EP3002637A1 - Clock system with improved tribological properties - Google Patents

Clock system with improved tribological properties Download PDF

Info

Publication number
EP3002637A1
EP3002637A1 EP15187489.8A EP15187489A EP3002637A1 EP 3002637 A1 EP3002637 A1 EP 3002637A1 EP 15187489 A EP15187489 A EP 15187489A EP 3002637 A1 EP3002637 A1 EP 3002637A1
Authority
EP
European Patent Office
Prior art keywords
functional zone
structuring
functional
controlled
clock system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15187489.8A
Other languages
German (de)
French (fr)
Other versions
EP3002637B1 (en
Inventor
Jean-Charles Fiaccabrino
Xavier LANDREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51655524&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3002637(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Richemont International SA filed Critical Richemont International SA
Publication of EP3002637A1 publication Critical patent/EP3002637A1/en
Application granted granted Critical
Publication of EP3002637B1 publication Critical patent/EP3002637B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • G04B13/021Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft
    • G04B13/022Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft with parts made of hard material, e.g. silicon, diamond, sapphire, quartz and the like
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B31/00Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor
    • G04B31/004Bearings; Point suspensions or counter-point suspensions; Pivot bearings; Single parts therefor characterised by the material used

Definitions

  • the present invention relates to a clock system in which a contact occurs between two components involving sliding with or without impact.
  • the invention relates to an escapement comprising an escapement wheel cooperating mechanically with levees of an anchor in which a first functional zone comes into frictional contact with a second functional zone.
  • the exhaust systems are difficult to develop because they are the compromise between the lowest possible inertia and the best tribological properties possible, especially the lifts and the range of the anchor.
  • the mastery of lubrication and the stability of the oils over time are essential conditions for the sustainable operation of the system. Thus, it is difficult to avoid snags between the different elements of the exhaust due to poor lubrication conditions, either related to the amount and / or degradation of the lubricant.
  • the tribological behavior of the surfaces in frictional contact between the teeth of the escape wheel and the lifts of the anchor can be improved by the addition of an outer covering.
  • the document CH702799 discloses an exhaust system in which the escape wheel and the anchor are made of silicon partially coated with a DLC type layer.
  • EP2631721 discloses an exhaust system in which a portion of the anchor and escape wheel, made of titanium, is coated with a diamond layer to improve the tribological properties.
  • the invention relates to the use of nanostructured surfaces on functional areas in a watch system in which a contact occurs (at least at certain times during operation of the system) between two components involving sliding with or without impact, to meet optimally to the different types of tribological solicitations (shocks, friction and wear) encountered during the operating phases, while avoiding the problems associated with the use of a liquid lubricant.
  • tribological solicitations shocks, friction and wear
  • the watch system is an exhaust whose functional areas are on the levies and / or the teeth of the escape wheels.
  • the invention also relates to a timepiece anchor escapement comprising an escape wheel and an anchor provided with an entry lift and an exit lift, each of the lifts being arranged in a manner to cooperate with teeth of the escape wheel; each of the lifts comprising a first functional zone and each of the teeth comprising a second functional zone coming into frictional contact with the first functional zone, when one of the lifts cooperates with one of the teeth; at least one of the first functional zone and the second functional zone comprising a controlled submicron structuring.
  • the figure 1 illustrates an exhaust 1 for a timepiece.
  • the exhaust 1 comprises in particular an escape wheel, comprising an escape wheel 3 mounted integral with a pivoting exhaust pinion, an anchor 2 pivotally mounted on an anchor rod 23, and a plate 4 driven on a rocker shaft 40.
  • the anchor 2 comprises arms 21 comprising lifts 22 and 22'cooperating with teeth 31 of the escape wheel 3.
  • the plate 4 comprises a small plate 41 provided with a notch 42 and a large plate 43 provided with an anchor (not shown in FIG. figure 1 ).
  • the rod 20 comprises a dart 24 and a fork 25.
  • the dart 24 is intended to cooperate with the small plate 41 to prevent accidental movements of the fork 25.
  • the fork 25 may be mounted above the dart 24 and comprise two horns 26 intended to come into contact with the large plate pin 43, according to the rotation of the pin, to cause the anchor 2 to pivot about its rod 23 according to a movement back and forth.
  • the figure 2 illustrates the movement back and forth of the anchor 2 of the exhaust 1 during its operation.
  • the movement of the exhaust decomposes, during an alternation, into three phases.
  • the escape wheel 3 is first blocked by the entry lift 22.
  • One of the teeth 31 of the escape wheel 3 is in contact with a rest plane 222 of the entry lift 22.
  • figure 2a In a phase of release ( figure 2a ), the rest plane 222 of the lift slides on a rest plane 312 of the wheel 3.
  • the figure 3 shows a detail of the entry lift 22 and a tooth 31 during the clearance.
  • figure 3a shows the rest plane 222 of the entry lift 22 sliding along a tooth rest plane 312.
  • an impulse phase ( figure 2b ) a pulse plane 311 of the tooth 31 is in contact with the pulse plane 221 of the input lift 22.
  • the torque of the escape wheel 3 (due to the rotation of the escape wheel 3) is transmitted to the anchor 2 via the lift 22.
  • the input lift 22 "rises” under the force that results from the rotation of the anchor 2 , while the output lift 22 'goes down.
  • the figure 3b shows a detail of the input lift 22 and a tooth 31 where the pulse plane 221 of the input lift 22 slides along the pulse plane of the tooth 311. The pulse ends when the pulse plane 221 of the input lift 22 is no longer in contact with the tooth 31. The escape wheel 3 is thus released.
  • a first functional zone 200 may comprise a portion of the inlet 22 and outlet lift 22 'which is in frictional contact with one of the teeth 31 of the escape wheel 3 when the escapement 1 is in motion.
  • a second functional zone 300 may comprise a portion of the tooth 31 in frictional contact with one of the lift 22, 22 'of the anchor 2, when the escapement 1 is in motion.
  • At least one of the first functional zone 200 and the second functional zone 300 comprises a controlled submicron structuring as illustrated in FIGS. Figures 4a and 4b .
  • controlled submicron structuring is meant a structuring voluntarily made on the surface of the first and / or second functional zone 200, 300 by structuring means, for example by lithographic methods, or the like.
  • the structuring of the surface is specifically controlled unlike the structures corresponding to the intrinsic roughness of a surface in its natural state or after a manufacturing step (for example etching) for shaping the core of the material.
  • structures are formed on the surface by a shaping step of the surface that allows a control of their geometry (height, width, angle of inclination, general shape), their distribution and their density.
  • These structures may have different polarities with respect to the surface, that is, they may be pillar / hill (positive polarity) or hole / valley (negative polarity).
  • the density of the structures formed on the structured surface varies from 15% -80% of the surface, and more preferably from 20% to 60%.
  • the distribution of these structures may be regular or irregular depending on the application.
  • the structures formed generally have dimensions in the range of 1 to 1000 nm, preferably 10 to 800 nm. Also, the edges of the formed structures may have rounded or more defined shapes.
  • the surfaces are sub-micronically structured as pillars ( figure 4a ) and / or holes ( figure 4b ) which have a width of 300 to 600 nm and a height of 200 to 600 nm.
  • the first functional zone 200 comprises the lifting pulse plane 221 cooperating with the tooth pulse plane 311 of one of the teeth 31 between the phases of disengagement and fall of the escapement 1.
  • the first functional zone 200 may also comprise the lifting rest plane 222 cooperating with a rest plane 312 of one of the teeth 31 during a release and fall phase of the escapement 1.
  • the second functional zone 300 comprises the tooth impulse planes 311 of the teeth 31 cooperating with the lifting impulse plane 221, between the phases of disengagement and fall of the escapement 1.
  • the second functional zone 300 may also comprise the tooth rest plane 312 of the teeth 31 cooperating with the lifting rest plane 222, during a phase of disengagement and fall of the escapement 1.
  • the controlled submicron structuring comprises a substantially different typology in the raising pulse plane 221 than that in the raising rest plane 222.
  • first functional zone 200 and the second functional zone 300 comprise controlled submicron structuring; and the controlled submicron patterning has a substantially different typology in the tooth rest plane 312 than that in the tooth pulse plane 311.
  • Controlled submicron structuring on the functional zones of the lifts 22, 22 'and / or the teeth 31 makes it possible to respond optimally to the various types of tribological stress (shocks, friction and wear) encountered during the phases of the escape (release, impulse, fall).
  • the combination of several typologies on the first and / or second functional zone 200, 300 makes it possible to respond independently and optimally to each of the demands of the function of the escapement. For example, in the case of the disengagement and fall phase, the shock-related wear between the rest plane 312 of each of the teeth 31 of the escape wheel 3 and the rest plane 222 of each of the lifts 22 can be minimized by a choice of the typology of controlled submicron structuring.
  • the impact resistance can also be controlled by the choice of materials according to performance indicators such as K 1c 3 / (E 2 (1-2 ⁇ ) 3 ) where K 1c denotes the toughness of the material, ⁇ its Poisson's ratio and E its Young's modulus, by the breaking strength limit R m .
  • K 1c denotes the toughness of the material, ⁇ its Poisson's ratio and E its Young's modulus
  • R m the breaking strength limit
  • Ceramic materials belonging for example to the families of carbides or nitrides such as WC, BN, SiC, or MgO, ZrO doped Y or Mg and Sialon (Si 3 Al 3 O 3 N 5 ) having Rm values greater than 200 MPa associated with performance indicators greater than 0.01 [Pa.m 3/2 ] are for example adapted to this type of contact.
  • the choice of the typology of submicron surface and volume structuring of the material can be done in such a way as to absorb the impact energy without causing damage to the impact
  • the typology of the controlled submicron structuring, and / or the material may be varied in order to adapt to the change in mechanical stresses.
  • the dimensional characteristics of the typology of controlled submicron structuring as described above for the clearance phase also apply for the pulse phase.
  • the choice of the typology of the controlled submicron structuring and the material is guided by obtaining, for the first and second functional zone 200, 300, a low and constant coefficient of friction, nonadhesive properties, a rate of controlled wear using a suitable third body stream controlled by trapping debris and accumulating it in adjacent concave areas of structuring submicron controlled, the absence of "stick and slip” phenomenon related to a reduction of the difference between the static and dynamic friction coefficients in the conditions of contact.
  • All or parts of the tribological properties described above can advantageously be obtained by forming submicron structures with biomimetic patterns. These include, for example, the lotus leaf motif (lotus effect), the pattern of the ventral scales of the Python regius (HA Abdel-Aal and M El Mansori 2013 Surf, Topogr .: Metrol Prop. 1 015001 ) or Scincus Scincus fish scales (Rechenberg I., El Khyeri AR, The Sandfish of the Sahara, A model for friction and wear reduction, Department of Bionics and Evolution Techniques, Technical University of Berlin, Green Tribology: Biomimetics, Energy Conversion and Sustainability, M. Nosonovsky, B. Bhushan, Ed Springer, 2012). In the last case cited, the reduction of the coefficient of friction is probably obtained by an electrostatic repulsion effect between the textured surface and its antagonist. As for the wear, it is reduced by the surface functionalization of this motif using glycoproteins and / or carbohydrates.
  • At least one of the first functional zone 200 and the second functional zone 300 may comprise different material and structure choices, or even an absence of controlled submicron structuring.
  • the controlled submicron structuring may comprise one or a combination of several different typologies and different materials so as to respond independently and optimally to each of the stresses of the function of the exhaust.
  • the first functional zone 200 comprises a coating 61 formed on the lift 22, 22 'of the anchor 2 (see FIG. Figures 3a and 3b ), in particular, on the lift pulse plane 221 and the lift rest plane 222.
  • the second functional zone 300 may also comprise a coating 62 formed on the tooth 31, i.e., on the tooth rest plane 312 and the tooth pulse plane 311.
  • the coating 61, 62 may be fabricated in the selected material (s) and includes controlled submicron structuring.
  • the coating 61 formed on the lift 22, 22 ' may also be different (material, structuring, etc.) than the coating 62 formed on the tooth 31.
  • the body of the anchor 2, and / or the lifts 22, 22 ', and the wheel 3, and / or the teeth 31, are made of a material which differs from that or those
  • the coating material (s) 61, 62 may therefore also be chosen to facilitate the realization of controlled submicron structuring.
  • Such a configuration allows greater flexibility for carrying out the controlled submicron structuring. It is indeed possible to combine a material having optimum mechanical properties for the manufacture of the anchor, and / or lifts 22, 22 ', with one or more coating materials, which are optimal for the tribological properties and for the machining of the structuring. submicron controlled.
  • the coating (s) 61, 62 can be obtained by various physical and / or chemical deposition processes, by chemical and / or thermal treatment, and can be chosen from families of layers comprising between other variants of oxides, nitrides, carbides or allotropic forms of carbon.
  • the controlled submicron structuring comprises changes in the surface topography (nanometric relief), its chemical composition, its chemical structure (composition and position of the atoms in the mesh), independently or simultaneously.
  • it does not include the control of the surface texturing, that is to say the orientation of the crystalline planes of the material in a preferential direction determined as described in WO2013 / 011032A1 .
  • a phase transformation of alumina ⁇ (cubic symmetry) to ⁇ alumina (hexagonal symmetry) can be implemented by local heating using means known to those skilled in the art. the purpose of reducing the coefficient of friction and the rate of wear. This phase transformation can be carried out without necessarily produce a modification of the topography without departing from the scope of the present invention.
  • controlled submicron structuring is controlled in a controlled manner by selectively etching the exposed surface through wet or dry chemistry through an etching or sparing mask.
  • etching or sparing mask will include, inter alia, plasma etching processes of the RIE or DRIE type using fluorinated gases (typically CF 4 or SF 6 ) for substrates made of silicon and other materials derived from silicon.
  • fluorinated gases typically CF 4 or SF 6
  • Other etching solutions known to those skilled in the art can be used depending on the nature of the materials to be etched.
  • the etching mask may, by way of example, be obtained by transferring an interference or holographic figure on a photoresist (( IB Divliansky, A. Shishido, I.
  • the colloidal lithography method makes it possible to immobilize particles of controlled size on the surfaces to be etched, by spin-coating technique or by Langmuir-Blodgett technique.
  • the control of the particle diameter as well as the concentration of these particles in the colloidal solutions makes it possible to adjust the dimensional characteristics of the typology of the controlled submicron structuring, and in particular the density and the size of the structures.
  • the colloidal lithography method is more economical than most other lithography methods.
  • the controlled submicron structuring is machined by a DLIP method (Direct Laser Interference Patterning).
  • DLIP method Direct Laser Interference Patterning
  • the principle makes use of the interference between two or more laser beams as in the case of holographic lithography, this time irradiating directly the material to be machined.
  • the nanostructuring process relies on photo thermal, photo-physical or photochemical mechanisms, depending on the type of material, and on the non-linear absorption of laser energy.
  • the DLIP method allows the production of periodic correlated and organized structures.
  • controlled submicron structuring is machined using a replication technique, such as "nano-imprinting” or “soft lithography” techniques.
  • the controlled submicron structuring is machined using an anodizing method applicable by way of example and non-exhaustively to aluminum, titanium or silicon.
  • the controlled submicron structuring is performed by deposition of tribological layers on previously machined nanostructures, for example by one of the methods above.
  • controlled submicron structuring is performed with heterogeneous surfaces obtained, for example, by immobilizing solid lubricants in previously machined structures, for example by one of the above methods.
  • solid lubricants may include PTFE, ionic liquids, etc.
  • the controlled submicron structuring is carried out with heterogeneous surfaces obtained by immobilizing wear debris in structures previously machined, for example by one of the methods above. Wear debris contributes to solid lubrication.
  • FIGs 5a and 5b show examples of typologies of controlled submicron structures.
  • figure 5a shows different examples of typologies of machined structures comprising, from top to bottom, a triangular structuring with a constant frequency; with increasing spacing between each triangular structure; featuring triangular structures and pointed structures; or having hybrid structures comprising a crenellated structure and pointed structures.
  • the figure 5b shows other examples of hybrid typologies including a combination of typologies as well as a combination of materials.
  • Controlled submicron structuring of the invention provides energetic, chronometric and economical benefits.
  • the improvement of the operating performance of the escapement 1 is obtained by choosing a typology of the controlled submicron structuring and the composition of the materials, for example for each of the phase phases of the exhaust function, namely the clearance, the impulse and the fall.
  • one advantage is the stability of the chronometric performances over time, acquired by the stability of the coefficient of friction for each phase of the escapement.
  • Table 1 reports a value and the standard deviation of the coefficient of friction measured under initial conditions and after 10,000 friction cycles for samples having an unstructured surface, with a structure having pillars with a diameter of 700 nm and a density of 21%, with a structure having holes having a diameter of 300 nm and a density of 55%, and with a structure having holes having a diameter of 700 nm and a density of 21%.
  • the table also reports the average wear rate values of the unstructured counterpart. Another advantage is the increase in wear resistance providing an increase in the service life of the exhaust or other watch system, as well as adjacent functions by reducing the risk of contamination by wear debris.
  • controlled submicron structuring in dry lubrication conditions can overcome the constraints of wet lubrication, in particular the need for periodic revisions of the function.
  • parallelism defects or other geometrical defects can be compensated during the pulse phase by the use of controlled submicron structuring with controlled wear or deformation leading to accommodation of the surfaces and thereby reducing the actual contact pressures.
  • the functional zone or zones may be structured and subsequently covered by a thin layer (for example a layer deposited by the ALD (atomic layer deposition) method without affecting the effect of sub-micron controlled sub-patterning.
  • a thin layer for example a layer deposited by the ALD (atomic layer deposition) method without affecting the effect of sub-micron controlled sub-patterning.
  • a controlled submicron patterning of the invention comprising one or a combination of typologies as well as a combination of materials, can be applied to other watch system components undergoing frictional contact.
  • the controlled submicron patterning of the invention can be applied to the plateau peg and the anchor fork.
  • Controlled submicron structuring can also be applied to functional areas in frictional contact in escapements other than anchor escapement, in cam and auger systems, in ratchet and gear systems, in jumper systems and discs, in lever and lever systems, in clutch or brake systems, or any other timekeeping systems when these comprise one or more functional zones in frictional contact involving sliding with or without shock.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

Système horloger (1) comprenant un premier composant avec au moins une première zone fonctionnelle (200) et un deuxième composant avec au moins une seconde zone fonctionnelle (300), la première zone fonctionnelle (200) venant en contact de frottement avec la seconde zone fonctionnelle (300) lors du fonctionnement du système horloger, ce contact impliquant un glissement avec ou sans choc; dans lequel au moins l'une de la première zone fonctionnelle (200) et de la seconde zone fonctionnelle (300) comporte une structuration submicronique contrôlée.Watchmaking system (1) comprising a first component with at least a first functional zone (200) and a second component with at least a second functional zone (300), the first functional zone (200) coming into frictional contact with the second zone functional (300) during the operation of the watch system, this contact involving sliding with or without impact; wherein at least one of the first functional zone (200) and the second functional zone (300) comprises controlled submicron structuring.

Description

Domaine techniqueTechnical area

La présente invention concerne un système horloger dans lequel a lieu un contact entre deux composants impliquant un glissement avec ou sans choc. Par exemple, l'invention concerne un échappement comprenant une roue d'échappement coopérant mécaniquement avec des levées d'une ancre dans lequel une première zone fonctionnelle vient en contact de frottement avec une seconde zone fonctionnelle.The present invention relates to a clock system in which a contact occurs between two components involving sliding with or without impact. For example, the invention relates to an escapement comprising an escapement wheel cooperating mechanically with levees of an anchor in which a first functional zone comes into frictional contact with a second functional zone.

Etat de la techniqueState of the art

Les systèmes d'échappement sont difficiles à mettre au point car ils sont le compromis entre une inertie la plus faible possible et les meilleures propriétés tribologiques possibles, en particulier des levées et de la fourchette de l'ancre. La maitrise de la lubrification et la stabilité des huiles dans le temps sont des conditions essentielles au fonctionnement durable du système. Ainsi, il est difficile d'éviter les collements entre les différents éléments de l'échappement en raison de mauvaises conditions de lubrification, soit liées à la quantité et/ou à la dégradation du lubrifiant. Les mêmes difficultés peuvent affecter d'autres systèmes horlogers dans lequel a lieu un contact entre deux composants impliquant un glissement, comme par exemple la cheville de plateau et la fourchette de l'ancre, une came et un puiseur, un cliquet et une roue dentée, un sautoir et un disque, ou d'autres systèmes horlogers comprenant des bascules ou des leviers pivotants.The exhaust systems are difficult to develop because they are the compromise between the lowest possible inertia and the best tribological properties possible, especially the lifts and the range of the anchor. The mastery of lubrication and the stability of the oils over time are essential conditions for the sustainable operation of the system. Thus, it is difficult to avoid snags between the different elements of the exhaust due to poor lubrication conditions, either related to the amount and / or degradation of the lubricant. The same difficulties may affect other watch systems in which contact occurs between two components involving a sliding, such as for example the plate pin and the fork of the anchor, a cam and a bucket, a ratchet and a gear wheel , a jumper and a disc, or other watch systems comprising flip-flops or pivoting levers.

Le comportement tribologique des surfaces en contact de frottement entre les dents de la roue d'échappement et les levées de l'ancre peut être amélioré par l'ajout d'un revêtement extérieur. Par exemple, le document CH702799 décrit un système d'échappement dans lequel la roue d'échappement et l'ancre sont fabriqués en silicium partiellement revêtu d'une couche de type DLC.The tribological behavior of the surfaces in frictional contact between the teeth of the escape wheel and the lifts of the anchor can be improved by the addition of an outer covering. For example, the document CH702799 discloses an exhaust system in which the escape wheel and the anchor are made of silicon partially coated with a DLC type layer.

Le document EP2631721 décrit un système d'échappement dans lequel une portion de l'ancre et de la roue d'échappement, fabriqués en titane, est revêtue d'une couche de diamant afin d'améliorer les propriétés tribologiques.The document EP2631721 discloses an exhaust system in which a portion of the anchor and escape wheel, made of titanium, is coated with a diamond layer to improve the tribological properties.

Bref résumé de l'inventionBrief summary of the invention

L'invention porte sur l'utilisation de surfaces nanostructurées sur les zones fonctionnelles dans un système horloger dans lequel a lieu un contact (du moins à certains moments lors du fonctionnement du système) entre deux composants impliquant un glissement avec ou sans choc, pour répondre de manière optimale aux différents types de sollicitations tribologiques (chocs, frottement et usure) rencontrées pendant les phases de fonctionnement, tout en s'affranchissant des problématiques liées à l'utilisation d'un lubrifiant liquide. Pour une même surface fonctionnelle, la combinaison de plusieurs typologies de nanostructuration et de matériaux permet de répondre indépendamment et de manière optimale à chacune des sollicitations de la fonction du système.The invention relates to the use of nanostructured surfaces on functional areas in a watch system in which a contact occurs (at least at certain times during operation of the system) between two components involving sliding with or without impact, to meet optimally to the different types of tribological solicitations (shocks, friction and wear) encountered during the operating phases, while avoiding the problems associated with the use of a liquid lubricant. For the same functional surface, the combination of several typologies of nanostructuration and materials makes it possible to respond independently and optimally to each of the demands of the system function.

Dans une forme d'exécution, le système horloger est un échappement dont les zones fonctionnelles se trouvent sur les levées et/ou les dents des roues d'échappement. Dans ce cas, l'invention concerne également un échappement à ancre pour pièce d'horlogerie comportant une roue d'échappement et une ancre munie d'une levée d'entrée et d'une levée de sortie, chacune des levées étant arrangée de manière à coopérer avec des dents de la roue d'échappement; chacune des levées comprenant une première zone fonctionnelle et chacune des dents comprenant une seconde zone fonctionnelle venant en contact de frottement avec la première zone fonctionnelle, lorsque l'une des levées coopère avec l'une des dents; au moins l'une de la première zone fonctionnelle et de la seconde zone fonctionnelle comportant une structuration submicronique contrôlée.In one embodiment, the watch system is an exhaust whose functional areas are on the levies and / or the teeth of the escape wheels. In this case, the invention also relates to a timepiece anchor escapement comprising an escape wheel and an anchor provided with an entry lift and an exit lift, each of the lifts being arranged in a manner to cooperate with teeth of the escape wheel; each of the lifts comprising a first functional zone and each of the teeth comprising a second functional zone coming into frictional contact with the first functional zone, when one of the lifts cooperates with one of the teeth; at least one of the first functional zone and the second functional zone comprising a controlled submicron structuring.

Selon d'autres formes d'exécution, le système horloger peut comprendre:

  • la cheville de plateau et la fourchette de l'ancre dans un échappement,
  • une came et un puiseur,
  • un cliquet et une roue dentée,
  • un sautoir et un disque, ou
  • un disque d'embrayage et un ressort
  • un disque de freinage et un sabot
  • un autre type de système horloger comprenant une bascule ou un levier pivotant.
According to other embodiments, the watch system may comprise:
  • the anchor plate and the fork of the anchor in an exhaust,
  • a cam and a builder,
  • a ratchet and a gear wheel,
  • a jumper and a disc, or
  • a clutch disk and a spring
  • a brake disc and a shoe
  • another type of watch system comprising a rocker or a pivoting lever.

Cette solution présente notamment l'avantage par rapport à l'art antérieur d'obtenir un système horloger dans lequel a lieu un contact entre deux composants impliquant un glissement avec ou sans choc, et où les propriétés tribologiques, et donc les performances de fonctionnement, sont améliorées.This solution has the particular advantage over the prior art of obtaining a clock system in which there is a contact between two components involving slip with or without impact, and where the tribological properties, and therefore the performance of operation, are improved.

Brève description des figuresBrief description of the figures

Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • la figure 1 illustre un échappement pour une pièce d'horlogerie, comprenant une ancre et une roue d'échappement;
  • la figure 2 illustre le mouvement de l'ancre et de la roue d'échappement lors du fonctionnement de l'échappement, pendant une phase de dégagement (figure 2a), une phase d'impulsion (figure 2b), et une phase de chute (figure 2c), selon un mode de réalisation;
  • la figure 3 montre un détail d'une levée d'entrée de l'ancre et d'une dent de la roue d'échappement pendant la phase de dégagement, selon un mode de réalisation ;
  • les figures 4a et 4b montrent des surfaces nanostructurées exemplaires pour les zones fonctionnelles des composants d'un système horloger;
  • les figures 5a et 6b montrent des exemples de typologies de structurations submicronique contrôlées.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • the figure 1 illustrates an escapement for a timepiece, comprising an anchor and an escape wheel;
  • the figure 2 illustrates the movement of the anchor and the escape wheel during the operation of the exhaust during a disengagement phase ( figure 2a ), an impulse phase ( figure 2b ), and a fall phase ( Figure 2c ), according to one embodiment;
  • the figure 3 shows a detail of an entry lift of the anchor and a tooth of the escape wheel during the disengagement phase, according to one embodiment;
  • the Figures 4a and 4b show exemplary nanostructured surfaces for the functional areas of the components of a watch system;
  • the figures 5a and 6b show examples of typologies of controlled submicron structures.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

La figure 1 illustre un échappement 1 pour une pièce d'horlogerie. L'échappement 1 comprend notamment un mobile d'échappement, comprenant une roue d'échappement 3 montée solidaire d'un pignon d'échappement 30 pivotant, une ancre 2 montée pivotante sur une tige d'ancre 23, et un plateau 4 chassé sur un axe de balancier 40. L'ancre 2 comporte des bras 21 comprenant des levées 22 et 22'coopérant avec des dents 31 de la roue d'échappement 3.The figure 1 illustrates an exhaust 1 for a timepiece. The exhaust 1 comprises in particular an escape wheel, comprising an escape wheel 3 mounted integral with a pivoting exhaust pinion, an anchor 2 pivotally mounted on an anchor rod 23, and a plate 4 driven on a rocker shaft 40. The anchor 2 comprises arms 21 comprising lifts 22 and 22'cooperating with teeth 31 of the escape wheel 3.

Dans l'exemple illustré, le plateau 4 comprend un petit plateau 41 muni d'une encoche 42 et un grand plateau 43 muni d'une cheville (non représentée sur la figure 1). A l'extrémité opposée aux bras 21, la baguette 20 comporte un dard 24 et une fourchette 25. Le dard 24 est destiné à coopérer avec le petit plateau 41 afin d'empêcher les déplacements accidentels de la fourchette 25. La fourchette 25 peut être montée à l'aplomb du dard 24 et comprendre deux cornes 26 destinées à entrer en contact avec la cheville de grand plateau 43 afin, suivant la rotation de la cheville, d'entraîner l'ancre 2 en pivotement autour de sa tige 23 selon un mouvement de va-et-vient.In the example shown, the plate 4 comprises a small plate 41 provided with a notch 42 and a large plate 43 provided with an anchor (not shown in FIG. figure 1 ). At the end opposite the arms 21, the rod 20 comprises a dart 24 and a fork 25. The dart 24 is intended to cooperate with the small plate 41 to prevent accidental movements of the fork 25. The fork 25 may be mounted above the dart 24 and comprise two horns 26 intended to come into contact with the large plate pin 43, according to the rotation of the pin, to cause the anchor 2 to pivot about its rod 23 according to a movement back and forth.

La figure 2 illustre le mouvement de va-et-vient de l'ancre 2 de l'échappement 1 lors de son fonctionnement. En particulier, le mouvement de l'échappement se décompose, lors d'une alternance, en trois phases. La roue d'échappement 3 est d'abord bloquée par la levée d'entrée 22. Une des dents 31 de la roue d'échappement 3 est en contact avec un plan de repos 222 de la levée d'entrée 22.The figure 2 illustrates the movement back and forth of the anchor 2 of the exhaust 1 during its operation. In particular, the movement of the exhaust decomposes, during an alternation, into three phases. The escape wheel 3 is first blocked by the entry lift 22. One of the teeth 31 of the escape wheel 3 is in contact with a rest plane 222 of the entry lift 22.

Dans une phase de dégagement (figure 2a), le plan de repos 222 de la levée glisse sur un plan de repos 312 de la roue 3. La figure 3 montre un détail de la levée d'entrée 22 et d'une dent 31 pendant la phase de dégagement. En particulier, la figure 3a montre le plan de repos 222 de la levée d'entrée 22 glissant le long d'un plan de repos de dent 312.In a phase of release ( figure 2a ), the rest plane 222 of the lift slides on a rest plane 312 of the wheel 3. The figure 3 shows a detail of the entry lift 22 and a tooth 31 during the clearance. In particular, figure 3a shows the rest plane 222 of the entry lift 22 sliding along a tooth rest plane 312.

Dans une phase d'impulsion (figure 2b), un plan d'impulsion 311 de la dent 31 est en contact avec le plan d'impulsion 221 de la levée d'entrée 22. Durant cette phase, le couple de la roue d'échappement 3 (dû à la rotation de la roue d'échappement 3) est transmis à l'ancre 2 par l'intermédiaire de la levée 22. De façon analogue, la levée d'entrée 22 "monte", sous l'effort qui résulte de la rotation de l'ancre 2, pendant que la levée de sortie 22' descend. La figure 3b montre un détail de la levée d'entrée 22 et d'une dent 31 où le plan d'impulsion 221 de la levée d'entrée 22 glisse le long du plan d'impulsion de la dent 311. L'impulsion se termine lorsque le plan d'impulsion 221 de la levée d'entrée 22 n'est plus en contact avec la dent 31. La roue d'échappement 3 est ainsi libérée.In an impulse phase ( figure 2b ), a pulse plane 311 of the tooth 31 is in contact with the pulse plane 221 of the input lift 22. During this phase, the torque of the escape wheel 3 (due to the rotation of the escape wheel 3) is transmitted to the anchor 2 via the lift 22. Similarly, the input lift 22 "rises" under the force that results from the rotation of the anchor 2 , while the output lift 22 'goes down. The figure 3b shows a detail of the input lift 22 and a tooth 31 where the pulse plane 221 of the input lift 22 slides along the pulse plane of the tooth 311. The pulse ends when the pulse plane 221 of the input lift 22 is no longer in contact with the tooth 31. The escape wheel 3 is thus released.

Dans une phase de chute (figure 2c), la dent 31 n'est plus en contact avec la levée d'entrée 22 et la roue d'échappement 3 peut alors tourner. La roue d'échappement 3 tourne jusqu'à ce qu'un plan de repos 312 d'une des dents 31 entre en contact avec le plan de repos 222 de la levée de sortie 22'.In a fall phase ( Figure 2c ), the tooth 31 is no longer in contact with the inlet lift 22 and the escape wheel 3 can then rotate. The escape wheel 3 rotates until a rest plane 312 of one of the teeth 31 comes into contact with the rest plane 222 of the output lift 22 '.

Une première zone fonctionnelle 200 peut comprendre une portion de la levée d'entrée 22 et de sortie 22' qui est en contact de frottement avec l'une des dents 31 de la roue d'échappement 3, lorsque l'échappement 1 est en mouvement. De façon similaire, une seconde zone fonctionnelle 300 peut comprendre une portion de la dent 31 en contact de frottement avec l'une des levée 22, 22' de l'ancre 2, lorsque l'échappement 1 est en mouvement.A first functional zone 200 may comprise a portion of the inlet 22 and outlet lift 22 'which is in frictional contact with one of the teeth 31 of the escape wheel 3 when the escapement 1 is in motion. . Similarly, a second functional zone 300 may comprise a portion of the tooth 31 in frictional contact with one of the lift 22, 22 'of the anchor 2, when the escapement 1 is in motion.

Dans un mode de réalisation, au moins l'une de la première zone fonctionnelle 200 et de la seconde zone fonctionnelle 300 comporte une structuration submicronique contrôlée comme illustrée dans les figures 4a et 4b. Par l'expression "structuration submicronique contrôlée" on entend une structuration fabriquée volontairement à la surface de la première et/ou seconde zone fonctionnelle 200, 300 par des moyens de structuration, par exemple par procédés lithographiques, ou autres.In one embodiment, at least one of the first functional zone 200 and the second functional zone 300 comprises a controlled submicron structuring as illustrated in FIGS. Figures 4a and 4b . By the expression "controlled submicron structuring" is meant a structuring voluntarily made on the surface of the first and / or second functional zone 200, 300 by structuring means, for example by lithographic methods, or the like.

Selon l'invention, la structuration de la surface est spécifiquement contrôlée contrairement aux structures correspondant à la rugosité intrinsèque d'une surface dans son état naturel ou après une étape de fabrication (par exemple la gravure) pour la mise en forme de l'âme du matériau. Pour cela des structures sont formées sur la surface par une étape de mise en forme de la surface qui permet un contrôle de leur géométrie (hauteur, largeur, angle d'inclinaison, forme générale), de leur distribution et de leur densité. Ces structures peuvent avoir différentes polarités vis-vis de la surface, c'est-à-dire qu'elles peuvent être en forme de pilier/colline (polarité positive) ou en forme de trou/vallée (polarité négative).According to the invention, the structuring of the surface is specifically controlled unlike the structures corresponding to the intrinsic roughness of a surface in its natural state or after a manufacturing step (for example etching) for shaping the core of the material. For this, structures are formed on the surface by a shaping step of the surface that allows a control of their geometry (height, width, angle of inclination, general shape), their distribution and their density. These structures may have different polarities with respect to the surface, that is, they may be pillar / hill (positive polarity) or hole / valley (negative polarity).

De préférence, la densité des structures formées sur la surface structurée varient d'entre 15%-80% de la surface, et de manière plus privilégiée entre 20% à 60%. La distribution de ces structures peut être régulière ou irrégulière selon l'application. Les structures formées ont généralement des dimensions dans la plage de 1 à 1000 nm, de préférence entre 10 à 800 nm. Aussi, les bords des structures formées peuvent avoir des formes arrondies ou plus définies.Preferably, the density of the structures formed on the structured surface varies from 15% -80% of the surface, and more preferably from 20% to 60%. The distribution of these structures may be regular or irregular depending on the application. The structures formed generally have dimensions in the range of 1 to 1000 nm, preferably 10 to 800 nm. Also, the edges of the formed structures may have rounded or more defined shapes.

Selon un exemple, les surfaces sont structurées submicroniquement sous forme de piliers (figure 4a) et/ou de trous (figure 4b) qui ont une largeur de 300 à 600 nm et une hauteur de 200 à 600 nm.In one example, the surfaces are sub-micronically structured as pillars ( figure 4a ) and / or holes ( figure 4b ) which have a width of 300 to 600 nm and a height of 200 to 600 nm.

Dans les exemples illustrés dans les figures 2 et 3, la première zone fonctionnelle 200 comporte le plan d'impulsion de levée 221 coopérant avec le plan d'impulsion de dent 311 d'une des dents 31 entre les phases de dégagement et de chute de l'échappement 1.In the examples illustrated in the figures 2 and 3 , the first functional zone 200 comprises the lifting pulse plane 221 cooperating with the tooth pulse plane 311 of one of the teeth 31 between the phases of disengagement and fall of the escapement 1.

La première zone fonctionnelle 200 peut également comporter le plan de repos de levée 222 coopérant avec un plan de repos 312 d'une des dents 31 lors d'une phase de dégagement et de chute de l'échappement 1.The first functional zone 200 may also comprise the lifting rest plane 222 cooperating with a rest plane 312 of one of the teeth 31 during a release and fall phase of the escapement 1.

De même, la seconde zone fonctionnelle 300 comporte les plans d'impulsion de dent 311 des dents 31 coopérant avec le plan d'impulsion de levée 221, entre les phases de dégagement et de chute de l'échappement 1.Likewise, the second functional zone 300 comprises the tooth impulse planes 311 of the teeth 31 cooperating with the lifting impulse plane 221, between the phases of disengagement and fall of the escapement 1.

La seconde zone fonctionnelle 300 peut également comporter le plan de repos de dent 312 des dents 31 coopérant avec le plan de repos de levée 222, lors d'une phase de dégagement et de chute de l'échappement 1.The second functional zone 300 may also comprise the tooth rest plane 312 of the teeth 31 cooperating with the lifting rest plane 222, during a phase of disengagement and fall of the escapement 1.

Dans un mode de réalisation, la structuration submicronique contrôlée comporte une typologie sensiblement différente dans le plan d'impulsion de levée 221 que celle dans le plan de repos de levée 222.In one embodiment, the controlled submicron structuring comprises a substantially different typology in the raising pulse plane 221 than that in the raising rest plane 222.

Dans un autre mode de réalisation, la première zone fonctionnelle 200 et la seconde zone fonctionnelle 300 comportent une structuration submicronique contrôlée; et la structuration submicronique contrôlée comporte une typologie sensiblement différente dans le plan de repos de dent 312 que celle dans le plan d'impulsion de dent 311.In another embodiment, the first functional zone 200 and the second functional zone 300 comprise controlled submicron structuring; and the controlled submicron patterning has a substantially different typology in the tooth rest plane 312 than that in the tooth pulse plane 311.

La structuration submicronique contrôlée sur les zones fonctionnelles des levées 22, 22' et/ou des dents 31 permet de répondre de manière optimale aux différents types de sollicitations tribologiques (chocs, frottement et usure) rencontrées pendant les phases de l'échappement (dégagement, impulsion, chute).Controlled submicron structuring on the functional zones of the lifts 22, 22 'and / or the teeth 31 makes it possible to respond optimally to the various types of tribological stress (shocks, friction and wear) encountered during the phases of the escape (release, impulse, fall).

La combinaison de plusieurs typologies sur la première et/ou seconde zone fonctionnelle 200, 300 permet de répondre indépendamment et de manière optimale à chacune des sollicitations de la fonction de l'échappement. Par exemple, dans le cas de la phase de dégagement et de chute, l'usure liée aux chocs entre le plan de repos 312 de chacune des dents 31 de la roue d'échappement 3 et le plan de repos 222 de chacune des levées 22 peut être minimisée par un choix de la typologie de la structuration submicronique contrôlée.The combination of several typologies on the first and / or second functional zone 200, 300 makes it possible to respond independently and optimally to each of the demands of the function of the escapement. For example, in the case of the disengagement and fall phase, the shock-related wear between the rest plane 312 of each of the teeth 31 of the escape wheel 3 and the rest plane 222 of each of the lifts 22 can be minimized by a choice of the typology of controlled submicron structuring.

Toujours dans la phase de dégagement, la résistance aux chocs peut également être contrôlé par le choix des matériaux selon des indicateurs de performance tel que K1c 3/ (E2 (1-2ν)3) où K1c désigne la ténacité du matériau, ν son coefficient de Poisson et E son module de Young, par la limite de résistance à la rupture Rm. Plusieurs matériaux céramiques, appartenant par exemple aux familles des carbures ou des nitrures tels que WC, BN, SiC, ou encore MgO, ZrO dopé Y ou Mg et Sialon (Si3Al3O3N5) présentant des valeurs de Rm supérieures à 200 MPa associés à des indicateurs de performance supérieurs à 0.01 [Pa.m3/2] sont par exemple adaptés à ce type de contact. Le choix de la typologie de la structuration submicronique de surface et en volume du matériau peut être fait de manière à absorber l'énergie du choc sans causer de dommage aux zones d'impact et zones adjacentes.Still in the disengagement phase, the impact resistance can also be controlled by the choice of materials according to performance indicators such as K 1c 3 / (E 2 (1-2ν) 3 ) where K 1c denotes the toughness of the material, ν its Poisson's ratio and E its Young's modulus, by the breaking strength limit R m . Several ceramic materials, belonging for example to the families of carbides or nitrides such as WC, BN, SiC, or MgO, ZrO doped Y or Mg and Sialon (Si 3 Al 3 O 3 N 5 ) having Rm values greater than 200 MPa associated with performance indicators greater than 0.01 [Pa.m 3/2 ] are for example adapted to this type of contact. The choice of the typology of submicron surface and volume structuring of the material can be done in such a way as to absorb the impact energy without causing damage to the impact zones and adjacent areas.

Dans le cas de la phase d'impulsion, les aspects définis pour la phase de dégagement restent valables pour la phase d'impulsion. A ces critères s'ajoutent de nouveaux indices de performance quantifiant le niveau de résistance à l'usure par chargement et frottements tangentiels, tel que le ratio H3/E2 où H est la dureté du matériau, le ratio Re 3/E2 où Re est la limite élastique, de même que par la typologie de la structuration.In the case of the pulse phase, the aspects defined for the clearance phase remain valid for the pulse phase. To these criteria are added new performance indices quantifying the level of resistance to wear by loading and tangential friction, such as the ratio H 3 / E 2 where H is the hardness of the material, the ratio R e 3 / E 2 where R e is the elastic limit, as well as the typology of structuring.

Selon que l'on se situe dans la zone de choc de la surface 200, 300 ou dans sa zone de glissement, la typologie de la structuration submicronique contrôlée, et/ou le matériau, pourront être variés afin de s'adapter au changement de sollicitations mécaniques. Les caractéristiques dimensionnelles de la typologie de la structuration submicronique contrôlée telles que décrites ci-dessus pour la phase de dégagement s'applique également pour la phase d'impulsion.Depending on whether one is in the impact zone of the surface 200, 300 or in its sliding zone, the typology of the controlled submicron structuring, and / or the material, may be varied in order to adapt to the change in mechanical stresses. The dimensional characteristics of the typology of controlled submicron structuring as described above for the clearance phase also apply for the pulse phase.

Le choix de la typologie de la structuration submicronique contrôlée et du matériau est guidé par l'obtention, pour la première et seconde zone fonctionnelle 200, 300, d'un coefficient de frottement faible et constant, des propriétés antiadhésives, d'un taux d'usure maitrisé à l'aide d'un flux de troisième corps adéquat contrôlé par le piégeages des débris et leur accumulation dans des zones concaves adjacentes de la structuration submicronique contrôlée, de l'absence de phénomène « stick and slip » lié à une réduction de la différence entre les coefficients de frottement statiques et dynamiques dans les conditions du contact.The choice of the typology of the controlled submicron structuring and the material is guided by obtaining, for the first and second functional zone 200, 300, a low and constant coefficient of friction, nonadhesive properties, a rate of controlled wear using a suitable third body stream controlled by trapping debris and accumulating it in adjacent concave areas of structuring submicron controlled, the absence of "stick and slip" phenomenon related to a reduction of the difference between the static and dynamic friction coefficients in the conditions of contact.

Toutes ou parties des propriétés tribologiques décrites ci-dessus peuvent avantageusement être obtenues en formant des structures submicroniques avec des motifs biomimétiques. Parmi ceux-ci, on retrouve par exemple le motif de la feuille de lotus (effet lotus), le motif des écailles ventrales du Python regius (H A Abdel-Aal and M El Mansori 2013 Surf. Topogr.: Metrol. Prop. 1 015001) ou les écailles du poisson des sables Scincus Scincus (Rechenberg I., El Khyeri A. R., The Sandfish of the Sahara. A model for friction and wear réduction. Department of Bionics and Evolution Techniques, Technical University of Berlin. Green Tribology: Biomimetics, Energy Conversion and Sustainability, M. Nosonovsky, B. Bhushan, Ed. Springer, 2012). Dans le dernier cas cité, la réduction du coefficient de frottement est vraisemblablement obtenue par un effet de répulsion électrostatique entre la surface texturée et son antagoniste. L'usure quant à elle est réduite par la fonctionnalisation de surface de ce motif à l'aide de glycoprotéines et/ou de carbohydrates.All or parts of the tribological properties described above can advantageously be obtained by forming submicron structures with biomimetic patterns. These include, for example, the lotus leaf motif (lotus effect), the pattern of the ventral scales of the Python regius (HA Abdel-Aal and M El Mansori 2013 Surf, Topogr .: Metrol Prop. 1 015001 ) or Scincus Scincus fish scales (Rechenberg I., El Khyeri AR, The Sandfish of the Sahara, A model for friction and wear reduction, Department of Bionics and Evolution Techniques, Technical University of Berlin, Green Tribology: Biomimetics, Energy Conversion and Sustainability, M. Nosonovsky, B. Bhushan, Ed Springer, 2012). In the last case cited, the reduction of the coefficient of friction is probably obtained by an electrostatic repulsion effect between the textured surface and its antagonist. As for the wear, it is reduced by the surface functionalization of this motif using glycoproteins and / or carbohydrates.

Au moins l'une de la première zone fonctionnelle 200 et de la seconde zone fonctionnelle 300 peut comprendre des choix de matériaux et structurations différentes, voire une absence de structuration submicronique contrôlée. D'autre part, la structuration submicronique contrôlée peut comprendre une ou une combinaison de plusieurs typologies différentes et de matériaux différents de manière à répondre indépendamment et de manière optimale à chacune des sollicitations de la fonction de l'échappement.At least one of the first functional zone 200 and the second functional zone 300 may comprise different material and structure choices, or even an absence of controlled submicron structuring. On the other hand, the controlled submicron structuring may comprise one or a combination of several different typologies and different materials so as to respond independently and optimally to each of the stresses of the function of the exhaust.

Dans un mode de réalisation, la première zone fonctionnelle 200 comprend un revêtement 61 formé sur la levée 22, 22' de l'ancre 2 (voir figures 3a et 3b), en particulier, sur le plan d'impulsion de levée 221 et le plan de repos de levée 222. La seconde zone fonctionnelle 300 peut également comprendre un revêtement 62 formé sur la dent 31, c'est-à-dire, sur le plan de repos de dent 312 et le plan d'impulsion de dent 311. Le revêtement 61, 62 peut être fabriqué dans le ou les matériaux choisis et comporte la structuration submicronique contrôlée. Le revêtement 61 formé sur la levée 22, 22' peut en outre être différent (matériau, structuration, etc.) que le revêtement 62 formé sur la dent 31.In one embodiment, the first functional zone 200 comprises a coating 61 formed on the lift 22, 22 'of the anchor 2 (see FIG. Figures 3a and 3b ), in particular, on the lift pulse plane 221 and the lift rest plane 222. The second functional zone 300 may also comprise a coating 62 formed on the tooth 31, i.e., on the tooth rest plane 312 and the tooth pulse plane 311. The coating 61, 62 may be fabricated in the selected material (s) and includes controlled submicron structuring. The coating 61 formed on the lift 22, 22 'may also be different (material, structuring, etc.) than the coating 62 formed on the tooth 31.

Dans ce cas, on peut imaginer que le corps de l'ancre 2, et/ou des levées 22, 22', et de la roue 3, et/ou des dents 31, soient fabriqués dans un matériau qui diffère de celui ou ceux composant le revêtement 61, 62. Le ou les matériaux composant le revêtement 61, 62 peuvent donc être choisis également de manière à faciliter la réalisation de la structuration submicronique contrôlée. Une telle configuration permet une plus grande souplesse pour la réalisation de la structuration submicronique contrôlée. On peut effectivement combiner un matériau ayant des propriétés mécaniques optimales pour la fabrication de l'ancre, et/ou des levées 22, 22', avec un ou des matériaux de revêtement, optimaux pour les propriétés tribologiques et pour l'usinage de la structuration submicronique contrôlée. A titre d'exemple et de manière non exhaustive, le ou les revêtements 61, 62 peuvent être obtenus par différents procédés de déposition physique et/ou chimique, par traitement chimique et/ou thermique, et être choisis parmi les familles de couches comprenant entre autres des variantes d'oxydes, de nitrures, de carbures ou formes allotropiques du carbone.In this case, it is conceivable that the body of the anchor 2, and / or the lifts 22, 22 ', and the wheel 3, and / or the teeth 31, are made of a material which differs from that or those The coating material (s) 61, 62 may therefore also be chosen to facilitate the realization of controlled submicron structuring. Such a configuration allows greater flexibility for carrying out the controlled submicron structuring. It is indeed possible to combine a material having optimum mechanical properties for the manufacture of the anchor, and / or lifts 22, 22 ', with one or more coating materials, which are optimal for the tribological properties and for the machining of the structuring. submicron controlled. By way of example and in a non-exhaustive manner, the coating (s) 61, 62 can be obtained by various physical and / or chemical deposition processes, by chemical and / or thermal treatment, and can be chosen from families of layers comprising between other variants of oxides, nitrides, carbides or allotropic forms of carbon.

Dans un mode de réalisation, la structuration submicronique contrôlée comprend les modifications de la topographie de la surface (relief nanométrique), de sa composition chimique, de sa structure chimique (composition et position des atomes dans la maille), indépendamment ou simultanément. Elle ne comprend toutefois pas le contrôle de la texturation de surface, c'est-à-dire l'orientation des plans cristallins du matériau dans une direction préférentielle déterminée comme décrit dans WO2013/011032A1 . A titre d'exemple, une transformation de phase de l'alumine γ (symétrie cubique) à l'alumine α (symétrie hexagonale) peut être mise en oeuvre par échauffement local à l'aide de moyens connus par l'homme de métier dans le but de réduire le coefficient de frottement et le taux d'usure. Cette transformation de phase peut être réalisée sans nécessairement engendrer une modification de la topographie sans pour autant sortir du cadre de la présente invention.In one embodiment, the controlled submicron structuring comprises changes in the surface topography (nanometric relief), its chemical composition, its chemical structure (composition and position of the atoms in the mesh), independently or simultaneously. However, it does not include the control of the surface texturing, that is to say the orientation of the crystalline planes of the material in a preferential direction determined as described in WO2013 / 011032A1 . For example, a phase transformation of alumina γ (cubic symmetry) to α alumina (hexagonal symmetry) can be implemented by local heating using means known to those skilled in the art. the purpose of reducing the coefficient of friction and the rate of wear. This phase transformation can be carried out without necessarily produce a modification of the topography without departing from the scope of the present invention.

Dans un mode de réalisation, la structuration submicronique contrôlée est fabriquée de manière contrôlée par une gravure sélective de la surface exposée par la voie de la chimie humide ou sèche au travers d'un masque de gravure ou épargne. A titre d'exemple et de manière non exhaustive, ceux-ci comprendront entre autres les procédés de gravure plasma de type RIE ou DRIE utilisant des gaz fluorés (typiquement CF4 ou SF6) pour les substrats en silicium et autres matériaux dérivés du silicium. D'autres solutions de gravure connues par l'homme de métier sont utilisables selon la nature des matériaux à graver. Le masque de gravure peut, à titre d'exemple, être obtenu par le transfert d'une figure interférentielle ou holographique sur une résine photosensible (( I.B. Divliansky, A. Shishido, I. Khoo, T.S. Mayer, D. Pena, S. Nishimura, C.D., Keating, T.E. Mallouk, Appl. Phys. Lett., 79 (2001), 3392 ), ou par lithographie par faisceau d'électron (E-beam), ou par l'auto-organisation de copolymères à bloc (block copolymer lithography).In one embodiment, controlled submicron structuring is controlled in a controlled manner by selectively etching the exposed surface through wet or dry chemistry through an etching or sparing mask. By way of example and in a non-exhaustive manner, these will include, inter alia, plasma etching processes of the RIE or DRIE type using fluorinated gases (typically CF 4 or SF 6 ) for substrates made of silicon and other materials derived from silicon. . Other etching solutions known to those skilled in the art can be used depending on the nature of the materials to be etched. The etching mask may, by way of example, be obtained by transferring an interference or holographic figure on a photoresist (( IB Divliansky, A. Shishido, I. Khoo, TS Mayer, D. Pena, S. Nishimura, CD, Keating, TE Mallouk, Appl. Phys. Lett., 79 (2001), 3392 ), or by electron beam lithography (E-beam), or by self-organization of block copolymer lithography.

De manière alternative, une méthode de lithographie colloïdale telle que décrite dans la référence: " Alternative Masks for Nanolithography", D. Ingert*, The Open Physical Chemistry Journal, 2007, 1, 10-17 , peut être avantageusement utilisée par la fabrication de la structuration submicronique contrôlée. La méthode de lithographie colloïdale permet d'immobiliser des particules de taille contrôlée sur les surfaces à graver, par technique de « spin-coating » ou par technique de Langmuir-Blodgett. Le contrôle du diamètre des particules ainsi que la concentration de ces particules dans les solutions colloïdales permet d'ajuster les caractéristiques dimensionnelles de la typologie de la structuration submicronique contrôlée, et notamment la densité et la taille des structures. La méthode de lithographie colloïdale est plus économique que la plupart des autres méthodes de lithographie.Alternatively, a colloidal lithography method as described in the reference: " Alternative Masks for Nanolithography, D. Ingert, The Open Physical Chemistry Journal, 2007, 1, 10-17 can be advantageously used in the manufacture of controlled submicron structuring. The colloidal lithography method makes it possible to immobilize particles of controlled size on the surfaces to be etched, by spin-coating technique or by Langmuir-Blodgett technique. The control of the particle diameter as well as the concentration of these particles in the colloidal solutions makes it possible to adjust the dimensional characteristics of the typology of the controlled submicron structuring, and in particular the density and the size of the structures. The colloidal lithography method is more economical than most other lithography methods.

Dans un autre mode de réalisation, la structuration submicronique contrôlée est usinée par une méthode DLIP (Direct Laser Interference Patterning). Le principe fait usage de l'interférence entre deux ou plusieurs faisceaux laser comme dans le cas de la lithographie holographique, en irradiant cette fois ci directement le matériau à usiner. Le processus de nanostructuration repose sur des mécanismes de nature thermique photo, photo-physique ou photochimiques, selon le type de matériau, et sur l'absorption de l'énergie du laser de manière non linéaire. La méthode DLIP permet la production de structures périodiques corrélées et organisées.In another embodiment, the controlled submicron structuring is machined by a DLIP method (Direct Laser Interference Patterning). The principle makes use of the interference between two or more laser beams as in the case of holographic lithography, this time irradiating directly the material to be machined. The nanostructuring process relies on photo thermal, photo-physical or photochemical mechanisms, depending on the type of material, and on the non-linear absorption of laser energy. The DLIP method allows the production of periodic correlated and organized structures.

Encore dans un autre mode de réalisation, la structuration submicronique contrôlée est usinée à l'aide d'une technique de réplication, comme par exemple les techniques de « nano-imprinting » ou « soft lithography ».In yet another embodiment, controlled submicron structuring is machined using a replication technique, such as "nano-imprinting" or "soft lithography" techniques.

Encore dans un autre mode de réalisation, la structuration submicronique contrôlée est usinée à l'aide d'un procédé d'anodisation applicable à titre d'exemple et de manière non exhaustive à l'aluminium, au titane ou au silicium.In yet another embodiment, the controlled submicron structuring is machined using an anodizing method applicable by way of example and non-exhaustively to aluminum, titanium or silicon.

Encore dans un autre mode de réalisation, la structuration submicronique contrôlée est réalisée par déposition de couches tribologiques sur des nanostructures préalablement usinés, par exemple par l'une des méthodes ci-dessus.In yet another embodiment, the controlled submicron structuring is performed by deposition of tribological layers on previously machined nanostructures, for example by one of the methods above.

Encore dans un autre mode de réalisation, la structuration submicronique contrôlée est réalisée avec des surfaces hétérogènes obtenues, par exemple, par immobilisation de lubrifiants solides dans des structures préalablement usinées, par exemple par l'une des méthodes ci-dessus. Des exemples de lubrifiants solides peuvent comprendre le PTFE, des liquides ioniques, etc.In yet another embodiment, controlled submicron structuring is performed with heterogeneous surfaces obtained, for example, by immobilizing solid lubricants in previously machined structures, for example by one of the above methods. Examples of solid lubricants may include PTFE, ionic liquids, etc.

Encore dans un autre mode de réalisation, la structuration submicronique contrôlée est réalisée avec des surfaces hétérogènes obtenues par immobilisation de débris d'usure dans des structures préalablement usinés, par exemple par l'une des méthodes ci-dessus. Les débris d'usure contribuent à la lubrification solide.In yet another embodiment, the controlled submicron structuring is carried out with heterogeneous surfaces obtained by immobilizing wear debris in structures previously machined, for example by one of the methods above. Wear debris contributes to solid lubrication.

Les figures 5a et 5b montrent des exemples de typologies de structurations submicronique contrôlées. En particulier, la figure 5a montre différent exemples de typologies de structures usinées comprenant, de haut en bas, une structuration triangulaire avec une fréquence constante; avec un espacement qui augmente entre chaque structure triangulaire; comportant les structures triangulaires et des structures pointues; ou encore comportant des structures hybrides comprenant une structure crénelée et des structures pointues. La figure 5b montre d'autres exemples de typologies hybrides comprenant une combinaison de typologies ainsi qu'une combinaison de matériaux.The Figures 5a and 5b show examples of typologies of controlled submicron structures. In particular, figure 5a shows different examples of typologies of machined structures comprising, from top to bottom, a triangular structuring with a constant frequency; with increasing spacing between each triangular structure; featuring triangular structures and pointed structures; or having hybrid structures comprising a crenellated structure and pointed structures. The figure 5b shows other examples of hybrid typologies including a combination of typologies as well as a combination of materials.

La structuration submicronique contrôlée de l'invention procure des avantages énergétiques, chronométriques et économiques. Par exemple, l'amélioration des performances de fonctionnement de l'échappement 1 est obtenue en choisissant une typologie de la structuration submicronique contrôlée et la composition des matériaux, par exemple pour chacune des phases phase de la fonction d'échappement, soit le dégagement, l'impulsion et la chute. En particulier, un avantage est la stabilité des performances chronométriques dans le temps, acquises par la stabilité du coefficient de frottement pour chaque phase de l'échappement. La table 1 rapporte une valeur et la déviation standard du coefficient de frottement mesuré dans des conditions initiales et après 10'000 cycles de frottement pour des échantillons comportant une surface non structurée, avec une structure comportant des piliers d'un diamètre de 700 nm et une densité de 21 %, avec une structure comportant des trous ayant un diamètre de 300 nm et une densité de 55%, et avec une structure comportant des trous ayant un diamètre de 700 nm et une densité de 21 %. La table rapporte également les valeurs de taux d'usure moyen de la contre-pièce non structurée. Un autre avantage est l'augmentation de la résistance à l'usure procurant une augmentation de la durée de vie de la fonction de l'échappement ou autre système horloger, ainsi que des fonctions adjacentes par la réduction du risque de contamination par les débris d'usure.Controlled submicron structuring of the invention provides energetic, chronometric and economical benefits. For example, the improvement of the operating performance of the escapement 1 is obtained by choosing a typology of the controlled submicron structuring and the composition of the materials, for example for each of the phase phases of the exhaust function, namely the clearance, the impulse and the fall. In particular, one advantage is the stability of the chronometric performances over time, acquired by the stability of the coefficient of friction for each phase of the escapement. Table 1 reports a value and the standard deviation of the coefficient of friction measured under initial conditions and after 10,000 friction cycles for samples having an unstructured surface, with a structure having pillars with a diameter of 700 nm and a density of 21%, with a structure having holes having a diameter of 300 nm and a density of 55%, and with a structure having holes having a diameter of 700 nm and a density of 21%. The table also reports the average wear rate values of the unstructured counterpart. Another advantage is the increase in wear resistance providing an increase in the service life of the exhaust or other watch system, as well as adjacent functions by reducing the risk of contamination by wear debris.

L'utilisation de la structuration submicronique contrôlée en conditions de lubrification sèche peut permettre de s'affranchir des contraintes liées à la lubrification humide, en particulier de la nécessité de révisions périodiques de la fonction. En outre, les défauts de parallélisme ou autres défaut géométriques peuvent être compensés pendant la phase d'impulsion par l'utilisation de la structuration submicronique contrôlée à usure ou déformation contrôlée conduisant à une accommodation des surfaces et réduisant ainsi les pressions réelles de contact. Table 1 Coefficient de frottement Taux d'usure moyen contre-pièce non structurée [10E-16.m2/N] Conditions initiales Après 10'000 cycles de frottement Echantillons (n:3) Valeur moyenne Déviation standard Valeur moyenne Déviation standard surface non structuré 0.43 0.12 0.81 0.41 4.2 piliers Ø 700 nm, densité 21 % 0.34 0.1 0.32 0.05 0.03 trous Ø 300 nm, densité 55% 0.37 0.03 0.37 0.01 0.10 trous Ø 700 nm, densité 21 % 0.37 0.04 0.43 0.01 0.11 The use of controlled submicron structuring in dry lubrication conditions can overcome the constraints of wet lubrication, in particular the need for periodic revisions of the function. In addition, parallelism defects or other geometrical defects can be compensated during the pulse phase by the use of controlled submicron structuring with controlled wear or deformation leading to accommodation of the surfaces and thereby reducing the actual contact pressures. Table 1 Coefficient of friction Unstructured counter-part wear rate [10E-16.m2 / N] Initial conditions After 10'000 friction cycles Samples (n: 3) Average value Standard deviation Average value Standard deviation unstructured surface 0.43 0.12 0.81 0.41 4.2 pillars Ø 700 nm, density 21% 0.34 0.1 0.32 0.05 0.03 holes Ø 300 nm, density 55% 0.37 0.03 0.37 0.01 0.10 holes Ø 700 nm, density 21% 0.37 0.04 0.43 0.01 0.11

L'utilisation de la structuration submicronique contrôlée en conditions de lubrification humide peut permettre une réduction du coefficient de frottement et l'allongement de la durée de vie des contacts : cet effet est lié à une action des cavités comme autant de petits réservoirs constituant une série de micro-patins à marche responsables d'une augmentation locale de la portance et du cisaillement du lubrifiant. Ce lubrifiant est en effet confiné par la distribution de pression à l'intérieur de la microcavité. Ce confinement conduit localement à la formation d'une phase quasi-solide qui est susceptible de provoquer une déformation élastique et de générer, dans le sens du glissement, une surépaisseur localisée dans la zone de haute pression du contact. La littérature a démontré l'intérêt de ce type d'approche pour le maintien en conditions opérationnelles de contacts travaillant notamment sous fortes pressions ( «Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring» N. YASUMARU, K. MIYAZAKI, J. KIUCHI,. Applied Surface Science, vol. 254, N° 18, p. 2364-2368, 2008 . «Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings - An explanation, Surface and Coatings Technology,» vol. 201,N°17, pp. 4119-4129, 2006 ). La combinaison de surfaces structurées aux huiles traditionnelles permet d'exalter le pouvoir lubrifiant de celles-ci. Cette approche permet d'envisager la lubrification de contacts jusqu'à présent non-lubrifié, comme dans le cas de la tige d'ancre.The use of controlled submicron structuring under wet lubrication conditions can lead to a reduction of the coefficient of friction and the prolongation of the lifetime of the contacts: this effect is linked to an action of the cavities like so many small reservoirs constituting a series running micro-pads responsible for a local increase in lift and lubricant shear. This lubricant is in fact confined by the pressure distribution inside the microcavity. This confinement leads locally to the formation of a quasi-solid phase which is likely to cause elastic deformation and generate, in the direction of sliding, a localized extra thickness in the high pressure area of the contact. The literature has demonstrated the interest of this type of approach for the maintenance in operational conditions of contacts working in particular under high pressure ( "Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring" N. YASUMARU, K. MIYAZAKI, J. KIUCHI ,. Applied Surface Science, Vol. 254, No. 18, p. 2364-2368, 2008 . "Improvement of the tribological behavior of PVD nanostratified TiN / CrN coatings - An explanation, Surface and Coatings Technology," vol. 201, No. 17, pp. 4119-4129, 2006 ). The combination of structured surfaces with traditional oils enhances the lubricating power of these. This approach allows to consider lubrication of contacts so far unlubricated, as in the case of the anchor rod.

Il va de soi que la présente invention n'est pas limitée au mode de réalisation qui vient d'être décrit et que diverses modifications et variantes simples peuvent être envisagées par l'homme de métier sans sortir du cadre de la présente invention.It goes without saying that the present invention is not limited to the embodiment which has just been described and that various modifications and simple variants can be envisaged by those skilled in the art without departing from the scope of the present invention.

Dans une variante, le ou les zones fonctionnelles peuvent être structurées et par la suite recouvertes par une couche mince (par exemple une couche déposée par le procédé ALD (atomic layer déposition) sans affecter l'effet de la structuration submicronique contrôlée en sous.In one variant, the functional zone or zones may be structured and subsequently covered by a thin layer (for example a layer deposited by the ALD (atomic layer deposition) method without affecting the effect of sub-micron controlled sub-patterning.

Par exemple, une structuration submicronique contrôlée de l'invention comprenant une ou une combinaison de typologies ainsi qu'une combinaison de matériaux, peut être appliquée à d'autres composants de systèmes horlogers subissant un contact de frottement. Notamment, et de façon non exhaustive, la structuration submicronique contrôlée de l'invention peut être appliquée à la cheville de plateau et la fourchette de l'ancre. La structuration submicronique contrôlée peut également être appliquée à des zones fonctionnelles en contact de frottement dans des échappements autres que l'échappement à ancre, dans des systèmes de cames et de puiseurs, dans des systèmes de cliquets et roue dentés, dans des systèmes de sautoirs et disques, dans des systèmes de bascules et de leviers, dans des systèmes d'embrayage ou de freinage, ou tout autre systèmes horlogers lorsque ceux-ci comprennent une ou des zones fonctionnelles en contact de frottement impliquant un glissement avec ou sans choc.For example, a controlled submicron patterning of the invention comprising one or a combination of typologies as well as a combination of materials, can be applied to other watch system components undergoing frictional contact. Notably, and in a non-exhaustive manner, the controlled submicron patterning of the invention can be applied to the plateau peg and the anchor fork. Controlled submicron structuring can also be applied to functional areas in frictional contact in escapements other than anchor escapement, in cam and auger systems, in ratchet and gear systems, in jumper systems and discs, in lever and lever systems, in clutch or brake systems, or any other timekeeping systems when these comprise one or more functional zones in frictional contact involving sliding with or without shock.

Numéros de référence employés sur les figuresReference numbers used in the figures

11
échappementexhaust
22
ancreanchor
2020
baguettebaguette
200200
seconde zone fonctionnellesecond functional area
2121
brasarms
2222
levée d'entréeentrance lift
22'22 '
levée de sortieexit lift
221221
plan d'impulsion de levéelift pulse plan
222222
plan de repos de levéelifting rest plan
2323
tige d'ancreanchor rod
2424
dardsting
2525
fourchettefork
2626
cornehorn
33
roue d'échappementescape wheel
3030
pignon d'échappementexhaust pinion
300300
première zone fonctionnellefirst functional area
3131
dents de la roue d'échappementteeth of the escape wheel
311311
plan d'impulsion de denttooth impulse plane
312312
plan de repos de denttooth rest plane
44
plateautray
4040
axe de balancierbalance shaft
4141
petit plateausmall tray
4242
encochenick
4343
grand plateaubig plateau
6161
revêtement des levéescovering of levees
6262
revêtement de la roue d'échappementexhaust wheel liner

Claims (16)

Système horloger (1) comprenant un premier composant avec au moins une première zone fonctionnelle (200) et un deuxième composant avec au moins une seconde zone fonctionnelle (300), la première zone fonctionnelle (200) venant en contact de frottement avec la seconde zone fonctionnelle (300) lors du fonctionnement du système horloger, ce contact impliquant un glissement avec ou sans choc;
caractérisé en ce que
au moins l'une de la première zone fonctionnelle (200) et de la seconde zone fonctionnelle (300) comporte une structuration submicronique fabriquée par un procédé de nanostructuration contrôlé.
Watchmaking system (1) comprising a first component with at least a first functional zone (200) and a second component with at least a second functional zone (300), the first functional zone (200) coming into frictional contact with the second zone functional (300) during the operation of the watch system, this contact involving sliding with or without impact;
characterized in that
at least one of the first functional zone (200) and the second functional zone (300) comprises submicron structuring fabricated by a controlled nanostructuration method.
Système horloger (1) selon la revendication 1,
dans lequel la première zone fonctionnelle (200) et de la seconde zone fonctionnelle (300) comportent chacune une structuration submicronique contrôlée.
Clock system (1) according to claim 1,
wherein the first functional zone (200) and the second functional zone (300) each comprise controlled submicron structuring.
Système horloger (1) selon la revendication 1 ou 2,
dans lequel le système horloger comprend un échappement pour pièce d'horlogerie comportant une roue d'échappement (3), une levée d'entrée (22) et une levée de sortie (22'), chacune des levées (22, 22') étant arrangée de manière à coopérer avec des dents (31) de la roue d'échappement (3); la première zone fonctionnelle (200) se trouvant sur chacune des levées (22, 22') et la seconde zone fonctionnelle (300) se trouvant sur chacune des dents (31).
Clock system (1) according to claim 1 or 2,
in which the watch system comprises a timepiece escapement comprising an escape wheel (3), an entry lift (22) and an exit lift (22 '), each of the lifts (22, 22') being arranged to cooperate with teeth (31) of the escape wheel (3); the first functional zone (200) on each of the lifts (22, 22 ') and the second functional zone (300) on each of the teeth (31).
Système horloger (1) selon la revendication 3,
dans lequel la première zone fonctionnelle (200) se trouve sur: un plan de repos de levée (222) coopérant avec un plan de repos de dent (311) d'une des dents (31) lors d'une phase de dégagement et d'une phase de chute de l'échappement; et un plan d'impulsion de levée (221) coopérant avec un plan d'impulsion de dent (311) d'une des dents (31) lors d'une phase d'impulsion de l'échappement; et dans lequel la structuration submicronique contrôlée comporte une typologie sensiblement différente dans le plan d'impulsion de levée (221) que celle dans le plan de repos de levée (222).
Clock system (1) according to claim 3,
wherein the first functional area (200) is on: a lift rest plane (222) cooperating with a tooth rest plane (311) of one of the teeth (31) during a disengagement phase and a fall phase of the exhaust; and a lift pulse plane (221) cooperating with a tooth pulse plane (311) of one of the teeth (31) during a pulse phase of the exhaust; and wherein the controlled submicron structuring has a substantially different typology in the lift pulse plane (221) than that in the lift-off plane (222).
Système horloger (1) selon la revendication 3 ou 4,
dans lequel la première zone fonctionnelle (200) et de la seconde zone fonctionnelle (300) comportent une structuration submicronique contrôlée; et
dans lequel la structuration submicronique contrôlée comporte une typologie sensiblement différente dans le plan d'impulsion de dent (311) que celle dans le plan de repos de dent (312).
Clock system (1) according to claim 3 or 4,
wherein the first functional zone (200) and the second functional zone (300) comprise controlled submicron structuring; and
wherein the controlled submicron patterning has a substantially different typology in the tooth pulse plane (311) than that in the tooth rest plane (312).
Système horloger (1) selon l'une des revendications 1 à 5,
dans lequel la typologie de la structuration submicronique contrôlée est caractérisée par l'un ou une combinaison des paramètres suivants: une densité de structuration, une polarité, un facteur de forme, et une distribution de la structuration.
Clock system (1) according to one of claims 1 to 5,
wherein the typology of controlled submicron structuring is characterized by one or a combination of the following parameters: a structuring density, a polarity, a form factor, and a structuring distribution.
Système horloger (1) selon la revendication 6,
dans lequel la typologie de la structuration submicronique contrôlée est caractérisée par des structures d'une polarité positive ou négative ayant une largeur de 1 à 1000 nm, de préférence de 10 à 800 nm, et encore de préférence de 300 à 600 nm.
Clock system (1) according to claim 6,
wherein the typology of controlled submicron structuring is characterized by positive or negative polarity structures having a width of 1 to 1000 nm, preferably 10 to 800 nm, and more preferably 300 to 600 nm.
Système horloger (1) selon la revendication 6 ou 7,
dans lequel la typologie de la structuration submicronique contrôlée est caractérisée par des structures d'une polarité positive ou négative ayant une hauteur de 1 à 1000 nm, de préférence de 10 à 800 nm, et encore de préférence de 200 à 600 nm.
Clock system (1) according to claim 6 or 7,
wherein the typology of controlled submicron structuring is characterized by positive or negative polarity structures having a height of 1 to 1000 nm, preferably 10 to 800 nm, and more preferably 200 to 600 nm.
Système horloger (1) selon l'une des revendications 1 à 8,
dans lequel la structuration submicronique contrôlée comprend une pluralité de typologies.
Clock system (1) according to one of claims 1 to 8,
wherein the controlled submicron structuring comprises a plurality of typologies.
Système horloger (1) selon l'une des revendications 1 à 9,
dans lequel la première zone fonctionnelle (200) et la seconde zone fonctionnelle (300) sont formées dans des matériaux sensiblement différents.
Clock system (1) according to one of claims 1 to 9,
wherein the first functional zone (200) and the second functional zone (300) are formed in substantially different materials.
Système horloger (1) selon l'une des revendications 1 à 10,
dans lequel la première zone fonctionnelle (200) et/ou la seconde zone fonctionnelle (300) comprennent une pluralité de matériaux sensiblement différents.
Clock system (1) according to one of claims 1 to 10,
wherein the first functional area (200) and / or the second functional area (300) comprises a plurality of substantially different materials.
Système horloger (1) selon l'une des revendications 1 ou 11,
dans lequel la première zone fonctionnelle (200) et la seconde zone fonctionnelle (300) comprennent un revêtement (61) formé sur le premier composant et le deuxième composant, respectivement, le revêtement comprenant la structuration submicronique contrôlée.
Clock system (1) according to one of claims 1 or 11,
wherein the first functional zone (200) and the second functional zone (300) comprise a coating (61) formed on the first component and the second component, respectively, the coating comprising the controlled submicron structuring.
Pièce d'horlogerie comprenant un système horloger (1)
caractérisé selon l'une des revendications 1 ou 12.
Timepiece comprising a watch system (1)
characterized according to one of claims 1 or 12.
Utilisation de la structuration submicronique contrôlée dans un système horloger (1) selon l'une des revendications 1 ou 12, en conditions de lubrification sèche ou de lubrification humide.Use of controlled submicron structuring in a watch system (1) according to one of claims 1 or 12, under dry lubrication or wet lubrication conditions. Procédé de fabrication du système horloger (1) selon l'une des revendications 1 ou 12, comprenant: la modification de la topographie de la surface de la première zone fonctionnelle (200) et/ou de la seconde zone fonctionnelle (300) et/ou de sa composition chimique, de sa structure chimique. A method of manufacturing the watch system (1) according to one of claims 1 or 12, comprising: modifying the topography of the surface of the first functional zone (200) and / or the second functional zone (300) and / or its chemical composition and chemical structure. Le procédé de la revendication 15,
dans lequel ladite modification de la topographie est réalisée par au moins l'une des méthodes comprenant: une gravure sélective de la surface exposée, une lithographie colloïdale, une méthode DLIP, une technique de réplication, un procédé d'anodisation, déposition de couches tribologiques sur des nanostructures préalablement usinés, ou immobilisation de lubrifiants solides ou de débris dans des structures préalablement usinées.
The process of claim 15,
wherein said modification of the topography is performed by at least one of the methods comprising: selective etching of the exposed surface, colloidal lithography, DLIP method, replication technique, anodizing method, deposition of tribological layers on pre-machined nanostructures, or immobilization of solid lubricants or debris in previously machined structures.
EP15187489.8A 2014-09-29 2015-09-29 Clock system with improved tribological properties Active EP3002637B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH14772014 2014-09-29

Publications (2)

Publication Number Publication Date
EP3002637A1 true EP3002637A1 (en) 2016-04-06
EP3002637B1 EP3002637B1 (en) 2018-11-28

Family

ID=51655524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15187489.8A Active EP3002637B1 (en) 2014-09-29 2015-09-29 Clock system with improved tribological properties

Country Status (1)

Country Link
EP (1) EP3002637B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170146955A1 (en) * 2015-11-19 2017-05-25 Nivarox-Far S.A. Timepiece component with improved tribology
EP3608727A1 (en) * 2018-08-09 2020-02-12 Nivarox-FAR S.A. Component, in particular for a timepiece, with a surface topology and manufacturing method thereof
EP3742237A1 (en) * 2019-05-23 2020-11-25 Nivarox-FAR S.A. Component, in particular for a timepiece, with a surface topology and manufacturing method thereof
EP3761123A1 (en) * 2019-07-05 2021-01-06 Association Suisse pour la Recherche Horlogère Micromechanical component allowing containment of a lubricating substance
EP3819713A1 (en) * 2019-11-05 2021-05-12 Patek Philippe SA Genève Pallet, wheel, needle or bridge for a clock piece
US20210149343A1 (en) * 2019-11-19 2021-05-20 Seiko Epson Corporation Watch component and watch

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528857A (en) * 1975-07-10 1977-01-24 Seiko Instr & Electronics Ltd Ankle
JP2001254193A (en) * 2000-01-07 2001-09-18 Citizen Watch Co Ltd Method of manufacturing electrocast parts
JP2005290429A (en) * 2004-03-31 2005-10-20 Seiko Instruments Inc Method for producing electroformed component using low melting point metal
CH699110A1 (en) * 2008-07-10 2010-01-15 Swatch Group Res & Dev Ltd Mechanical component i.e. escape wheel, fabricating method for timepiece, involves assembling attachment on component such that component is ready to be mounted without requiring to touch component, and liberating component from substrate
CH702799A2 (en) 2010-03-04 2011-09-15 Montres Breguet Sa Timepiece, has movement comprising balance-hairspring type resonator, and lever-wheel type escapement system, where escapement system is partly open-worked to reduce inertia of system, and balance oscillates specific vibrations per hour
EP2453038A1 (en) * 2010-11-16 2012-05-16 The Swatch Group Research and Development Ltd. Method for coating micromechanical parts with dual diamond coating
WO2013011032A1 (en) 2011-07-21 2013-01-24 The Swatch Group Research And Development Ltd Micromechanical functional assembly
EP2631721A1 (en) 2012-02-23 2013-08-28 Richemont International S.A. Diamond-covered titanium clock components

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107434B1 (en) 2008-04-02 2013-09-18 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Mechanical timer
JP2010261906A (en) 2009-05-11 2010-11-18 Seiko Instruments Inc Timepiece wheel and timepiece
EP2432917B1 (en) 2009-05-18 2018-10-17 The Swatch Group Research and Development Ltd. Method for coating micromechanical parts with high tribological performances for application in mechanical systems
EP2440684B1 (en) 2009-06-09 2018-10-31 The Swatch Group Research and Development Ltd. Method for coating micromechanical components of a micromechanical system, in particular a watch and related micromechanical coated component
DE102009046647B4 (en) 2009-11-12 2015-05-21 Lothar Schmidt Clock
EP2511229B1 (en) 2011-04-12 2017-03-08 GFD Gesellschaft für Diamantprodukte mbH Micromechanical component with reinforced flanks
EP2942147B1 (en) 2014-05-08 2018-11-21 Nivarox-FAR S.A. Clock escapement mechanism without lubrication

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528857A (en) * 1975-07-10 1977-01-24 Seiko Instr & Electronics Ltd Ankle
JP2001254193A (en) * 2000-01-07 2001-09-18 Citizen Watch Co Ltd Method of manufacturing electrocast parts
JP2005290429A (en) * 2004-03-31 2005-10-20 Seiko Instruments Inc Method for producing electroformed component using low melting point metal
CH699110A1 (en) * 2008-07-10 2010-01-15 Swatch Group Res & Dev Ltd Mechanical component i.e. escape wheel, fabricating method for timepiece, involves assembling attachment on component such that component is ready to be mounted without requiring to touch component, and liberating component from substrate
CH702799A2 (en) 2010-03-04 2011-09-15 Montres Breguet Sa Timepiece, has movement comprising balance-hairspring type resonator, and lever-wheel type escapement system, where escapement system is partly open-worked to reduce inertia of system, and balance oscillates specific vibrations per hour
EP2453038A1 (en) * 2010-11-16 2012-05-16 The Swatch Group Research and Development Ltd. Method for coating micromechanical parts with dual diamond coating
WO2013011032A1 (en) 2011-07-21 2013-01-24 The Swatch Group Research And Development Ltd Micromechanical functional assembly
EP2631721A1 (en) 2012-02-23 2013-08-28 Richemont International S.A. Diamond-covered titanium clock components

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
D. INGERT: "Alternative Masks for Nanolithography", THE OPEN PHYSICAL CHEMISTRY JOURNAL, vol. 1, 2007, pages 10 - 17
I.B. DIVLIANSKY; A. SHISHIDO; I. KHOO; T.S. MAYER; D. PENA; S. NISHIMURA; C.D., KEATING; T.E. MALLOUK, APPL. PHYS. LETT., vol. 79, 2001, pages 3392
IMPROVEMENT OF THE TRIBOLOGICAL BEHAVIOUR OF PVD NANOSTRATIFIED TIN/CRN COATINGS — AN EXPLANATION, SURFACE AND COATINGS TECHNOLOGY, vol. 201, no. 17, 2006, pages 4119 - 4129
N. YASUMARU; K. MIYAZAKI; J. KIUCHI: "Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring", APPLIED SURFACE SCIENCE, vol. 254, no. 18, 2008, pages 2364 - 2368, XP022449365, DOI: doi:10.1016/j.apsusc.2007.09.037
RECHENBERG I.; EL KHYERI A. R.: "Green Tribology: Biomimetics, Energy Conversion and Sustainability", 2012, SPRINGER, article "The Sandfish of the Sahara. A model for friction and wear réduction. Department of Bionics and Evolution Techniques, Technical University of Berlin"
SCHADE A ET AL: "Tribological behaviour of <100> and <111> fibre textured CVD diamond films under dry planar sliding contact", DIAMOND AND RELATED MATERIALS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 15, no. 10, 6 March 2006 (2006-03-06), pages 1682 - 1688, XP028000726, ISSN: 0925-9635, [retrieved on 20061001], DOI: 10.1016/J.DIAMOND.2006.02.008 *
SHUJI KIYOHARA ET AL: "Microfabrication of diamond films by localized electron beam chemical vapour deposition", SEMICONDUCTOR SCIENCE AND TECHNOLOGY, IOP PUBLISHING LTD, GB, vol. 17, no. 10, 19 September 2002 (2002-09-19), pages 1096 - 1100, XP002632082, ISSN: 0268-1242, [retrieved on 20020919], DOI: 10.1088/0268-1242/17/10/311 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170146955A1 (en) * 2015-11-19 2017-05-25 Nivarox-Far S.A. Timepiece component with improved tribology
US10981783B2 (en) 2018-08-09 2021-04-20 Nivarox-Far S.A. Component especially for horology with surface topology and method for manufacturing the same
EP3608727A1 (en) * 2018-08-09 2020-02-12 Nivarox-FAR S.A. Component, in particular for a timepiece, with a surface topology and manufacturing method thereof
EP3742237A1 (en) * 2019-05-23 2020-11-25 Nivarox-FAR S.A. Component, in particular for a timepiece, with a surface topology and manufacturing method thereof
US11586145B2 (en) 2019-05-23 2023-02-21 Nivarox-Far S.A. Component especially for horology with surface topology and method for manufacturing the same
JP2022538344A (en) * 2019-07-05 2022-09-01 アソシアシオン・スイス・プール・ラ・ルシェルシュ・オルロジェル Micromechanical parts containing lubricating substances
CN114026504A (en) * 2019-07-05 2022-02-08 瑞士钟表研究协会 Micromechanical component allowing confinement of a lubricating substance
WO2021005423A1 (en) 2019-07-05 2021-01-14 Association Suisse Pour La Recherche Horlogere Micromechanical component for containing a lubricant substance
CN114026504B (en) * 2019-07-05 2022-11-11 瑞士钟表研究协会 Micromechanical component allowing confinement of a lubricating substance
EP3761123A1 (en) * 2019-07-05 2021-01-06 Association Suisse pour la Recherche Horlogère Micromechanical component allowing containment of a lubricating substance
JP7316391B2 (en) 2019-07-05 2023-07-27 アソシアシオン・スイス・プール・ラ・ルシェルシュ・オルロジェル Micromechanical parts containing lubricating substances
EP3819713A1 (en) * 2019-11-05 2021-05-12 Patek Philippe SA Genève Pallet, wheel, needle or bridge for a clock piece
US20210149343A1 (en) * 2019-11-19 2021-05-20 Seiko Epson Corporation Watch component and watch
US11868089B2 (en) * 2019-11-19 2024-01-09 Seiko Epson Corporation Watch component and watch

Also Published As

Publication number Publication date
EP3002637B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
EP3002637B1 (en) Clock system with improved tribological properties
EP1904901B1 (en) Reinforced micromechanical part
EP2097208B1 (en) Friction piece in a lubricated medium, working at contact pressures higher than 200 mpa
EP3158105B1 (en) Method for coating the nose of the cams of a camshaft with dlc, camshaft obtained in this way and facility for implementing said method
EP3390272B1 (en) Method of manufacturing a composite part for watches
CH714952B1 (en) Watchmaking component, its method of manufacture and application of this method.
EP2410387A9 (en) Balance wheel with inertia adjustment without insert
WO2009083488A1 (en) Method for obtaining a metal microstructure and microstructure obtained according to said method
EP3141520B1 (en) Method for manufacturing a micromechanical timepiece part and said micromechanical timepiece part
EP4018268A1 (en) Method for manufacturing a timepiece bearing
EP3002635B1 (en) Method for producing a spring element for a clock movement or another precision instrument
EP3394682A1 (en) Timepiece escapement device and operating method of such a device
CH715419B1 (en) Bearing for a timepiece and method for manufacturing such a bearing.
EP2472340B1 (en) Timepiece component and method for manufacturing same
EP2631721A1 (en) Diamond-covered titanium clock components
EP3141522B1 (en) Micromechanical timepiece part comprising a lubricated surface and method for manufacturing such a micromechanical timepiece part
CH711501B1 (en) Method for manufacturing a micromechanical timepiece and said micromechanical timepiece.
FR3072688B1 (en) PROCESS FOR PRODUCING A MICROMECHANICAL SILICON PIECE
EP3548972B1 (en) Method for optimising the tribological properties of a timepiece component
WO2021005423A1 (en) Micromechanical component for containing a lubricant substance
CH713671A2 (en) Lubricated watch component.
CH714550A1 (en) A method of lubricating a watch exhaust.
CH719999A2 (en) Spiral of a balance-spring assembly of a mechanical watch movement
CH707562B1 (en) Method for manufacturing a one-piece micromechanical part comprising at least two distinct levels.
CH717270B1 (en) Timepiece component, for example an escape wheel.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20161005

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170413

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: P&TS SA, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1070951

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015020310

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181128

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1070951

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190228

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190328

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190301

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602015020310

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ICB INGENIEURS CONSEILS EN BREVETS SA

Effective date: 20190828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190929

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190929

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150929

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181128

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 9

Ref country code: DE

Payment date: 20230920

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 9