controlling part “X” is connected between the battery terminal “TB” and the ground terminal "TG” and is driven by an electric power supplied from the battery "B".
  • the first LED circuit “LC1” has one LED element or a plurality of LED elements connected in series with each other and is connected to the positive electrode “BP" of the battery “B” at an anode side thereof.
  • the second LED circuit “LC2” has one LED element or a plurality of LED elements connected in series with each other and is connected to the positive electrode “BP" of the battery “B” at an anode side thereof.
  • the first LED circuit “LC1” and the second LED circuit “LC2” are LEDs of a headlamp of a motorcycle, for example.
  • the LED elements of the first LED circuit “LC1” are LED elements for a low beam
  • the LED elements of the second LED circuit “LC2” are LED elements for a high beam.
  • a first LED switch "LS1" capable of being turned on and off by a user is connected in series with the first LED circuit “LC1" between the positive electrode "BP" of the battery "B” and a first LED terminal "TL1".
  • first LED switch "LS1" If the first LED switch "LS1" is turned on by the user, a current can flow to the first LED circuit "LC1". On the other hand, if the first LED switch "LS1" is turned off by the user, the current flowing to the first LED circuit "LC1" is interrupted.
  • a second LED switch "LS2" capable of being turned on and off by the user is connected in series with the second LED circuit "LC2" between the positive electrode "BP" of the battery "B” and a second LED terminal "TL2".
  • the first LED circuit "LC1”, the second LED circuit “LC2”, the first LED switch “LS1" and the second LED switch “LS2" form a headlamp unit 101 for a motorcycle.
  • the main switch "MSW” is capable of being turned on and off by the user.
  • a relay “RE” is connected between the positive electrode “BP” of the battery “B” and the anode sides of the first LED circuit “LC1” and the second LED circuit “LC2". More specifically, the relay “RE” is connected to the positive electrode “BP” of the battery at one end thereof and to the anode sides of the first LED circuit “LC1” and the second LED circuit “LC2" at another end thereof.
  • a load “LO” is connected between the relay “RE” and the negative electrode “BN" of the battery "B".
  • the load “LO” is an ignition device of an engine of a motorcycle, for example.
  • the LED driver circuit 100 drives the first LED circuit “LC1” that has one LED element or a plurality of LED elements connected in series with each other and is connected to the positive electrode “BP" of the battery “B” at the anode side thereof, and the second LED circuit “LC2” that has one LED element or a plurality of LED elements connected in series with each other and is connected to the positive electrode "BP" of the battery “B” at the anode side thereof.
  • the LED driver circuit 100 includes the first LED terminal "TL1”, to which a cathode side of the first LED circuit “LC1” is connected, and the second LED terminal "TL2", to which a cathode side of the second LED circuit "LC2" is connected.
  • the LED driver circuit 100 includes the ground terminal "TG” that is connected to the negative electrode “BN” of the battery “B”, the battery terminal “TB” that is connected to the positive electrode “BP” of the battery “B” via the main switch "MSW”, and a voltage detecting terminal “TD” that is connected to the positive electrode “BP” of the battery “B” via the relay "RE".
  • the LED driver circuit 100 includes a first switch element “SW1” that is connected between the first LED terminal “TL1” and the ground terminal "TG”, and a second switch element “SW2" that is connected between the second LED terminal "TL2" and the ground terminal "TG”.
  • the LED driver circuit 100 includes a first voltage detecting circuit "VD1" that detects a first terminal voltage at the first LED terminal "TL1”, a second voltage detecting circuit “VD2” that detects a second terminal voltage at the second LED terminal “TL2”, and a battery voltage detecting circuit “VDB” that detects a battery voltage of the battery "B”.
  • VD1 first voltage detecting circuit
  • VD2 second voltage detecting circuit
  • VDB battery voltage detecting circuit
  • the battery voltage detecting circuit "VDB” detects the battery voltage of the battery “B” by detecting the voltage at the voltage detecting terminal "TD", for example.
  • the voltage detecting terminal "TD” is connected to the positive electrode “BP" of the battery “B” via the relay "RE". Therefore, when the relay "RE” is turned on, the battery voltage of the battery “B” is supplied to the voltage detecting terminal "TD". Therefore, the battery voltage detecting circuit "VDB" can detect the battery voltage of the battery “B” by detecting the voltage at the voltage detecting terminal "TD".
  • the LED driver circuit 100 includes the controlling part “X” that controls the first switch element “SW1” and the second switch element “SW2” in accordance with the first terminal voltage and the second terminal voltage.
  • the controlling part “X” is connected between the battery terminal "TB” and the ground terminal "TG” and operates on the electric power that is supplied from the battery "B” when the main switch "MSW” is turned on.
  • the first switch element “SW1” is a first MOS transistor “M1” that is connected between the first LED terminal “TL1” and the ground terminal “TG” and whose gate voltage is controlled by the controlling part "X”.
  • the second switch element “SW2” is a second MOS transistor “M2” that is connected between the second LED terminal “TL2” and the ground terminal “TG” and whose gate voltage is controlled by the controlling part "X”.
  • the LED driver circuit 100 includes a first reference voltage circuit "VR1” that outputs a first reference voltage controlled by the controlling part "X”, and a first detecting resistor “R1” connected between the first switch element “SW1” and the ground terminal "TG”.
  • the LED driver circuit 100 includes a first comparator "CON1” that compares the first reference voltage with a first detection voltage between the first switch element “SW1” and the first detecting resistor “R1” and outputs a first controlling signal that makes the first MOS transistor “M1" operate to make the first detection voltage and the first reference voltage equal to each other, and a first controlling resistor “Ra” connected between an output of the first comparator "CON1" and a gate of the first MOS transistor “M1".
  • the controlling part "X” controls the first reference voltage described above based on the first terminal voltage, thereby controlling the first controlling signal output from the first comparator "CON1" and supplied to the gate of the first MOS transistor "M1". In other words, the controlling part “X” controls the gate voltage of the first MOS transistor "M1" by controlling the first reference voltage.
  • the LED driver circuit 100 includes a second reference voltage circuit "VR2" that outputs a second reference voltage controlled by the controlling part "X”, and a second detecting resistor “R2" connected between the second switch element “SW2" and the ground terminal "TG”.
  • the LED driver circuit 100 includes a second comparator "CON2” that compares the second reference voltage with a second detection voltage between the second switch element “SW2” and the second detecting resistor “R2” and outputs a second controlling signal that makes the second MOS transistor “M2" operate to make the second detection voltage and the second reference voltage equal to each other, and a second controlling resistor “Rb” connected between an output of the second comparator "CON2" and a gate of the second MOS transistor "M2".
  • the controlling part "X” controls the second reference voltage described above based on the second terminal voltage, thereby controlling the second controlling signal output from the second comparator "CON2" and supplied to the gate of the second MOS transistor "M2". In other words, the controlling part “X” controls the gate voltage of the second MOS transistor "M2" by controlling the second reference voltage.
  • the controlling part "X" controls the first reference voltage to control the first switch element "SW1" with a first on-duty ratio with the first controlling signal.
  • the first on-duty ratio is an on-duty ratio of 100%, for example.
  • the controlling part "X" controls the first reference voltage to control the first switch element "SW1" with a second on-duty ratio smaller than the first on-duty ratio described above with the first controlling signal.
  • the controlling part "X" controls the second reference voltage to control the second switch element "SW2" with a third on-duty ratio with the second controlling signal.
  • the third on-duty ratio is an on-duty ratio of 100%, for example.
  • the controlling part "X" controls the second reference voltage to control the second switch element "SW2" with a fourth on-duty ratio smaller than the third on-duty ratio described above with the second controlling signal.
  • the LED driver circuit 100 requires no information on switching of the switches and therefore requires no external signal.
  • the LED driver circuit 100 requires no constant-current power supply.
  • the number of terminals, wires and the like of the LED driver circuit 100 can be reduced.
  • the LED driver circuit 100 can reduce heat generation of the MOS transistors and prevent the LED elements from suddenly going out, although the light intensity of the LED elements decreases.
  • the controlling part "X" controls the first reference voltage to lower the on-duty ratio of the first switch element "SW1".
  • the first predefined value is set to be the potential difference between the first LED terminal “TL1” and the voltage detecting terminal “TD” at the time when the first LED switch "LS1" is in the on state and any of the LED elements of the first LED circuit “LC1" is short-circuited, for example.
  • the controlling part "X" controls the second reference voltage to lower the on-duty ratio of the second switch element "SW2".
  • the second predefined value is set to be the potential difference between the second LED terminal "TL2" and the voltage detecting terminal “TD” at the time when the second LED switch "LS2" is in the on state and any of the LED elements of the second LED circuit "LC2" is short-circuited, for example.
  • the on-duty ratio of the switch element can be lowered to reduce heat generation of the switch element (the MOS transistor).
  • controlling part “X” may turn off the first switch element “SW1" when the first potential difference described above is equal to or lower than the third predefined value lower than the first predefined value.
  • controlling part "X" may turn off the second switch element "SW2" when the second potential difference described above is equal to or lower than the fourth predefined value lower than the second predefined value.
  • the switch element (the MOS transistor) can be turned off to reduce heat generation of the switch element (the MOS transistor) with higher reliability.
  • the controlling part "X” determines that a breakage has occurred in an LED element of the first LED circuit "LC1" if the first terminal voltage described above is equal to or lower than a preset first determination value.
  • the first determination value is the ground voltage (the voltage at the negative electrode "BN" of the battery "B"), for example.
  • the controlling part "X” determines that a breakage has occurred in an LED element of the second LED circuit "LC2" if the second terminal voltage described above is equal to or lower than a preset second determination value.
  • the second determination value is the ground voltage (the voltage at the negative electrode "BN" of the battery "B"), for example.
  • the controlling part "X" can detect a breakage of the LED elements based on the first terminal voltage and the second terminal voltage. That is, the LED driver circuit 100 can detect a breakage of any of the LED elements for the high beam and the low beam of the headlamp of the motorcycle, for example.
  • the controlling part "X" is made to operate (that is, activated) by an electric power supplied from the battery "B".
  • the first terminal voltage then becomes equal to the ground voltage or, in other words, becomes lower than the first upper limit value.
  • the second terminal voltage becomes equal to the ground voltage or, in other words, becomes lower than the second upper limit value.
  • the controlling part "X" controls the first reference voltage to control the first switch element "SW1" with the first on-duty ratio (an on-duty ratio of 100%, for example) with the first controlling signal.
  • the controlling part "X" controls the second reference voltage to control the second switch element "SW2" with the third on-duty ratio (an on-duty ratio of 100%, for example) with the second controlling signal.
  • the user then turns on the first LED switch "LS1", for example.
  • the first switch element "SW1" is controlled with the first on-duty ratio, a predetermined amount of current flows to the first LED circuit "LC1", and the LED elements emit light.
  • the LED driver circuit 100 requires no information on switching of the switches and therefore requires no external signal. In addition, the LED driver circuit 100 requires no constant-current power supply.
  • the first terminal voltage reaches the first upper limit value
  • the second terminal voltage reaches the second upper limit value
  • the controlling part "X" controls the first reference voltage to control the first switch element "SW1" with the second on-duty ratio smaller than the first on-duty ratio with the first controlling signal.
  • the controlling part "X" controls the second reference voltage to control the second switch element "SW2" with the fourth on-duty ratio smaller than the third on-duty ratio with the second controlling signal.
  • the LED driver circuit 100 can reduce heat generation of the switch elements (the MOS transistors) and prevent the LED elements from suddenly going out, although the light intensity of the LED elements decreases.
  • the controlling part "X" controls the first reference voltage to lower the on-duty ratio of the first switch element "SW1".
  • the controlling part "X" controls the second reference voltage to lower the on-duty ratio of the second switch element "SW2".
  • the LED driver circuit 100 includes the first switch element “SW1” that is connected between the first LED terminal “TL1” and the ground terminal "TG”, the second switch element “SW2” that is connected between the second LED terminal “TL2” and the ground terminal “TG”, the first voltage detecting circuit “VD1” that detects the first terminal voltage at the first LED terminal "TL1”, the second voltage detecting circuit “VD2” that detects the second terminal voltage at the second LED terminal “TL2”, and the controlling part “X” that controls the first switch element "SW1” and the second switch element “SW2” based on the first terminal voltage and the second terminal voltage.
  • the first LED switch capable of being turned on and off by the user is connected in series with the first LED circuit "LC1" between the positive electrode "BP" of the battery and the first LED terminal "TL1".
  • the controlling part “X” controls the first switch element “SW1” with the first on-duty ratio. If the first terminal voltage reaches the first upper limit value, the controlling part “X” controls the first switch element “SW1” with the second on-duty ratio smaller than the first on-duty ratio. If the second terminal voltage is lower than the preset second upper limit value, the controlling part “X” controls the second switch element “SW2” with the third on-duty ratio. If the second terminal voltage reaches the second upper limit value, the controlling part “X” controls the second switch element "SW2" with the fourth on-duty ratio smaller than the third on-duty ratio.
  • the LED driver circuit 100 requires no information on switching of the switches and therefore requires no external signal.
  • the LED driver circuit 100 requires no constant-current power supply.
  • the number of terminals, wires and the like of the LED driver circuit 100 can be reduced.
  • the LED driver circuit 100 can reduce heat generation of the MOS transistors and prevent the LED elements from suddenly going out, although the light intensity of the LED elements decreases.
  • the controlling part "X" lowers the on-duty ratio of the first switch element "SW1". If the second potential difference between the battery voltage and the second terminal voltage is equal to or lower than the second predefined value, the controlling part "X" lowers the on-duty ratio of the second switch element "SW2".
  • the on-duty ratio of the switch element can be lowered to reduce heat generation of the switch element (the MOS transistor).
  • the controlling part "X" determines that a breakage has occurred in an LED element of the first LED circuit "LC1". If the second terminal voltage is equal to or lower than the preset second determination value, the controlling part "X" determines that a breakage has occurred in an LED element of the second LED circuit "LC2".
  • the voltage at an LED terminal for the low beam or high beam is zero (equal to or lower than the determination value), it can be determined that a breakage has occurred in the LED element for the low beam or high beam.
  • the LED driver circuit 100 can detect a breakage of any of the LED elements for the high beam and the low beam of a headlamp of a motorcycle, for example.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Claims (9)

  1. LED-Treibersystem (1000), das eine LED-Schaltung ansteuert, umfassend:
    eine Batterie (B);
    eine erste LED-Schaltung (LC1), die ein LED-Element oder mehrere LED-Elemente aufweist, die miteinander in Reihe geschaltet sind und mit einer positiven Elektrode (BP) der Batterie (B) an einer Anodenseite derselben verbunden ist;
    eine zweite LED-Schaltung (LC2), die ein LED-Element oder mehrere LED-Elemente aufweist, die miteinander in Reihe geschaltet sind und mit der positiven Elektrode (BP) der Batterie (B) an einer Anodenseite derselben verbunden ist; und
    eine LED-Treiberschaltung (100), die die erste LED-Schaltung (LC1) und die zweite LED-Schaltung (LC2) ansteuert,
    wobei die LED-Treiberschaltung (100) umfasst:
    einen ersten LED-Anschluss (TL1), mit dem eine Kathodenseite der ersten LED-Schaltung (LC1) verbunden ist;
    einen zweiten LED-Anschluss (TL2), mit dem eine Kathodenseite der zweiten LED-Schaltung (LC2) verbunden ist;
    einen Masseanschluss (TG), der mit einer negativen Elektrode (BN) der Batterie (B) verbunden ist;
    ein erstes Schaltelement (SW1), das zwischen dem ersten LED-Anschluss (TL1) und dem Masseanschluss (TG) verbunden ist;
    ein zweites Schaltelement (SW2), das zwischen dem zweiten LED-Anschluss (TL2) und
    dem Masseanschluss (TG) verbunden ist;
    eine erste Spannungserfassungsschaltung (VD1), die eine erste Anschlussspannung an dem ersten LED-Anschluss (TL1) erfasst;
    eine zweite Spannungserfassungsschaltung (VD2), die eine zweite Anschlussspannung an dem zweiten LED-Anschluss (TL2) erfasst; und
    einen Steuerteil (X), der das erste Schaltelement (SW1) und das zweite Schaltelement (SW2) als Reaktion auf die erste Anschlussspannung und die zweite Anschlussspannung steuert,
    wobei das LED-Treibersystem (1000)
    einen ersten LED-Schalter (LS1) aufweist, der durch einen Benutzer ein- und ausgeschaltet werden kann, der mit der ersten LED-Schaltung (LS1) zwischen der positiven Elektrode (BP) der Batterie (B) und dem ersten LED-Anschluss (TL1) in Reihe geschaltet ist; und
    wobei der Steuerteil (X)
    das erste Schaltelement (SW1) mit einem ersten Einschaltverhältnis steuert, wenn die Anschlussspannung niedriger ist als ein voreingestellter erster oberer Grenzwert,
    das erste Schaltelement (SW2) mit einem zweiten Einschaltverhältnis steuert, das kleiner als das erste Einschaltverhältnis ist, wenn die erste Anschlussspannung den ersten oberen Grenzwert erreicht,
    das zweite Schaltelement (SW2) mit einem dritten Einschaltverhältnis steuert, wenn die zweite Anschlussspannung niedriger ist als ein voreingestellter zweiter oberer Grenzwert, und
    das zweite Schaltelement (SW2) mit einem vierten Einschaltverhältnis steuert, das kleiner als das dritte Einschaltverhältnis ist, wenn die zweite Anschlussspannung den zweiten oberen Grenzwert erreicht,
    dadurch gekennzeichnet, dass
    die LED-Treiberschaltung (100) ferner umfasst:
    eine Batteriespannungserfassungsschaltung (VDB), die eine Batteriespannung der Batterie (B) erfasst, und
    wobei der Steuerteil (X)
    das Einschaltverhältnis des ersten Schaltelements (SW1) senkt, wenn eine erste Potentialdifferenz zwischen der Batteriespannung und der ersten Anschlussspannung gleich oder kleiner als ein erster vorgegebener Wert ist, und
    das Einschaltverhältnis des zweiten Schaltelements (SW2) senkt, wenn eine zweite Potentialdifferenz zwischen der Batteriespannung und der zweiten Anschlussspannung gleich oder kleiner als ein zweiter vorgegebener Wert ist.
  2. LED-Treibersystem nach Anspruch 1, wobei der Steuerteil (X)
    das erste Schaltelement (SW1) ausschaltet, wenn die erste Potentialdifferenz gleich oder kleiner als ein dritter vorgegebener Wert ist, der kleiner als der erste vorgegebene Wert ist, und
    das zweite Schaltelement (SW2) ausschaltet, wenn die zweite Potentialdifferenz gleich oder kleiner als ein vierter vorgegebener Wert ist, der kleiner als der zweite vorgegebene Wert ist.
  3. LED-Treibersystem nach Anspruch 1, wobei der Steuerteil (X)
    bestimmt, dass in einem LED-Element der ersten LED-Schaltung (LC1) ein Bruch aufgetreten ist, wenn die erste Anschlussspannung gleich oder niedriger ist als ein voreingestellter erster Bestimmungswert, und
    bestimmt, dass in einem LED-Element der zweiten LED-Schaltung (LC2) ein Bruch aufgetreten ist, wenn die zweite Anschlussspannung gleich oder niedriger ist als ein voreingestellter zweiter Bestimmungswert.
  4. LED-Treibersystem nach Anspruch 3, wobei der erste Bestimmungswert und der zweite Bestimmungswert die Massespannung sind.
  5. LED-Treibersystem nach Anspruch 1, wobei das erste Einschaltverhältnis und das dritte Einschaltverhältnis ein Einschaltverhältnis von 100 % sind.
  6. LED-Treibersystem nach Anspruch 1, wobei ein zweiter LED-Schalter (LS2), der durch einen Benutzer ein- und ausgeschaltet werden kann, mit der zweiten LED-Schaltung (LC2) zwischen der positiven Elektrode (BP) der Batterie (B) und dem zweiten LED-Anschluss (TL2) in Reihe geschaltet ist.
  7. LED-Treibersystem nach Anspruch 1, wobei ein erstes Ende eines Relais (RE) mit der positiven Elektrode (BP) der Batterie (B) verbunden ist, und ein zweites Ende des Relais (RE) mit der Anodenseite der ersten LED-Schaltung (LC1) und der Anodenseite der zweiten LED-Schaltung (LC2) verbunden ist,
    eine Last (LO) zwischen dem zweiten Ende des Relais (RE) und der negativen Elektrode (BN) der Batterie (B) verbunden ist,
    die erste LED-Schaltung (LC1) und die zweite LED-Schaltung (LC2) LEDs eines Scheinwerfers eines Motorrades sind, und
    die Last (L) eine Zündvorrichtung eines Motors des Motorrades ist.
  8. LED-Treibersystem nach Anspruch 1, wobei das erste Schaltelement (SW1) ein erster MOS-Transistor (M1) ist, der zwischen dem ersten LED-Anschluss (TL1) und dem Masseanschluss (TG) angeschlossen ist und dessen Gate-Spannung durch den Steuerteil gesteuert wird,
    das zweite Schaltelement (SW2) ein zweiter MOS-Transistor ist, der zwischen dem zweiten LED-Anschluss (TL2) und dem Masseanschluss (TG) angeschlossen ist und dessen Gate-Spannung durch den Steuerteil (X) gesteuert wird,
    wobei die LED-Treiberschaltung (100) ferner umfasst:
    eine erste Referenzspannungsschaltung (VR1), die eine erste Referenzspannung ausgibt, die durch den Steuerteil (X) gesteuert wird;
    einen ersten Erfassungswiderstand (R1), der zwischen dem ersten Schaltelement (SW1) und dem Masseanschluss (TG) angeschlossen ist;
    einen ersten Komparator (CONi), der die erste Referenzspannung mit einer ersten Erfassungsspannung zwischen dem ersten Schaltelement (SW1) und dem ersten Erfassungswiderstand (R1) vergleicht und ein erstes Steuersignal ausgibt, das bewirkt, dass der erste MOS-Transistor (M1) arbeitet, um die erste Referenzspannung und die erste Erfassungsspannung einander anzugleichen;
    einen ersten Regelwiderstand (Ra), der zwischen einem Ausgang des ersten Komparators (CON1) und einem Gate des ersten MOS-Transistors (M1) verbunden ist;
    eine zweite Referenzspannungsschaltung (VR2), die eine zweite Referenzspannung ausgibt, die durch den Steuerteil (X) gesteuert wird;
    einen zweiten Erfassungswiderstand (R2), der zwischen dem zweiten Schaltelement (SW2) und dem Masseanschluss (TG) angeschlossen ist;
    einen zweiten Komparator (CON2), der die zweite Referenzspannung mit einer zweiten Erfassungsspannung zwischen dem zweiten Schaltelement (SW2) und dem zweiten Erfassungswiderstand (R2) vergleicht und ein zweites Steuersignal ausgibt, das bewirkt, dass der zweite MOS-Transistor (M2) arbeitet, um die zweite Referenzspannung und die zweite Erfassungsspannung einander anzugleichen; und
    einen zweiten Regelwiderstand (Rb), der zwischen einem Ausgang des zweiten Komparators (CON2) und einem Gate des zweiten MOS-Transistors (M2) angeschlossen ist; und
    wobei der Steuerteil (X)
    die erste Referenzspannung steuert, um zu bewirken, dass das erste Schaltelement (SW1) mit dem ersten Einschaltverhältnis mit dem ersten Steuersignal arbeitet, wenn die erste Anschlussspannung niedriger ist als der erste obere Grenzwert,
    die erste Referenzspannung steuert, um zu bewirken, dass das erste Schaltelement (SW1) mit dem zweiten Einschaltverhältnis mit dem ersten Steuersignal arbeitet, wenn die erste Anschlussspannung den ersten oberen Grenzwert erreicht,
    die zweite Referenzspannung steuert, um zu bewirken, dass das zweite Schaltelement (SW2) mit dem dritten Einschaltverhältnis mit dem zweiten Steuersignal arbeitet, wenn die zweite Anschlussspannung niedriger ist als der zweite obere Grenzwert, und
    die zweite Referenzspannung steuert, um zu bewirken, dass das zweite Schaltelement (SW2) mit dem vierten Einschaltverhältnis mit dem zweiten Steuersignal arbeitet, wenn die zweite Anschlussspannung den zweiten oberen Grenzwert erreicht.
  9. Verfahren zur Steuerung eines LED-Treibersystems (1000), wobei das LED-Treibersystem (1000) eine Batterie (B), eine erste LED-Schaltung (LC1), die ein LED-Element oder mehrere in Reihe geschaltete LED-Elemente aufweist, und mit einer positiven Elektrode (BP) der Batterie (B) an einer Anodenseite derselben verbunden ist, eine zweite LED-Schaltung (LC2), die ein LED-Element oder mehrere in Reihe geschaltete LED-Elemente aufweist und mit der positiven Elektrode (BP) der Batterie (B) an einer Anodenseite derselben verbunden ist, und eine LED-Treiberschaltung. die die erste LED-Schaltung (LC1) und die zweite LED-Schaltung (LC2) ansteuert, umfasst, und wobei die LED-Treiberschaltung einen ersten LED-Anschluss (TL1), mit dem eine Kathodenseite der ersten LED-Schaltung (LC1) verbunden ist, einen zweiten LED-Anschluss (TL2), mit dem einen Kathodenseite der zweiten LED-Schaltung (LC2) verbunden ist, einen Masseanschluss (TG), der mit einer negativen Elektrode (BN) der Batterie (B) verbunden ist, ein erstes Schaltelement (SW1), das zwischen dem ersten LED-Anschluss (TL1) und dem Masseanschluss (TG) angeschlossen ist, ein zweites Schaltelement (SW2), das zwischen dem zweiten LED-Anschluss (TL2) und dem Masseanschluss (TG) angeschlossen ist, eine erste Spannungserfassungsschaltung (VD1), die eine erste Anschlussspannung an dem ersten LED-Anschluss (TL1) erfasst, eine zweite Spannungserfassungsschaltung, die eine zweite Anschlussspannung an dem zweiten LED-Anschluss (TL2) erfasst, und einen Steuerteil (X), der das erste Schaltelement (SW1) und das zweite Schaltelement (SW2) als Reaktion auf die erste Anschlussspannung und die zweite Anschlussspannung steuert, umfasst,
    wobei das LED-Treibersystem (1000) eine ersten LED-Schalter (LS1) aufweist, der durch einen Benutzer ein- und ausgeschaltet werden kann, der mit der ersten LED-Schaltung (LC1) zwischen der positiven Elektrode (BP) der Batterie (B) und dem ersten LED-Anschluss (TL1) in Reihe geschaltet ist; und
    wobei das Verfahren mittels des Steuerteils (X):
    das erste Schaltelement (SW1) mit einem ersten Einschaltverhältnis steuert, wenn die Anschlussspannung niedriger ist als ein voreingestellter erster oberer Grenzwert,
    das erste Schaltelement (SW1) mit einem zweiten Einschaltverhältnis steuert, das kleiner als das erste Einschaltverhältnis ist, wenn die erste Anschlussspannung den ersten oberen Grenzwert erreicht,
    das zweite Schaltelement (SW2) mit einem dritten Einschaltverhältnis steuert, wenn die zweite Anschlussspannung niedriger ist als ein voreingestellter zweiter oberer Grenzwert, und
    das zweite Schaltelement (SW2) mit einem vierten Einschaltverhältnis steuert, das kleiner als das dritte Einschaltverhältnis ist, wenn die zweite Anschlussspannung den zweiten oberen Grenzwert erreicht;
    dadurch gekennzeichnet, dass die LED-Treiberschaltung (100) ferner umfasst:
    eine Batteriespannungserfassungsschaltung (VDB), die eine Batteriespannung der Batterie (B) erfasst, und
    dadurch, dass das Verfahren mittels des Steuerteils (X) Folgendes:
    das Einschaltverhältnis des ersten Schaltelements (SW1) senkt, wenn eine erste Potentialdifferenz zwischen der Batteriespannung und der ersten Anschlussspannung gleich oder kleiner als ein erster vorgegebener Wert ist, und
    das Einschaltverhältnis des zweiten Schaltelements (SW2) senkt, wenn eine zweite Potentialdifferenz zwischen der Batteriespannung und der zweiten Anschlussspannung gleich oder kleiner als ein zweiter vorgegebener Wert ist.
EP13899599.8A 2013-12-17 2013-12-17 Led-treiberschaltung und verfahren zur steuerung der led-treiberschaltung Active EP3086377B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083706 WO2015092864A1 (ja) 2013-12-17 2013-12-17 Ledドライバ回路、および、ledドライバ回路の制御方法

Publications (3)

Publication Number Publication Date
EP3086377A1 EP3086377A1 (de) 2016-10-26
EP3086377A4 EP3086377A4 (de) 2017-08-02
EP3086377B1 true EP3086377B1 (de) 2019-08-14

Family

ID=53402260

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13899599.8A Active EP3086377B1 (de) 2013-12-17 2013-12-17 Led-treiberschaltung und verfahren zur steuerung der led-treiberschaltung

Country Status (3)

Country Link
EP (1) EP3086377B1 (de)
JP (1) JP5897768B2 (de)
WO (1) WO2015092864A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518685B1 (de) * 2016-06-07 2018-05-15 Zkw Group Gmbh Kraftfahrzeug-Beleuchtungseinrichtung
US11438981B2 (en) 2017-07-04 2022-09-06 Rohm Co., Ltd. Load drive device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218457A (ja) 2007-02-28 2008-09-18 Stanley Electric Co Ltd Led車両用灯具の調光回路
JP4918929B2 (ja) * 2009-01-30 2012-04-18 日本テキサス・インスツルメンツ株式会社 発光ダイオード制御装置
JP2010277226A (ja) 2009-05-27 2010-12-09 Sharp Corp 直流安定化電源装置及びそれを備えた電子機器
DE102011003519A1 (de) * 2011-02-02 2012-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung elektrischer Leuchtelemente
JP2013021117A (ja) * 2011-07-11 2013-01-31 Rohm Co Ltd Led駆動装置、照明装置、液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3086377A4 (de) 2017-08-02
WO2015092864A1 (ja) 2015-06-25
JPWO2015092864A1 (ja) 2017-03-16
EP3086377A1 (de) 2016-10-26
JP5897768B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
US7327051B2 (en) Lighting control circuit for vehicle lamps
US9162607B2 (en) Vehicular lamp
JP4931720B2 (ja) 車両用灯具の点灯制御装置
JP6302748B2 (ja) Ledランプ、led点灯装置、及びこれらを用いたled照明システム
JP4714701B2 (ja) Led車両用灯具の点灯制御回路
US10360969B2 (en) Light emitting element driving semiconductor integrated circuit, light emitting element driving device, light emitting device, and vehicle
EP3261413B1 (de) Stromversorgungsschaltung für eine led-beleuchtung
JP2006103404A (ja) 車両用灯具の点灯制御回路
JP4698560B2 (ja) 可変負荷型点灯回路
US20120194075A1 (en) Lighting device and luminaire
JP6302706B2 (ja) 車両用灯具およびその駆動装置
US20140091853A1 (en) Switching circuit
US8324839B2 (en) Lamp control system
EP3086377B1 (de) Led-treiberschaltung und verfahren zur steuerung der led-treiberschaltung
JP2014241202A (ja) 車両用灯具におけるled点灯装置
JP2013123364A (ja) Pwm制御器
US9764682B2 (en) Systems and methods for vehicle lighting
JP6981159B2 (ja) 点灯装置、照明器具および照明システム
JP2017033892A (ja) 点灯回路、車両用灯具
WO2015092863A1 (ja) Ledドライバ回路、および、ledドライバ回路の制御方法
JP6249549B2 (ja) 車両用灯具
JP6969270B2 (ja) 点灯装置、照明器具および照明システム
JP6558062B2 (ja) Ledモジュール
US10869375B2 (en) Vehicle lighting device
JP2008283776A (ja) 電力供給装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013059339

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01L0033000000

Ipc: H05B0033080000

A4 Supplementary search report drawn up and despatched

Effective date: 20170629

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101AFI20170623BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190409

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOBAYASHI, KEISUKE

Inventor name: OKAMOTO, AKIHIRO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1168581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013059339

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013059339

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1168581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013059339

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602013059339

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 11