EP3053852A1 - Récipient sous pression comprenant un régulateur de débit - Google Patents

Récipient sous pression comprenant un régulateur de débit Download PDF

Info

Publication number
EP3053852A1
EP3053852A1 EP16154164.4A EP16154164A EP3053852A1 EP 3053852 A1 EP3053852 A1 EP 3053852A1 EP 16154164 A EP16154164 A EP 16154164A EP 3053852 A1 EP3053852 A1 EP 3053852A1
Authority
EP
European Patent Office
Prior art keywords
chamber
pressurized container
product
channel
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16154164.4A
Other languages
German (de)
English (en)
Inventor
Stephan De Backer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sen-S-Projects bvba
Original Assignee
Sen-S-Projects bvba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sen-S-Projects bvba filed Critical Sen-S-Projects bvba
Publication of EP3053852A1 publication Critical patent/EP3053852A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/44Valves specially adapted therefor; Regulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/60Contents and propellant separated
    • B65D83/64Contents and propellant separated by piston

Definitions

  • the present invention relates to a pressurized container for dispensing a product.
  • Pressurized containers are frequently used in the cosmetic industry in particular, for instance for dispensing shaving gel, shaving foam, hairspray and other products.
  • the container either has a pump mechanism such that a user can build up pressure by operating the pump in order to pump the product out of the container, or the container has a mechanism for building up and/or maintaining internal pressure which drives the product outward when the user opens a valve.
  • the present invention relates to the latter type of container. This is because tests have shown that it is considerably more comfortable for a user to operate a valve wherein the product is expelled from the container automatically than to operate a pump and thus produce the energy necessary to draw the product from the container him/herself.
  • pressurized container Such a container in which a mechanism for building up and/or maintaining internal pressure is present will be referred to hereinafter as pressurized container.
  • dispensing for instance in the part-sentence dispensing a product, must be understood as the English word dispensing.
  • US 6,070,770 describes an aerosol container under pressure with a flow regulator. In this aerosol container under pressure a gas under pressure is mixed with the product in the container. The container is provided with a valve so that the product can be dispensed. US 6,070,770 also describes that the pressure in the pressurized container drops as use of the container increases. A flow regulator is provided at the position of the valve in order to create a constant outflow.
  • the drawback of this configuration is that only an extremely limited number of products can be dispensed on the basis of this technique. This is because the product has to be able to mix with the gas at least temporarily so that it can be driven outward by the gas.
  • a further drawback is that the flow regulator has a complex form and is thereby expensive. The position of the container during dispensing of product, for instance upright position, upside down position or lying position, will further determine the concentration of the product which is expelled, particularly when the solubility of the product in the gas is not 100%. It will hereby still not be possible to obtain a constant dispensing of product from the container, despite the flow regulator.
  • FR 2 714 363 describes a pressurized container comprising a movable piston which divides the inner space of the container into two chambers.
  • a lower chamber is filled here with gas under pressure, and an upper chamber is filled with the product.
  • the bottle is provided with a valve at the position of the upper chamber. Because the piston is movable, the pressure in the lower chamber will also build up a pressure in the upper chamber, whereby the product in the upper chamber is also under pressure. Operating the valve will have the result that the product is driven outward.
  • a drawback of this pressurized container is that the pressure difference between the situation in which the upper chamber is fully filled and the situation in which the upper chamber is substantially empty is so great that a uniform dispensing of the product is impossible.
  • US 2007/0125809 provides a solution for this problem by providing three chambers in the container.
  • a lower chamber is formed by a cartridge filled with gas and having a substantially fixed form.
  • a piston Provided above the cartridge is a piston, whereby a middle chamber is created between the piston and the cartridge in the container.
  • the cartridge is provided here with a pressure reducing valve such that the middle chamber has a substantially constant pressure, irrespective of the pressure in the cartridge.
  • the upper chamber is provided with the product and with a valve for dispensing the product. Because the middle chamber has a substantially constant pressure, the piston will drive the product outward with a substantially constant force when the valve is open. A constant dispensing of product is hereby obtained.
  • a drawback of this configuration is that the pressurized container has a complex construction and is therefore expensive to manufacture.
  • the invention provides for this purpose a pressurized container for dispensing a product
  • the pressurized container has a tubular body with a movable piston which divides the space inside the tubular body into two chambers, wherein a first chamber of the two chambers is provided to be filled with the product and wherein a second chamber of the two chambers is provided to be filled with a gas under pressure
  • the pressurized container further comprises a channel extending outside from the first chamber in order to dispense the product, which channel is provided with a valve which can be operated by a user and which channel is further provided with a flow regulator.
  • a first advantage is that the product in the container does not come into contact with the gas under pressure. As a result the product will not have to dissolve in the gas, and the gas will not mix with the product.
  • Different types of product can hereby be dispensed by the container. This allows products in gas, powder, liquid or gel form, such as cosmetic products and food products, to be packaged in such pressurized containers.
  • Another advantage is that the orientation of the pressurized container has no effect on the uniformity of dispensing of the product. Concretely, this means that the pressurized container will dispense the product in the same way whether it is in upright, in lying or in upside down position. This considerably increases the convenience of use for the user.
  • a further advantage of the pressurized container according to the invention is that the flow rate at which the product is dispensed is substantially constant owing to the flow regulator provided at the position of the valve.
  • This flow regulator makes the dispensing of the product uniform, irrespective of the pressure differences which may occur in the first chamber as a result of the dispensing of the product.
  • the user hereby obtains a predictable dispensing, irrespective of the degree to which the pressurized container is filled with product.
  • the pressurized container further has a simple construction and is thereby inexpensive to produce.
  • the flow regulator is preferably provided to vary an opening of the channel inversely proportionally relative to a pressure in the first chamber.
  • the size of the opening of the channel determines the resistance encountered by the product when moving through the channel.
  • the flow regulator is preferably provided to continuously vary an opening of the channel as a function of a pressure of the first chamber. By varying the opening continuously a continuous flow regulation is obtained, and the flow rate can thus be precisely controlled during the useful life of the pressurized container.
  • the flow regulator preferably comprises a conical housing in which an elastic annular element is placed such that the channel runs through the housing and the annular element, all this such that the annular element narrows the channel when the product flows through the channel, and wherein the narrowing is dependent on the pressure difference between the first chamber and a surrounding area.
  • Constructing a flow regulator with a conical housing and an annular element is technically simple and thereby inexpensive.
  • the operation of such a preferred flow regulator can further be precisely determined by varying the degree of conicity, by determining the elasticity of the annular element and/or by choosing the ratio between dimensions of the conical housing and the annular element.
  • the operation of the flow regulator can be determined in simple manner during construction of the regulator, such a flow regulator is highly suitable for regulating the flow rate in the pressurized container according to the invention.
  • the flow regulator can be selected or constructed in simple manner on the basis of the flow properties of the product, whereby a constant dispensing of the product is obtained. Gaseous products can here be dispensed by the container, aqueous liquid products can be dispensed by the container, and viscous gel-like products can be dispensed by the pressurized container.
  • the flow regulator will be configured differently for each of these products in order to obtain a substantially uniform dispensing of the product which is comfortable for the user. This is possible in simple manner with this preferred flow regulator.
  • the valve preferably has an open position in which the channel is provided to allow passage of the product, and a closed position in which the channel is blocked in order to retain the product in the first chamber.
  • the valve is further preferably formed here as a push button mounted on a spring element, so that the push button is pushed to the closed position by the spring element and so that a user can push the push button to the open position counter to the spring element.
  • Such valves are generally known to the skilled person and can typically be mounted on a spring element as push button. Because the push button is pressed to the closed position by the spring, the pressurized container will be closed when at rest, i.e. in a situation in which it is not being operated by a user. When a user operates the push button counter to the spring element, the valve will open and the product from the pressurized container will flow out via the channel.
  • Such a configuration of a push button is generally deemed very pleasant for a user and can be operated easily and comfortably.
  • An axis of the conical housing preferably substantially coincides with an axis of the spring element. Because the channel runs through the conical housing, the channel will also run substantially along the axis of the conical housing. This means that the product can flow through the conical housing and directly through the spring element. An optimal product flow through the channel can hereby be obtained, so that an undesired blocking of the channel is prevented.
  • the technical construction of the valve and flow regulator is further very simple when the flow regulator is mounted directly below the spring element. This simplifies mounting of the flow regulator and the valve on the pressurized container. Finally, such a construction is found to be very compact, so that the valve and flow regulator take up little space in the container. The inner space of the container can hereby be used optimally.
  • the push button preferably comprises an internal channel lying at least partially in line with the spring element at the position of the spring element. Because the push button has an internal channel at the position of the spring element and lies in line therewith, the product will flow through the channel without the position of the spring affecting the product flow through the spring. This would be different were the channel formed along an outer side of the push button, whereby the product would have to flow through the spring elements in the transverse direction of the spring. When such a spring is compressed the openings between the different spring elements will become smaller, whereby the channel is narrowed and the product can no longer flow through properly. This is a problem particularly in the case of viscous products. By providing the channel internally in the push button and providing this channel in line with the spring element, the product can flow through the core of the spring element. The diameter of the core of the spring element is substantially the same here whether the spring is compressed or extended.
  • the product in the first chamber is preferably physically separated from the gas in the second chamber by the movable piston. By physically separating the gas and the product, the gas cannot contaminate the product.
  • the pressurized container according to the invention is hereby suitable for food products.
  • a further advantage is that the first chamber can be filled with product without there being gas in the first chamber. The result hereof is that the pressurized container can be used in any orientation.
  • the piston is preferably movable such that the pressure in the first chamber is substantially the same as the pressure in the second chamber.
  • the product will be automatically expelled from the container when the second chamber is under pressure. This is because, when the second chamber is under pressure, the first chamber will also come under pressure due to the movable piston, so that opening the channel automatically results in the product being driven via the channel to a position outside the container.
  • the second chamber is preferably provided with a filling opening for filling the second chamber with the gas, which filling opening can be closed by a plug.
  • This allows the first chamber of the pressurized container to be filled first, without an appreciable pressure prevailing in the second chamber.
  • the second chamber can then be filled with gas under pressure, preferably ambient air under pressure, in order to thus also place the first chamber under pressure and make the pressurized container operational.
  • the product is preferably chosen from a cosmetic product and a food product. Tests have shown that cosmetic products and food products can be dosed by a user in comfortable and simple manner when placed in a pressurized container according to the invention.
  • the construction of the pressurized container further allows cosmetic and/or food products to be contained, since the construction of the container allows an inert gas or ambient air to be used as gas under pressure, rather than a harmful propellant.
  • the gas under pressure and the product further remain separated in the pressurized container according to the invention, so that the product is not contaminated with the gas.
  • the movable piston is preferably bowl-shaped, wherein the piston comprises a bottom and an upright wall, wherein the open side of the bowl-shaped piston is directed toward the second chamber and wherein the upright wall is provided at the position of its outer side with a plurality of concentric and elastic lips which are pressed against the inner wall of the tubular body by the pressure in the second chamber so as to separate the second chamber from the first chamber.
  • a plurality of elastic lips preferably at least three elastic lips, more preferably at least four elastic lips and most preferably at least five elastic lips, bleed through the movable piston can be prevented. Bleed through the movable piston is understood here as failure of the piston to keep gas in the second chamber, i.e. failure to prevent this gas moving to the first chamber.
  • the piston is preferably manufactured from an elastic material.
  • the application of a pressure to the inner side of the piston, which is directed toward the second chamber, will have the result that the walls of the piston are pressed outward and are thus pressed against the inner side of the tubular housing. This action allows a variation in the diameter of the tubular housing to be compensated. This variation can be a result of manufacturing deviations and/or of the internal pressure in the container.
  • Figure 1 shows a pressurized container 1 according to an embodiment of the invention.
  • Pressurized container 1 has a substantially tubular body 2 which is closed at the position of an underside.
  • a bottom element 3 which closes tubular body 2 of pressurized container 1 at the position of an underside is provided at the position of the underside.
  • Pressurized container 1 can alternatively be formed such that the tubular side wall 2 and the underside of the container are formed integrally in one piece, corresponding to a PET bottle formed by means of blow moulding.
  • Tubular body 2 is provided with an opening with a flange 4 at the position of an upper side of pressurized container 1.
  • the flange preferably comprises an edge extending radially outward, such that edge 4 can be used for mounting a closing mechanism 5 for closing the opening.
  • Tubular body 2 of pressurized container 1 is preferably manufactured from a plastic material such as PET.
  • Tubular body 2 is alternatively manufactured from a metal.
  • a movable piston 6 is provided in tubular body 2.
  • Tubular body is defined here as a hollow body extending in a longitudinal direction, wherein the cross-section of the body can be square and is preferably rounded, wherein the cross-section of the body is more preferably oval and wherein the cross-section of the body is most preferably round.
  • Movable piston 6 divides the inner space of tubular body 2 into two chambers.
  • Upper chamber 7 or first chamber 7 is defined by movable piston 6, a portion of the inner side of tubular body 2 and closing mechanism 5.
  • a lower chamber 8 or second chamber 8 is defined by movable piston 6, another portion of the inner side of tubular body 2 and bottom 3 of pressurized container 1. The sum of the volume of first chamber 7 and second chamber 8 is substantially constant.
  • First chamber 7 is provided to be fully filled with the product which is dispensed by pressurized container 1.
  • Second chamber 8 is provided to be filled with a gas under pressure, for instance air under pressure.
  • Bottom 3 of pressurized container 1 preferably comprises a filling valve 9 for filling second chamber 8 with the gas under pressure.
  • a filling valve 9 allows the whole pressurized container 1 to be assembled, the first chamber 7 to be filled with the product and, as final step, the second chamber 8 to be filled with the gas under pressure, such that pressurized container 1 becomes operational. Because assembly of the pressurized container can take place without the pressurized container being under pressure, since the pressurized container can only be pressurized as final step through the addition of gas under pressure into the second chamber via filling opening 9, assembly and filling of pressurized container 1 according to the invention is simple.
  • Filling opening 9 is preferably reusable, such that pressurized container 1 is also reusable.
  • Movable piston 6 is preferably bowl-shaped, wherein movable piston 6 comprises a bottom 10 and an upright wall 13.
  • Bottom 10 of movable piston 6 preferably has a curve corresponding to the curve of tubular body 2 at the position of the upper side of pressurized container 1.
  • Bottom 10 of movable piston 6 is further preferably provided with an indentation 11 which is formed such that closing mechanism 5 can be received in indentation 11 when movable piston 6 is located at the top of pressurized container 1. Forming bottom 10 of movable piston 6 in such a way allows piston 6 to move upward in pressurized container 1 such that the volume of first chamber 7 can be reduced to a maximum of 10% of the overall volume of the pressurized container.
  • the overall volume of the pressurized container is defined here as the sum of the volume of first chamber 7 and second chamber 8.
  • the volume of first chamber 7 can preferably be reduced to a maximum of 5% of the overall volume of pressurized container 1, more preferably to a maximum of 3% of the overall volume of pressurized container 1, most preferably a maximum of 1 % of the overall volume of pressurized container 1. It will be apparent here to the skilled person that the smaller the volume of the first chamber can become when movable piston 6 is in an uppermost position, the less product remains as residue in first chamber 7, when pressurized container 1 is deemed empty by a user. It will further be apparent here that a user deems the pressurized container empty when piston 6 has reached its uppermost position, and is thus no longer able to dispense product from the container.
  • Strengthening ribs 12 can be provided in order to be able to make bottom 10 with indentation 11 of movable piston 6 sufficiently strong. These strengthening ribs 12 are preferably provided between the indentation and the curved bottom at the position of an inner side of the bowl-shaped piston.
  • the bowl-shaped movable piston 6 further comprises an upright wall 13 connected to bottom 10 of movable piston 6.
  • the upright wall of the bowl-like movable piston 6 is substantially tubular and has outer dimensions and a form substantially equal to the inner dimensions and form of tubular body 2 of pressurized container 1, such that movable piston 6 lies against the inner side of tubular body 2 and thus separates first chamber 7 from the second chamber.
  • Upright wall 13 of the bowl-shaped movable piston 6 is preferably provided at the position of its outer side with a plurality of concentric lips 14.
  • Each lip 14 is connected here to the outer side of upright wall 13, and each lip 14 extends outward at an angle relative to the axis of tubular upright wall 13 of between 10° and 80°, preferably between 20° and 60°, preferably between 30° and 50°.
  • This plurality of concentric lips 14 functions as serial barrier for the gas under pressure in second chamber 8, such that this gas cannot move to first chamber 7.
  • Bleed through piston 6 is here understood to mean a situation in which movable piston 6 is unable to separate first chamber 7 and second chamber 8 from each other, whereby air under pressure from second chamber 8 moves to first chamber 7. A good operation of pressurized container 1 can no longer be ensured in such a situation.
  • movable piston 6 as shown in figure 1 and as described above has the result that the movable piston can compensate the differences in diameter of tubular wall 2. Movable piston 6 can also operate well under high pressures. This is due to the bowl shape of movable piston 6, which has the consequence that a pressure in second chamber 8 results in a force F, shown in figure 1 , being applied to the upright wall of bowl-shaped piston 6, which force F presses upright wall 13 against the inner side of tubular wall 2. It will be apparent that the force F depends directly on the height of the pressure in second chamber 8.
  • a high pressure in second chamber 8 will hereby result in the force F with which upright wall 13 of movable piston 6 is pressed against inner wall 2 of pressurized container 1 being great, such that high pressure 8 is firmly closed off and kept separated from first chamber 7.
  • Movable piston 6 is preferably manufactured from a plastic material and with a hardness chosen such that the above-described action is realized.
  • the bowl-shaped piston is formed, and the material is chosen, such that force F results in a deformation of the movable piston which is substantially equal to or greater than the deformation of tubular wall 2 of the pressurized container when it is placed under pressure.
  • the open side of the bowl-shaped movable piston 6 is preferably directed toward second chamber 8, such that the force F of the gas under pressure in second chamber 8 presses against the inner side of the bowl shape and thus pushes open the bowl shape so as to press against the inner wall of tubular wall 2 as shown in figure 1 .
  • the movement of movable piston 6 when dispensing product from pressurized container 1 is shown in figure 1 with arrow 15.
  • FIG. 2 shows a closing element 5 with a mechanism for dispensing product, which closing mechanism 5 is provided to close pressurized container 1 at the position of edge 4.
  • Closing mechanism 5 is provided here to be fastened on flange 4 of pressurized container 1.
  • Closing element 5 preferably comprises two segments 16 and 17.
  • the two segments 16 and 17 are preferably formed adjacently of each other here, such that different types of first segment and different types of second segment can be interchanged.
  • the first segment is provided here with a valve mechanism for opening and closing a channel which extends between first chamber 7 of pressurized container 1 and an outer side of pressurized container 1, such that product from first chamber 7 can be dispensed via the channel to a position outside pressurized container 1.
  • Second segment 17 comprises a flow regulator. Because flow regulator 17 is formed adjacently of valve mechanism 16, different types of flow regulator 17 can be combined and interchanged with different types of valve mechanism 16, depending on the type of product with which first chamber 7 is filled.
  • the valve mechanism formed in first segment 16 comprises a push button 18 which is mounted on a spring 19, such that push button 18 is movable between an open position as shown in figure 3 and a closed position as shown in figure 2 .
  • Spring 19 is provided in order to press push button 18 to its closed position. The valve mechanism will thus always be closed in non-operated mode.
  • push button 18 When push button 18 is operated, i.e. push button 18 is pressed downward counter to spring 19, the valve opens. The movement of push button 18 is illustrated in figure 2 with arrow 22.
  • Valve mechanism 16 has a channel 20.
  • Channel 20 extends between first chamber 7 of pressurized container 1 and the outer side of pressurized container 1.
  • Channel 20 is formed such that channel 20 is closed off in the closed position of the push button, while the channel is open in the open position of the push button.
  • Channel 20 in push button 18 as shown in figures 2 and 3 comprises for this purpose a plurality of segments.
  • Channel 20 is preferably formed at the position of the spring by a central opening, designated in figure 2 with reference numeral 20a. Because opening 20a in push button 18 extends centrally at the position of spring 19, preferably along a longitudinal axis of the push button, the product can flow into channel 20a through the centre of spring 19, as illustrated with arrow 27. Spring 19 will hereby not form an additional resistance to the flow of the product.
  • a further segment of channel 20 is formed between a housing of the push button and the push button. This segment of the channel is illustrated in figure 2 with reference numeral 20.
  • Central opening 20a is in liquid connection with the second segment of channel 20 by means of a transverse opening in push button 18.
  • a further transverse opening 20b is preferably provided between channel 20 and the outflow channel 20c of push button 18.
  • This transverse opening 20b is positioned relative to a closing ring 21 such that in the closed position of push button 18 transverse opening 20b is closed by closing ring 21, while in the open position of push button 18 transverse opening 20b has been moved away from closing ring 21 such that closing ring 21 does not block channel 20b.
  • Channel segment 20 will thus be connected to transverse channel 20b in the open position, such that product can flow via channel segment 20, through channel segment 20b and into outflow opening 20c.
  • the size of channel 20 can be chosen by a skilled person on the basis of the type or sort of product with which first chamber 7 is filled. If this product has a high fluidity (low viscosity) an opening with a small size will suffice. If the product has a higher viscosity, for instance a gel, channel 20 will be made larger so as to be able to realize sufficient flow of product through the channel.
  • Channel 20 will in practice typically be bent at the position of the top of the push button, toward an opening located at the position of a side of the push button. A user can thus push the top of the push button, in line with spring 19, while the product is dispensed from a side of the push button. This allows comfortable use of the push button.
  • Second segment 17 is formed as flow regulator.
  • Flow regulators can operate on the basis of different principles.
  • the flow regulator for application in the pressurized container according to the invention is preferably formed as described below.
  • the flow regulator is preferably formed with a conical housing 23 and an elastic annular element 24.
  • the flow regulator is provided here to allow product to flow through the elastic annular element and the conical housing as designated in figure 2 with arrow 26.
  • Conical housing 23 can also be seen as a funnel with a diameter which decreases in the direction of the outlet of the pressurized container.
  • the annular element is placed in the conical part of the funnel and will be pressed deeper or less deep into the funnel due to its elasticity during outflow of the product, whereby the size of the opening of the funnel and elastic annular element is adjusted inversely proportionally to the pressure difference between first chamber 7 and the area surrounding pressurized container 1.
  • the size of the opening of the flow regulator is shown in figure 2 with reference numeral 25.
  • the product flow direction of the flow regulator is determined by the elastic annular element 24 and conical housing 23.
  • the product flow direction is shown in figure 2 with arrow 26.
  • This product flow direction 26 preferably lies in line with spring 19 and channel 20a extending in push button 18 at the position of the spring element.
  • the product from the first chamber can thus move via a linear movement through flow regulator 17 and through at least a lower part of push button 18.
  • Push button mechanism 16 is hereby placed in series and in line with flow regulator 17.
  • the above described flow regulator and the push button mechanism can be manufactured in simple and inexpensive manner. They can also be easily manufactured from materials which have been approved for use in the food industry and/or in the cosmetic industry.
  • the pressurized container 1 according to the invention can be used for sauces such as mayonnaise, ketchup, mustard and other sauces, as well as oils, whipped cream, liquid frying butter, syrups and so on.
  • sauces such as mayonnaise, ketchup, mustard and other sauces, as well as oils, whipped cream, liquid frying butter, syrups and so on.
  • the above stated products are only examples, and the pressurized container can also be used for other applications and in other industries.
  • Pressurized containers according to the invention can thus for instance be filled with cleaning products from the cleaning industry.
  • the skilled person will appreciate that each product has its recommended outflow speed for being used optimally by a user, and that the different products stated above have different viscosities.
  • the skilled person can optimize the pressurized container 1 according to the invention, particularly the push button and the flow regulator, on the basis of this information, which is known to the skilled person, in order to obtain the desired outflow.
  • the conicity of conical housing 23 can thus be adjusted.
  • the elastic annular element will tend to narrow the opening of the flow regulator more or less by giving conical housing 23 a steeper or less steep conicity.
  • the elasticity and the dimensions of the elastic annular element can also be optimized so as to influence the operation of the flow regulator. It will thus be apparent that when an annular element with a higher elasticity is chosen, this will increase the effect of the narrowing on the pressure difference.
  • the flow regulator is preferably provided at the position of first chamber 7 with an inward directed flange which prevents annular element 24 falling out of the flow regulator.
  • Figure 3 shows valve 16 in the open position and shows how channel 20 is connected to channel 20b such that product from first chamber 7 can flow out via channel 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
EP16154164.4A 2015-02-04 2016-02-04 Récipient sous pression comprenant un régulateur de débit Withdrawn EP3053852A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE2015/5055A BE1022701B1 (nl) 2015-02-04 2015-02-04 Drukcontainer

Publications (1)

Publication Number Publication Date
EP3053852A1 true EP3053852A1 (fr) 2016-08-10

Family

ID=53373220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16154164.4A Withdrawn EP3053852A1 (fr) 2015-02-04 2016-02-04 Récipient sous pression comprenant un régulateur de débit

Country Status (2)

Country Link
EP (1) EP3053852A1 (fr)
BE (1) BE1022701B1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000450A1 (fr) * 1980-08-06 1982-02-18 W Werding Regulateur de poussee dispose a l'interieur d'un recipient a pression
EP0518301A2 (fr) * 1991-06-13 1992-12-16 Ep Spray System S.A. Tête de pulvérisation
FR2714363A1 (fr) 1993-12-23 1995-06-30 Oreal Ensemble de distribution comprenant un récipient cylindrique comportant un piston à deux lèvres.
FR2739087A1 (fr) * 1995-09-22 1997-03-28 Oreal Dispositif de conditionnement et de distribution a debit reglable
US6070770A (en) 1998-12-29 2000-06-06 Precision Valve Japan, Limited Aerosol flow regulator
US20070125809A1 (en) 2004-01-30 2007-06-07 Intelligent Packaging Systems Group S.A. Pressure control device
CH703028A2 (de) * 2010-04-28 2011-10-31 Coca Cola Co Druckknopf-Dispenser für Flaschen mit karbonisierten Getränken.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982000450A1 (fr) * 1980-08-06 1982-02-18 W Werding Regulateur de poussee dispose a l'interieur d'un recipient a pression
EP0518301A2 (fr) * 1991-06-13 1992-12-16 Ep Spray System S.A. Tête de pulvérisation
FR2714363A1 (fr) 1993-12-23 1995-06-30 Oreal Ensemble de distribution comprenant un récipient cylindrique comportant un piston à deux lèvres.
FR2739087A1 (fr) * 1995-09-22 1997-03-28 Oreal Dispositif de conditionnement et de distribution a debit reglable
US6070770A (en) 1998-12-29 2000-06-06 Precision Valve Japan, Limited Aerosol flow regulator
US20070125809A1 (en) 2004-01-30 2007-06-07 Intelligent Packaging Systems Group S.A. Pressure control device
CH703028A2 (de) * 2010-04-28 2011-10-31 Coca Cola Co Druckknopf-Dispenser für Flaschen mit karbonisierten Getränken.

Also Published As

Publication number Publication date
BE1022701A1 (nl) 2016-08-16
BE1022701B1 (nl) 2016-08-16

Similar Documents

Publication Publication Date Title
KR930004461Y1 (ko) 유체 및 유동물질 저장 분배용 통
WO2012171708A1 (fr) Bouchon doseur
EP1448459B1 (fr) Assemblage de valve d'aerosol
US6021924A (en) Manually controlled metering pump for bottles with deformable sheaths
EP3774076A1 (fr) Pompe entièrement en plastique résistante à l'eau
AU2014289073B2 (en) Dispenser with a reservoir comprising a divider or a porous material
NO152644B (no) Utleveringsinnretning for pastaformede produkter
JPH03502193A (ja) 一回分づつに分けるキヤツプ
EP3015020A1 (fr) Réceptacle pour produit cosmétique à extrusion
US6729505B2 (en) Dispensing pump
CN105377718A (zh) 泡沫分配器
JP6318311B1 (ja) 流動性物質吐出システムのための作動システム
US20060231577A1 (en) Viscous liquid dispensing pump
EP3314219B1 (fr) Distributeurs de doses mesurées
US9730538B2 (en) Surface tension condiment dispenser
CN113348038B (zh) 测定剂量的分配器及其使用方法
EP3053852A1 (fr) Récipient sous pression comprenant un régulateur de débit
US20160311586A1 (en) Device for dispensing fluids suited to be applied to containers and related dispensing system
KR20210021346A (ko) 다양한 유형의 플렉시블 포장을 위한 도포기 팁용 공기 흡기가 없는 디스펜서 장치
WO2022127908A1 (fr) Ensemble récipient et système de stockage et de distribution le comprenant
KR20190017937A (ko) 유체 제품을 분배하기 위한 장치
US20180297771A1 (en) Hold-open for container-in-container dispenser
EP4377019A1 (fr) Distributeur à pompe sans air entièrement en plastique
EP3535200A1 (fr) Vanne
WO2008110839A2 (fr) Distributeur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170209

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180901