EP3013992B1 - Method for producing a steel shaped body - Google Patents

Method for producing a steel shaped body Download PDF

Info

Publication number
EP3013992B1
EP3013992B1 EP14734065.7A EP14734065A EP3013992B1 EP 3013992 B1 EP3013992 B1 EP 3013992B1 EP 14734065 A EP14734065 A EP 14734065A EP 3013992 B1 EP3013992 B1 EP 3013992B1
Authority
EP
European Patent Office
Prior art keywords
oxide
content
carbon
addition
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14734065.7A
Other languages
German (de)
French (fr)
Other versions
EP3013992A1 (en
Inventor
Heike Langner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3013992A1 publication Critical patent/EP3013992A1/en
Application granted granted Critical
Publication of EP3013992B1 publication Critical patent/EP3013992B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • B22F2302/105Silicium carbide (SiC)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/253Aluminum oxide (Al2O3)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention is based on a method for producing a shaped steel body, in particular a component, for example for common rail injection valves.
  • Steel blanks can be produced by means of melt metallurgical processes.
  • the starting material is melted in the steelworks from pig iron on the so-called. LD route or scrap from the so-called electric furnace route and set the desired composition in the molten state.
  • such a steel blank is cast continuously in continuous casting plants to form a material, which is then rolled in the rolling mill by thermomechanical rolling with or without subsequent successful heat treatment to a bar steel, which then serves as a starting material for the machining production of corresponding components.
  • a method for producing metal bodies is known.
  • This metal compound particles are mixed with a binder and pressed into moldings. Thereafter, the binder is removed and the metal compound is reduced to metal by gasifying at higher temperatures, the reduction being conducted at temperatures below the sintered temperature of the reduced metal compound and using a binder mixture of a removable and a stable component followed by the removable component is removed; Subsequently, the shaped body in an oxidizing atmosphere at a temperature of between 550 ° C and 950 ° C is applied and thereby the stable binder content is converted into gaseous degradation products and removed from the matrix, whereupon the molding is prereduced in a carbon-containing atmosphere and subsequently reduced in volume with hydrogen-containing gas.
  • this prior art is not explicitly directed to the production of bainitic steel moldings with intrinsically pronounced strength.
  • the method having the features of claim 1 has the advantage that a bainitic phase during a.
  • a predetermined powdered starting composition for the steel body which of iron oxide, for example (Fe 3 O 2 ), and the admixture of oxide particles and micro-alloying elements the subsequent process steps is adjustable.
  • a process close to the final dimension for producing a powder-metallurgical steel molding is achieved, which has material properties which correspond to those of a conventionally produced high-strength steel.
  • the steel molded body produced according to the method of the invention is further distinguished by the fact that it is so conversion-resistant due to its chemical composition that forms a bainitic structure with advantageous mechanical properties even when cooled in air.
  • the inventive method is suitable for the production of naturally highly stressed component components in particular for common-rail injection valves, but also for the production of other cyclically highly stressed components.
  • the post-processing effort for example by machining, can be reduced in a cost-reducing manner compared to the state of the art because of the method close to the final dimensions.
  • the added micro-alloying elements comprise aluminum with a content of 0.01 to 0.04% and / or boron with a content of ⁇ 0.0025% and / or vanadium with a content of 0.05 to 0.20%.
  • the oxide particles of the pulverulent composition as elemental constituents comprise manganese with a content of 0.8 to 1.9%, silicon with a content of 0.2 to 1.5%, chromium with a content of 0.1 to 1.2%, nickel with a content of 0.2 to 1.5% and molybdenum with a content of 0.1 to 0.5% and form together with the iron oxide base, the basic composition of the starting material, whereby a bainitic structure can be achieved during the subsequent process steps.
  • a chromium content of up to 1.8% can be selected.
  • a variant of the method according to the invention may consist in that the addition of carbon takes place by means of a process gas, preferably by carbon monoxide.
  • the addition of carbon can be carried out by admixing graphite and / or carbides.
  • the addition of carbon can take place by means of a hydrocarbon-containing binder, in which case a process step subsequent to sintering for debinding the shaped body is looped into the process according to the invention.
  • composition based on iron oxide carbide-forming elements are admixed, wherein the carbide-forming elements titanium at a level of about 0.01 to 0.03% and / or niobium having a content of about 0.01 to 0.04%.
  • very fine-grained oxide ceramic particles are added to the pulverulent composition, wherein the oxide ceramic particles are formed from one or more of the group zirconium oxide, silicon oxide, aluminum oxide, yttrium oxide, silicon nitride, silicon carbide.
  • the static strength of the formed at the end of the inventive molding can be increased.
  • Fig. 1 illustrates the principle of operation of the method according to the invention with reference to a schematically held state diagram 10.
  • On the ordinate axis of the temperature profile for the essential states of steel is plotted against the extending on the abscissa axis cooling time.
  • the ferrite-pearlite state region 11 is shown, in the middle temperature range the bainite state region 12 and in the lower temperature region the martensite state region 13 is shown.
  • the mechanism of action according to the invention consists of forming a pulverulent composition starting from an iron oxide base, for example Fe 3 O 2 , by adding metal oxides such as nickel oxide or molybdenum oxide and metal powder such as chromium, during which the phase transition from austenite to ferrite Perlite state region 11 is suppressed or shifted at least for so long cooling times that preferably bainite forms even at slow cooling rates of the sintering temperature to room temperature.
  • alloying elements such as chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni), and in addition of micro-alloying elements such as titanium (Ti), vanadium (V) and / or boron (B) of Bainite state region 12 widened both on the temperature axis T and on the time axis t, wherein the ferrite-pearlite state region 11 due to this addition of alloying elements in the state diagram 10 to the right, ie shifted to longer cooling times t and the martensite state area 13th in the state diagram 10 down, that is shifted to lower temperatures.
  • alloying elements such as chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni)
  • micro-alloying elements such as titanium (Ti), vanadium (V) and / or boron (B) of Bainite state region 12 widened both on the temperature axis T and on the time axis t, where
  • Umwandlungsträgen material that is no longer martensitic, but bainitic.
  • the basic composition required for this starting from an iron oxide base, has a manganese content of 0.8 to 1.9%, a silicon content of 0.2 to 1.5%, a chromium content of 0.1 to 1.2%, a nickel content of 0.2 to 1.5%, and a molybdenum content of 0.1 to 0.5% ,
  • the metal powders may be used as master alloys such as e.g. Ferromanganese or ferrotitanium are added.
  • Fig. 2 shows a first embodiment of the invention.
  • This is a bainitic structure 100, which is formed from bainite grains 101 and small amounts of ferrite / pearlite grains 102 and has small, finest precipitates 103 at the grain boundaries.
  • the microstructure 100 is very fine-grained, wherein the bainite grains 101 have a bainite needle length that is significantly smaller than 20 microns. Further, the bainitic structure 100 has a high static strength Rm, which is in the range of about 1000 to 1150 MPa.
  • micro-alloying elements aluminum with a content of 0.01 to 0.04%, boron with a content of ⁇ 0.0025% and vanadium with a content of 0.05 to 0.20% are additionally added to the basic composition, wherein the addition by only one selected element from this group or can be effected by a mixture of the individual elements.
  • carbon with final contents of 0.15 to 0.3%.
  • the introduction of the carbon can be carried out either via the process gas, for example carbon monoxide (CO), or via the addition of graphite, by mixing the basic composition with graphite.
  • CO carbon monoxide
  • Another possibility is to admix reducible carbides, eg SiC, which dissolve during the sintering process so that free carbon is left over which can then react with the oxide powder.
  • the carbon entry can take place via a binder which is required for producing a sprayed mass and which is formed from a resin, ie a hydrocarbon compound.
  • Fig. 3 shows a second embodiment of the invention.
  • This is a Vollbainiticians structure 200 of bainite grains 201 containing nanocarbides 202, ie finest carbide and Kohlenstoffitridausscheidungen in the nanometer range.
  • the structure 200 has a static strength Rm that varies from about 1100 to 1600 MPa.
  • Rm static strength
  • an additional increase in strength is achieved in that an addition of carbide-forming elements occurs which hampers possible dislocation movements in the metal grid and thus increases the strength by forming very fine carbide precipitations whose size is in the range of a few nanometers to influence the toughness negatively.
  • the carbide-forming elements are titanium with a content of 0.01% and / or niobium with a content of 0.01 to 0.04%, which are admixed to the oxide powder mixture according to embodiment 1 either simultaneously together or alone depending on the desired target strength.
  • the formation of carbides requires the supply of carbon and / or nitrogen.
  • the supply of carbon at a higher concentration, so that in the metal lattice, a carbon excess is set, which leads to a lattice strain and correlated therewith precipitation in the form of carbides as a second phase.
  • the introduction of carbon can take place either as a process gas, by adding graphite or by means of a binder.
  • the - additional - introduction of nitrogen with final contents of 0.01 to 0.03% can be carried out as a process gas, for example N 2 or NH 3 , during sintering, since even nitrogen can form a second phase in the metal lattice.
  • Fig. 4 shows a third embodiment of the invention.
  • This is a microstructure 300 of very fine-grained bainite 301, carbide or carbonitride precipitates 302 and oxide ceramic particles 303.
  • this embodiment additionally involves the addition of very fine-grained oxide ceramic particles with a size in the submicrometer range.
  • the oxide ceramic particles are zirconium oxide (ZrO 2 ), silicon dioxide (SiO 2 ).
  • the method according to the invention for producing a steel molding or blank comprises the method steps of forming an iron oxide-based powdery composition of oxide particles and binder, with the addition of carbon and of micro-alloying elements to set a bainitic structure, of the pressing a blank, heating the blank to an isothermal holding step between 450 ° C and 600 ° C for debindering to remove a hydrocarbonaceous binder, heating to sintering temperature to reduce the molded article obtained by pressing, and cooling the sintered formed article to room temperature; wherein a predefined cooling or temperature gradient is set for cooling.
  • the bainitic state phase is preferably formed in a middle temperature region by the ferrite-pearlite state region 11 to longer cooling times and the martensite state area 13 are shifted to lower temperatures.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Verfahren zur Herstellung eines Stahlformkörpers, insbesondere eines Bauteils beispielsweise für Common-Rail-Einspritzventile.The invention is based on a method for producing a shaped steel body, in particular a component, for example for common rail injection valves.

Stahl-Rohlinge sind mittels schmelzmetallurgischer Verfahren herstellbar. Dabei wird das Ausgangsmaterial im Stahlwerk aus Roheisen über die sog. LD-Route oder aus Schrott über die sog. Elektroofenroute erschmolzen und die gewünschte Zusammensetzung im schmelzflüssigen Zustand eingestellt. Anschließend wird ein derartiger Stahl-Rohling in Stranggussanlagen kontinuierlich zu Vormaterial vergossen, das danach im Walzwerk durch thermomechanisches Walzen mit oder ohne anschließend gezielt erfolgender Wärmebehandlung zu einem Stabstahl ausgewalzt wird, der dann als Ausgangsmaterial für die spanende Fertigung entsprechender Bauteile dient.Steel blanks can be produced by means of melt metallurgical processes. Here, the starting material is melted in the steelworks from pig iron on the so-called. LD route or scrap from the so-called electric furnace route and set the desired composition in the molten state. Subsequently, such a steel blank is cast continuously in continuous casting plants to form a material, which is then rolled in the rolling mill by thermomechanical rolling with or without subsequent successful heat treatment to a bar steel, which then serves as a starting material for the machining production of corresponding components.

Endabmessungsnahe Fertigungsprozesse, mit denen metallische Bauteile herstellbar sind, sind als pulvermetallurgische Herstellungsverfahren bekannt. Dabei handelt es sich um das Pressen und darauf folgende Sintern von metallischen Pulvern oder auch um das sog. heißisostatische Pressen. Eine Sonderform stellt das sog. Metallpulverspritzgießen MIM ("Metal Injection Molding") dar. Dabei dienen als Ausgangsbasis metallische Pulver, welche entsprechend der gewünschten Zielzusammensetzung vorlegiert sind.Endabmaßungsnahe manufacturing processes with which metallic components can be produced, are known as powder metallurgical manufacturing process. These are the pressing and subsequent sintering of metallic powders or the so-called hot isostatic pressing. A special form is the so-called. Metal powder injection molding MIM ("Metal Injection Molding"). Here are the starting basis of metallic powders, which are pre-alloyed according to the desired target composition.

Aus der EP 1 268 105 B1 ist ein Verfahren zur Herstellung von Metallkörpern bekannt. Dabei werden Metallverbindungspartikel mit einem Binder vermischt und zu Formteilen verpresst. Danach wird der Binder entfernt und die Metallverbindung durch Begasen mit reduzierendem Gas bei höheren Temperaturen zu Metall reduziert, wobei die Reduktion bei Temperaturen unterhalb der Sintertemperatur der reduzierten Metallverbindung durchgeführt wird und eine Bindermischung aus einer entfernbaren und einer stabilen Komponente verwendet wird, worauf die entfernbare Komponente herausgelöst wird; anschließend wird der Formkörper in oxidierender Atmosphäre mit einer Temperatur von zwischen 550°C und 950°C beaufschlagt und dadurch der stabile Binderanteil in gasförmige Abbauprodukte überführt und aus der Matrix entfernt, worauf der Formkörper in kohlenstoffhaltiger Atmosphäre vorreduziert und anschließend mit wasserstoffhaltigem Gas nachreduziert wird. Dieser Stand der Technik richtet sich jedoch nicht explizit auf die Herstellung bainitisch ausgebildeter Stahlformkörper mit intrinsisch ausgeprägter Festigkeit.From the EP 1 268 105 B1 For example, a method for producing metal bodies is known. This metal compound particles are mixed with a binder and pressed into moldings. Thereafter, the binder is removed and the metal compound is reduced to metal by gasifying at higher temperatures, the reduction being conducted at temperatures below the sintered temperature of the reduced metal compound and using a binder mixture of a removable and a stable component followed by the removable component is removed; Subsequently, the shaped body in an oxidizing atmosphere at a temperature of between 550 ° C and 950 ° C is applied and thereby the stable binder content is converted into gaseous degradation products and removed from the matrix, whereupon the molding is prereduced in a carbon-containing atmosphere and subsequently reduced in volume with hydrogen-containing gas. However, this prior art is not explicitly directed to the production of bainitic steel moldings with intrinsically pronounced strength.

Vorteile der ErfindungAdvantages of the invention

Das Verfahren mit den Merkmalen des Patentanspruchs 1 hat den Vorteil, dass durch eine vorbestimmte pulverförmige Ausgangszusammensetzung für den Stahl-Formkörper, welche von Eisenoxid, beispielsweise (Fe3O2), und der Zumischung von Oxidpartikeln und Mikrolegierungselementen ausgeht, bevorzugt eine bainitische Phase während der nachfolgenden Prozessschritte einstellbar ist. Dadurch wird mittels Pulverspritzgießen ein endabmessungsnahes Verfahren zum Herstellen eines pulvermetallurgischen Stahl-Formkörpers erzielt, welcher Materialeigenschaften aufweist, die jenen eines herkömmlich produzierten hochfesten Stahls entsprechen. Der gemäß dem erfindungsgemäßen Verfahren erzeugte Stahl-Formkörper zeichnet sich ferner dadurch aus, dass er aufgrund seiner chemischen Zusammensetzung so umwandlungsträge ist, dass sich auch bei Abkühlung an Luft ein bainitisches Gefüge mit vorteilhaften mechanischen Eigenschaften ausbildet. Damit korrespondieren eine relativ hohe mechanische bzw. statische Festigkeit im Bereich von etwa 1100 bis 1600 MPa und eine damit einhergehende hohe Duktilität, die sich durch Gleichmaßdehnungen zwischen 10% und 15% manifestiert. Aufgrund dieser Materialeigenschaften eignet sich das erfindungsgemäße Verfahren für die Fertigung von naturgemäß hochbeanspruchten Bauteilkomponenten insbesondere für Common-Rail-Einspritzventile, jedoch auch für die Fertigung von anderen zyklisch hochbeanspruchten Bauteilen. Vorteilhaft ist ferner der Nachbearbeitungsaufwand, beispielsweise durch Spanen, wegen des endabmessungsnahen Verfahrens gegenüber dem Stand der Technik kostensenkend reduzierbar.The method having the features of claim 1 has the advantage that a bainitic phase during a. By a predetermined powdered starting composition for the steel body, which of iron oxide, for example (Fe 3 O 2 ), and the admixture of oxide particles and micro-alloying elements the subsequent process steps is adjustable. As a result, by means of powder injection molding, a process close to the final dimension for producing a powder-metallurgical steel molding is achieved, which has material properties which correspond to those of a conventionally produced high-strength steel. The steel molded body produced according to the method of the invention is further distinguished by the fact that it is so conversion-resistant due to its chemical composition that forms a bainitic structure with advantageous mechanical properties even when cooled in air. This corresponds to a relatively high mechanical or static strength in the range of about 1100 to 1600 MPa and a concomitant high ductility, which manifests itself by Gleichmaßdehnungen between 10% and 15%. Because of these material properties, the inventive method is suitable for the production of naturally highly stressed component components in particular for common-rail injection valves, but also for the production of other cyclically highly stressed components. Advantageously, the post-processing effort, for example by machining, can be reduced in a cost-reducing manner compared to the state of the art because of the method close to the final dimensions.

Weitere vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich durch die in den Unteransprüchen aufgeführten Maßnahmen.Further advantageous developments and refinements of the invention will become apparent from the measures listed in the dependent claims.

Die hinzugefügten Mikrolegierungselemente weisen Aluminium mit einem Gehalt von 0.01 bis 0.04 % und/oder Bor mit einem Gehalt von ≤0.0025% und/oder Vanadium mit einem Gehalt von 0.05 bis 0.20 % auf.The added micro-alloying elements comprise aluminum with a content of 0.01 to 0.04% and / or boron with a content of ≤0.0025% and / or vanadium with a content of 0.05 to 0.20%.

Erfindungsgemäß weisen die Oxidpartikel der pulverförmigen Zusammensetzung als Elementbestandteile Mangan mit einem Gehalt von 0.8 bis 1.9 %, Silizium mit einem Gehalt von 0.2 bis 1.5 %, Chrom mit einem Gehalt von 0.1 bis 1.2 %, Nickel mit einem Gehalt von 0.2 bis 1.5 % und Molybdän mit einem Gehalt von 0.1 bis 0.5 % auf und bilden zusammen mit der Eisenoxidbasis die Grundzusammensetzung des Ausgangsmaterials, wodurch sich ein bainitisches Gefüge während der anschließenden Prozessschritte erzielen läßt. Nach einer nicht erfindungsgemäßen Ausgestaltung des Verfahrens kann ein Chromgehalt von bis zu 1,8% gewählt werden.According to the invention, the oxide particles of the pulverulent composition as elemental constituents comprise manganese with a content of 0.8 to 1.9%, silicon with a content of 0.2 to 1.5%, chromium with a content of 0.1 to 1.2%, nickel with a content of 0.2 to 1.5% and molybdenum with a content of 0.1 to 0.5% and form together with the iron oxide base, the basic composition of the starting material, whereby a bainitic structure can be achieved during the subsequent process steps. According to a non-inventive embodiment of the method, a chromium content of up to 1.8% can be selected.

Eine Variante des erfindungsgemäßen Verfahrens kann darin bestehen, dass die Zugabe von Kohlenstoff mittels eines Prozessgases, vorzugsweise durch Kohlenmonoxid erfolgt. Gemäß einer anderen Variante kann die Zugabe von Kohlenstoff durch Zumischen von Graphit und/oder Karbiden erfolgen. Nach einer Abwandlung des erfindungsgemäßen Verfahrens kann die Zugabe von Kohlenstoff mittels eines kohlenwasserstoffhaltigen Binders erfolgen, wobei in diesem Fall ein nach dem Sintern folgender Prozessschritt zum Entbindern des Formkörpers in das erfindungsgemäße Verfahren eingeschleift wird.A variant of the method according to the invention may consist in that the addition of carbon takes place by means of a process gas, preferably by carbon monoxide. According to another variant, the addition of carbon can be carried out by admixing graphite and / or carbides. According to a modification of the method according to the invention, the addition of carbon can take place by means of a hydrocarbon-containing binder, in which case a process step subsequent to sintering for debinding the shaped body is looped into the process according to the invention.

Eine vorteilhafte Weiterbildung des erfindungsgemäßen Verfahrens, welche zu einer Steigerung der intrinsischen Festigkeit des Formkörpers führt, besteht darin, dass der auf Eisenoxid aufbauenden Zusammensetzung karbidbildende Elemente zugemischt werden, wobei die karbidbildenden Elemente Titan mit einem Gehalt von etwa 0.01 bis 0.03 % und/oder Niob mit einem Gehalt von etwa 0.01 bis 0.04 % aufweisen.An advantageous development of the method according to the invention, which leads to an increase in the intrinsic strength of the shaped body, is that the composition based on iron oxide carbide-forming elements are admixed, wherein the carbide-forming elements titanium at a level of about 0.01 to 0.03% and / or niobium having a content of about 0.01 to 0.04%.

Nach einer Ausführungsvariante des erfindungsgemäßen Verfahrens werden feinstkörnige Oxidkeramikpartikel der pulverförmigen Zusammensetzung zugemischt, wobei die Oxidkeramikpartikel aus einem oder mehreren der Gruppe Zirkonoxid, Siliziumoxid, Aluminiumoxid, Yttriumoxid, Siliziumnitrid, Siliziumkarbid gebildet werden. Dadurch lässt sich die statische Festigkeit des am Ende des erfindungsgemäßen Verfahrens ausgebildeten Formkörpers erhöhen.According to one embodiment of the method according to the invention, very fine-grained oxide ceramic particles are added to the pulverulent composition, wherein the oxide ceramic particles are formed from one or more of the group zirconium oxide, silicon oxide, aluminum oxide, yttrium oxide, silicon nitride, silicon carbide. As a result, the static strength of the formed at the end of the inventive molding can be increased.

Zeichnungendrawings

Ausführungsbeispiele der Erfindung sind in der nachfolgenden Beschreibung und in den beigefügten Zeichnungen näher erläutert. Letztere zeigen in schematisch gehaltenen Ansichten:

  • Fig. 1 ein Diagramm zur Darstellung des Wirkmechanismus des erfindungsgemäßen Verfahrens, wobei der Temperaturverlauf verschiedener Zustandsbereiche gegenüber dem zeitlichen Abkühlverhalten dargestellt ist,
  • Fig. 2 ein nach dem erfindungsgemäßen Verfahren hergestelltes Gefüge aus feinstkörnigem Bainit mit geringen Volumenanteilen aus Ferrit und Perlit in stark schematischer Ansicht,
  • Fig. 3 ein nach dem erfindungsgemäßen Verfahren hergestelltes Gefüge aus feinstkörnigem Bainit und feinstausgeschiedenen Karbiden in stark schematischer Ansicht, und
  • Fig. 4 ein nach dem erfindungsgemäßen Verfahren hergestelltes Gefüge aus feinstkörnigem Bainit und Nichtmetalloxidpartikeln sowie feinstkörnigen Karbiden in stark schematischer Ansicht.
Embodiments of the invention are explained in more detail in the following description and in the accompanying drawings. The latter show in schematic views:
  • Fig. 1 1 is a diagram for illustrating the mechanism of action of the method according to the invention, the temperature profile of different state regions being shown with respect to the temporal cooling behavior,
  • Fig. 2 a microstructure of finest-grained bainite with small volume fractions of ferrite and perlite produced in accordance with the method of the invention in a highly schematic view,
  • Fig. 3 a microstructure produced by the process according to the invention of very fine-grained bainite and finely divided carbides in a highly schematic view, and
  • Fig. 4 a microstructure produced by the novel process of very fine-grained bainite and non-metal oxide particles and fine-grained carbides in a highly schematic view.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Fig. 1 veranschaulicht das Wirkungsprinzip des erfindungsgemäßen Verfahrens anhand eines schematisch gehaltenen Zustandsdiagramms 10. Auf dessen Ordinatenachse ist der Temperaturverlauf für die wesentlichen Zustandsbereiche von Stahl gegenüber der auf der Abszissenachse verlaufenden Abkühlzeit aufgetragen. Im oberen Temperaturbereich des Zustandsdiagramms 10 ist der Ferrit-Perlit-Zustandsbereich 11, im mittleren Temperaturbereich der Bainit-Zustandsbereich 12 und im unteren Temperaturbereich ist der Martensit-Zustandsbereich 13 dargestellt. Der Wirkungsmechanismus gemäß der Erfindung besteht nun darin, ausgehend von einer Eisenoxidbasis, beispielsweise Fe3O2, durch Zugabe von Metalloxiden wie Nickeloxid oder Molybdänoxid sowie von Metallpulver wie Chrom eine pulverförmige Zusammensetzung zu bilden, bei der beim Sintern die Phasenumwandlung von Austenit zum Ferrit-Perlit-Zustandsbereich 11 unterdrückt oder zumindest zu so langen Abkühlzeiten verschoben wird, dass sich bevorzugt Bainit auch bei langsamen Abkühlgeschwindigkeiten von der Sintertemperatur auf Raumtemperatur ausbildet. Dazu wird durch die Zugabe von Legierungselementen wie Chrom (Cr), Mangan (Mn), Molybdän (Mo), Nickel (Ni), und zusätzlich von Mikrolegierungselementen wie Titan (Ti), Vanadium (V) und/oder Bor (B) der Bainit-Zustandsbereich 12 sowohl auf der Temperaturachse T als auch auf der Zeitachse t verbreitert, wobei der Ferrit-Perlit-Zustandsbereich 11 aufgrund dieser Zugabe von Legierungselementen im Zustandsdiagramm 10 nach rechts, d.h. zu längeren Abkühlzeiten t hin verschoben wird und der Martensit-Zustandsbereich 13 im Zustandsdiagramm 10 nach unten, d.h. zu tieferen Temperaturen verschoben wird. Dadurch ist es erfindungsgemäß möglich, einen sog. umwandlungsträgen Werkstoff zu erzeugen, der nicht mehr martensitisch, sondern bainitisch ausgebildet ist. Zusätzlich bilden erfindungsgemäß die Mikrolegierungselemente und Aluminium zusammen mit Kohlenstoff und/oder Stickstoff feinste Ausscheidungen, welche das Kornwachstum während des Sinterns behindern und so zu einer feinstkörnigen Struktur führen. Fig. 1 illustrates the principle of operation of the method according to the invention with reference to a schematically held state diagram 10. On the ordinate axis of the temperature profile for the essential states of steel is plotted against the extending on the abscissa axis cooling time. In the upper temperature range of the state diagram 10, the ferrite-pearlite state region 11 is shown, in the middle temperature range the bainite state region 12 and in the lower temperature region the martensite state region 13 is shown. The mechanism of action according to the invention consists of forming a pulverulent composition starting from an iron oxide base, for example Fe 3 O 2 , by adding metal oxides such as nickel oxide or molybdenum oxide and metal powder such as chromium, during which the phase transition from austenite to ferrite Perlite state region 11 is suppressed or shifted at least for so long cooling times that preferably bainite forms even at slow cooling rates of the sintering temperature to room temperature. This is done by the addition of alloying elements such as chromium (Cr), manganese (Mn), molybdenum (Mo), nickel (Ni), and in addition of micro-alloying elements such as titanium (Ti), vanadium (V) and / or boron (B) of Bainite state region 12 widened both on the temperature axis T and on the time axis t, wherein the ferrite-pearlite state region 11 due to this addition of alloying elements in the state diagram 10 to the right, ie shifted to longer cooling times t and the martensite state area 13th in the state diagram 10 down, that is shifted to lower temperatures. This makes it according to the invention possible to produce a so-called. Umwandlungsträgen material that is no longer martensitic, but bainitic. In addition, according to the invention, the micro-alloying elements and aluminum, together with carbon and / or nitrogen, form the finest precipitates which impede grain growth during sintering and thus lead to a very fine-grained structure.

Die dazu erforderliche Grundzusammensetzung weist ausgehend von einer Eisenoxidbasis einen Mangangehalt von 0.8 bis 1.9 %, einen Siliziumgehalt von 0.2 bis 1.5 %, einen Chromgehalt von 0.1 bis 1.2 %, einen Nickelgehalt von 0.2 bis 1.5 %, und einen Molybdängehalt von 0.1 bis 0.5 % auf.The basic composition required for this, starting from an iron oxide base, has a manganese content of 0.8 to 1.9%, a silicon content of 0.2 to 1.5%, a chromium content of 0.1 to 1.2%, a nickel content of 0.2 to 1.5%, and a molybdenum content of 0.1 to 0.5% ,

Die Metallpulver können als Vorlegierungen wie z.B. Ferromangan oder Ferrotitan zugemischt werden.The metal powders may be used as master alloys such as e.g. Ferromanganese or ferrotitanium are added.

Fig. 2 zeigt ein erstes Ausführungsbeispiel der Erfindung. Dabei handelt es sich um ein bainitisches Gefüge 100, welches aus Bainit-Körnern 101 und zu geringen Anteilen aus Ferrit/Perlit-Körnern 102 gebildet ist und kleine, feinste Ausscheidungen 103 an den Korngrenzen aufweist. Das Gefüge 100 ist sehr feinstkörnig ausgebildet, wobei die Bainit-Körner 101 eine Bainitnadellänge aufweisen, die deutlich kleiner als 20 µm ist. Ferner weist das bainitische Gefüge 100 eine hohe statische Festigkeit Rm auf, die im Bereich von etwa 1000 bis 1150 MPa liegt. Dazu werden der Grundzusammensetzung zusätzlich noch die Mikrolegierungselemente Aluminium mit einem Gehalt von 0.01 bis 0.04 %, Bor mit einem Gehalt von ≤0.0025% und Vanadium mit einem Gehalt von 0.05 bis 0.20 % zugegeben, wobei die Zugabe durch lediglich ein ausgewähltes Element aus dieser Gruppe oder durch eine Mischung der einzelnen Elemente bewirkt werden kann. Fig. 2 shows a first embodiment of the invention. This is a bainitic structure 100, which is formed from bainite grains 101 and small amounts of ferrite / pearlite grains 102 and has small, finest precipitates 103 at the grain boundaries. The microstructure 100 is very fine-grained, wherein the bainite grains 101 have a bainite needle length that is significantly smaller than 20 microns. Further, the bainitic structure 100 has a high static strength Rm, which is in the range of about 1000 to 1150 MPa. In addition, the micro-alloying elements aluminum with a content of 0.01 to 0.04%, boron with a content of ≤0.0025% and vanadium with a content of 0.05 to 0.20% are additionally added to the basic composition, wherein the addition by only one selected element from this group or can be effected by a mixture of the individual elements.

Zum Erzielen der hohen statischen Festigkeit ist ferner die Zugabe von Kohlenstoff mit Endgehalten von 0.15 bis 0.3 % erforderlich. Das Einbringen des Kohlenstoffs kann entweder über das Prozessgas, z.B. Kohlenmonoxid (CO), erfolgen oder über die Zugabe von Graphit, indem der Grundzusammensetzung Graphit zugemischt wird. Eine weitere Möglichkeit besteht darin, reduzierbare Karbide, z.B. SiC, beizumischen, die sich während des Sintervorgangs auflösen, so dass dann freier Kohlenstoff übrig bleibt, der dann mit dem Oxidpulver reagieren kann. Ferner kann der Kohlenstoff-Eintrag über einen Binder erfolgen, der zur Herstellung einer Spritzmasse erforderlich ist und aus einem Harz, also einer Kohlenwasserstoffverbindung gebildet ist.To achieve the high static strength, it is further necessary to add carbon with final contents of 0.15 to 0.3%. The introduction of the carbon can be carried out either via the process gas, for example carbon monoxide (CO), or via the addition of graphite, by mixing the basic composition with graphite. Another possibility is to admix reducible carbides, eg SiC, which dissolve during the sintering process so that free carbon is left over which can then react with the oxide powder. Furthermore, the carbon entry can take place via a binder which is required for producing a sprayed mass and which is formed from a resin, ie a hydrocarbon compound.

Fig. 3 zeigt ein zweites Ausführungsbeispiel der Erfindung. Dabei handelt es sich um ein vollbainitisches Gefüge 200 aus Bainit-Körnern 201, die Nanokarbide 202, d.h. feinste Karbid- und Karbonitridausscheidungen im Nanometerbereich enthalten. Das Gefüge 200 weist eine statische Festigkeit Rm auf, die von etwa 1100 bis 1600 MPa variiert. Im Unterschied zum ersten Ausführungsbeispiel wird beim zweiten Ausführungsbeispiel eine zusätzliche Festigkeitserhöhung dadurch erzielt, dass eine Zugabe karbidbildender Elemente erfolgt, welche durch Ausbilden feinster Karbidausscheidungen, deren Größe im Bereich von wenigen Nanometern liegt, ansonsten mögliche Versetzungsbewegungen im Metallgitter behindern und somit die Festigkeit erhöhen, ohne die Zähigkeit negativ zu beeinflussen. Als karbidbildende Elemente dienen Titan mit einem Gehalt von 0.01 % und/oder Niob mit einem Gehalt von 0.01 bis 0.04 %, die der Oxidpulvermischung gemäß Ausführungsbeispiel 1 entweder gleichzeitig zusammen oder in Abhängigkeit von der gewünschten Zielfestigkeit auch alleine zugemischt werden. Ferner ist zum Ausbilden der Karbide die Zufuhr von Kohlenstoff und/oder Stickstoff erforderlich. Im Unterschied zum ersten Ausführungsbeispiel erfolgt bei diesem Ausführungsbeispiel die Zufuhr von Kohlenstoff mit einer höheren Konzentration, so dass im Metallgitter ein Kohlenstoff-Überschuß eingestellt wird, der zu einer Gitterverspannung und einer damit korrelierten Ausscheidung in Form von Karbiden als Zweitphase führt. Der Eintrag von Kohlenstoff kann entweder als Prozessgas, durch Zugabe von Graphit oder mittels eines Binders erfolgen. Das - zusätzliche - Einbringen von Stickstoff mit Endgehalten von 0.01 bis 0.03 % kann als Prozessgas, z.B. N2 oder NH3, beim Sintern erfolgen, da auch Stickstoff eine Zweitphase im Metallgitter bilden kann. Fig. 3 shows a second embodiment of the invention. This is a Vollbainitisches structure 200 of bainite grains 201 containing nanocarbides 202, ie finest carbide and Kohlenstoffitridausscheidungen in the nanometer range. The structure 200 has a static strength Rm that varies from about 1100 to 1600 MPa. In contrast to the first exemplary embodiment, in the second exemplary embodiment an additional increase in strength is achieved in that an addition of carbide-forming elements occurs which hampers possible dislocation movements in the metal grid and thus increases the strength by forming very fine carbide precipitations whose size is in the range of a few nanometers to influence the toughness negatively. The carbide-forming elements are titanium with a content of 0.01% and / or niobium with a content of 0.01 to 0.04%, which are admixed to the oxide powder mixture according to embodiment 1 either simultaneously together or alone depending on the desired target strength. Further, the formation of carbides requires the supply of carbon and / or nitrogen. In contrast to the first embodiment, in this embodiment, the supply of carbon at a higher concentration, so that in the metal lattice, a carbon excess is set, which leads to a lattice strain and correlated therewith precipitation in the form of carbides as a second phase. The introduction of carbon can take place either as a process gas, by adding graphite or by means of a binder. The - additional - introduction of nitrogen with final contents of 0.01 to 0.03% can be carried out as a process gas, for example N 2 or NH 3 , during sintering, since even nitrogen can form a second phase in the metal lattice.

Fig. 4 zeigt ein drittes Ausführungsbeispiel der Erfindung. Dabei handelt es sich um ein Gefüge 300 aus feinstkörnigem Bainit 301, Karbid- oder Karbonitridausscheidungen 302 sowie Oxidkeramikpartikeln 303. Im Unterschied zum zweiten Ausführungsbeispiel erfolgt bei diesem Ausführungsbeispiel zusätzlich die Zugabe von feinstkörnigen Oxidkeramikpartikeln mit einer Größe im Submikrometerbereich. Als Oxidkeramikpartikel sind Zirkonoxid (ZrO2), Siliziumdioxid (SiO2). Aluminiumoxid (Al2O3), Yttriumoxid (Y2O3), Siliziumnitrid (Si3N4), Siliziumkarbid (SiC) vorgesehen. Diese Partikel werden der Ausgangsmischung zugegeben und bleiben über die einzelnen Verfahrensschritte erhalten, d.h. diese Verbindungen lösen sich während des Reduktionssinterns nicht in dem Metallgitter, sondern blockieren aufgrund ihrer Größe und Verteilung innerhalb des Gitters eine ansonsten mögliche Versetzungsbewegung im Metallgitter, indem sie eine exogene und thermisch stabile Zweitphase in dem Rohling-Material, d.h. in dem bainitischen Grundgefüge, bilden. Dadurch wird die statische Festigkeit Rm des am Ende des erfindungsgemäßen Verfahrens erhaltenen Rohling-Materials erhöht, ohne dessen Zähigkeit signifikant zu beeinträchtigen. Fig. 4 shows a third embodiment of the invention. This is a microstructure 300 of very fine-grained bainite 301, carbide or carbonitride precipitates 302 and oxide ceramic particles 303. In contrast to the second exemplary embodiment, this embodiment additionally involves the addition of very fine-grained oxide ceramic particles with a size in the submicrometer range. The oxide ceramic particles are zirconium oxide (ZrO 2 ), silicon dioxide (SiO 2 ). Alumina (Al 2 O 3 ), yttria (Y 2 O 3 ), silicon nitride (Si 3 N 4 ), silicon carbide (SiC) provided. These particles are added to the starting mixture and are retained over the individual process steps, ie these compounds do not dissolve in the metal lattice during reduction sintering, but due to their size and distribution within the lattice block an otherwise possible dislocation movement in the metal lattice by exogenous and thermal stable second phase in the blank material, ie in the bainitic ground structure form. This will cause the static Strength Rm of the blank material obtained at the end of the process according to the invention increases without significantly affecting its toughness.

Zusammenfassend umfasst das erfindungsgemäße Verfahren zum Herstellen eines Stahl-Formkörpers bzw. Rohlings, insbesondere eines Bauteils, die Verfahrensschritte des Ausbildens einer auf Eisenoxid basierenden pulverförmigen Zusammensetzung aus Oxidpartikeln und Binder, unter Zugabe von Kohlenstoff und von Mikrolegierungselementen, um ein bainitisches Gefüge einzustellen, des Pressens eines Rohlings, des Erwärmens des Rohlings auf eine isotherme Haltestufe zwischen 450°C und 600°C zum Entbindern, wobei ein kohlenwasserstoffhaltiger Binder entfernt wird, des Erwärmens auf Sintertemperatur zum Reduzieren des durch Pressen erhaltenen Formkörpers, und des Abkühlens des gesinterten Formkörpers auf Raumtemperatur, wobei zum Abkühlen ein vordefinierter Abkühlungs- bzw. Temperaturgradient eingestellt wird. Dadurch wird von den drei wesentlichen Zustandsphasen innerhalb eines Zustandsdiagramms 10, nämlich des Ferrit-Perlit-Zustandsbereichs 11, des Bainit-Zustandsbereichs 12 und des Martensit-Zustandsbereichs 13 bevorzugt die bainitische Zustandsphase in einem mittleren Temperaturbereich ausgebildet, indem der Ferrit-Perlit-Zustandsbereich 11 zu längeren Abkühlzeiten und der Martensit-Zustandsbereich 13 zu tieferen Temperaturen verschoben sind.In summary, the method according to the invention for producing a steel molding or blank, in particular a component, comprises the method steps of forming an iron oxide-based powdery composition of oxide particles and binder, with the addition of carbon and of micro-alloying elements to set a bainitic structure, of the pressing a blank, heating the blank to an isothermal holding step between 450 ° C and 600 ° C for debindering to remove a hydrocarbonaceous binder, heating to sintering temperature to reduce the molded article obtained by pressing, and cooling the sintered formed article to room temperature; wherein a predefined cooling or temperature gradient is set for cooling. Thereby, among the three essential state phases within a state diagram 10, namely, the ferrite-pearlite state region 11, the bainite state region 12, and the martensite state region 13, the bainitic state phase is preferably formed in a middle temperature region by the ferrite-pearlite state region 11 to longer cooling times and the martensite state area 13 are shifted to lower temperatures.

Claims (9)

  1. Method for producing a shaped steel body, more particularly a component for example for common-rail injection valves, comprising the following method steps:
    - forming an iron oxide-based powderous composition from solid oxide particles with addition of carbon and of at least one microalloying element in order to set a bainitic microstructure, wherein the base composition required for this purpose, starting from the iron oxide basis, has a manganese content of 0.8 to 1.9 %, a silicon content of 0.2 to 1.5 % a chromium content of 0.1 to 1.2 %, a nickel content of 0.2 to 1.5 %, and a molybdenum content of 0.1 to 0.5 %, where the addition of carbon takes place with a final content in the range between about 0.15 to 0.3 % and wherein the powderous composition based on iron oxide has microalloying elements added to it, including aluminium with an amount of 0.01 to 0.04 %, and/or boron with an amount of ≤ 0.0025 % and/or vanadium with an amount of 0.05 to 0.20 %,
    - heating the powderous composition to sintering temperature,
    - reducing the shaped body obtained by sintering, and
    - cooling the sintered shaped body to room temperature.
  2. Method according to Claim 1, characterized in that the addition of carbon takes place by means of a process gas, preferably by carbon monoxide.
  3. Method according to Claim 1, characterized in that the addition of carbon takes place by admixing of graphite and/or carbides.
  4. Method according to Claim 1, characterized in that the addition of carbon takes place by means of a hydrocarbon-containing binder.
  5. Method according to any of Claims 1 to 4, characterized in that the composition based on iron oxide is admixed with carbide-forming elements, wherein the carbide-forming elements include titanium with an amount of about 0.01 to 0.03 % and/or niobium with an amount of about 0.01 to 0.04 %.
  6. Method according to Claim 5, characterized in that carbon and/or nitrogen are/is introduced together with the carbide-forming elements.
  7. Method according to Claim 6, characterized in that nitrogen is introduced with a final content in the range from about 0.01 to 0.03 % as process gas, preferably by N2 or NH3 during the sintering.
  8. Method according to any of Claims 1 to 7, characterized in that ultra-fine-grained oxide ceramic particles are admixed to the powderous composition, wherein the oxide ceramic particles are formed from one or more of the group of zirconium oxide, silicon oxide, aluminium oxide, yttrium oxide, silicon nitride and silicon carbide.
  9. Method according to any of Claims 4 to 8, characterized in that a process step is carried out for removing binder from the shaped body.
EP14734065.7A 2013-06-27 2014-06-20 Method for producing a steel shaped body Active EP3013992B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013212528.3A DE102013212528A1 (en) 2013-06-27 2013-06-27 Process for producing a steel shaped body
PCT/EP2014/063050 WO2014206890A1 (en) 2013-06-27 2014-06-20 Method for producing a steel shaped body

Publications (2)

Publication Number Publication Date
EP3013992A1 EP3013992A1 (en) 2016-05-04
EP3013992B1 true EP3013992B1 (en) 2019-12-04

Family

ID=51033170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14734065.7A Active EP3013992B1 (en) 2013-06-27 2014-06-20 Method for producing a steel shaped body

Country Status (6)

Country Link
US (1) US10220443B2 (en)
EP (1) EP3013992B1 (en)
JP (1) JP6212632B2 (en)
CN (1) CN105339517B (en)
DE (1) DE102013212528A1 (en)
WO (1) WO2014206890A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702800B (en) 2011-06-30 2017-11-10 圣戈本陶瓷及塑料股份有限公司 Include the abrasive product of silicon nitride abrasive particle
WO2013049239A1 (en) 2011-09-26 2013-04-04 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming
PL2797716T3 (en) 2011-12-30 2021-07-05 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
KR102187425B1 (en) 2011-12-30 2020-12-09 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Shaped abrasive particle and method of forming same
WO2013106602A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
CA2860755C (en) 2012-01-10 2018-01-30 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
EP2852473B1 (en) 2012-05-23 2020-12-23 Saint-Gobain Ceramics & Plastics Inc. Shaped abrasive particles and methods of forming same
IN2015DN00343A (en) 2012-06-29 2015-06-12 Saint Gobain Ceramics
KR101736085B1 (en) 2012-10-15 2017-05-16 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive particles having particular shapes and methods of forming such particles
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
CA2984232C (en) 2013-03-29 2021-07-20 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
TW201502263A (en) 2013-06-28 2015-01-16 Saint Gobain Ceramics Abrasive article including shaped abrasive particles
EP3052270A4 (en) 2013-09-30 2017-05-03 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
KR101870617B1 (en) 2013-12-31 2018-06-26 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
EP3131705A4 (en) 2014-04-14 2017-12-06 Saint-Gobain Ceramics and Plastics, Inc. Abrasive article including shaped abrasive particles
EP4306610A3 (en) 2014-04-14 2024-04-03 Saint-Gobain Ceramics and Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
JP6319121B2 (en) * 2015-01-29 2018-05-09 セイコーエプソン株式会社 Method for producing metal powder for powder metallurgy, compound, granulated powder and sintered body
CN116967949A (en) 2015-03-31 2023-10-31 圣戈班磨料磨具有限公司 Fixed abrasive article and method of forming the same
TWI634200B (en) 2015-03-31 2018-09-01 聖高拜磨料有限公司 Fixed abrasive articles and methods of forming same
EP3307483B1 (en) 2015-06-11 2020-06-17 Saint-Gobain Ceramics&Plastics, Inc. Abrasive article including shaped abrasive particles
EP4071224A3 (en) 2016-05-10 2023-01-04 Saint-Gobain Ceramics and Plastics, Inc. Methods of forming abrasive articles
KR102313436B1 (en) 2016-05-10 2021-10-19 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Abrasive particles and method of forming the same
CN105772729A (en) * 2016-05-18 2016-07-20 昆山安泰美科金属材料有限公司 Metal powder injection-molding sintering jig
EP3519134B1 (en) 2016-09-29 2024-01-17 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
CN109881127A (en) * 2017-12-06 2019-06-14 宜兴市乐华冶金辅助材料有限公司 A kind of contact arm material of pipeline chain scraper conveyor
CN108500276B (en) * 2018-04-11 2020-06-30 深圳艾利佳材料科技有限公司 Method for producing a part from a metal oxide
WO2021133901A1 (en) 2019-12-27 2021-07-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487235B1 (en) 1980-07-25 1983-05-13 Metafran Alliages Frittes
DE3476117D1 (en) * 1983-11-23 1989-02-16 Voest Alpine Ag Sub-calibre penetrator and method of making the same
JPH0219406A (en) 1988-07-05 1990-01-23 Nippon Steel Corp Manufacture of iron porous body
JP4051167B2 (en) 1999-12-03 2008-02-20 日立粉末冶金株式会社 Wear-resistant iron-based sintered alloy
DE10014403A1 (en) 2000-03-24 2001-09-27 Wolfgang Kochanek Process for the powder metallurgy production of metal bodies comprises mixing a metal compound powder such as oxide powder with a rheology-improving additive, removing the additive; and reducing the metal compound using a reducing gas
JP4001450B2 (en) * 2000-05-02 2007-10-31 日立粉末冶金株式会社 Valve seat for internal combustion engine and manufacturing method thereof
SE0201824D0 (en) * 2002-06-14 2002-06-14 Hoeganaes Ab Pre-alloyed iron based powder
JP4179550B2 (en) * 2003-11-21 2008-11-12 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
US7294167B2 (en) 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
US20050163645A1 (en) * 2004-01-28 2005-07-28 Borgwarner Inc. Method to make sinter-hardened powder metal parts with complex shapes
SE0401535D0 (en) * 2004-06-14 2004-06-14 Hoeganaes Ab Sintered metal parts and method of manufacturing thereof
CA2710748C (en) * 2007-12-27 2016-08-16 Hoeganaes Ab (Publ) Low alloyed steel powder
US20100008812A1 (en) 2008-07-03 2010-01-14 Hitachi Powdered Metals Co., Ltd. Hard phase forming alloy powder, wear resistant sintered alloy, and production method for wear resistant sintered alloy
JP5358131B2 (en) 2008-07-03 2013-12-04 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6212632B2 (en) 2017-10-11
CN105339517A (en) 2016-02-17
DE102013212528A1 (en) 2014-12-31
US10220443B2 (en) 2019-03-05
EP3013992A1 (en) 2016-05-04
JP2016526603A (en) 2016-09-05
US20160136729A1 (en) 2016-05-19
CN105339517B (en) 2018-09-18
WO2014206890A1 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
EP3013992B1 (en) Method for producing a steel shaped body
AT507215B1 (en) WEAR-RESISTANT MATERIAL
TWI542707B (en) Iron based powders for powder injection molding
DE2943601A1 (en) ALLOY STEEL POWDER WITH EXCELLENT FORMABILITY, FORMABILITY AND HEAT TREATMENT PROPERTIES
AT507707B1 (en) IRON CARBON MASTERALLOY
EP3323902B1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
DE102018201854A1 (en) Material, suitable for additive manufacturing
AT505699A1 (en) METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
EP4081362A1 (en) Method for manufacturing a hot-work steel object
WO2001079575A1 (en) Nitrogen alloyed steel, spray compacted steel, method for the production thereof and composite material produced from said steel
AT507836B1 (en) METHOD FOR PRODUCING A STEEL MOLDING PART
AT411580B (en) METHOD FOR THE POWDER METALLURGICAL PRODUCTION OF OBJECTS
DE69737265T2 (en) MANUFACTURE NICKEL-KEEPING, SINTERED, FIXED, FERITIC STAINLESS STEEL
WO2012069329A1 (en) Method for heat-treating high-strength iron alloys
WO2018095610A1 (en) Powder metallurgy produced steel material, method for producing a component from said type of steel material and component produced from the steel material
DE2846889C2 (en) Alloy powder, process for its manufacture and its use for the manufacture of sintered molded parts
AT513429A1 (en) Method for producing a sintered component module
DE102010041366A1 (en) High-strength, at room temperature plastically deformable and energy absorbing mechanical body of iron alloys
AT508591B1 (en) COLD WORK STEEL OBJECT
EP3189172B1 (en) High-strength, corrosion-resistant shaped articles absorbing mechanical energy and made of iron alloys, and method for manufacturing same
EP1736563A1 (en) Steel alloy
AT512329A1 (en) METHOD FOR PRODUCING A SINTERED COMPONENT
DE2123307A1 (en) Process for making high density sintered iron alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180525

RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 5/00 20060101ALI20180627BHEP

Ipc: C22C 33/02 20060101AFI20180627BHEP

Ipc: B22F 3/10 20060101ALI20180627BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190220

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1209485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013181

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191204

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200305

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200404

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013181

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

26N No opposition filed

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1209485

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230607

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230817

Year of fee payment: 10