EP2949936A1 - Pompe à membrane à commande hydraulique comprenant un chemin de dégazage dédié - Google Patents

Pompe à membrane à commande hydraulique comprenant un chemin de dégazage dédié Download PDF

Info

Publication number
EP2949936A1
EP2949936A1 EP15168751.4A EP15168751A EP2949936A1 EP 2949936 A1 EP2949936 A1 EP 2949936A1 EP 15168751 A EP15168751 A EP 15168751A EP 2949936 A1 EP2949936 A1 EP 2949936A1
Authority
EP
European Patent Office
Prior art keywords
channel
valve
pump
path
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15168751.4A
Other languages
German (de)
English (en)
Inventor
Yoann Chevallier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Milton Roy Europe SA
Original Assignee
Milton Roy Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milton Roy Europe SA filed Critical Milton Roy Europe SA
Publication of EP2949936A1 publication Critical patent/EP2949936A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/06Venting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1037Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections

Definitions

  • Hydraulically controlled diaphragm pumps usually comprise a dosing head comprising a first part having a pumping chamber and a second part in which is formed a hydraulic chamber which is filled with a hydraulic control fluid and which is separated from the chamber pumping by a membrane; and a metering body comprising drive means in translation of a piston of the pump in the hydraulic chamber along a given axis of translation.
  • Said valve is typically arranged in the vicinity of an uppermost point of the hydraulic chamber in the working position of the pump and comprises a hollow body in communication with the hydraulic chamber via a calibrated valve, the valve opening, when the pressure in the hydraulic chamber exceeds a threshold pressure, to evacuate a portion of the fluid from the hydraulic chamber to the hollow body of the valve.
  • the valve may allow degassing of the air bubbles present in the hydraulic chamber.
  • the degassing is limited due in particular to the reduced sections of the channels connecting the hydraulic chamber to the hollow body of the valve. Bubbles may therefore in some cases remain stuck in the hydraulic chamber or in the channels connecting said chamber to the hollow body of the valve. This is for example the case for pumps in which the metering body is filled with air which causes a slight air intake into the hydraulic chamber at each piston translation movement and therefore a relatively large concentration of bubbles in the hydraulic chamber.
  • An object of the invention is to provide a hydraulically controlled diaphragm pump capable of allowing continuous and significant degassing of the gases present in the hydraulic control fluid.
  • the pump comprises a dedicated degassing path placed closer to the border between the metering body and the second part.
  • the air passing from the metering body to the second part with each translational movement of the piston is easily discharged to the hollow body of the valve. This allows a continuous and important degassing of the pump.
  • the pump is thus very powerful and has consistent performance over time.
  • the invention is particularly suitable for low flow pumps since they are more sensitive to the presence of air in their hydraulic chamber.
  • the hydraulic control diaphragm pump according to the invention is here a pump low flow and medium or high pressure.
  • the pump comprises a metering head 1 comprising a first part 2 which defines with a membrane 3 of the pump a pumping chamber 4.
  • the pumping chamber 4 is connected to the outside by a suction channel 5 and a channel 6, which are equipped with unidirectional valves contained in valve boxes.
  • the membrane 3 is here a thick membrane.
  • the membrane 3 is elastically deformable from its rest form (the one shown) which corresponds to its state at the end of the suction stroke of the pump.
  • the stiffness of this membrane 3 is such that the suction power of the pump is defined by the capacity of the membrane 3 to return by itself to its rest position.
  • Such a membrane is well known from the prior art, as for example in the application FR 2 934 332 of the plaintiff, and will not be further detailed here.
  • the metering head 1 further comprises a second portion 7 in which a hydraulic chamber 8 is formed.
  • the face of the membrane 3 opposite to that facing the pumping chamber 4 is called the rear face and is exposed to the pressure of the hydraulic fluid. which prevails in the hydraulic chamber 8.
  • Channels for passage 23 of the hydraulic fluid of the hydraulic chamber 8 for reaching the rear face of the membrane 3 are also provided in the second part 7.
  • the second portion 7 further comprises a liner 9 extending in the second portion 7 along a horizontal axis X so that a first end 9a of the liner 9 faces the membrane 3 and a second end 9b of the The liner 9 opens out of the second portion 7.
  • the liner 9 has a local constriction 10 of its outer section defining with the second portion 7 a dewatering chamber 11.
  • the second portion 7 further comprises a drain channel 12 connecting said emptying chamber 11 to the outside of the pump.
  • the drain channel 12 extends vertically in the second part 7 of the emptying chamber 11 at the lower end of the second part 7.
  • the pump further comprises a piston 13 which is received in the liner 9 and which extends along said axis X so that a first end 13a of the piston opens into the hydraulic chamber 8 and a second end 13b of the piston 13 opens out of the shirt 9.
  • the piston 13 is mechanically driven by translation drive means comprising a motor and a transmission, known in themselves and which are not represented here in full, so that the piston 13 can perform a translational movement in the hydraulic chamber 8 along said axis X.
  • translation drive means comprising a motor and a transmission, known in themselves and which are not represented here in full, so that the piston 13 can perform a translational movement in the hydraulic chamber 8 along said axis X.
  • the drive means in translation of the piston 13 are arranged in a metering body 14 of the pump. More precisely here the metering body 14 comprises a cavity 15 adjacent to the second part 7 and in which the second end 13b of the piston 13 is connected to the drive means in translation, said cavity 15 being in the open air.
  • the second part 7 is here secured to the metering body 14 via the second end 9b of the liner 9 thus defining the boundary between the second portion 7 and the metering body 14.
  • the metering body 14 being filled with air while the second part 7 is filled with a hydraulic control fluid, it is necessary to ensure a seal of the second part 7.
  • the pump thus comprises a seal 16 arranged on the piston 13 at a junction between the second portion 7 and the metering body 14.
  • a housing is formed in the second end 9b of the liner 9 and the seal 16 is arranged at the interior of said housing.
  • the seal 16 is here a lip seal.
  • the pump thus has little hydraulic control fluid.
  • the pump further comprises a pressure regulating valve 17 in the hydraulic chamber 8.
  • the valve 17 is here arranged on the second part 7 in the vicinity of an uppermost point of the hydraulic chamber 8 in the working position of the pump.
  • the valve 17 extends vertically and comprises a lower portion 18 resting in a housing 19 formed in the second portion 7 above the liner 9 and an upper portion 20 resting on the lower portion 18 and extending in part only in said housing 19.
  • a lower end of the upper portion 20 here has an internal thread 21 for attachment to the lower portion 18 and an external thread 22 for attachment to the second portion 7.
  • the valve 17 further comprises a discharge valve 24 which is tared.
  • the valve 24 is here arranged in the valve at the boundary between the lower portion and the upper portion.
  • the valve 24 delimits with the upper portion 20 a hollow body 25.
  • the valve 24 is configured to be passing in the direction from the hydraulic chamber 8 to the hollow body 25 if the pressure in the hydraulic chamber 8 exceeds a threshold value adjustable by setting the calibration of the valve 24, for example by means of a screw.
  • the valve 17 further comprises a main channel 26 formed in the lower portion 18 to open under the valve 24 and connected to the hydraulic chamber 8 by a conduit 27 formed in the second part.
  • the hydraulic control fluid contained in the hydraulic chamber 8 can be discharged from said hydraulic chamber 8 via the main channel 26 and the discharge valve 24 to open into the hollow body 25.
  • the valve 17 thus reduces excessive pressure in the hydraulic chamber 8.
  • the hydraulic control fluid contained in the hydraulic chamber 8 sees its volume vary especially during an exhaust of the fluid from the hydraulic chamber 8 by the valve 24 or because of the air bubbles that appear during the movements piston 13 in the hydraulic chamber 8 or because of the variation of the adjustable stroke of the pump which varies the stroke of the piston 13 and thus the displacement of the pump.
  • the valve 17 comprises means for compensating the leakage of the hydraulic control fluid in the hydraulic chamber 8.
  • said means comprise a feedback path which connects the hollow body 25 to the main channel 26 bypassing the valve 24.
  • the feedback path here comprises a first feedback channel 28 extending vertically to through the lower portion 18 between the hollow body 25 and a replenishment volume 29 which is delimited by the low end of the lower portion 18 on the one hand and the corresponding housing 19 of the second part 7 on the other.
  • Said refeeding path further includes a second channel 30 extending vertically from said replenishment volume 29 to the main channel 26.
  • the second channel 30 further comprises two ball valves 31 in series and in series, unidirectional, free, the direction of these two valves 31 being that going from the hollow body 25 to the hydraulic chamber 8.
  • a stroke towards the rear of the piston 13 allows the elastic return of the membrane 3 in its rest position. If this position is reached before the piston 13 has reached its rear dead point, there is a depression in the hydraulic chamber 8 which results in the suction of a volume of the hydraulic fluid withdrawn from the hollow body 25 through the two Valves in series 31.
  • the valve 17 thus makes it possible to regulate also a too low pressure in the hydraulic chamber 8.
  • the valve 17 further comprises a purge passage 32 arranged in a bypass of the valve 24 which allows a continuous purge of the air bubbles possibly present in the hydraulic chamber 8, the air passing through the main channel 26 and said passage purge 32 to result in the hollow body. Part of the air bubbles is thus evacuated via the main channel 26.
  • the main channel 26 is arranged above the hydraulic chamber 8 so as to take advantage of the natural accumulation of air at the high point of said hydraulic chamber 8 to facilitate the purge of the air bubbles contained in the hydraulic chamber 8 in the valve 17.
  • the pump further comprises degassing means dedicated to the hydraulic control fluid.
  • the dedicated degassing means comprise a degassing path extending into the second part 7.
  • the degassing path here comprises a first channel 33 extending transversely in the jacket 9 so as to open at its lower end at a junction zone between the piston and the seal and to open at its upper end in the chamber 11.
  • the first channel 33 is thus arranged closer to the air inlet zone from the metering body 14 to collect said air.
  • the first channel 33 thus extends here in the direction of the valve 17 and transversely to the axis X.
  • the degassing path comprises a second channel 34 extending transversely in the second portion 7 so as to open at its lower end in the emptying chamber 11 and at its upper end in the open air which facilitates its machining.
  • the upper end of the second channel 34 is however closed by a plug 35.
  • the second channel 34 is arranged so as to open at its lower end in the emptying chamber 11 in the upper part of the emptying chamber 11 substantially at the same level as the upper end of the first channel 33.
  • the first channel 33 and the second channel 34 are thus connected via the emptying chamber 11.
  • the second channel 34 is arranged so that its lower end opens out. above the high end of the first channel 33 which ensures a better connection between the two channels and thus a more effective degassing.
  • the second channel 34 thus extends here in the opposite direction of the valve 17 transversely to the axis X.
  • the degassing path further comprises a third channel 36 extending transversely in the second portion 7 so as to open at its lower end in the second channel 34 at the upper end of said second channel 34 and at its upper end in the housing 19 receiving the valve 17.
  • the third channel 36 extends here in the direction of the valve 17 and transversely to the axis X.
  • the degassing path further comprises a fourth channel 37 extending through one of the walls of the upper portion 20 of the valve so as to be connected at a first end to the upper end of the third channel 36 and to open at its second end in the hollow body 25.
  • the fourth channel 37 extends here substantially horizontally.
  • the lower end of the first channel 33 forms the first end of the degassing path and is located at the lowest point of said path while the second end of the fourth channel 37 forms the second end of the degassing path and is located at the the highest of the said path.
  • the air coming from the metering body 14 is purged continuously by the degassing path, the air successively passing through the first channel 33, the second channel 34, the third channel 36 and the fourth channel 37
  • the degassing path removes the air directly at the seal 16 so that little or no air from the metering body 14 reaches the hydraulic chamber 8. This avoids degrading the performance of the pump.
  • the degassing path opening into the upper portion 20 of the valve 17 little or no air is present in the feed path which ensures that no bubble or almost is sent into the hydraulic chamber 8 when a phase of compensation of leakage of the hydraulic fluid in the hydraulic chamber 8.
  • the dedicated degassing means thus allow a very effective and continuous degassing of the air present in the hydraulic fluid.
  • the degassing path is here shaped so as to convey the air into the valve 17 by opening into the valve 17 substantially above the valve 24.
  • the degassing path is shaped so that the volume of hydraulic fluid between the fourth channel 37 (opening into the valve 17) and the replenishment volume 29 is greater than a maximum displacement of the pump.
  • the different channels of the degassing path have a larger section than the channels connecting the hydraulic chamber 8 to the valve 17 and the main channel 26.
  • the section of said channels degassing path can prevent bubbles from remain trapped inside said degassing path, the bubbles to be evacuated being more numerous in the degassing path.
  • the second channel 34 of the degassing path further has a larger section than the first channel 33, the third channel 36 and the fourth channel 37 of the degassing path.
  • the second channel 34 of the degassing path typically has a section 2 to 4 times larger than that of the first channel 33 of the degassing path. This effectively discharges the bubbles from the first channel 33 to the third channel 36.
  • the hydraulic control fluid is present only in the second part 7.
  • the fluid is thus present and under pressure in the hydraulic chamber 8, the passage channels 23, the conduit 27 connecting the hydraulic chamber 8 to the valve 17 and the main channel 26.
  • the fluid is also present at a pressure less than or equal to the atmospheric pressure in the remainder of the valve 17 (hollow body 25 and feed path), in the degassing path, in the drain chamber 11 and in the drain channel 12.
  • Most of the air to be degassed is at the junction between the second part 7 and the metering body. 14 and is evacuated by the degassing path and is in a minority (or even nonexistent) in the hydraulic chamber 8 and is preferably evacuated by the valve 17 and in particular the main channel 26 and the purge passage 32.
  • the pump according to the invention thus allows an effective and continuous degassing of the air present in the hydraulic fluid and avoids the presence of too much air bubbles in the hydraulic chamber 8.
  • the flow rate of the pump according to the invention the invention thus proves to be regular, precise and stable.
  • the pump may have another shape than that described.
  • a connection channel 140 of the emptying chamber 111 to the feed path is formed in the second Part 107.
  • said connection channel 140 opens at the bottom of the feed path here in the feed volume 129. This does not unduly affect the good degassing by the degassing path because of the optimized arrangement between the first channel 133 and the second channel 134 of said degassing path which ensures that the air bubbles rise preferentially through the second channel 134 rather than by the connection channel 140.
  • the degassing path may also have any other shape than indicated: said path may thus comprise a different number of channels and said channels may be oriented differently.
  • said second channel may extend vertically or extend transversely towards the valve.
  • the first channel and the second channel can be connected to each other without the intermediary of the emptying chamber.
  • the dedicated degassing means may include several degassing paths.
  • valve may have any other shape than that indicated.
  • the valve may thus be a valve as described in the application EP 2 394 056 of the present applicant.
  • the membrane may be different from what has been described.
  • the membrane may thus be a composite membrane comprising a thick inner wall surrounded by two thin metal walls as described in the applications FR 2,670,537 and FR 2 934 332 of the plaintiff.
  • the pump may further comprise a device for detecting rupture of the membrane.
  • the valve may comprise any other known control hydraulic fluid degassing device than the purge passage described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

L'invention concerne une pompe comportant une tête de dosage (1) comprenant une première partie (2) et une deuxième partie (7) dans laquelle est ménagée une chambre hydraulique (8) qui est remplie d'un fluide et un corps de dosage (14) comprenant des moyens d'entraînement en translation d'un piston (13) de la pompe dans la chambre hydraulique, une soupape (17) de régularisation de pression dans la chambre hydraulique et au moins un chemin de dégazage (33, 34, 36, 37) s'étendant dans la deuxième partie de sorte qu'une première extrémité du chemin formant le point le plus bas dudit chemin débouche au niveau d'une jonction entre le piston et un joint monté sur le piston et qu'une deuxième extrémité du chemin formant le point le plus haut dudit chemin débouche dans un corps creux de ladite soupape.

Description

  • Les pompes à membrane à commande hydraulique comportent usuellement une tête de dosage comprenant une première partie ayant une chambre de pompage et une deuxième partie dans laquelle est ménagée une chambre hydraulique qui est remplie d'un fluide hydraulique de commande et qui est séparée de la chambre de pompage par une membrane ; ainsi qu'un corps de dosage comprenant des moyens d'entraînement en translation d'un piston de la pompe dans la chambre hydraulique selon un axe de translation donné.
  • Il est courant d'équiper lesdites pompes d'une soupape de régularisation de pression dans la chambre hydraulique afin d'éviter notamment tout endommagement de la membrane ou un blocage de la pompe. Ladite soupape est typiquement agencée au voisinage d'un point le plus haut de la chambre hydraulique dans la position de travail de la pompe et comporte un corps creux en communication avec la chambre hydraulique via un clapet taré, le clapet s'ouvrant, lorsque la pression dans la chambre hydraulique dépasse une pression seuil, pour évacuer une partie du fluide de la chambre hydraulique vers le corps creux de la soupape.
  • Accessoirement, la soupape peut permettre un dégazage des bulles d'air présentes dans la chambre hydraulique.
  • Toutefois, le dégazage s'avère limité du fait notamment des sections réduites des canaux reliant la chambre hydraulique au corps creux de la soupape. Des bulles peuvent donc dans certains cas demeurer coincées dans la chambre hydraulique ou dans les canaux reliant ladite chambre au corps creux de la soupape. Ceci est par exemple le cas pour les pompes dans lesquelles le corps de dosage est rempli d'air ce qui provoque une légère admission d'air dans la chambre hydraulique à chaque mouvement de translation du piston et donc une concentration relativement importante de bulles dans la chambre hydraulique.
  • Or, la présence de bulles d'air dans le fluide au niveau de la chambre hydraulique et dans les canaux en liaison avec la chambre hydraulique tend à dégrader fortement les performances des pompes entraînant notamment une perte importante de leur débit. Cet inconvénient est encore augmenté pour les pompes de petits débits.
  • OBJET DE L'INVENTION
  • Un but de l'invention est de proposer une pompe à membrane à commande hydraulique apte à permettre un dégazage continu et important des gaz présents dans le fluide hydraulique de commande.
  • BREVE DESCRIPTION DE L'INVENTION
  • En vue de la réalisation de ce but, on propose une pompe à membrane à commande hydraulique comportant :
    • une tête de dosage comprenant une première partie ayant une chambre de pompage et une deuxième partie dans laquelle est ménagée une chambre hydraulique qui est remplie d'un fluide hydraulique de commande et qui est séparée de la chambre de pompage par une membrane,
    • un corps de dosage comprenant des moyens d'entraînement en translation d'un piston de la pompe dans la chambre hydraulique selon un axe de translation,
    • au moins un joint d'étanchéité agencé sur le piston au niveau d'une jonction entre la deuxième partie et le corps de dosage,
    • une soupape de régularisation de pression agencée au voisinage d'un point le plus haut de la chambre hydraulique dans la position de travail de la pompe, la soupape ayant un corps creux en communication avec la chambre hydraulique via un clapet qui est passant dans le sens de la chambre hydraulique vers le corps creux,
    • des moyens de dégazage dédiés du fluide, lesdits moyens comprenant au moins un chemin de dégazage s'étendant dans la deuxième partie non parallèlement à l'axe de translation de sorte qu'une première extrémité du chemin formant le point le plus bas dudit chemin débouche au niveau d'une jonction entre le piston et le joint et qu'une deuxième extrémité du chemin formant le point le plus haut dudit chemin débouche dans le corps de soupape au-dessus du clapet.
  • Ainsi, la pompe comporte un chemin de dégazage dédié placé au plus près de la frontière entre le corps de dosage et la deuxième partie. L'air passant du corps de dosage à la deuxième partie à chaque mouvement de translation du piston est donc aisément évacué vers le corps creux de la soupape. Ceci permet un dégazage continu et important de la pompe.
  • Ceci limite en outre le transfert de bulles d'air du corps de dosage à la chambre hydraulique. La quantité de bulles d'air dans la chambre hydraulique demeure donc limitée voire nulle.
  • La pompe s'avère ainsi très performante et présente des performances constantes dans le temps.
  • L'invention est particulièrement adaptée aux pompes à faibles débits puisqu'elles sont plus sensibles à la présence d'air dans leur chambre hydraulique.
  • Pour la présente demande, les termes « point haut », « point bas », « inférieur », « supérieur », « dessus » ... sont bien entendu à entendre par référence à la position en service de la pompe c'est-à-dire la position dans laquelle la pompe repose sur un support et la soupape est agencée pour s'étendre en direction opposée de ce support.
  • BREVE DESCRIPTION DES DESSINS
  • L'invention sera mieux comprise à la lumière de la description qui suit d'un mode de réalisation particulier, non limitatif, de l'invention. Il sera fait référence aux figures ci-jointes, parmi lesquelles :
    • la figure 1 est une vue en coupe d'une pompe à membrane à commande hydraulique selon l'invention, une partie seulement du corps de dosage étant représenté,
    • la figure 2 est une vue en coupe d'une partie d'une pompe à membrane à commande hydraulique selon une variante de l'invention.
    DESCRIPTION DETAILLEE DE L'INVENTION
  • En référence à la figure 1, la pompe à membrane à commande hydraulique selon l'invention est ici une pompe à faible débit et moyenne ou haute pression.
  • La pompe comporte une tête de dosage 1 comprenant une première partie 2 qui définit avec une membrane 3 de la pompe une chambre de pompage 4. La chambre de pompage 4 est reliée à l'extérieur par un canal d'aspiration 5 et un canal de refoulement 6, lesquels sont équipés de clapets unidirectionnels contenus dans des boîtes à clapets.
  • La membrane 3 est ici une membrane épaisse. La membrane 3 est élastiquement déformable à partir de sa forme au repos (celle représentée) qui correspond à son état en fin de course d'aspiration de la pompe. La raideur de cette membrane 3 est telle que le pouvoir d'aspiration de la pompe est défini par la capacité de la membrane 3 à revenir par elle-même dans sa position de repos. Une telle membrane est bien connue de l'art antérieur, comme par exemple dans la demande FR 2 934 332 de la demanderesse, et ne sera pas davantage détaillée ici.
  • La tête de dosage 1 comporte en outre une deuxième partie 7 dans laquelle est ménagée une chambre hydraulique 8. La face de la membrane 3 opposée à celle tournée vers la chambre de pompage 4 est appelée face arrière et est exposée à la pression du fluide hydraulique qui règne dans la chambre hydraulique 8. Des canaux de passage 23 du fluide hydraulique de la chambre hydraulique 8 pour atteindre la face arrière de la membrane 3 sont également ménagés dans la deuxième partie 7.
  • La deuxième partie 7 comprend en outre une chemise 9 s'étendant dans la deuxième partie 7 selon un axe horizontal X de sorte qu'une première extrémité 9a de la chemise 9 fasse face à la membrane 3 et qu'une deuxième extrémité 9b de la chemise 9 débouche à l'extérieur de la deuxième partie 7. La chemise 9 comporte un rétrécissement local 10 de sa section externe définissant avec la deuxième partie 7 une chambre de vidange 11.
  • La deuxième partie 7 comporte en outre un canal de vidange 12 reliant ladite chambre de vidange 11 à l'extérieur de la pompe. Le canal de vidange 12 s'étend verticalement dans la deuxième partie 7 de la chambre de vidange 11 à l'extrémité inférieure de la deuxième partie 7.
  • La pompe comporte en outre un piston 13 qui est reçu dans la chemise 9 et qui s'étend selon ledit axe X de sorte qu'une première extrémité 13a du piston débouche dans la chambre hydraulique 8 et qu'une deuxième extrémité 13b du piston 13 débouche hors de la chemise 9.
  • Le piston 13 est animé mécaniquement par des moyens d'entraînement en translation comprenant un moteur et une transmission, connus en eux-mêmes et qui ne sont pas représentés en intégralité ici, de sorte que le piston 13 puisse effectuer un mouvement de translation dans la chambre hydraulique 8 selon ledit axe X.
  • Les moyens d'entraînement en translation du piston 13 sont agencés dans un corps de dosage 14 de la pompe. Plus précisément ici le corps de dosage 14 comporte une cavité 15 adjacente à la deuxième partie 7 et dans laquelle la deuxième extrémité 13b du piston 13 est reliée aux moyens d'entraînement en translation, ladite cavité 15 étant à l'air libre. La deuxième partie 7 est ici solidarisée au corps de dosage 14 par l'intermédiaire de la deuxième extrémité 9b de la chemise 9 définissant ainsi la frontière entre la deuxième partie 7 et le corps de dosage 14.
  • Le corps de dosage 14 étant rempli d'air alors que la deuxième partie 7 est remplie d'un fluide hydraulique de commande, il convient d'assurer une étanchéité de la deuxième partie 7. La pompe comporte ainsi un joint d'étanchéité 16 agencé sur le piston 13 au niveau d'une jonction entre la deuxième partie 7 et le corps de dosage 14. A cet effet, un logement est ménagé dans la deuxième extrémité 9b de la chemise 9 et le joint d'étanchéité 16 est agencé à l'intérieur dudit logement. Le joint d'étanchéité 16 est ici un joint à lèvres.
  • La pompe comporte ainsi peu de fluide hydraulique de commande. En outre, il est possible de démonter facilement la tête de dosage 1 du reste de la pompe car il n'est pas nécessaire de vidanger la tête de dosage 1 ou le corps de dosage 14 avant.
  • La pompe comporte en outre une soupape 17 de régularisation de pression dans la chambre hydraulique 8.
  • La soupape 17 est ici agencée sur la deuxième partie 7 au voisinage d'un point le plus haut de la chambre hydraulique 8 dans la position de travail de la pompe. La soupape 17 s'étend verticalement et comprend une portion inférieure 18 reposant dans un logement 19 ménagé dans la deuxième partie 7 au-dessus de la chemise 9 et une portion supérieure 20 reposant sur la portion inférieure 18 et s'étendant en partie seulement dans ledit logement 19. Une extrémité basse de la portion supérieure 20 comporte ici un filetage interne 21 pour sa fixation à la portion inférieure 18 et un filetage externe 22 pour sa fixation à la deuxième partie 7.
  • La soupape 17 comporte en outre un clapet 24 de décharge qui est taré. Le clapet 24 est ici agencé dans la soupape à la frontière entre la portion inférieure et la portion supérieure. Le clapet 24 délimite ainsi avec la portion supérieure 20 un corps creux 25. Le clapet 24 est configuré de sorte à être passant dans le sens allant de la chambre hydraulique 8 vers le corps creux 25 si la pression dans la chambre hydraulique 8 excède une valeur de seuil réglable par réglage du tarage du clapet 24, par exemple au moyen d'une vis. La soupape 17 comporte en outre un canal principal 26 ménagé dans la portion inférieure 18 pour déboucher sous le clapet 24 et relié à la chambre hydraulique 8 par un conduit 27 ménagé dans la deuxième partie.
  • De la sorte, si un blocage se produit dans la chambre de pompage 4, le fluide hydraulique de commande contenu dans la chambre hydraulique 8 peut être évacué de ladite chambre hydraulique 8 via le canal principal 26 puis le clapet 24 de décharge pour déboucher dans le corps creux 25. La soupape 17 permet ainsi de réduire une pression trop importante dans la chambre hydraulique 8.
  • Par ailleurs, le fluide hydraulique de commande contenu dans la chambre hydraulique 8 voit son volume varier notamment lors d'un échappement du fluide de la chambre hydraulique 8 par le clapet 24 ou encore du fait des bulles d'air qui apparaissent au cours des mouvements du piston 13 dans la chambre hydraulique 8 ou encore du fait de la variation du réglable de course de la pompe qui fait varier la course du piston 13 et donc la cylindrée de la pompe. Pour pallier à cet inconvénient, la soupape 17 comporte des moyens de compensation des fuites du fluide hydraulique de commande dans la chambre hydraulique 8.
  • De façon connue en soi, lesdits moyens comportent un chemin de réalimentation qui relie le corps creux 25 au canal principal 26 en dérivation du clapet 24. A cet effet, le chemin de réalimentation comporte ici un premier canal de réalimentation 28 s'étendant verticalement à travers la portion inférieure 18 entre le corps creux 25 et un volume de réalimentation 29 qui est délimité par l'extrémité basse de la portion inférieure 18 d'une part et le logement 19 correspondant de la deuxième partie 7 d'autre part. Ledit chemin de réalimentation comporte en outre un deuxième canal 30 s'étendant verticalement dudit volume de réalimentation 29 au canal principal 26. Le deuxième canal 30 comporte en outre deux clapets 31 à bille et en série, unidirectionnels, libres, le sens passant de ces deux clapets 31 étant celui allant du corps creux 25 vers la chambre hydraulique 8.
  • Une course vers l'arrière du piston 13 permet le retour élastique de la membrane 3 dans sa position de repos. Si cette position est atteinte avant que le piston 13 ait atteint son point mort arrière, il se produit une dépression dans la chambre hydraulique 8 qui se traduit par l'aspiration d'un volume du fluide hydraulique soutiré du corps creux 25 à travers les deux clapets en série 31. La soupape 17 permet ainsi de régulariser également une pression trop faible dans la chambre hydraulique 8.
  • La soupape 17 comporte en outre un passage de purge 32 agencé en dérivation du clapet 24 ce qui permet une purge en continue des bulles d'air éventuellement présentes dans la chambre hydraulique 8, l'air passant par le canal de principal 26 et ledit passage de purge 32 pour aboutir au corps creux. Une partie des bulles d'air est ainsi évacuée par le canal principal 26.
  • Le canal principal 26 est agencé au-dessus de la chambre hydraulique 8 de manière à profiter de l'accumulation naturelle de l'air au point haut de ladite chambre hydraulique 8 pour faciliter la purge des bulles d'air contenues dans la chambre hydraulique 8 dans la soupape 17.
  • La pompe comporte en outre des moyens de dégazage dédiés du fluide hydraulique de commande. Les moyens de dégazage dédiés comportent un chemin de dégazage s'étendant dans la deuxième partie 7.
  • Le chemin de dégazage comporte ici un premier canal 33 s'étendant transversalement dans la chemise 9 de sorte à déboucher à son extrémité basse au niveau d'une zone de jonction entre le piston et le joint et à déboucher à son extrémité haute dans la chambre de vidange 11. Le premier canal 33 est donc agencé au plus près de la zone d'entrée de l'air provenant du corps de dosage 14 afin de prélever ledit air. Le premier canal 33 s'étend donc ici en direction de la soupape 17 et transversalement à l'axe X.
  • Le chemin de dégazage comporte un deuxième canal 34 s'étendant transversalement dans la deuxième partie 7 de sorte à déboucher à son extrémité basse dans la chambre de vidange 11 et à son extrémité haute à l'air libre ce qui facilite son usinage. L'extrémité haute du deuxième canal 34 est cependant obturée par un bouchon 35. Le deuxième canal 34 est agencé de sorte à déboucher à son extrémité basse dans la chambre de vidange 11 en partie supérieure de la chambre de vidange 11 sensiblement au même niveau que l'extrémité haute du premier canal 33. Le premier canal 33 et le deuxième canal 34 sont ainsi reliés par l'intermédiaire de la chambre de vidange 11. De préférence, le deuxième canal 34 est agencé de sorte que son extrémité basse débouche au-dessus de l'extrémité haute du premier canal 33 ce qui assure une meilleure liaison entre les deux canaux et ainsi un dégazage plus efficace. Le deuxième canal 34 s'étend donc ici en direction opposée de la soupape 17 transversalement à l'axe X.
  • Le chemin de dégazage comporte en outre un troisième canal 36 s'étendant transversalement dans la deuxième partie 7 de sorte à déboucher à son extrémité basse dans le deuxième canal 34 au niveau de l'extrémité haute dudit deuxième canal 34 et à son extrémité haute dans le logement 19 recevant la soupape 17. Le troisième canal 36 s'étend donc ici en direction de la soupape 17 et transversalement à l'axe X.
  • Le chemin de dégazage comporte en outre un quatrième canal 37 s'étendant à travers l'une des parois de la portion supérieure 20 de la soupape de sorte à être connecté à une première extrémité à l'extrémité haute du troisième canal 36 et à déboucher à sa deuxième extrémité dans le corps creux 25. Le quatrième canal 37 s'étend ici sensiblement horizontalement.
  • Ainsi, l'extrémité basse du premier canal 33 forme la première extrémité du chemin de dégazage et est située au point le plus bas dudit chemin alors que la deuxième extrémité du quatrième canal 37 forme la deuxième extrémité du chemin de dégazage et est située au point le plus haut dudit chemin.
  • Lors du fonctionnement de la pompe, l'air provenant du corps de dosage 14 est purgé en continu par le chemin de dégazage, l'air passant successivement par le premier canal 33, le deuxième canal 34, le troisième canal 36 et le quatrième canal 37 pour déboucher dans le corps creux 25. En outre, le chemin de dégazage prélève l'air directement au niveau du joint d'étanchéité 16 de sorte que pas ou peu d'air provenant du corps de dosage 14 atteigne la chambre hydraulique 8. Ceci évite de dégrader les performances de la pompe. Par ailleurs, le chemin de dégazage débouchant dans la portion supérieure 20 de la soupape 17, pas ou peu d'air se trouve présent dans le chemin de réalimentation ce qui assure qu'aucune bulle ou presque ne soit envoyée dans la chambre hydraulique 8 lors d'une phase de compensation des fuites du fluide hydraulique dans la chambre hydraulique 8. Les moyens de dégazage dédiés permettent ainsi un dégazage très efficace et continu de l'air présent dans le fluide hydraulique.
  • Le chemin de dégazage est ici conformé de sorte à acheminer l'air dans la soupape 17 en débouchant dans la soupape 17 sensiblement au-dessus du clapet 24.
  • De la sorte, quand bien même la course du piston 13 serait modifiée, le dégazage serait toujours efficace.
  • Typiquement, le chemin de dégazage est conformé de sorte que le volume de fluide hydraulique compris entre le quatrième canal 37 (débouchant dans la soupape 17) et le volume de réalimentation 29 soit supérieur à une cylindrée maximale de la pompe.
  • De préférence, les différents canaux du chemin de dégazage ont une section plus importante que les canaux reliant la chambre hydraulique 8 à la soupape 17 et que le canal principal 26. La section desdits canaux du chemin de dégazage permet d'éviter que des bulles ne demeurent coincées à l'intérieur dudit chemin de dégazage, les bulles à évacuer étant plus nombreuses dans le chemin de dégazage.
  • Ici, le deuxième canal 34 du chemin de dégazage a en outre une section plus importante que le premier canal 33, le troisième canal 36 et le quatrième canal 37 du chemin de dégazage. Le deuxième canal 34 du chemin de dégazage a typiquement une section 2 à 4 fois plus importante que celle du premier canal 33 du chemin de dégazage. Ceci permet d'évacuer efficacement les bulles du premier canal 33 au troisième canal 36.
  • La pompe selon l'invention ainsi conformée, le fluide hydraulique de commande est présent uniquement dans la deuxième partie 7. Le fluide est ainsi présent et sous pression dans la chambre hydraulique 8, les canaux de passage 23, le conduit 27 reliant la chambre hydraulique 8 à la soupape 17 et le canal principal 26. Le fluide est également présent à pression inférieure ou égale à la pression atmosphérique dans le reste de la soupape 17 (corps creux 25 et chemin de réalimentation), dans le chemin de dégazage, dans la chambre de vidange 11 et dans le canal de vidange 12.
  • L'air à dégazer se trouve très majoritairement à la jonction entre la deuxième partie 7 et le corps de dosage 14 et est évacué par le chemin de dégazage et se trouve minoritairement (voire même est inexistant) dans la chambre hydraulique 8 et est évacué préférentiellement par la soupape 17 et notamment le canal principal 26 et le passage de purge 32.
  • La pompe selon l'invention permet donc un dégazage efficace et continu de l'air présent dans le fluide hydraulique et évite la présence d'une trop grande quantité de bulles d'air dans la chambre hydraulique 8. Le débit de la pompe selon l'invention s'avère ainsi régulier, précis et stable.
  • Bien entendu l'invention n'est pas limitée aux modes de réalisation décrits et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.
  • En particulier, la pompe pourra avoir une autre forme que celle décrite. Ainsi, en référence à la figure 2, dans une variante de l'invention (les éléments en commun avec le mode de réalisation décrit précédemment conservent la même numérotation augmentée d'une centaine) un canal de connexion 140 de la chambre de vidange 111 au chemin de réalimentation est ménagé dans la deuxième partie 107. Typiquement, ledit canal de connexion 140 débouche en partie basse du chemin de réalimentation ici dans le volume de réalimentation 129. Ceci ne nuit pas outre mesure au bon dégazage par le chemin de dégazage du fait de l'agencement optimisé entre le premier canal 133 et le deuxième canal 134 dudit chemin de dégazage qui assure que les bulles d'air remontent préférentiellement par le deuxième canal 134 plutôt que par le canal de connexion 140.
  • Le chemin de dégazage pourra également avoir une toute autre forme que celle indiquée : ledit chemin pourra ainsi comporter un nombre différent de canaux et lesdits canaux pourront être orientés différemment. Par exemple le deuxième canal pourra s'étendre verticalement ou s'étendre transversalement en direction de la soupape. Le premier canal et le deuxième canal pourront être connectés l'un à l'autre sans l'intermédiaire de la chambre de vidange. Les moyens de dégazage dédiés pourront comporter plusieurs chemins de dégazage.
  • Par ailleurs, la soupape pourra avoir une toute autre forme que celle indiquée. La soupape pourra ainsi être une soupape telle que décrite dans la demande EP 2 394 056 de la présente demanderesse.
  • La membrane pourra être différente de ce qui a été décrite. La membrane pourra ainsi être une membrane composite comprenant une paroi interne épaisse entourée de deux parois métalliques minces telle que décrite dans les demandes FR 2 670 537 et FR 2 934 332 de la demanderesse.
  • La pompe pourra en outre comporter un dispositif de détection de rupture de la membrane.
  • La soupape pourra comporter tout autre dispositif de dégazage du fluide hydraulique de commande connu que le passage de purge décrit.

Claims (9)

  1. Pompe à membrane à commande hydraulique, comportant :
    - une tête de dosage (1 ; 101) comprenant une première partie (2 ; 102) ayant une chambre de pompage (3 ; 103) et une deuxième partie (7 ; 107) dans laquelle est ménagée une chambre hydraulique (8 ; 108) qui est remplie d'un fluide hydraulique de commande et qui est séparée de la chambre de pompage par une membrane (3 ; 103),
    - un corps de dosage (14 ; 114) comprenant des moyens d'entraînement en translation d'un piston (13 ; 113) de la pompe dans la chambre hydraulique selon un axe de translation (X),
    - au moins un joint d'étanchéité (16 ; 116) agencé sur le piston au niveau d'une jonction entre la deuxième partie et le corps de dosage,
    - une soupape (17 ; 117) de régularisation de pression au voisinage d'un point le plus haut de la chambre hydraulique dans la position de travail de la pompe, la soupape ayant un corps creux (25 ; 125) en communication avec la chambre hydraulique via un clapet (24 ; 124) qui est passant dans le sens de la chambre hydraulique vers le corps creux,
    - des moyens de dégazage dédiés du fluide, lesdits moyens comprenant au moins un chemin de dégazage (33, 34, 36, 37 ; 133, 134, 136, 137) s'étendant dans la deuxième partie non parallèlement à l'axe de translation de sorte qu'une première extrémité du chemin formant le point le plus bas dudit chemin débouche au niveau d'une jonction entre le piston et le joint et qu'une deuxième extrémité du chemin formant le point le plus haut dudit chemin débouche dans le corps de soupape au-dessus du clapet.
  2. Pompe selon la revendication 1, dans laquelle le chemin de dégazage comporte plusieurs canaux (33, 34, 36, 37 ; 133, 134, 136, 137).
  3. Pompe selon la revendication 2, dans laquelle le chemin de dégazage comporte :
    - un premier canal (33 ; 133) dont une des extrémités forme la première extrémité du chemin de dégazage, le premier canal s'étendant transversalement par rapport à l'axe de translation,
    - un deuxième canal (34 ; 134) qui est relié au premier canal et qui s'étend transversalement à l'axe de translation,
    - un troisième canal (36 ; 136) qui est connecté au deuxième canal et qui s'étend transversalement par rapport à l'axe de translation,
    - un quatrième canal (37 ; 137) ayant une extrémité connectée au troisième canal et une extrémité définissant la deuxième extrémité du chemin de dégazage.
  4. Pompe selon la revendication 3, dans laquelle une extrémité basse du deuxième canal (34 ; 134) et l'autre des extrémités du premier canal (33 ; 133) débouchent dans une chambre de vidange (11 ; 111) de la deuxième partie (7 ; 107).
  5. Pompe selon la revendication 4, dans laquelle l'extrémité basse du deuxième canal (34 ; 134) débouche dans la chambre de vidange (11 ; 111) en partie supérieure de ladite chambre de vidange sensiblement au même niveau que l'autre extrémité du premier canal (33 ; 133).
  6. Pompe selon la revendication 5, dans laquelle l'extrémité basse du deuxième canal (34 ; 134) débouche au-dessus de l'autre extrémité du premier canal (33 ; 133).
  7. Pompe selon la revendication 3, dans laquelle le deuxième canal (34 ; 134) s'étend en direction opposée de la soupape (17 ; 117) et le premier canal (33 ; 133) et le troisième canal (36 ; 136) s'étendent en direction de la soupape de régularisation.
  8. Pompe selon la revendication 3, dans laquelle le deuxième canal (34 ; 134) a une section plus importante que le premier canal (33 ; 133), le troisième canal (36 ; 136) et le quatrième canal (37 ; 137).
  9. Pompe selon la revendication 1, dans laquelle le chemin de dégazage a une section globale plus importante que celle des canaux reliant la chambre hydraulique (8 ; 108) à la soupape (17 ; 117).
EP15168751.4A 2014-05-27 2015-05-21 Pompe à membrane à commande hydraulique comprenant un chemin de dégazage dédié Withdrawn EP2949936A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1454797A FR3021713B1 (fr) 2014-05-27 2014-05-27 Pompe a membrane a commande hydraulique comprenant un chemin de degazage dedie

Publications (1)

Publication Number Publication Date
EP2949936A1 true EP2949936A1 (fr) 2015-12-02

Family

ID=51168237

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15168751.4A Withdrawn EP2949936A1 (fr) 2014-05-27 2015-05-21 Pompe à membrane à commande hydraulique comprenant un chemin de dégazage dédié

Country Status (6)

Country Link
US (1) US9856870B2 (fr)
EP (1) EP2949936A1 (fr)
JP (1) JP6290825B2 (fr)
CN (1) CN105134564B (fr)
FR (1) FR3021713B1 (fr)
RU (1) RU2598499C1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149723B2 (en) * 2019-12-31 2021-10-19 Psg California Llc Diaphragm pump leak detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670537A1 (fr) 1990-12-18 1992-06-19 Milton Roy Dosapro Pompe a membrane a commande hydraulique pour pressions elevees.
FR2934332A1 (fr) 2008-07-28 2010-01-29 Milton Roy Europe Pompe de dosage a membrane et a commande hydraulique
CN101037992B (zh) * 2007-03-29 2010-10-06 合肥华升泵阀有限责任公司 高真空隔膜泵
EP2394056A1 (fr) 2009-02-03 2011-12-14 Milton Roy Europe Pompe a membrane elastique a commande hydraulique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU659786A1 (ru) * 1978-02-17 1979-04-30 Особое Конструкторское Бюро По Конструированию,Исследованию И Внедрению Глубинных Бесштанговых Насосов Погружной диафрагменный электронасос
DE3446952A1 (de) * 1984-12-21 1986-07-10 Lewa Herbert Ott Gmbh + Co, 7250 Leonberg Membranpumpe mit umlaufspuelung
DE4241030C1 (de) * 1992-12-05 1994-06-01 Lang Apparatebau Gmbh Dosierpumpe mit Entlüftungsventil
US6086340A (en) * 1999-05-11 2000-07-11 Milton Roy Company Metering diaphragm pump having a front removable hydraulic refill valve
RU16527U1 (ru) * 2000-07-21 2001-01-10 Агапов Валерий Ибрагимович Мембранный гидроприводной дозировочный насос
US7175397B2 (en) * 2002-09-27 2007-02-13 Pulsafeeder, Inc. Effervescent gas bleeder apparatus
RU31153U1 (ru) * 2003-04-18 2003-07-20 Подрезов Александр Владимирович Мембранный гидроприводной дозировочный насос
RU38854U1 (ru) * 2004-02-26 2004-07-10 Подрезов Александр Владимирович Мембранный гидроприводной дозировочный насос
US7665974B2 (en) * 2007-05-02 2010-02-23 Wanner Engineering, Inc. Diaphragm pump position control with offset valve axis
CN201884234U (zh) * 2010-07-28 2011-06-29 德帕姆(杭州)泵业科技有限公司 一种隔膜式计量泵的泵头
CN201972872U (zh) * 2010-12-29 2011-09-14 大庆德美特尔泵业制造有限公司 一种带补油限位、自动放气***的大排量隔膜计量泵
CA2824025A1 (fr) 2011-01-31 2012-08-09 Laitram, L.L.C. Calibreuse
CN202023725U (zh) * 2011-04-08 2011-11-02 南方泵业股份有限公司 隔膜式计量泵自动补油控制***
CN202659465U (zh) * 2012-06-02 2013-01-09 范学齐 流量可调的液压隔膜计量泵
WO2014100532A1 (fr) 2012-12-21 2014-06-26 Joseph Fallon Appareil d'imagerie rotatif

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670537A1 (fr) 1990-12-18 1992-06-19 Milton Roy Dosapro Pompe a membrane a commande hydraulique pour pressions elevees.
CN101037992B (zh) * 2007-03-29 2010-10-06 合肥华升泵阀有限责任公司 高真空隔膜泵
FR2934332A1 (fr) 2008-07-28 2010-01-29 Milton Roy Europe Pompe de dosage a membrane et a commande hydraulique
EP2394056A1 (fr) 2009-02-03 2011-12-14 Milton Roy Europe Pompe a membrane elastique a commande hydraulique

Also Published As

Publication number Publication date
US20150345488A1 (en) 2015-12-03
FR3021713A1 (fr) 2015-12-04
CN105134564A (zh) 2015-12-09
JP2015224643A (ja) 2015-12-14
FR3021713B1 (fr) 2019-04-05
RU2598499C1 (ru) 2016-09-27
US9856870B2 (en) 2018-01-02
JP6290825B2 (ja) 2018-03-07
CN105134564B (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
CA2571024C (fr) Pompe a membrane a actionnement hydraulique avec dispositif de compensation des fuites
EP1133632B1 (fr) Dispositif de puisage de curburant pour reservoir de vehicule automobile
FR2965858A1 (fr) Amortisseur a compression de film liquide
FR2991733A1 (fr) Dispositif de compression et systeme thermodynamique comprenant un tel dispositif de compression
FR2834016A1 (fr) Pompe a jet
EP0942103B1 (fr) Dispositif de valve pour un moteur hydraulique apte à entraíner une masse d'inertie importante
FR2538457A1 (fr) Circuit de carburant pour moteur a combustion interne
FR2834317A1 (fr) Pompe
EP2949936A1 (fr) Pompe à membrane à commande hydraulique comprenant un chemin de dégazage dédié
EP1312864B1 (fr) Dispositif doseur de combustible pour injecteur de turbomachine
EP2394056B1 (fr) Pompe a membrane elastique a commande hydraulique
EP2617997B1 (fr) Dispositif de detection de rupture d'une membrane d'une pompe a actionnement hydraulique.
FR2551519A1 (fr) Dispositif de compensation de volume et de precontrainte pour amortisseurs hydrauliques a palettes tournantes
FR3054004A1 (fr) Mecanisme de dosage d'une pompe a dosage proportionnel, pompe et procede de mise en œuvre associes
EP2735045B1 (fr) Engin sous-marin comprenant une pile électrochimique
EP2444668A1 (fr) Pompe à membrane à forte capacité d'aspiration
EP1937983B1 (fr) Valve a ouverture amortie
FR2781528A1 (fr) Dispositif pour fournir du carburant a l'aide d'une unite debitant du carburant, logee dans un boitier
EP2126334A2 (fr) Injecteur de carburant pour moteur a combustion interne
FR2566846A1 (fr) Membrane pour pompe a commande ou actionnement hydraulique
EP2176101B1 (fr) Ensemble pour le rechauffage de l'eau de lavage des surfaces vitrees d'un vehicule automobile
FR3086011A1 (fr) Dispositif de pompage d'un fluide
FR2564942A1 (fr) Purgeur automatique pour pompe a double membrane a commande hydraulique.
FR2934878A1 (fr) Moto pompe a ecoulement axial.
FR2776342A1 (fr) Pompe centrifuge a amorcage automatique

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160531

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171108

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210609