EP2934758A1 - Method for separating a defined mineral phase of value from a ground ore - Google Patents

Method for separating a defined mineral phase of value from a ground ore

Info

Publication number
EP2934758A1
EP2934758A1 EP14821103.0A EP14821103A EP2934758A1 EP 2934758 A1 EP2934758 A1 EP 2934758A1 EP 14821103 A EP14821103 A EP 14821103A EP 2934758 A1 EP2934758 A1 EP 2934758A1
Authority
EP
European Patent Office
Prior art keywords
particles
fraction
mineral
particle diameter
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14821103.0A
Other languages
German (de)
French (fr)
Other versions
EP2934758B1 (en
Inventor
Werner Hartmann
Theresa Stark
Sonja Wolfrum
Hermann Wotruba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53275551&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2934758(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2934758A1 publication Critical patent/EP2934758A1/en
Application granted granted Critical
Publication of EP2934758B1 publication Critical patent/EP2934758B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B1/00Conditioning for facilitating separation by altering physical properties of the matter to be treated
    • B03B1/04Conditioning for facilitating separation by altering physical properties of the matter to be treated by additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/08Subsequent treatment of concentrated product
    • B03D1/085Subsequent treatment of concentrated product of the feed, e.g. conditioning, de-sliming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; specified applications
    • B03D2203/02Ores

Definitions

  • rare earth resources 95% of the world's rare earth resources consist of the three minerals bastnaesite, monazite and xenotime. It is characteristic of REE that they include ge ⁇ entire spectrum of the rare earth elements. Through this association and the high similarity of Seltenerdele ⁇ elements in their chemical behavior there are very high demands on the separation process of the individual substances.
  • a characteristic and technically challenging feature of rare earth minerals is that they are usually very finely grown in the ore, which also makes high demands on the treatment process. For example, the ore must be sufficiently comminuted in order to achieve a sufficient degree of digestion of recyclables. On the other hand, very fine particle sizes often complicate the recycling of valuable materials during concentrate production (flotation).
  • the target grain size of the grind is based on the size of the truncated grain of the rare earth mineral. This depends very much on the type of ore and the respective deposit.
  • grain size is understood to mean the grain size in which the individual mineral phases are present as a single grain. In principle lent would be desirable a decomposition degree of 100%, in the re ⁇ ality it may be depending on the deposit, that decomposition rates of 50% - 70% is realistic. If the AufBankkorniere, so the grain size at which the individual mineral phases are singular, by the crushing falls below, there is an over-grinding of the particles and thus Bil ⁇ tion of a high fines.
  • the object of the invention is to improve the yield of mi ⁇ neralischen value substance phases, the finely distributed present in an overall-ground ore compared to the prior art belonging to the flotation process.
  • the solution of the problem consists in a method for the separation of a defined mineral material phase from a milled ore according to claim 1.
  • the inventive method according to claim 1 is used for Ab ⁇ separation of a defined mineral value material phase, mainly a phase of a Seltenerdminerals but also for separating other metallic ores such as copper from a milled ore.
  • a defined mineral value material phase mainly a phase of a Seltenerdminerals but also for separating other metallic ores such as copper from a milled ore.
  • the ground ore more chemical phases and it is a heterogeneous particle size distribution before.
  • the method comprises the following steps:
  • the ore is classified to obtain a P
  • pentie is classified to obtain a P
  • pentie is classified to obtain a P
  • pentie is classified to obtain a P
  • pentie is classified to obtain a P
  • ⁇ ser is defined, and at least two fractions are created, wherein the one fraction particle diameters which are larger than the defined particle diameter substantially and having the second fraction particles smaller substantially than the defined particle diameter.
  • the term essentially is added because it is not possible on an industrial scale to generate any separation into two fractions with an exactly discrete particle diameter. It is not excluded that particles are contained in the fraction having the larger particle diameters are nominally less than the defined Par ⁇ tikel preparer and vice versa.
  • the fraction with the larger particle diameter is fed to a conventional flotation and minerali ⁇ rule valuable material particles are selectively enriched in a flotation concentrate ⁇ .
  • the mineral value particles in the second fraction with the smaller particle diameter selectively are hereinafter referred to with the generic term "magnetite" where ⁇ Kgs be used in other suitable sufficiently chemically inert magne ⁇ diagram materials as magnetite Fe 3 Ü 4
  • the essential point of vorlie ⁇ constricting invention is to distinguish selectively according to at least two particle fractions, and the smaller P
  • Kings ⁇ NEN the one in which magnetic separation magnetite particles are used with a small diameter, whereby the specially-specific surface area is increased and thus more surface area for binding the material of value for Available.
  • the charged small magnetite particles with a higher separation efficiency in the magnetic field can be separated than the small gas bubbles in the flotation.
  • Tailing streams from the magnetic separation containing many fine Parti ⁇ angle usually contain also the majority of environmentally hazardous substances such as thorium and heavy metals, as these polluting substances likewise be mitsepariert when classified. If this is the case, due to the two separately obtained TaiLing streams a significantly lower volume requirement for the storage of the critical substances results.
  • both the fine and the coarse ore particles are fed to the flotation, whereby yields of only 65% - 70% can be achieved.
  • the inventive combination of flotation and Magnetsepara ⁇ tion the total output can be of rare earth elements depending on the ore deposit, and significant (depending on the ore to 5 ⁇ 6
  • a tailing stream which occurs during flotation, is at least partially fed to the magnetic separation process. It has Stamm ⁇ assumed that the magnetic separation process quite cope with a larger spectrum of a particle size distribution so that valuable material particles or recyclable material phases that could not be successfully separated in the flotation, in a further alternative step of separation can be subjected again.
  • the defi ned ⁇ particle diameter which is set in classifying, is less than 70 microns. In particular, it is smaller than 50 microns.
  • a hydrocyclone is used for the classification.
  • Other classification methods such as sieves, spiral conveyors etc. are also possible.
  • the process according to the invention is preferably applied to mineral-rich valuable particles from the series of rare earths.
  • the term rare earths is understood as meaning compounds of the rare earth elements, in particular their oxides, but also carbonates and phosphates.
  • the term rare earth ⁇ elements are in particular the so-called lanthanides, including lanthanum, cerium, praseodymium, neodymium, samarium.
  • Rare earths are in turn compounds of rare earth elements, in particular their oxides and phosphates. Further advantageous embodiments and panded shopping ⁇ male of the invention will become apparent from the following figure and list the following examples. These are merely exemplary embodiments that do not represent a restriction of the scope.
  • Figure 1 shows a process for the separation of a mine ral value ⁇ solid particle, so a ground ore using a combination of flotation and magnetic separation.
  • the ore 4 is ground by a conventional method, whereby inevitably a heterogeneous particle size distribution of the individual ⁇ nen particles occurs.
  • the degree of grinding and thus the size and degree of closure are dependent on the deposit or the phase quantities of the material phase 2 to be separated there.
  • this phase variable of the valuable phase 2 there is a distribution curve of the phase size, so that it is expedient to classify ground ore 4 into two fractions. This is done in a classifying device 6, in which on the one hand, a first fraction 8 is generated, the one Grain size distribution which is substantially greater than 50 microns.
  • the particle sizes has up, which are substantially less than 50 microns.
  • the first fraction 8 with the larger particle diameter is now placed in a flotation device 11, which corresponds to a conventional flotation device.
  • a flotation concentrate 12 is produced which contains an enrichment of the valuable phase 2.
  • the yield of useful material phase 2 in the flotation concentrate is ⁇ vary. Therefore, it may be appropriate to run the flotation process 11 several times.
  • the second fraction 10 of the milled ore 4 is added in parallel to a magnetic separation process.
  • a chemical conditioning 20 of the particles of the fraction 10 wherein the conditioning 20 is known per se and therefore should not be discussed here on this. It should only be said that the valuable material particles are brought together with se ⁇ selectively acting organic substances that lie on the surface of the valuable particles, and thus influence their surface properties. Furthermore, the conditioning is also surface-treated
  • Magnetite Fe 3 0 4
  • another magnetic phase added, the selectively surface-treated recyclable particles 2 anla ⁇ like.
  • the particle agglomerates consisting of magnetite particles 14 and the recyclable particles 2 are separated off.
  • a tailing stream 19 arrives, which can be fed to the magnetic separation process one more time. This depends on how high the yield of valuable material particles after the first separation process in the separation reactor 15 is.
  • the magnetite particles 14 which are associated with the value of ⁇ material particles 2 are again separated from the recyclable material particles 2 in a separation device, such that on the one hand a magnetic separation concentrate 16 obtained with recyclable material ⁇ particles 2 On the other hand, the magnetite particles 14 are recovered and added back to the conditioning process 20.
  • this comparatively small tailing stream can be separated be stored on a dedicated landfill, so that the environmentally harmful products incurred in the degradation of sel ⁇ ten earth elements can be stored separately in a smaller fraction, which significantly reduces the environmental impact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention relates to a method for separating a defined mineral phase of value (2) from a ground ore (4) having several chemical phases and being present in a heterogeneous particle size distribution, comprising the following steps: - classifying (6) the ore according to a defined particle diameter into at least two fractions, a first fraction (8) having particles essentially larger than the defined particle diameter and a second fraction (10) comprising particles essentially smaller than the defined particle diameter, and the defined mineral particles of value (2) being present in both fractions (8, 10), - floating (11) the first fraction having the greater particle diameters and selecting the defined mineral particles of value (2) in a flotation concentrate (12), - selectively admixing the defined mineral particles of value (2) in the fraction (10) having the smaller particle diameters with magnetizable particles (14), - applying a magnetic separation process to the second fraction (10) having smaller particle diameters and separating a concentrate (16) with an enrichment of the defined mineral phase of value (2).

Description

Beschreibung description
Verfahren zur Abtrennung einer definierten mineralischen Wertstoffphase aus einem gemahlenen Erz Process for the separation of a defined mineral substance phase from a ground ore
Die Abtrennung von definierten mineralischen Wertstoffphasen aus einem gemahlenen Erz die insbesondere sehr fein verteilt in dem Erz vorliegen, stellt stets ein technisches Problem dar. Dieses fein verteilte Vorliegen von Wertstoffphasen in einem Erz tritt insbesondere bei Seltenerdphasen aber auch bei anderen herkömmlichen metallischen Phasen wie Kupfermineralien auf. Aufgrund des gehäuften Auftretens dieser Separa¬ tionsproblematik bei Seltenerdelementen bzw. Seltenerdverbindungen in mineralischem Gestein, wird im Weiteren insbesonde- re auf die Gewinnung von Seltenen Erden eingegangen. Das folgende beschriebene Verfahren lässt sich grundsätzlich jedoch auf eine Vielzahl von Gewinnungsprozessen anderer Metalle anwenden . Die Seltenen Erden liegen in der Natur stets in oxidierter Form zum Beispiel als Carbonate oder Phosphate in unter¬ schiedlichen Mineralien vor. Obwohl es eine Vielzahl von Mineralien gibt, bestehen 95% der weltweiten Seltenerdressourcen aus den drei Mineralien Bastnäsit, Monazit und Xenotim. Charakteristisch für Seltenerdminerale ist, dass sie das ge¬ samte Spektrum der Seltenerdelemente beinhalten. Durch diese Vergesellschaftung und die hohe Ähnlichkeit der Seltenerdele¬ mente in ihrem chemischen Verhalten bestehen sehr hohe Anforderungen an den Trennprozess der Einzelsubstanzen. Ein cha- rakteristisches und technisch stets herausforderndes Merkmal bei den Seltenerdmineralen besteht darin, dass sie im Erz meist sehr fein verwachsen sind, wodurch zudem hohe Anforderungen an den Aufbereitungsprozess bestehen. So muss das Erz zum einen ausreichend zerkleinert werden um einen ausreichen- den Aufschlussgrad an Wertstoffen zu erzielen. Zum anderen erschweren sehr feine Korngrößen häufig das Wertstoffausbringen bei der Konzentratherstellung (Flotation) . Hinzu kommt, dass ein hoher Flächenbedarf für die anfallenden Mengen an wertlosem Material (Bergestrom, bzw. Gangart, im Weiteren Tailing genannt) benötigt wird. Eine weitere Eigenschaft der Seltenen Erden ist, dass sie häufig mit radioaktiven Begleit¬ stoffen wie Thorium und Uran verwachsen sind. Diese werden bei der Aufbereitung mit freigelegt, wodurch ebenfalls Risi¬ ken für die Umwelt bestehen. Aufgrund der genannten ökologischen und ökonomischen Probleme werden viele Lagerstätten von Seltenerdmineralien heutzutage nicht abgebaut. Bei der Aufbereitung von Bastnäsit, also einem typischen Seltenerdmineralien enthaltendes Erz, werden nach dem Brechen des Erzes die Bruchstücke auf eine Flotationsfeinheit von we¬ niger als 150 Mikrometer gemahlen. Bei diesem Prozess entstehen erhebliche Energiekosten. Im Allgemeinen richtet sich die Zielkorngröße der Mahlung nach der AufSchlusskorngröße des Seltenerdminerals. Diese ist sehr stark vom Erztyp und der jeweiligen Lagerstätte abhängig. Unter AufSchlusskorngröße wird hierbei die Korngröße verstanden, in der die einzelnen mineralischen Phasen als einzelnes Korn vorliegen. Grundsätz- lieh wäre ein Aufschlussgrad von 100% anzustreben, in der Re¬ alität kann es je nach Lagerstätte sein, dass Aufschlussgrade von 50% - 70% realistisch sind. Wird die AufSchlusskorngröße, also die Korngröße bei der die einzelnen mineralischen Phasen singulär vorliegen, durch die Zerkleinerung unterschritten, kommt es zu einer Übermahlung der Partikel und damit zur Bil¬ dung eines hohen Feinanteils. Dieser kann bei der anschlie¬ ßenden Flotation, die der Trennung von Wertstoff und wertlosem Material (Gangart, Tailing) dient, häufig nicht mitgewon¬ nen werden, bzw. den Prozess sogar negativ beeinträchtigen. Wird die AufSchlusskorngröße hingegen überschritten, liegt das Mineral nicht vollständig frei vor, wodurch die Interak¬ tion zwischen Mineraloberfläche und den chemischen Agenzien reduziert bzw. verhindert wird. Dadurch kann der zu gewinnende Wertstoff bei der Flotation nicht hinreichend an den auf- steigenden Gasblasen anhaften und sich in der Schaumzone am Flüssigkeitsspielgel anreichern. Neben der Effizienz der Extraktion beeinflusst die Ausbringung bei der Flotation (Recovery) maßgeblich die Effizienz des Gesamtprozesses zur Gewinnung von Seltenen Erden. Je höher die Ausbringung an Seltenen Erden und damit die Anreiche- rung von Seltenen Erden im Konzentrat ist, desto geringer ist der Verlust an Wertstoff im Prozess. Derzeit sind Ausbrin¬ gungsraten an Seltenen Erden von 65% - 70% realisierbar. Somit werden allerdings auch 30% - 35 % der im Ausgangserz enthaltenen Seltenerdmaterialien nicht flotiert und gehen im Tailing verloren. Eine Ursache dafür ist die schlechte Flo- tierbarkeit feiner Werkstoffpartikel , insbesondere Partikel mit einer Korngröße unter 20 Mikrometer sind davon betroffen. Dies liegt vor allem an der geringen Kollisionseffizenz zwischen kleinen Partikeln und Gasblasen. Zudem erfordern kleine Partikelgrößen große Blasenoberflächen, um die WertstoffPartikel zu binden, was bei der herkömmlichen Flotation nur mit einem hohen Anteil sehr kleinen Gasblasenerreicht werden kann. Diese wiederum sind jedoch nicht geeignet, die größeren Wertstoffpartikel in die Schaumschicht zu transportieren, und sind zudem in der konventionellen Flotation (Rührwerks- oder mechanische Zellen; Säulenzelle) nur mit erheblichem Energie¬ aufwand herstellbar. The separation of defined mineral material phases from a ground ore, which in particular is very finely distributed in the ore, always presents a technical problem. This finely distributed existence of valuable material phases in an ore occurs in particular in rare earth phases but also in other conventional metallic phases such as copper minerals , Due to the increased occurrence of this Separa ¬ tionproblematik in rare earth elements or rare earth compounds in mineral rock, will be discussed in particular on the extraction of rare earths. However, the following described method can basically be applied to a variety of recovery processes of other metals. The rare earths are in the nature is always present in an oxidized form, for example as carbonates or phosphates in under ¬ retired union minerals. Although there are a variety of minerals, 95% of the world's rare earth resources consist of the three minerals bastnaesite, monazite and xenotime. It is characteristic of REE that they include ge ¬ entire spectrum of the rare earth elements. Through this association and the high similarity of Seltenerdele ¬ elements in their chemical behavior there are very high demands on the separation process of the individual substances. A characteristic and technically challenging feature of rare earth minerals is that they are usually very finely grown in the ore, which also makes high demands on the treatment process. For example, the ore must be sufficiently comminuted in order to achieve a sufficient degree of digestion of recyclables. On the other hand, very fine particle sizes often complicate the recycling of valuable materials during concentrate production (flotation). In addition, there is a high demand for space for the accumulating quantities worthless material (mountain stream, or gait, called Tailing below) is needed. Another feature of the rare earths that they are often grown with radioactive materials accompanying ¬ such as thorium and uranium. These are uncovered in the treatment, which also Risi ¬ ken exist for the environment. Due to the mentioned ecological and economical problems, many deposits of rare earth minerals are not mined today. In the processing of bastnasite, ie a typical ore containing rare earth minerals, the fragments are ground to a flotation fineness of less than 150 micrometers after the ore has been crushed. This process generates considerable energy costs. In general, the target grain size of the grind is based on the size of the truncated grain of the rare earth mineral. This depends very much on the type of ore and the respective deposit. The term grain size is understood to mean the grain size in which the individual mineral phases are present as a single grain. In principle lent would be desirable a decomposition degree of 100%, in the re ¬ ality it may be depending on the deposit, that decomposition rates of 50% - 70% is realistic. If the Aufschlusskorngröße, so the grain size at which the individual mineral phases are singular, by the crushing falls below, there is an over-grinding of the particles and thus Bil ¬ tion of a high fines. This may, at the subsequent ¬ sequent flotation, which is used for separation of recyclable material and worthless material (gangue, tailing), often not mitgewon ¬ NEN be, or even adversely affect the process. If, however, the Aufschlusskorngröße exceeded, the mineral is not completely free, whereby the Interak ¬ tion between the mineral surface and the chemical agents is reduced or prevented. As a result, the valuable substance to be recovered in the flotation can not adhere sufficiently to the rising gas bubbles and accumulate in the foam zone on the liquid control gel. In addition to the efficiency of the extraction process, flotation (recovery) significantly influences the efficiency of the overall rare earth extraction process. The higher the output of rare earths and thus the enrichment of rare earths in the concentrate, the lower the loss of valuable material in the process. Currently Ausbrin ¬ transmission rates are of rare earths by 65% - 70% can be realized. Thus, however, 30% - 35% of the rare earth materials contained in the starting ore are not floated and are lost in tailing. One reason for this is the poor floatability of fine material particles, in particular particles with a grain size below 20 micrometers are affected. This is mainly due to the low collision efficiency between small particles and gas bubbles. In addition, small particle sizes require large bubble surfaces to bind the waste particles, which in conventional flotation can only be achieved with a high proportion of very small gas bubbles. However, this, in turn, are not suitable for transporting the larger value of solid particles in the foam layer, and are also in the conventional flotation (or mechanical agitator cells; column cells) produced only at considerable expense ¬ energy.
Um hierfür Abhilfe zu schaffen werden prinzipiell zwei Ansät- ze verfolgt. Der eine besteht in der Erhöhung der Werstoff- partikelgröße oder in der Reduzierung der Gasblasengröße. Zur Erhöhung der Partikelgröße dienen die selektive Flockung, die Koagulation und die hydrophobe Aggregation der Partikel. Die¬ se Verfahren benötigen Zusätze wie Polymere oder Elektrolyte und sind bereits in der industriellen Anwendung. Der Vorteil von zugegebenen Polymeren im Vergleich zu Elektrolyten besteht in der hohen Selektivität, sie binden lediglich die Werkstoffpartikel und nicht das wertlose Material. Allerdings kommt es häufig zu Einschlüssen von Gangmaterial (Tailing) in den Zwischenräumen der gebildeten Aggregate. Die Reduzierung der Gasblasengröße wird beispielsweise bei der Dissolved Gas Flotation, der Electroflotation und der Turbulent Microflotation verfolgt. Aufgrund der kleinen Gasblasen werden gerin- ge Auftriebsgeschwindigkeiten erreicht, wodurch die kleinen Partikel während der Aufwärtsbewegung haften bleiben können. Dies resultiert allerdings in großen Verweilzeiten des Wert¬ stoffs in der Flotationszelle. Außerdem können sich die ge- ringen Auftriebsgeschwindigkeiten negativ auf die Selektivität auswirken. In order to remedy this, two approaches are pursued in principle. One is the increase of the particle size or the reduction of the gas bubble size. To increase the particle size are the selective flocculation, coagulation and hydrophobic aggregation of the particles. These processes require additives such as polymers or electrolytes and are already in industrial use. The advantage of added polymers compared to electrolytes is the high selectivity, they only bind the material particles and not the worthless material. However, there are often inclusions of gear material (tailing) in the interstices of the formed aggregates. The reduction in gas bubble size is followed, for example, in dissolved gas flotation, electroflotation and turbulent microflotation. Due to the small gas bubbles, buoyancy rates which allow the small particles to adhere during the upward movement. However, this results in large residence times of the value ¬ material in the flotation cell. In addition, the low buoyancy rates may adversely affect selectivity.
Die Aufgabe der Erfindung besteht darin, die Ausbeute an mi¬ neralischen Wertstoffphasen, die fein verteilt in einem ge- mahlenen Erz vorliegen, gegenüber dem zum Stand der Technik gehörenden Flotationsverfahren zu verbessern. The object of the invention is to improve the yield of mi ¬ neralischen value substance phases, the finely distributed present in an overall-ground ore compared to the prior art belonging to the flotation process.
Die Lösung der Aufgabe besteht in einem Verfahren zur Abtrennung einer definierten mineralischen Wertstoffphase aus einem gemahlenen Erz nach Anspruch 1. The solution of the problem consists in a method for the separation of a defined mineral material phase from a milled ore according to claim 1.
Das erfindungsgemäße Verfahren nach Anspruch 1 dient zur Ab¬ trennung einer definierten mineralischen Wertstoffphase, im Wesentlichen einer Phase eines Seltenerdminerals aber auch zur Abtrennung von anderen metallischen Erzen wie Kupfer aus einem gemahlenen Erz. Dabei weist das gemahlene Erz mehrere chemische Phasen auf und es liegt in einer heterogenen Korngrößenverteilung vor. Das Verfahren umfasst dabei folgende Schritte : The inventive method according to claim 1 is used for Ab ¬ separation of a defined mineral value material phase, mainly a phase of a Seltenerdminerals but also for separating other metallic ores such as copper from a milled ore. In this case, the ground ore more chemical phases and it is a heterogeneous particle size distribution before. The method comprises the following steps:
Zunächst wird das Erz klassiert, wobei ein Partikeldurchmes¬ ser definiert wird, und mindestens zwei Fraktionen erstellt werden, wobei die eine Fraktion Partikeldurchmesser aufweist, die im Wesentlichen größer als der definierte Partikeldurch- messer sind und die zweite Fraktion Partikel aufweist, die im Wesentlichen kleiner als der definierte Partikeldurchmesser ist. Der Begriff im Wesentlichen wird deshalb dazugefügt, da es großtechnisch nicht möglich ist, eine beliebige Trennung in zwei Fraktionen bei einem exakt diskreten Partikeldurch- messer zu erzeugen. Es ist nicht auszuschließen, dass in der Fraktion mit dem größeren Partikeldurchmesser auch Partikel enthalten sind, die nominell kleiner als der definierte Par¬ tikeldurchmesser sind und umgekehrt. Die Fraktion mit dem größeren Partikeldurchmesser wird einem herkömmlichen Flotationsprozess zugeführt und die minerali¬ schen Wertstoffpartikel werden selektiv in einem Flotations¬ konzentrat angereichert. Ferner werden die mineralischen Wertstoffpartikel in der zweiten Fraktion mit dem kleineren Partikeldurchmesser selektiv mit magnetisierbaren Partikeln (im Folgenden mit dem Überbegriff „Magnetit" bezeichnet, wo¬ bei auch andere geeignete ausreichend chemisch inerte magne¬ tische Werkstoffe als Magnetit Fe3Ü4 verwendet werden kön- nen) ) versehen und anschließend einem Magnetseparationspro- zess unterzogen. Auch hier entsteht ein Konzentrat mit einer Anreicherung der definierten mineralischen Wertstoffphase, die jedoch in einem geringeren Partikeldurchmesser vorliegt. Im Vergleich zum Stand der Technik, bei dem alle Partikel des gemahlenen Erzes über einen herkömmlichen Flotationsprozess konzentriert werden, liegt der wesentliche Punkt der vorlie¬ genden Erfindung darin, selektiv nach mindestens zwei Partikelfraktionen zu unterscheiden und die kleinere Partikelfrak- tion mit einem Magnetseparationsverfahren zu konzentrieren.First, the ore is classified to obtain a Partikeldurchmes ¬ ser is defined, and at least two fractions are created, wherein the one fraction particle diameters which are larger than the defined particle diameter substantially and having the second fraction particles smaller substantially than the defined particle diameter. The term essentially is added because it is not possible on an industrial scale to generate any separation into two fractions with an exactly discrete particle diameter. It is not excluded that particles are contained in the fraction having the larger particle diameters are nominally less than the defined Par ¬ tikeldurchmesser and vice versa. The fraction with the larger particle diameter is fed to a conventional flotation and minerali ¬ rule valuable material particles are selectively enriched in a flotation concentrate ¬. Further, the mineral value particles in the second fraction with the smaller particle diameter selectively (with magnetizable particles are hereinafter referred to with the generic term "magnetite" where ¬ Kgs be used in other suitable sufficiently chemically inert magne ¬ diagram materials as magnetite Fe 3 Ü 4 Here, too, a concentrate with an enrichment of the defined mineral valuable phase, which, however, is present in a smaller particle diameter, is formed conventional flotation process are concentrated, the essential point of vorlie ¬ constricting invention is to distinguish selectively according to at least two particle fractions, and the smaller Partikelfrak- tion to concentrate a magnetic separation method.
Im Vergleich zum herkömmlichen Flotationsprozess, bei dem die Gasblasengröße die selektierbaren Erzpartikel limitiert, kön¬ nen zum einen bei der Magnetseparation Magnetit-Partikel mit einem kleinen Durchmesser verwendet werden, wodurch die spe- zifische Oberfläche erhöht wird und damit mehr Oberfläche zur Anbindung des Wertstoffs zur Verfügung steht. Zum anderen können die beladenen kleinen Magnetit-Partikel mit einer höheren Trennleistung im Magnetfeld abgetrennt werden, als die kleinen Gasblasen bei der Flotation. Ein weiterer Vorteil der Magnetseparation besteht in der gezielten Steuerbarkeit derCompared to conventional flotation process in which the gas bubble size limits the selectable ore particles, Kings ¬ NEN the one in which magnetic separation magnetite particles are used with a small diameter, whereby the specially-specific surface area is increased and thus more surface area for binding the material of value for Available. On the other hand, the charged small magnetite particles with a higher separation efficiency in the magnetic field can be separated than the small gas bubbles in the flotation. Another advantage of magnetic separation is the targeted controllability of the
Magnetitkorngrößenverteilung. So ist es im Vergleich zur Herstellung von Gasblasen einfacher die Größenverteilung des Magnetits hinsichtlich des abzutrennenden Wertstoffs maßzu- schneidern, wodurch die Ausbeute erheblich erhöht werden kann. Magnetitkorngrößenverteilung. Thus, in comparison to the production of gas bubbles, it is easier to tailor the size distribution of the magnetite with respect to the valuable material to be separated, whereby the yield can be considerably increased.
Weiterhin vorteilhaft an der Kombination aus Flotation und Magnetseparation in der Aufbereitung von Seltenen Erden ist die Gewinnung von zwei verschiedenen Tailing-Strömen . Die Tailing-Ströme aus der Magnetseparation die eher feine Parti¬ kel enthalten, enthalten in der Regel auch den Großteil an umweltschädlichen Substanzen wie beispielsweise Thorium oder Schwermetalle, da diese umweltschädlichen Substanzen eben- falls beim klassieren mitsepariert werden. Ist dies der Fall, so resultiert aufgrund der beiden getrennt gewonnenen Tai- lingströme ein deutlich geringerer Volumenbedarf für die Lagerung der kritischen Substanzen. In herkömmlichen Verfahren werden sowohl die feinen als auch die groben Erzpartikel der Flotation zugeführt, wodurch sich Ausbeuten von lediglich 65% - 70% erzielen lassen. Durch die erfindungsgemäße Kombination aus Flotation und Magnetsepara¬ tion lässt sich die Gesamtausbringung an Seltenen Erden je nach Erz und Lagerstätte signifikant (je nach Erz um 5~6 Another advantage of the combination of flotation and magnetic separation in the treatment of rare earths is the recovery of two different tailing streams. The Tailing streams from the magnetic separation containing many fine Parti ¬ angle, usually contain also the majority of environmentally hazardous substances such as thorium and heavy metals, as these polluting substances likewise be mitsepariert when classified. If this is the case, due to the two separately obtained TaiLing streams a significantly lower volume requirement for the storage of the critical substances results. In conventional processes, both the fine and the coarse ore particles are fed to the flotation, whereby yields of only 65% - 70% can be achieved. By the inventive combination of flotation and Magnetsepara ¬ tion, the total output can be of rare earth elements depending on the ore deposit, and significant (depending on the ore to 5 ~ 6
15%) erhöhen und damit die Effizienz der Aufbereitungsprozes- se positiv beeinflussen. Als Konsequenz kann damit der Abbau verschiedener Seltenerdlagerstätten wirtschaftlich rentabel werden, die bisher nicht in Betracht gezogen wurde.  15%) and thus positively influence the efficiency of the treatment processes. As a consequence, the mining of various rare earth deposits can become economically viable, which was previously not considered.
In einer Ausgestaltungsform der Erfindung wird ein Tailing- strom, der beim Flotieren anfällt, zumindest teilweise dem Magnetseparationsprozess zugeführt. Es hat sich herausge¬ stellt, dass der Magnetseparationsprozess durchaus auch mit einem größerem Spektrum einer Korngrößenverteilung zurechtkommt, so dass Wertstoffpartikel bzw. Wertstoffphasen, die bei der Flotation nicht erfolgreich separiert werden konnten, in einem weiteren alternativen Verfahrensschritt noch einmal der Separation unterzogen werden können. In one embodiment of the invention, a tailing stream, which occurs during flotation, is at least partially fed to the magnetic separation process. It has herausge ¬ assumed that the magnetic separation process quite cope with a larger spectrum of a particle size distribution so that valuable material particles or recyclable material phases that could not be successfully separated in the flotation, in a further alternative step of separation can be subjected again.
Es hat sich als vorteilhaft herausgestellt, dass der defi¬ nierte Partikeldurchmesser, der beim Klassieren eingestellt wird, kleiner als 70 Mikrometer ist. Insbesondere ist er kleiner als 50 Mikrometer. Hierbei wird insbesondere ein Hyd- rozyklon zur Klassierung eingesetzt. Andere Klassierverfahren wie Sieben, Spiralförderer etc. sind ebenfalls möglich. Bevorzugt wird das erfindungsgemäße Verfahren auf minerali¬ sche Wertstoffpartikel aus den Reihen der Seltenen Erden angewandt. Unter dem Begriff Seltene Erden werden Verbindungen der Seltenerdelemente insbesondere deren Oxide aber auch Car- bonate und Phosphate verstanden. Unter dem Begriff Seltenerd¬ elemente werden insbesondere die sogenannten Lanthanoiden, u.a. Lanthan, Cer, Praseodym, Neodym, Samarium. Europium, Gadolinium, Terbium. Dysprosium, Holmium, Erbium, Ytterbium und Lutetium verstanden, es werden jedoch wegen ihrer chemischen Ähnlichkeiten in diesem Fall hier auch das Yttrium und dasIt has been found to be advantageous that the defi ned ¬ particle diameter, which is set in classifying, is less than 70 microns. In particular, it is smaller than 50 microns. In this case, in particular, a hydrocyclone is used for the classification. Other classification methods such as sieves, spiral conveyors etc. are also possible. The process according to the invention is preferably applied to mineral-rich valuable particles from the series of rare earths. The term rare earths is understood as meaning compounds of the rare earth elements, in particular their oxides, but also carbonates and phosphates. The term rare earth ¬ elements are in particular the so-called lanthanides, including lanthanum, cerium, praseodymium, neodymium, samarium. Europium, gadolinium, terbium. Dysprosium, holmium, erbium, ytterbium and lutetium were understood, but yttrium and yttrium are also here due to their chemical similarities in this case
Scandium dazu gezählt. Seltene Erden sind wiederum Verbindungen von Seltenerdelementen, insbesondere deren Oxide und Phosphate . Weitere vorteilhafte Ausgestaltungsformen und weiterte Merk¬ male der Erfindung werden anhand der folgenden Figur und Auflistung der folgenden Beispiele näher erläutert. Hierbei handelt es sich lediglich um Ausführungsbeispiele, die keine Einschränkung des Schutzbereichs darstellen. Scandium counted. Rare earths are in turn compounds of rare earth elements, in particular their oxides and phosphates. Further advantageous embodiments and panded shopping ¬ male of the invention will become apparent from the following figure and list the following examples. These are merely exemplary embodiments that do not represent a restriction of the scope.
Dabei zeigt Figur 1 einen Prozess zur Separation eines mine¬ ralischen Wertstoffpartikels , also einem gemahlenen Erz unter Verwendung einer Kombination von Flotation und Magnetseparation . Here, Figure 1 shows a process for the separation of a mine ral value ¬ solid particle, so a ground ore using a combination of flotation and magnetic separation.
Anhand der einzigen Figur wird im Weiteren beispielhaft eine Ausgestaltung des Verfahrens zur Abtrennung einer Wertstoffphase 2 aus einem gemahlenen Erz 4 beschrieben. Das Erz 4 wird nach einem herkömmlichen Verfahren gemahlen, wodurch zwangsläufig eine heterogene Korngrößenverteilung der einzel¬ nen Partikel auftritt. Der Mahlgrad und damit AufSchlussgröße bzw. -grad sind abhängig von der Lagerstätte bzw. den dort vorliegenden Phasengrößen der zu separierenden Werkstoffphase 2. Jedoch gibt es auch bei dieser Phasengröße der Wertstoff- phase 2 eine Verteilungskurve der Phasengröße, so dass es zweckmäßig ist, dass gemahlene Erz 4 in zwei Fraktion zu klassieren. Dies geschieht in einer Klassiervorrichtung 6, in der zum einen eine erste Fraktion 8 erzeugt wird, die eine Korngrößenverteilung aufweist, die im Wesentlichen größer als 50 Mikrometer ist. Ferner wird in der Klassiervorrichtung 6, die bevorzugt in Form eines Hydrozyklons ausgestaltet ist, eine zweite Fraktion 10 abgetrennt, die Partikelgrößen auf- weist, die im Wesentlichen unter 50 Mikrometer liegen. Grundsätzlich ist es möglich noch weitere Fraktionen herzustellen, die unterschiedlicher Korngrößenverteilungen aufweisen, wenn hierdurch der Selektionsprozess technisch optimiert werden kann . An embodiment of the method for separating a valuable material phase 2 from a ground ore 4 will be described below by way of example with reference to the single FIGURE. The ore 4 is ground by a conventional method, whereby inevitably a heterogeneous particle size distribution of the individual ¬ nen particles occurs. The degree of grinding and thus the size and degree of closure are dependent on the deposit or the phase quantities of the material phase 2 to be separated there. However, even with this phase variable of the valuable phase 2 there is a distribution curve of the phase size, so that it is expedient to classify ground ore 4 into two fractions. This is done in a classifying device 6, in which on the one hand, a first fraction 8 is generated, the one Grain size distribution which is substantially greater than 50 microns. Further, in the classifying device 6, which is preferably designed in the form of a hydrocyclone, a second fraction 10 is separated, the particle sizes has up, which are substantially less than 50 microns. In principle, it is possible to produce further fractions which have different particle size distributions, if this allows the selection process to be technically optimized.
Die erste Fraktion 8 mit dem größeren Partikeldurchmesser wird nun in eine Flotationsvorrichtung 11 gegeben, die einer herkömmlichen Flotationsvorrichtung entspricht. Bei der Flotation wird ein Flotationskonzentrat 12 erzeugt, das eine An- reicherung der Wertstoffphase 2 enthält. Je nach Flotations¬ verfahren und je nach Art und Beschaffenheit des gemahlenen Erzes ist die Ausbeute an Wertstoffphase 2 in dem Flotations¬ konzentrat unterschiedlich hoch. Deshalb kann es zweckmäßig sein, den Flotationsprozess 11 mehrfach ablaufen zu lassen. The first fraction 8 with the larger particle diameter is now placed in a flotation device 11, which corresponds to a conventional flotation device. In the flotation, a flotation concentrate 12 is produced which contains an enrichment of the valuable phase 2. Depending on the flotation process ¬ and depending on the type and nature of the ground ore, the yield of useful material phase 2 in the flotation concentrate is ¬ vary. Therefore, it may be appropriate to run the flotation process 11 several times.
Die zweite Fraktion 10 des gemahlenen Erzes 4 wird parallel dazueinem Magnetseparationsprozess zugefügt. Hierzu erfolgt zunächst einer chemischen Konditionierung 20 der Partikel der Fraktion 10, wobei die Konditionierung 20 an sich bekannt ist und daher auf diese hier nicht weiter eingegangen werden soll. Es sei nur gesagt, dass die Wertstoffpartikel mit se¬ lektiv wirkenden organischen Substanzen zusammengebracht werden, die sich auf die Oberfläche der Wertstoffpartikel legen, und somit ihre Oberflächeneigenschaften beeinflussen. Ferner wird beim Konditionieren ebenfalls oberflächenbehandelterThe second fraction 10 of the milled ore 4 is added in parallel to a magnetic separation process. For this purpose, first a chemical conditioning 20 of the particles of the fraction 10, wherein the conditioning 20 is known per se and therefore should not be discussed here on this. It should only be said that the valuable material particles are brought together with se ¬ selectively acting organic substances that lie on the surface of the valuable particles, and thus influence their surface properties. Furthermore, the conditioning is also surface-treated
Magnetit (Fe304) oder eine andere magnetische Phase zugefügt, die selektiv oberflächenbehandelte Wertstoffpartikel 2 anla¬ gern. In einem nachgeschalteten Magnetseparationsreaktor 15 werden die aus Magnetit-Partikel 14 und den Wertstoff-Par- tikeln 2 bestehenden Partikelagglomerate abgetrennt. Hierbei fällt ein Tailing-Strom 19 an, der ein weiteres Mal dem Magnetseparationsprozess zugeführt werden kann. Dies ist davon abhängig, wie hoch die Ausbeute an WertstoffPartikeln nach dem ersten Separationsprozess im Separationsreaktor 15 ist. Nach dem Separieren der Magnetitpartikel von der zweiten Fraktion 10 werden die Magnetitpartikel 14, die mit den Wert¬ stoffPartikeln 2 verbunden sind, in einer Trennvorrichtung wieder von den WertstoffPartikeln 2 getrennt, so dass auf der einen Seite ein Magnetseparationskonzentrat 16 mit Wertstoff¬ partikeln 2 anfällt, auf der anderen Seite werden die Magnetitpartikel 14 zurückgewonnen und wieder dem Konditionier- vorgang 20 zugefügt. Magnetite (Fe 3 0 4 ) or another magnetic phase added, the selectively surface-treated recyclable particles 2 anla ¬ like. In a downstream magnetic separation reactor 15, the particle agglomerates consisting of magnetite particles 14 and the recyclable particles 2 are separated off. In this case, a tailing stream 19 arrives, which can be fed to the magnetic separation process one more time. This depends on how high the yield of valuable material particles after the first separation process in the separation reactor 15 is. After separation of the magnetite particles of the second fraction 10, the magnetite particles 14 which are associated with the value of ¬ material particles 2 are again separated from the recyclable material particles 2 in a separation device, such that on the one hand a magnetic separation concentrate 16 obtained with recyclable material ¬ particles 2 On the other hand, the magnetite particles 14 are recovered and added back to the conditioning process 20.
Es hat sich bei verschiedenen Erzen als zweckmäßig herausge¬ stellt, einen Tailing-Strom 18, der bei der Flotation 11 anfällt ebenfalls dem Magnetseparationsprozess zuzufügen, wenn dieser noch einen ausreichend hohen Anteil an Wertstoffparti- kein 2 enthält. Dies bedeutet natürlich im Gegenzug, dass in diesem Fall die Ausbeute der Flotation 11 noch nicht befrie¬ digend war. Es hat sich herausgestellt, dass die Magnetsepa¬ ration 15 gegenüber einer breiteren Korngrößenverteilung weniger anfällig ist als die Flotation 11. Grundsätzlich kann jedoch auch der Tailing-Strom 18 in Form von 18 λ verworfen werden und auf einer entsprechenden Deponie endgelagert werden bzw. es können auch hier weitere alternative Wertstoff¬ partikel separiert werden. Es hat sich ferner herausgestellt, dass umweltkritische Sub¬ stanzen in dem gemahlenen Erz 4, insbesondere radioaktive Partikel wie Uranoxid oder Thoriumdioxid, ebenfalls sehr fein verteilt in dem gemahlenene Erz 4 vorliegen, weshalb ein Großteil dieser umweltschädlichen Substanzen in der zweiten Fraktion 10 angesammelt sind. Diese bleiben dann im Tailing- Strom 19 übrig und können separat vom Tailing-Strom 18 endgelagert werden. Dies ist insbesondere deshalb vorteilhaft, da der Tailing-Strom 19, der aus der Magnetseparation resultiert verglichen mit dem Tailing-Strom 18 bzw. Tailing-Strom 18 der aus dem Flotationsprozess entsteht, das verhältnismäßig geringere Volumen aufweist. Wenn in diesem Tailing-Strom 19 die Anreicherungen an umweltschädlichen Substanzen größer ist, kann dieser vergleichsweise kleine Tailing-Strom separat auf einer hierfür ausgewiesenen Deponie gelagert werden, so dass die umweltschädlichen Produkte die beim Abbau von Sel¬ tenerdelementen anfallen, in einer kleineren Fraktion getrennt aufbewahrt werden können, was die Umweltbelastung deutlich reduziert. It has proven to be expedient in the case of various ores to also add a tailing stream 18, which is obtained in the flotation 11, to the magnetic separation process if it still contains a sufficiently high proportion of valuable material 2. Of course, this in turn means that in this case the yield of the flotation was 11 not befrie ¬ apologetically. It has been found that the Magnetsepa ¬ ration 15 is less prone to a broader particle size distribution than the flotation 11. In principle, however, the tailing 18 can be rejected in the form of 18 λ and end up on a corresponding landfill or it can Here, too, further alternative recyclables ¬ particles are separated. It has further been found that environmentally critical sub ¬ punch in the milled ore 4, in particular radioactive particles, such as uranium oxide, or thorium dioxide, also very finely dispersed in the gemahlenene ore 4 exist, therefore, a large part of these polluting substances in the second fraction 10 are accumulated. These then remain in the tailing stream 19 and can be stored separately from the tailing stream 18. This is particularly advantageous because the tailing stream 19 resulting from the magnetic separation compared to the tailing stream 18 or tailing stream 18 resulting from the flotation process, which has relatively lower volume. If the accumulation of environmentally harmful substances in this tailing stream 19 is greater, this comparatively small tailing stream can be separated be stored on a dedicated landfill, so that the environmentally harmful products incurred in the degradation of sel ¬ ten earth elements can be stored separately in a smaller fraction, which significantly reduces the environmental impact.

Claims

Patentansprüche claims
1. Verfahren zur Abtrennung einer definierten mineralischen Wertstoffphase (2) aus einem gemahlenen Erz (4), das mehrere chemische Phasen aufweist und in einer heterogenen Korngrö¬ ßenverteilung vorliegt, umfassend folgende Schritte: 1. A process for separating a defined value mineral material phase (2) of a ground ore (4) having a plurality of chemical stages and is in a heterogeneous Korngrö ¬ size distribution comprising the steps of:
Klassieren (6) des Erzes nach einem definierten Partikeldurchmesser in mindestens zwei Fraktionen, wobei eine erste Fraktion (8) Partikel aufweist, die im Wesentlichen größer als der definierte Partikeldurchmesser sind und eine zweite Fraktion (10) Partikel umfasst die im Wesent¬ lichen kleiner sind als der definierte Partikeldurchmes¬ ser und wobei die definierten mineralischen WertstoffPartikel (2) in beiden Fraktionen (8, 10) enthalten sind, - Flotieren (11) der ersten Fraktion mit den größeren Partikeldurchmessern und selektieren der definierten mineralischen Wertstoffpartikel (2) in einem Flotationskonzent¬ rat (12), Comprises classifying (6) of the ore according to a defined particle diameter in at least two fractions, a first fraction (8) particles that are larger than the defined particle diameter substantially and a second fraction (10) comprises particles which are smaller in Wesent ¬ union as the defined particle diameter and wherein the defined mineral valuable material particles (2) are contained in both fractions (8, 10), - floating (11) of the first fraction with the larger particle diameters and selecting the defined mineral valuable substance particles (2) in a flotation concentration ¬ rat (12),
Selektives Versetzen der definierten mineralischen Wert- stoffpartikel (2) in der Fraktion (10) mit den kleineren Selective addition of the defined mineral particles (2) in the fraction (10) with the smaller ones
Partikeldurchmessern mit magnetisierbaren Partikeln (14), Anwenden eines Magnetseparationsprozesses auf die zweite Fraktion (10) mit geringeren Partikeldurchmessern und Separieren eines Konzentrats (16) mit einer Anreicherung der definierten mineralischen Wertstoffphase (2). Particle diameters with magnetizable particles (14), applying a magnetic separation process to the second fraction (10) with smaller particle diameters and separating a concentrate (16) with an enrichment of the defined mineral material phase (2).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Tailingstrom (18) der beim Flotieren (11) anfällt, zumindest teilweise dem Magnetseparationsprozess (15) zugeführt wird. 2. The method according to claim 1, characterized in that a Tailingstrom (18) obtained during flotation (11) is at least partially fed to the magnetic separation process (15).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der definierte Partikeldurchmesser beim Klassieren (6) kleiner als 70 ym, insbesondere kleiner als 50 ym ist. 3. The method according to claim 1 or 2, characterized in that the defined particle diameter in classifying (6) is less than 70 ym, in particular less than 50 ym.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Klassieren (6) mit Hilfe eines Hyd- rozyklons erfolgt. 4. The method according to any one of the preceding claims, characterized in that the classification (6) takes place by means of a hydrocyclone.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadur gekennzeichnet, dass die mineralischen Wertstoffpartikel (2 aus den Reihen der Seltenen Erden, insbesondere Salze der Lanthanoiden stammen. 5. The method according to any one of the preceding claims, dadur characterized in that the mineral valuable material particles (2 from the series of rare earths, in particular salts of lanthanides originate.
EP14821103.0A 2013-12-20 2014-12-15 Method for separating a defined mineral phase of value from a ground ore Active EP2934758B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013226845 2013-12-20
DE102014200415.2A DE102014200415A1 (en) 2013-12-20 2014-01-13 Process for the separation of a defined mineral substance phase from a ground ore
PCT/EP2014/077692 WO2015091324A1 (en) 2013-12-20 2014-12-15 Method for separating a defined mineral phase of value from a ground ore

Publications (2)

Publication Number Publication Date
EP2934758A1 true EP2934758A1 (en) 2015-10-28
EP2934758B1 EP2934758B1 (en) 2017-02-01

Family

ID=53275551

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14821103.0A Active EP2934758B1 (en) 2013-12-20 2014-12-15 Method for separating a defined mineral phase of value from a ground ore

Country Status (8)

Country Link
US (1) US9718066B2 (en)
EP (1) EP2934758B1 (en)
AU (1) AU2014365010B2 (en)
BR (1) BR112015020790B1 (en)
CA (1) CA2899283C (en)
DE (1) DE102014200415A1 (en)
MY (1) MY174271A (en)
WO (1) WO2015091324A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195304A (en) * 2015-07-24 2015-12-30 石家庄金垦科技有限公司 Sorting process for improving quality and reducing impurities of low-grade magnetite concentrate
EP3150283A1 (en) * 2015-09-30 2017-04-05 Siemens Aktiengesellschaft Method and device for producing an eudialyte concentrate by direct flotation
CN105435952A (en) * 2015-11-09 2016-03-30 湖南有色金属研究院 Method for recovering high-pelitic and high-iron copper oxide ore hard to treat
CA3012858C (en) 2016-02-15 2023-04-18 Uranium Beneficiation Pty Ltd Improved uranium ore processing using hydrocyclone beneficiation
CN106000629A (en) * 2016-07-12 2016-10-12 陈勇 Underwater rotating flow tank type mineral separation device with triangle body added between parallel pouring bins
CN105921266A (en) * 2016-07-12 2016-09-07 陈勇 Underwater spiral flow tank-type device added with upper-lower double pour-out bins used for discharging large-particle ore sand
CN106000630A (en) * 2016-07-12 2016-10-12 陈勇 Underwater rotating flow tank type device with upper and lower double pouring bins for discharging large-particle ore sand added
CN106799300B (en) * 2016-12-15 2019-09-17 江苏旌凯中科超导高技术有限公司 A kind of beneficiation method of Rare Earth Mine
CN106902974B (en) * 2017-03-09 2018-01-12 昆明理工大学 A kind of beneficiation method of low oxidation ratio high-combination rate mixed copper ore
CN106944244B (en) * 2017-03-09 2018-01-12 昆明理工大学 A kind of method that coated complex copper oxide ore recycles
CN111359774B (en) * 2020-03-17 2022-05-31 矿冶科技集团有限公司 Method for recovering rare earth minerals from submarine sediments
CN112337641B (en) * 2020-09-01 2022-06-28 核工业北京化工冶金研究院 Method for selecting niobium concentrate from polymetallic ore containing rare earth, niobium, zirconium and the like
CN115041296B (en) * 2022-05-26 2024-03-22 安徽庐江龙桥矿业股份有限公司 Grinding and selecting method for ferromagnetic ore

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2450720A (en) * 1943-12-30 1948-10-05 Erie Mining Co Froth flotation of silicious gangue from an alkaline magnetic iron ore pulp with an amine
DE1142565B (en) * 1959-07-01 1963-01-24 Kloeckner Humboldt Deutz Ag Process for cleaning ferrosilicon swordroot
JPS51142403A (en) * 1975-06-04 1976-12-08 Dowa Mining Co Flotation method for cassiterite
US4144164A (en) * 1977-09-20 1979-03-13 Stamicarbon, B.V. Process for separating mixtures of particles
US4192738A (en) 1978-10-23 1980-03-11 The United States Of America As Represented By The Secretary Of The Interior Process for scavenging iron from tailings produced by flotation beneficiation and for increasing iron ore recovery
OA07765A (en) * 1984-05-04 1985-08-30 Kemira Oy A method of dressing ore.
CA1287415C (en) * 1986-09-05 1991-08-06 Srdjan Bulatovic Beryllium flotation process
US4802976A (en) * 1988-01-04 1989-02-07 Miller Francis G Method for recovering fine clean coal
US7004326B1 (en) * 2004-10-07 2006-02-28 Inco Limited Arsenide depression in flotation of multi-sulfide minerals
EP2097751A4 (en) * 2006-10-30 2013-05-08 Stc Unm Magnetically susceptible particles and apparatuses for mixing the same
EP2090367A1 (en) * 2008-02-15 2009-08-19 Siemens Aktiengesellschaft Method and device for continuous recovery of non-magnetic ores
EP2376230B1 (en) 2008-12-11 2014-07-30 Basf Se Enrichment of valuable ores from mine waste (tailings)
JP2014500142A (en) 2010-11-29 2014-01-09 ビーエーエスエフ ソシエタス・ヨーロピア Magnetic recovery of valuables from slag materials
AU2012258595B2 (en) 2011-05-25 2017-06-01 Cidra Corporate Services Inc. Method and system for releasing mineral from synthetic bubbles and beads
CN202199415U (en) * 2011-06-14 2012-04-25 益阳鸿源稀土有限责任公司 Pretreatment device for rare earth processing flotation and magnetic separation
PL2537591T3 (en) 2011-06-21 2014-11-28 Siemens Ag Method for recovering non-magnetic ores from a suspension containing ore particle-magnetic particle agglomerates
US9409185B2 (en) * 2014-04-17 2016-08-09 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2015091324A1 *

Also Published As

Publication number Publication date
CA2899283A1 (en) 2015-06-25
EP2934758B1 (en) 2017-02-01
US20160008822A1 (en) 2016-01-14
AU2014365010B2 (en) 2018-06-28
BR112015020790A2 (en) 2017-07-18
WO2015091324A1 (en) 2015-06-25
BR112015020790B1 (en) 2021-01-05
DE102014200415A1 (en) 2015-06-25
US9718066B2 (en) 2017-08-01
CA2899283C (en) 2021-06-22
AU2014365010A1 (en) 2015-08-13
MY174271A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
EP2934758B1 (en) Method for separating a defined mineral phase of value from a ground ore
US10864528B2 (en) Reducing the need for tailings storage dams in the iron ore industry
WO2014198488A1 (en) Method and device for separating primary ore containing rare earths
CA2988860C (en) Reducing the need for tailings storage dams in mineral flotation
CA2889014C (en) Iron ore concentration process with grinding circuit, dry desliming and dry or mixed (dry and wet) concentration
CN105797841A (en) Beneficiation process for increasing recovery rate of gold of refractory gold ores
DE102012017418B4 (en) Method for obtaining the double salt NaNd (SO4) 2 * H20 from a starting mixture
CN106799300A (en) A kind of beneficiation method of Rare Earth Mine
WO2009101070A2 (en) Method and device for extracting non-magnetic ores
WO2011023426A1 (en) Method for the continuous magnetic ore separation and/or dressing and related system
EP2274103A1 (en) Method and system for preparing a heavy, plastic-rich fraction
EP1447138B1 (en) Treatment from slags coming from waste combustion installations
CN110142134A (en) A kind of method of iron ore country rock comprehensive utilization
CN104258977A (en) Regrinding and rescreening method and device of gold floating tailings
WO2012175303A1 (en) Method for obtaining non-magnetic ores from a suspension-like mass flow containing non-magnetic ore particles
CA2989175C (en) Reducing the need for tailings storage dams in the iron ore industry
EP2052780A2 (en) Method for the treatment of slag
Gonçalves et al. In-depth characterization and preliminary beneficiation studies of heavy minerals from beach sands in Brazil
EP3106530B1 (en) Method for obtaining a metal-containing secondary raw material
WO2017036534A1 (en) Method and device for separating composite materials and mixtures, in particular solid-material mixtures and slags
DE102014202792A1 (en) Mobile device for the treatment of valuable mining waste
WO2024028151A1 (en) Method for processing potash ores
EP3150283A1 (en) Method and device for producing an eudialyte concentrate by direct flotation
CN103272685A (en) Mineral separation process for recycling iron and rare earth in baotite oxidized ore flotation tailings
EP3572170A1 (en) Method and system for the manufacture of an input material for the production of rare earth magnets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160801

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 865084

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014002644

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170201

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170201

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170502

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014002644

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

26 Opposition filed

Opponent name: BASF SE

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014002644

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502014002644

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141215

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181215

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 865084

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231211

Year of fee payment: 10

Ref country code: NO

Payment date: 20231206

Year of fee payment: 10

Ref country code: FI

Payment date: 20231220

Year of fee payment: 10