EP2917787B1 - Clock movement having a balance and a hairspring - Google Patents

Clock movement having a balance and a hairspring Download PDF

Info

Publication number
EP2917787B1
EP2917787B1 EP13812065.4A EP13812065A EP2917787B1 EP 2917787 B1 EP2917787 B1 EP 2917787B1 EP 13812065 A EP13812065 A EP 13812065A EP 2917787 B1 EP2917787 B1 EP 2917787B1
Authority
EP
European Patent Office
Prior art keywords
hairspring
stiffened portion
amplitude
stiffened
timepiece movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13812065.4A
Other languages
German (de)
French (fr)
Other versions
EP2917787A2 (en
Inventor
Jean-Luc Bucaille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Publication of EP2917787A2 publication Critical patent/EP2917787A2/en
Application granted granted Critical
Publication of EP2917787B1 publication Critical patent/EP2917787B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/26Compensation of mechanisms for stabilising frequency for the effect of variations of the impulses

Definitions

  • the present invention relates to a timepiece movement comprising an oscillator of the sprung balance type and an escapement, more particularly such a movement the isochronism of which is improved.
  • isochronism is meant the variations in rate as a function of the amplitude of oscillation of the balance and as a function of the position of the watch.
  • the oscillator When mounted in a movement, the oscillator is disturbed by the escapement, which, in particular in the case of a Swiss lever escapement, induces a delay in operation. Indeed, during the release phase, the oscillator undergoes a resistive torque before the center line, which causes a delay. During the pulse phase, the oscillator experiences a motor torque first before the center line, which causes an advance, then after the center line, which causes a delay. Overall, the escapement thus produces a delay in motion and this disturbance caused by the escapement is greater at small amplitudes of oscillation of the balance than at large ones.
  • EP 1 445 670 A1 described, in the embodiment of the figure 6 , a hairspring comprising a stiffened portion on the outer turn and a stiffened portion on the inner turn.
  • this document shows a hairspring comprising an inner turn following a Grossmann curve.
  • CH 327 796 A describes a balance spring whose outer and lower turns have stiffened portions.
  • the present invention aims to further improve the isochronism of a timepiece movement and for this purpose proposes a timepiece movement as defined in independent claim 1 attached.
  • Advantageous embodiments are defined in the dependent claims.
  • the figure 1 shows a flat hairspring of the type described in the patent EP 1473604 , for a balance-spring oscillator of a clockwork movement.
  • This hairspring designated by the reference 1
  • This hairspring is in the form of an Archimedean spiral and is fixed by its inner end 2 to a ferrule 3 mounted on the balance shaft and by its outer end 4 to a stud (not shown) mounted on a fixed part of the movement such as the rooster.
  • the spiral assembly 1 - ferrule 3 can be made in one piece, in a crystalline material such as silicon or diamond, by a micro-etching technique.
  • the outer turn 5 of the hairspring 1 locally has a portion 6 of greater thickness e than the rest of the blade forming the hairspring.
  • This thickness e which can be variable along the portion 6 as shown, stiffens the portion 6 and thus makes it substantially inactive during the development of the hairspring.
  • the position and the extent of the stiffened portion 6 are chosen so that the center of deformation of the hairspring, corresponding substantially to the center of gravity of the part of the hairspring other than the stiffened portion 6, is substantially coincident with the center of rotation O of the hairspring.
  • balance spring and ferrule 3 which coincides with the geometric center of the balance spring. In this way, the development of the hairspring is concentric or almost concentric.
  • the stiffened portion 6 ends before the outer end 4 of the hairspring.
  • This outer end 4, more precisely an end part 7 of the outer turn 5 including the stiffened portion 6, is spaced radially outwardly relative to the path of the Archimedean spiral to ensure that the penultimate turn 8 remains. radially free, that is to say does not touch any element such as the pin, the outer coil or a racket pin, during the operation of the movement.
  • the distance between the end part 7 and the penultimate turn 8 must be greater than that of a traditional hairspring, because due to the concentric development of the hairspring, the penultimate coil 8 moves radially more towards the peak during the expansion of the hairspring.
  • the end part 7 is in the form of an arc of a circle with center C.
  • the angular extent ⁇ of the stiffened portion 6 and its angular position ⁇ are defined from this center C.
  • the thickness e is measured along a radius starting from this center C.
  • the hairspring has 14 turns plus a portion of a turn extending over 30 °, the values ⁇ and ⁇ are respectively equal to 85.9 ° and 72 ° and the maximum of the thickness e is equal to 88.7 ⁇ m.
  • the thickness e 0 of the blade forming the hairspring (measured along a radius starting from the center of rotation O of the hairspring), with the exception of the stiffened portion 6, is equal to 32.2 ⁇ m.
  • the figure 2 is an isochronism diagram obtained with the hairspring illustrated on figure 1 by digital simulation. More precisely, the diagram of the figure 2 is obtained by considering the fixed outer end 4 and the shaft on which the ferrule 3 and the free balance (that is to say not mounted in bearings) are fixed, by calculating by finite elements the displacement of the center of O rotation of the hairspring during the oscillations of the balance, then by interpolating and integrating the displacement curve as a function of the oscillation amplitude. Analytical equations relating the displacement of the center of rotation O of the hairspring to the rate as a function of the amplitude of oscillation of the balance are proposed for example in the work "Treaty of horological construction" by M. Vermot, P. Bovay, D.
  • the rate gradually decreases as the amplitude of oscillation decreases, this in all the positions of the watch, and there is also a rate difference between the various vertical positions.
  • a curve was interpolated and the rate difference between the oscillation amplitude of 150 ° and the oscillation amplitude of 300 ° was determined.
  • the average of the gait deviations in all the positions and all the movements was approximately 6.7 s / d between the said amplitudes. In other words, walking at 150 ° was on average about 6.7 s / d lower than walking at 300 °. This reduction in rate, or delay at small amplitudes compared to large amplitudes, is essentially due to the escapement.
  • the present inventor has observed that the reduction in the rate due to the escapement could, at least in part, be compensated by modifying the arrangement of the rigidified portion 6, namely for example its position ⁇ and / or its extent ⁇ and / or its thickness e, relative to the arrangement of the figure 1 which gives the spiral turns a perfect or almost perfect concentricity.
  • a parameter of the stiffened portion 6 having a particular influence on isochronism is its position ⁇ .
  • a travel advance is created at small amplitudes with respect to the large amplitudes of oscillation of the balance.
  • the figure 4 shows the new hairspring obtained, with its stiffened outer coil portion designated by the reference 6 '.
  • the displacement of the stiffened portion 6 naturally modifies the development of the hairspring, which is no longer so concentric. But, on the one hand, this modification is weak, the hairspring developing even more concentrically than a traditional hairspring (that is to say a hairspring without a stiffened portion), and, on the other hand, this modification contributes to improving the overall isochronism of the movement, the defect of concentricity created being used to compensate for another defect.
  • the isochronism curve 14 of the hairspring illustrated on figure 4 obtained by the same method as in figure 2 .
  • Another parameter of the stiffened portion 6 having an influence on isochronism is its thickness e.
  • a running advance is created at small amplitudes with respect to the large amplitudes of oscillation of the balance.
  • the figure 7 shows the hairspring obtained, with its stiffened outer coil portion designated by the reference 6 ", and the figure 8 shows the isochronism curve 17 corresponding to such a hairspring.
  • Yet another parameter of the stiffened portion having an influence on isochronism is its extent ⁇ .
  • the figure 9 shows the hairspring obtained, with its stiffened outer coil portion designated by the reference 6 ''', and the figure 10 shows the isochronism curve 19 corresponding to such a hairspring.
  • the figure 11 represents isochronism curves, designated by J1 to J5, of a hairspring whose outer coil comprises a stiffened portion arranged to compensate for the variation in rate due to the escapement, as described above.
  • Curve J1 represents the isochronism of the hairspring in a horizontal position, i.e.
  • the stiffened portion of the outer turn of the hairspring is arranged so that the hairspring produces a forward advance of 5.3 s / d at the amplitude of 150 ° with respect to the amplitude of 300 °.
  • the curves J2 to J5 represent the isochronism of the hairspring in the four vertical positions VG, VH, VB and VD respectively, and are obtained by taking into account both the non-concentric development of the hairspring and the effect of gravity, in in other words, by adding the variations in rate due to the non-concentric development of the hairspring and to gravity.
  • the operating difference between the vertical positions is 3.2 s / d at an oscillation amplitude of the balance of 250 °.
  • the hairspring corresponding to the isochronism curves J1 to J5 shown in figure 11 is shown at figure 12 . It includes 14 turns.
  • the angular extent and the angular position of its stiffened portion 9 are 60 ° and 75 ° respectively.
  • the radius R of its shell, or distance between the inner end of the hairspring and the center of rotation of said hairspring, measured in the same way as at the figure 1 is equal to 565 ⁇ m. It was found that by decreasing the radius R to a value R ', the distance between the vertical positions was reduced.
  • the radius R ' is advantageously chosen to be less than 400 ⁇ m.
  • the figure 14 represents the isochronism curves of a hairspring (illustrated on figure 13 ) similar to that of figure 12 but having a shell radius R 'equal to 300 ⁇ m (and a pitch and a coil thickness adapted accordingly).
  • the rate difference between the vertical positions at an amplitude of 250 ° is 1.1 s / d, therefore much less than the 3.2 s / d of the balance spring of the figure 12 .
  • the stiffened portion designated by 9 ', must be adapted.
  • the angular extent and the angular position of the stiffened portion 9 ' are thus 50 ° and 75 ° respectively.
  • Another way of reducing the distance between the vertical positions is to shape the inner turn of the hairspring according to a Grossmann curve or to stiffen a portion of the inner turn.
  • Such a modification of the inner coil can even be combined with the reduction of the radius R of the ferrule to further reduce the deviation of course.
  • the figure 15 shows a balance spring whose ferrule radius R 'is equal to 300 ⁇ m and whose inner coil 10 is shaped according to a Grossmann curve.
  • the rate difference between the vertical positions for this hairspring is only 0.6 s / d at an oscillation amplitude of 250 °.
  • a hairspring with a stiffened portion 11 on the inner coil as shown in figure 17 (the interior stiffened portion 11 having, like the exterior stiffened portion 9 ''', a greater thickness than the rest of the turns) will make it possible to obtain a path difference between the vertical positions of 0.6 s / d at an oscillation amplitude of 250 ° ( figure 18 ).
  • the stiffened portion 9 "of the outer coil is arranged so that the hairspring produces a forward advance due to the lack of concentricity of the development of the hairspring of 4.2 s / d between the amplitudes of 150 ° and 300 °, to compensate for a delay in walking due to the exhaust of the same order of magnitude.
  • the stiffened portion 9 '''of the outer coil is arranged so that the hairspring produces a forward advance due to the lack of concentricity of the development of the hairspring of 5.4 s / d between the amplitudes of 150 ° and 300 °, for compensate for a running delay due to the exhaust of the same order of magnitude.
  • the combination of a Grossmann curve or a stiffened inner coil portion with a small ferrule radius R ' is particularly advantageous, it should be noted that the Grossmann curve 10 or the stiffened inner coil portion 11 could also be used with a shell with a larger radius R. One could also combine a small shell radius R ', a Grossmann curve and a stiffened inner coil portion. In all cases, the stiffened outer coil portion may be arranged according to any one of the principles explained in relation to the figures 4 , 7 and 9 or according to a combination of these principles. Moreover, it goes without saying that one could apply said principles to a movement whose escapement would produce a forward movement instead of a backward movement. To compensate for such a forward advance, it would thus be possible, for example, to move the stiffened outer turn portion away from the outer end of the hairspring or increase the angular extent of the stiffened outer turn portion.
  • the balance springs described above are each intended to form part of an oscillator of a watch movement of the type of movement 12 illustrated in the form of a block diagram on the left. figure 19 .
  • the movement 12 comprises, in the traditional way, a driving member 13 such as a barrel, a gear 14, an escapement 15 and a display 17.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Micromachines (AREA)

Description

La présente invention concerne un mouvement d'horlogerie comprenant un oscillateur de type balancier-spiral et un échappement, plus particulièrement un tel mouvement dont l'isochronisme est amélioré. Par isochronisme on entend les variations de la marche en fonction de l'amplitude d'oscillation du balancier et en fonction de la position de la montre.The present invention relates to a timepiece movement comprising an oscillator of the sprung balance type and an escapement, more particularly such a movement the isochronism of which is improved. By isochronism is meant the variations in rate as a function of the amplitude of oscillation of the balance and as a function of the position of the watch.

Pendant les oscillations du balancier d'un oscillateur balancier-spiral traditionnel, le spiral se développe de manière excentrique en raison du fait que son centre de gravité n'est pas sur l'axe de l'oscillateur et se déplace. Ce développement excentrique génère des forces de rappel importantes entre les pivots de l'arbre de l'oscillateur et les paliers dans lesquels ils tournent, forces qui en outre varient en fonction de l'amplitude d'oscillation. Ces forces de rappel perturbent les oscillations du balancier et génèrent des variations de marche de l'oscillateur en fonction de l'amplitude d'oscillation. Pour remédier à ce problème, la présente demanderesse a proposé dans son brevet EP 1473604 un oscillateur balancier-spiral dont la spire extérieure du spiral comporte une portion rigidifiée agencée pour rendre le développement du spiral concentrique.During the oscillations of the balance of a traditional balance-spring oscillator, the balance-spring expands eccentrically due to the fact that its center of gravity is not on the axis of the oscillator and is moving. This eccentric development generates significant restoring forces between the pivots of the oscillator shaft and the bearings in which they turn, forces which also vary according to the amplitude of oscillation. These restoring forces disturb the oscillations of the balance and generate variations in the rate of the oscillator as a function of the amplitude of oscillation. To remedy this problem, the present applicant has proposed in its patent EP 1473604 a balance-spring oscillator, the outer turn of the hairspring of which has a stiffened portion arranged to make the development of the hairspring concentric.

On sait cependant que la concentricité du développement d'un spiral n'est pas le seul facteur qui influence l'isochronisme. Monté dans un mouvement, l'oscillateur est perturbé par l'échappement, qui, notamment dans le cas d'un échappement à ancre suisse, induit un retard de marche. En effet, pendant la phase de dégagement, l'oscillateur subit un couple résistant avant la ligne des centres, ce qui provoque un retard. Pendant la phase d'impulsion, l'oscillateur subit un couple moteur d'abord avant la ligne des centres, ce qui provoque une avance, puis après la ligne des centres, ce qui provoque un retard. Globalement, l'échappement produit ainsi un retard de marche et cette perturbation causée par l'échappement est plus grande aux petites amplitudes d'oscillation du balancier qu'aux grandes.However, we know that the concentricity of the development of a hairspring is not the only factor which influences isochronism. When mounted in a movement, the oscillator is disturbed by the escapement, which, in particular in the case of a Swiss lever escapement, induces a delay in operation. Indeed, during the release phase, the oscillator undergoes a resistive torque before the center line, which causes a delay. During the pulse phase, the oscillator experiences a motor torque first before the center line, which causes an advance, then after the center line, which causes a delay. Overall, the escapement thus produces a delay in motion and this disturbance caused by the escapement is greater at small amplitudes of oscillation of the balance than at large ones.

Les deux phénomènes mentionnés ci-dessus, développement excentrique du spiral et retard de marche dû à l'échappement, sont indépendants ou quasiment indépendants de la position de la montre. A ces deux phénomènes s'ajoute l'effet de la gravité, qui produit un écart de marche entre les positions horizontale et verticale de la montre, et entre ses différentes positions verticales.The two phenomena mentioned above, eccentric development of the hairspring and delay in running due to the escapement, are independent or almost independent of the position of the watch. To these two phenomena is added the effect of gravity, which produces a rate difference between the horizontal and vertical positions of the watch, and between its different vertical positions.

On connaît aussi les spiraux décrits dans les documents EP 1 445 670 A1 et CH 327 796 A .We also know the balance springs described in the documents EP 1 445 670 A1 and CH 327 796 A .

En particulier, EP 1 445 670 A1 décrit, dans le mode de réalisation de la figure 6, un spiral comportant une portion rigidifiée sur la spire extérieure ainsi qu'une portion rigidifiée sur la spire intérieure. De plus, dans le mode de réalisation de la figure 8, ce document montre un spiral comportant une spire intérieure suivant une courbe Grossmann.In particular, EP 1 445 670 A1 described, in the embodiment of the figure 6 , a hairspring comprising a stiffened portion on the outer turn and a stiffened portion on the inner turn. In addition, in the embodiment of the figure 8 , this document shows a hairspring comprising an inner turn following a Grossmann curve.

CH 327 796 A décrit un spiral dont les spires extérieur et inférieur comportent des portions rigidifiées. CH 327 796 A describes a balance spring whose outer and lower turns have stiffened portions.

La présente invention vise à améliorer encore l'isochronisme d'un mouvement d'horlogerie et propose à cette fin un mouvement d'horlogerie tel que défini dans la revendication indépendante 1 annexée. Des réalisations avantageuses sont définies dans les revendications dépendantes.The present invention aims to further improve the isochronism of a timepiece movement and for this purpose proposes a timepiece movement as defined in independent claim 1 attached. Advantageous embodiments are defined in the dependent claims.

Il a été constaté avec surprise qu'en jouant sur l'agencement de la portion rigidifiée de la spire extérieure du spiral, par exemple sa position, son étendue ou son épaisseur, et qu'en y ajoutant l'une des caractéristiques a), b) et c) selon les revendications, l'isochronisme global du mouvement, tenant compte à la fois de la perturbation due à la non concentricité du spiral, de la perturbation due à l'échappement et de la perturbation due à la gravité, pouvait être nettement amélioré par rapport à l'oscillateur décrit dans le brevet EP 1473604 .It was found with surprise that by playing on the arrangement of the portion rigidified of the outer turn of the hairspring, for example its position, its extent or its thickness, and that by adding one of the characteristics a), b) and c) according to the claims, the overall isochronism of the movement, taking into account account both of the disturbance due to the non-concentricity of the hairspring, the disturbance due to the escapement and the disturbance due to gravity, could be significantly improved compared to the oscillator described in the patent EP 1473604 .

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :

  • la figure 1 montre un spiral à portion de spire extérieure rigidifiée selon la technique antérieure, une virole associée à ce spiral étant montrée schématiquement par un trait pointillé ;
  • la figure 2 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 1, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
  • la figure 3 montre des résultats de mesure d'isochronisme global obtenus sur un mouvement réel comportant un spiral tel qu'illustré à la figure 1 ;
  • la figure 4 montre un spiral du type de celui de la figure 1 mais dont la portion de spire extérieure rigidifiée a été déplacée ;
  • la figure 5 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 4, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
  • la figure 6 montre des résultats de mesure d'isochronisme global obtenus sur un mouvement réel comportant un spiral tel qu'illustré à la figure 4 ;
  • la figure 7 montre un spiral du type de celui de la figure 1 mais dont l'épaisseur de la portion de spire extérieure rigidifiée a été modifiée ;
  • la figure 8 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 7, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
  • la figure 9 montre un spiral du type de celui de la figure 1 mais dont l'étendue angulaire de la portion de spire extérieure rigidifiée a été modifiée ;
  • la figure 10 montre une courbe d'isochronisme obtenue par simulation numérique des déplacements du centre de rotation du spiral illustré à la figure 9, l'oscillateur dont fait partie ce spiral étant considéré comme libre, c'est-à-dire non soumis à l'action d'un échappement ;
  • la figure 11 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales d'un spiral à portion de spire extérieure rigidifiée ;
  • la figure 12 montre le spiral dont les courbes d'isochronisme sont représentées à la figure 11 ;
  • la figure 13 montre un spiral à portion de spire extérieure rigidifiée et à petit diamètre de virole constituant un exemple de réalisation de l'invention ;
  • la figure 14 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales du spiral illustré à la figure 13;
  • la figure 15 montre un spiral à portion de spire extérieure rigidifiée, à petit diamètre de virole et à courbe intérieure Grossmann constituant un autre exemple de réalisation de l'invention ;
  • la figure 16 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales du spiral illustré à la figure 15;
  • la figure 17 montre un spiral à portion de spire extérieure rigidifiée, à petit diamètre de virole et à portion de spire intérieure rigidifiée constituant encore un autre exemple de réalisation de l'invention ;
  • la figure 18 montre des courbes d'isochronisme correspondant à différentes positions horizontale et verticales du spiral illustré à la figure 17 ;
  • la figure 19 montre schématiquement un mouvement dans lequel peut être intégré un spiral tel qu'illustré à la figure 13, 15 ou 17.
Other characteristics and advantages of the present invention will become apparent on reading the following detailed description given with reference to the appended drawings in which:
  • the figure 1 shows a hairspring with a stiffened outer coil portion according to the prior art, a ferrule associated with this hairspring being shown schematically by a dotted line;
  • the figure 2 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the hairspring illustrated in figure 1 , the oscillator of which this hairspring is part being considered free, that is to say not subjected to the action of an escapement;
  • the figure 3 shows global isochronism measurement results obtained on a real movement including a balance spring as illustrated in figure 1 ;
  • the figure 4 shows a hairspring like that of the figure 1 but of which the stiffened outer coil portion has been moved;
  • the figure 5 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the hairspring illustrated in figure 4 , the oscillator of which this hairspring is part being considered free, that is to say not subjected to the action of an escapement;
  • the figure 6 shows global isochronism measurement results obtained on a real movement including a balance spring as illustrated in figure 4 ;
  • the figure 7 shows a hairspring like that of the figure 1 but of which the thickness of the stiffened outer coil portion has been modified;
  • the figure 8 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the hairspring illustrated in figure 7 , the oscillator of which this hairspring is part being considered free, that is to say not subjected to the action of an escapement;
  • the figure 9 shows a hairspring like that of the figure 1 but the angular extent of which of the stiffened outer coil portion has been modified;
  • the figure 10 shows an isochronism curve obtained by numerical simulation of the displacements of the center of rotation of the hairspring illustrated in figure 9 , the oscillator of which this hairspring is part being considered free, that is to say not subjected to the action of an escapement;
  • the figure 11 shows isochronism curves corresponding to different horizontal and vertical positions of a hairspring with a stiffened outer coil portion;
  • the figure 12 shows the hairspring whose isochronism curves are represented at the figure 11 ;
  • the figure 13 shows a hairspring with a stiffened outer coil portion and a small ferrule diameter constituting an exemplary embodiment of the invention;
  • the figure 14 shows isochronism curves corresponding to different horizontal and vertical positions of the hairspring illustrated in figure 13 ;
  • the figure 15 shows a hairspring with a stiffened outer coil portion, a small ferrule diameter and a Grossmann inner curve constituting another embodiment of the invention;
  • the figure 16 shows isochronism curves corresponding to different horizontal and vertical positions of the hairspring illustrated in figure 15 ;
  • the figure 17 shows a hairspring with a stiffened outer coil portion, a small shell diameter and a stiffened inner coil portion constituting yet another embodiment of the invention;
  • the figure 18 shows isochronism curves corresponding to different horizontal and vertical positions of the hairspring illustrated in figure 17 ;
  • the figure 19 schematically shows a movement in which can be integrated a hairspring as illustrated on figure 13 , 15 or 17 .

La figure 1 montre un spiral plan du type de celui décrit dans le brevet EP 1473604 , pour un oscillateur balancier-spiral d'un mouvement d'horlogerie. Ce spiral, désigné par le repère 1, est en forme de spirale d'Archimède et est fixé par son extrémité intérieure 2 à une virole 3 montée sur l'arbre du balancier et par son extrémité extérieure 4 à un piton (non représenté) monté sur une pièce fixe du mouvement telle que le coq. L'ensemble spiral 1 - virole 3 peut être réalisé en une seule pièce, dans une matière cristalline telle que le silicium ou le diamant, par une technique de micro-gravure. La spire extérieure 5 du spiral 1 comporte localement une portion 6 de plus grande épaisseur e que le reste de la lame formant le spiral. Cette épaisseur e, qui peut être variable le long de la portion 6 comme représenté, rigidifie la portion 6 et la rend ainsi sensiblement inactive pendant le développement du spiral. La position et l'étendue de la portion rigidifiée 6 sont choisies pour que le centre de déformation du spiral, correspondant sensiblement au centre de gravité de la partie du spiral autre que la portion rigidifiée 6, soit sensiblement confondu avec le centre de rotation O du spiral et de la virole 3, qui coïncide avec le centre géométrique du spiral. De la sorte, le développement du spiral est concentrique ou quasi concentrique. En pratique, la portion rigidifiée 6 se termine avant l'extrémité extérieure 4 du spiral. Cette extrémité extérieure 4, plus précisément une partie terminale 7 de la spire extérieure 5 incluant la portion rigidifiée 6, est écartée radialement vers l'extérieur par rapport au tracé de la spirale d'Archimède pour garantir que l'avant-dernière spire 8 reste libre radialement, c'est-à-dire ne touche aucun élément tel que le piton, la spire extérieure ou une goupille de raquette, pendant le fonctionnement du mouvement. L'écart entre la partie terminale 7 et l'avant-dernière spire 8 doit être supérieur à celui d'un spiral traditionnel, car du fait du développement concentrique du spiral, l'avant-dernière spire 8 se déplace radialement davantage vers le piton lors de l'expansion du spiral. La partie terminale 7 est en forme d'arc de cercle de centre C. L'étendue angulaire θ de la portion rigidifiée 6 et sa position angulaire α (définie par exemple par la position angulaire du centre de la portion rigidifiée 6 par rapport à la position angulaire de l'extrémité extérieure 4) sont définies depuis ce centre C. L'épaisseur e est mesurée le long d'un rayon partant de ce centre C. Dans l'exemple représenté, le spiral a 14 spires plus une portion de spire s'étendant sur 30°, les valeurs θ et α sont respectivement égales à 85,9° et 72° et le maximum de l'épaisseur e est égal à 88,7 µm. L'épaisseur e0 de la lame formant le spiral (mesurée selon un rayon partant du centre de rotation O du spiral), à l'exception de la portion rigidifiée 6, est égale à 32,2 µm. Le rayon R de la virole 3, ou distance entre l'extrémité intérieure 2 du spiral et le centre de rotation O du spiral, est défini comme étant le rayon du cercle (montré en pointillés) de centre O et passant par le milieu (à la moitié de l'épaisseur e0) de l'extrémité intérieure 2 du spiral. Dans l'exemple représenté, ce rayon R est égal à 565 µm.The figure 1 shows a flat hairspring of the type described in the patent EP 1473604 , for a balance-spring oscillator of a clockwork movement. This hairspring, designated by the reference 1, is in the form of an Archimedean spiral and is fixed by its inner end 2 to a ferrule 3 mounted on the balance shaft and by its outer end 4 to a stud (not shown) mounted on a fixed part of the movement such as the rooster. The spiral assembly 1 - ferrule 3 can be made in one piece, in a crystalline material such as silicon or diamond, by a micro-etching technique. The outer turn 5 of the hairspring 1 locally has a portion 6 of greater thickness e than the rest of the blade forming the hairspring. This thickness e, which can be variable along the portion 6 as shown, stiffens the portion 6 and thus makes it substantially inactive during the development of the hairspring. The position and the extent of the stiffened portion 6 are chosen so that the center of deformation of the hairspring, corresponding substantially to the center of gravity of the part of the hairspring other than the stiffened portion 6, is substantially coincident with the center of rotation O of the hairspring. balance spring and ferrule 3, which coincides with the geometric center of the balance spring. In this way, the development of the hairspring is concentric or almost concentric. In practice, the stiffened portion 6 ends before the outer end 4 of the hairspring. This outer end 4, more precisely an end part 7 of the outer turn 5 including the stiffened portion 6, is spaced radially outwardly relative to the path of the Archimedean spiral to ensure that the penultimate turn 8 remains. radially free, that is to say does not touch any element such as the pin, the outer coil or a racket pin, during the operation of the movement. The distance between the end part 7 and the penultimate turn 8 must be greater than that of a traditional hairspring, because due to the concentric development of the hairspring, the penultimate coil 8 moves radially more towards the peak during the expansion of the hairspring. The end part 7 is in the form of an arc of a circle with center C. The angular extent θ of the stiffened portion 6 and its angular position α (defined for example by the angular position of the center of the stiffened portion 6 with respect to the angular position of the outer end 4) are defined from this center C. The thickness e is measured along a radius starting from this center C. In the example shown, the hairspring has 14 turns plus a portion of a turn extending over 30 °, the values θ and α are respectively equal to 85.9 ° and 72 ° and the maximum of the thickness e is equal to 88.7 μm. The thickness e 0 of the blade forming the hairspring (measured along a radius starting from the center of rotation O of the hairspring), with the exception of the stiffened portion 6, is equal to 32.2 μm. The radius R of the ferrule 3, or distance between the inner end 2 of the hairspring and the center of rotation O of the hairspring, is defined as being the radius of the circle (shown in dotted lines) with center O and passing through the middle (at half of l 'thickness e 0 ) of the inner end 2 of the hairspring. In the example shown, this radius R is equal to 565 μm.

La figure 2 est un diagramme d'isochronisme obtenu avec le spiral illustré à la figure 1 par simulation numérique. Plus précisément, le diagramme de la figure 2 est obtenu en considérant l'extrémité extérieure 4 fixe et l'arbre sur lequel sont fixés la virole 3 et le balancier libre (c'est-à-dire non monté dans des paliers), en calculant par éléments finis le déplacement du centre de rotation O du spiral lors des oscillations du balancier, puis en interpolant et intégrant la courbe de déplacement en fonction de l'amplitude d'oscillation. Des équations analytiques reliant le déplacement du centre de rotation O du spiral à la marche en fonction de l'amplitude d'oscillation du balancier sont proposées par exemple dans l'ouvrage « Traité de construction horlogère » de M. Vermot, P. Bovay, D. Prongué et S. Dordor, édité par les Presses polytechniques et universitaires romandes, 2011. En abscisses du diagramme de la figure 2 est portée l'amplitude d'oscillation du balancier exprimée en degrés par rapport à la position d'équilibre et en ordonnées est portée la marche en secondes par jour. Ce diagramme représente ainsi la variation de marche du spiral due au défaut de concentricité du développement du spiral. Cette variation de marche s'applique de la même manière dans toutes les positions de la montre. Comme on peut le voir à la figure 2, l'écart de marche entre une amplitude d'oscillation de 150° et une amplitude d'oscillation de 300° avec le spiral illustré à la figure 1 est de l'ordre de 1 s/j, ce qui est excellent. Toutefois, ce diagramme ne tient pas compte des perturbations dues à l'échappement ni des perturbations dues à la gravité.The figure 2 is an isochronism diagram obtained with the hairspring illustrated on figure 1 by digital simulation. More precisely, the diagram of the figure 2 is obtained by considering the fixed outer end 4 and the shaft on which the ferrule 3 and the free balance (that is to say not mounted in bearings) are fixed, by calculating by finite elements the displacement of the center of O rotation of the hairspring during the oscillations of the balance, then by interpolating and integrating the displacement curve as a function of the oscillation amplitude. Analytical equations relating the displacement of the center of rotation O of the hairspring to the rate as a function of the amplitude of oscillation of the balance are proposed for example in the work "Treaty of horological construction" by M. Vermot, P. Bovay, D. Prongué and S. Dordor, published by the Presses polytechniques et universitaire romandes, 2011. On the abscissa of the diagram of the figure 2 is plotted the amplitude of oscillation of the balance expressed in degrees with respect to the equilibrium position and in ordinates is plotted the rate in seconds per day. This diagram thus represents the variation in the rate of the hairspring due to the lack of concentricity in the development of the hairspring. This rate variation is applied in the same way in all the positions of the watch. As can be seen at the figure 2 , the rate difference between an oscillation amplitude of 150 ° and an oscillation amplitude of 300 ° with the hairspring shown in figure 1 is on the order of 1 s / d, which is excellent. However, this diagram does not take into account disturbances due to the exhaust or disturbances due to gravity.

Des mesures ont été faites sur vingt mouvements de conception identique équipés du spiral tel qu'illustré à la figure 1 et d'un échappement à ancre suisse traditionnel. Pour chaque mouvement, dans chacune de six positions différentes (VH : verticale haute, VG : verticale gauche, VB : verticale basse, VD : verticale droite, HB : horizontale basse et HH : horizontale haute), la marche du mouvement a été mesurée pendant la décharge de son ressort moteur et les mesures ont été reportées dans un graphe. A titre d'exemple, le graphe obtenu pour l'un de ces mouvements est montré à la figure 3. En ordonnées est portée la marche en s/j et en abscisses l'amplitude d'oscillation du balancier, qui diminue progressivement entre l'état complètement remonté et l'état dévidé du ressort moteur du mouvement en raison de la diminution de la force du ressort moteur. Comme on peut le voir, la marche diminue progressivement au fur et à mesure que l'amplitude d'oscillation diminue, ceci dans toutes les positions de la montre, et il existe en outre un écart de marche entre les différentes positions verticales. Pour chaque position de chaque mouvement une courbe a été interpolée et l'écart de marche entre l'amplitude d'oscillation de 150° et l'amplitude d'oscillation de 300° a été déterminée. La moyenne des écarts de marche sur toutes les positions et tous les mouvements a été d'environ 6,7 s/j entre lesdites amplitudes. En d'autres termes, la marche à 150° a été en moyenne inférieure d'environ 6,7 s/j à la marche à 300°. Cette diminution de la marche, ou retard aux petites amplitudes par rapport aux grandes amplitudes, est essentiellement due à l'échappement.Measurements were made on twenty movements of identical design equipped with the hairspring as illustrated on figure 1 and a traditional Swiss lever escapement. For each movement, in each of six different positions (VH: high vertical, VG: left vertical, VB: low vertical, VD: right vertical, HB: low horizontal and HH: high horizontal), the rate of movement was measured during the discharge of its mainspring and the measurements were taken. been reported in a graph. By way of example, the graph obtained for one of these movements is shown in figure 3 . On the ordinate is plotted the rate in s / d and on the abscissa the amplitude of oscillation of the balance, which gradually decreases between the fully wound state and the unwound state of the movement's mainspring due to the decrease in the force of the movement. motor spring. As can be seen, the rate gradually decreases as the amplitude of oscillation decreases, this in all the positions of the watch, and there is also a rate difference between the various vertical positions. For each position of each movement a curve was interpolated and the rate difference between the oscillation amplitude of 150 ° and the oscillation amplitude of 300 ° was determined. The average of the gait deviations in all the positions and all the movements was approximately 6.7 s / d between the said amplitudes. In other words, walking at 150 ° was on average about 6.7 s / d lower than walking at 300 °. This reduction in rate, or delay at small amplitudes compared to large amplitudes, is essentially due to the escapement.

Le présent inventeur a observé que la diminution de la marche due à l'échappement pouvait, en partie au moins, être compensée en modifiant l'agencement de la portion rigidifiée 6, à savoir par exemple sa position α et/ou son étendue θ et/ou son épaisseur e, par rapport à l'agencement de la figure 1 qui confère aux spires du spiral une concentricité parfaite ou quasi-parfaite.The present inventor has observed that the reduction in the rate due to the escapement could, at least in part, be compensated by modifying the arrangement of the rigidified portion 6, namely for example its position α and / or its extent θ and / or its thickness e, relative to the arrangement of the figure 1 which gives the spiral turns a perfect or almost perfect concentricity.

Il a notamment été découvert qu'un paramètre de la portion rigidifiée 6 ayant une influence particulière sur l'isochronisme est sa position α. En déplaçant la portion rigidifiée 6 vers l'extrémité extérieure 4 du spiral, on crée une avance de marche aux petites amplitudes par rapport aux grandes amplitudes d'oscillation du balancier. Ainsi, un écart de marche d'environ 6,7 s/j, mais de signe opposé par rapport à l'écart de marche mesuré moyen susmentionné, peut être obtenu entre les amplitudes de 150° et de 300° en déplaçant la portion rigidifiée 6 à la position α' = 62° et en conservant constantes les autres caractéristiques de la portion rigidifiée 6 (étendue, épaisseur). La variation de la marche due à l'échappement peut ainsi être sensiblement entièrement compensée. La figure 4 montre le nouveau spiral obtenu, avec sa portion de spire extérieure rigidifiée désignée par le repère 6'. Le déplacement de la portion rigidifiée 6 modifie bien entendu le développement du spiral, qui n'est plus aussi concentrique. Mais, d'une part, cette modification est faible, le spiral se développant encore de manière plus concentrique qu'un spiral traditionnel (c'est-à-dire un spiral sans portion rigidifiée), et, d'autre part, cette modification contribue à améliorer l'isochronisme global du mouvement, le défaut de concentricité créé servant à compenser un autre défaut. Dans le diagramme de la figure 5 a été dessinée la courbe d'isochronisme 14 du spiral illustré à la figure 4, obtenue selon la même méthode qu'à la figure 2. On voit que l'augmentation de la marche entre l'amplitude de 300° et l'amplitude de 150° est sensiblement linéaire et de pente inverse de la pente de la variation de la marche due à l'échappement. On a également reporté sur cette figure 5 la courbe d'isochronisme 11 du spiral illustré à la figure 1 à titre de comparaison. A la figure 6 sont représentés des résultats de mesure de la marche d'un mouvement identique à celui sur lequel les mesures de la figure 3 ont été effectuées, mais équipé du spiral illustré à la figure 4 au lieu de celui de la figure 1. Ces résultats montrent que la variation de la marche a été significativement réduite par le déplacement de la portion rigidifiée à la position a', en particulier dans la plage d'amplitudes allant de 180° à 300° où l'allure générale du graphe est plate.It has in particular been discovered that a parameter of the stiffened portion 6 having a particular influence on isochronism is its position α. By moving the stiffened portion 6 towards the outer end 4 of the hairspring, a travel advance is created at small amplitudes with respect to the large amplitudes of oscillation of the balance. Thus, a rate deviation of about 6.7 s / d, but of opposite sign to the aforementioned average measured deviation, can be obtained between the amplitudes of 150 ° and 300 ° by moving the stiffened portion 6 to the position α '= 62 ° and by keeping the other characteristics of the stiffened portion 6 constant (extent, thickness). The variation in rate due to the escapement can thus be substantially fully compensated. The figure 4 shows the new hairspring obtained, with its stiffened outer coil portion designated by the reference 6 '. The displacement of the stiffened portion 6 naturally modifies the development of the hairspring, which is no longer so concentric. But, on the one hand, this modification is weak, the hairspring developing even more concentrically than a traditional hairspring (that is to say a hairspring without a stiffened portion), and, on the other hand, this modification contributes to improving the overall isochronism of the movement, the defect of concentricity created being used to compensate for another defect. In the diagram of the figure 5 has been drawn the isochronism curve 14 of the hairspring illustrated on figure 4 , obtained by the same method as in figure 2 . It can be seen that the increase in the rate between the amplitude of 300 ° and the amplitude of 150 ° is substantially linear and of slope opposite to the slope of the variation of the rate due to the escapement. We also reported on this figure 5 the isochronism curve 11 of the hairspring illustrated on figure 1 to compare. To the figure 6 are shown the measurement results of the rate of a movement identical to that on which the measurements of the figure 3 have been made, but fitted with the hairspring shown on figure 4 instead of that of the figure 1 . These results show that the variation of the rate was significantly reduced by the displacement of the stiffened portion to the position a ', in particular in the range of amplitudes going from 180 ° to 300 ° where the general shape of the graph is flat. .

Un autre paramètre de la portion rigidifiée 6 ayant une influence sur l'isochronisme est son épaisseur e. En diminuant l'épaisseur e, on crée une avance de marche aux petites amplitudes par rapport aux grandes amplitudes d'oscillation du balancier. Ainsi, par exemple, un écart de marche d'environ 6,4 s/j, mais de signe opposé par rapport à l'écart de marche mesuré moyen mentionné en relation avec la figure 3, peut être obtenu entre les amplitudes de 150° et de 300° en diminuant le maximum de l'épaisseur e de la portion rigidifiée 6 (et le reste de l'épaisseur en proportion) à la valeur e' = 44,2 µm et en conservant constantes les autres caractéristiques de la portion rigidifiée (position, étendue). La figure 7 montre le spiral obtenu, avec sa portion de spire extérieure rigidifiée désignée par le repère 6", et la figure 8 montre la courbe d'isochronisme 17 correspondant à un tel spiral.Another parameter of the stiffened portion 6 having an influence on isochronism is its thickness e. By decreasing the thickness e, a running advance is created at small amplitudes with respect to the large amplitudes of oscillation of the balance. Thus, for example, a gait deviation of about 6.4 s / d, but of the opposite sign compared to the average measured deviation mentioned in relation to the figure 3 , can be obtained between the amplitudes of 150 ° and 300 ° by reducing the maximum of the thickness e of the stiffened portion 6 (and the rest of the thickness in proportion) to the value e '= 44.2 μm and keeping the other characteristics of the stiffened portion constant (position , extent). The figure 7 shows the hairspring obtained, with its stiffened outer coil portion designated by the reference 6 ", and the figure 8 shows the isochronism curve 17 corresponding to such a hairspring.

Encore un autre paramètre de la portion rigidifiée ayant une influence sur l'isochronisme est son étendue θ. En diminuant l'étendue θ, on crée une avance de marche aux petites amplitudes par rapport aux grandes amplitudes d'oscillation du balancier. Ainsi, par exemple, un écart de marche d'environ 6,9 s/j, mais de signe opposé par rapport à l'écart de marche mesuré moyen mentionné en relation avec la figure 3, peut être obtenu entre les amplitudes de 150° et de 300° en diminuant l'étendue angulaire θ de la portion rigidifiée à la valeur θ' = 43,9° et en conservant constantes les autres caractéristiques de la portion rigidifiée (position, épaisseur ou maximum d'épaisseur). La figure 9 montre le spiral obtenu, avec sa portion de spire extérieure rigidifiée désignée par le repère 6''', et la figure 10 montre la courbe d'isochronisme 19 correspondant à un tel spiral.Yet another parameter of the stiffened portion having an influence on isochronism is its extent θ. By decreasing the extent θ, we create a travel advance at small amplitudes with respect to the large amplitudes of oscillation of the balance. So, for example, a gait deviation of about 6.9 s / d, but of opposite sign compared to the average measured deviation mentioned in relation to the figure 3 , can be obtained between the amplitudes of 150 ° and 300 ° by reducing the angular extent θ of the stiffened portion to the value θ '= 43.9 ° and by keeping the other characteristics of the stiffened portion constant (position, thickness or maximum thickness). The figure 9 shows the hairspring obtained, with its stiffened outer coil portion designated by the reference 6 ''', and the figure 10 shows the isochronism curve 19 corresponding to such a hairspring.

Dans des variantes, on pourra bien entendu combiner les principes exposés ci-dessus, c'est-à-dire modifier au moins deux des paramètres a, e et θ.In variants, it is of course possible to combine the principles set out above, that is to say to modify at least two of the parameters a, e and θ.

En référence de nouveau à la figure 6, on constate que la modification apportée à la portion rigidifiée a un effet de compensation de la variation de marche due à l'échappement, mais qu'elle n'a pas ou peu d'effet sur l'écart de marche entre les différentes positions verticales de la montre. Ceci est valable quel(s) que soi(en)t le(s) paramètre(s) a, e, θ que l'on choisit de modifier. La figure 11 représente des courbes d'isochronisme, désignées par J1 à J5, d'un spiral dont la spire externe comporte une portion rigidifiée agencée pour compenser la variation de marche due à l'échappement, comme décrit ci-dessus. La courbe J1 représente l'isochronisme du spiral en position horizontale, c'est-à-dire les variations de marche dues au développement non concentrique du spiral, et est obtenue de la même manière que les courbes des figures 2, 5, 8 et 10. Comme on peut le voir, la portion rigidifiée de la spire extérieure du spiral est agencée pour que le spiral produise une avance de marche de 5,3 s/j à l'amplitude de 150° par rapport à l'amplitude de 300°. Les courbes J2 à J5 représentent l'isochronisme du spiral dans les quatre positions verticales VG, VH, VB et VD respectivement, et sont obtenues en tenant compte à la fois du développement non concentrique du spiral et de l'effet de la gravité, en d'autres termes en additionnant les variations de marche dues au développement non concentrique du spiral et à la gravité. Pour déterminer la variation de marche due à la gravité, dans une position verticale donnée, on peut calculer par éléments finis le déplacement du centre de gravité du spiral sous l'effet des oscillations du spiral (le centre de rotation du spiral étant fixe), puis utiliser des équations analytiques reliant ce déplacement et la position du spiral à la marche en fonction de l'amplitude. De telles équations analytiques sont proposées par exemple dans l'ouvrage précité « Traité de construction horlogère ». L'effet statique d'affaissement des spires dû à la gravité est négligé dans la présente invention, de même que l'effet du balourd du balancier, ce balourd pouvant être minimisé par des moyens connus.With reference again to the figure 6 , it can be seen that the modification made to the stiffened portion has an effect of compensating for the variation in rate due to the escapement, but that it has little or no effect on the variation in rate between the different positions verticals of the watch. This is valid whatever (s) the parameter (s) a, e, θ that we choose to modify. The figure 11 represents isochronism curves, designated by J1 to J5, of a hairspring whose outer coil comprises a stiffened portion arranged to compensate for the variation in rate due to the escapement, as described above. Curve J1 represents the isochronism of the hairspring in a horizontal position, i.e. the rate variations due to the non-concentric development of the hairspring, and is obtained in the same way as the curves of figures 2 , 5 , 8 and 10 . As can be seen, the stiffened portion of the outer turn of the hairspring is arranged so that the hairspring produces a forward advance of 5.3 s / d at the amplitude of 150 ° with respect to the amplitude of 300 °. The curves J2 to J5 represent the isochronism of the hairspring in the four vertical positions VG, VH, VB and VD respectively, and are obtained by taking into account both the non-concentric development of the hairspring and the effect of gravity, in in other words, by adding the variations in rate due to the non-concentric development of the hairspring and to gravity. To determine the rate variation due to gravity, in a given vertical position, we can calculate by finite elements the displacement of the center of gravity of the hairspring under the effect of the oscillations of the hairspring (the center of rotation of the hairspring being fixed), then use analytical equations relating this displacement and the position of the hairspring to the rate as a function of the amplitude. Such analytical equations are proposed for example in the aforementioned work “Treaty of horological construction”. The static effect of subsidence of the turns due to gravity is neglected in the present invention, as is the effect of the balance of the balance, this unbalance can be minimized by known means.

On constate à la figure 11 que l'écart de marche entre les positions verticales est de 3,2 s/j à une amplitude d'oscillation du balancier de 250°. Pour diminuer cet écart de marche, il est proposé selon la présente invention de modifier la partie intérieure du spiral, à savoir la distance entre l'extrémité intérieure du spiral et le centre de rotation du spiral et/ou la forme de la spire intérieure.We see at the figure 11 that the operating difference between the vertical positions is 3.2 s / d at an oscillation amplitude of the balance of 250 °. To reduce this rate difference, it is proposed according to the present invention to modify the inner part of the hairspring, namely the distance between the inner end of the hairspring and the center of rotation of the hairspring and / or the shape of the inner coil.

Le spiral correspondant aux courbes d'isochronisme J1 à J5 représentées à la figure 11 est montré à la figure 12. Il comprend 14 spires. L'étendue angulaire et la position angulaire de sa portion rigidifiée 9 (mesurées de la même manière que pour les spiraux des figures 1, 4, 7 et 9) sont respectivement de 60° et de 75°. Le rayon R de sa virole, ou distance entre l'extrémité intérieure du spiral et le centre de rotation dudit spiral, mesuré de la même manière qu'à la figure 1, est égal à 565 µm. Il a été constaté qu'en diminuant le rayon R à une valeur R', l'écart de marche entre les positions verticales était réduit. Le rayon R' est avantageusement choisi inférieur à 400 µm. La figure 14 représente les courbes d'isochronisme d'un spiral (illustré à la figure 13) similaire à celui de la figure 12 mais ayant un rayon de virole R' égal à 300 µm (et un pas et une épaisseur de spire adaptés en conséquence). Comme cela apparaît sur la figure 14, l'écart de marche entre les positions verticales à une amplitude de 250° est de 1,1 s/j, donc bien inférieur aux 3,2 s/j du spiral de la figure 12. Toutefois, pour obtenir une avance de marche entre les amplitudes d'oscillation de 150° et de 300° comparable à celle du spiral de la figure 12, la portion rigidifiée, désignée par 9', doit être adaptée. A la figure 13, l'étendue angulaire et la position angulaire de la portion rigidifiée 9' sont ainsi de 50° et de 75° respectivement.The hairspring corresponding to the isochronism curves J1 to J5 shown in figure 11 is shown at figure 12 . It includes 14 turns. The angular extent and the angular position of its stiffened portion 9 (measured in the same way as for the balance springs of figures 1 , 4 , 7 and 9 ) are 60 ° and 75 ° respectively. The radius R of its shell, or distance between the inner end of the hairspring and the center of rotation of said hairspring, measured in the same way as at the figure 1 , is equal to 565 µm. It was found that by decreasing the radius R to a value R ', the distance between the vertical positions was reduced. The radius R 'is advantageously chosen to be less than 400 μm. The figure 14 represents the isochronism curves of a hairspring (illustrated on figure 13 ) similar to that of figure 12 but having a shell radius R 'equal to 300 μm (and a pitch and a coil thickness adapted accordingly). As it appears on the figure 14 , the rate difference between the vertical positions at an amplitude of 250 ° is 1.1 s / d, therefore much less than the 3.2 s / d of the balance spring of the figure 12 . However, to obtain a travel advance between the oscillation amplitudes of 150 ° and 300 ° comparable to that of the hairspring of the figure 12 , the stiffened portion, designated by 9 ', must be adapted. To the figure 13 , the angular extent and the angular position of the stiffened portion 9 'are thus 50 ° and 75 ° respectively.

Une autre manière de diminuer l'écart de marche entre les positions verticales est de conformer la spire intérieure du spiral selon une courbe Grossmann ou de rigidifier une portion de la spire intérieure. Une telle modification de la spire intérieure peut même être combinée à la diminution du rayon R de la virole pour réduire encore davantage l'écart de marche. Ainsi, la figure 15 montre un spiral dont le rayon de virole R' est égal à 300 µm et dont la spire intérieure 10 est conformée selon une courbe Grossmann. A la figure 16, on peut voir que l'écart de marche entre les positions verticales pour ce spiral est de seulement 0,6 s/j à une amplitude d'oscillation de 250°. De façon comparable, un spiral à portion rigidifiée 11 sur la spire intérieure tel que représenté à la figure 17 (la portion rigidifiée intérieure 11 ayant, comme la portion rigidifiée extérieure 9''', une plus grande épaisseur que le reste des spires) permettra l'obtention d'un écart de marche entre les positions verticales de 0,6 s/j à une amplitude d'oscillation de 250° (figure 18). Dans le cas du spiral de la figure 15, la portion rigidifiée 9" de la spire extérieure est agencée pour que le spiral produise une avance de marche due au défaut de concentricité du développement du spiral de 4,2 s/j entre les amplitudes de 150° et 300°, pour compenser un retard de marche dû à l'échappement de même ordre de grandeur. Dans le cas du spiral de la figure 17, la portion rigidifiée 9''' de la spire extérieure est agencée pour que le spiral produise une avance de marche due au défaut de concentricité du développement du spiral de 5,4 s/j entre les amplitudes de 150° et 300°, pour compenser un retard de marche dû à l'échappement de même ordre de grandeur.Another way of reducing the distance between the vertical positions is to shape the inner turn of the hairspring according to a Grossmann curve or to stiffen a portion of the inner turn. Such a modification of the inner coil can even be combined with the reduction of the radius R of the ferrule to further reduce the deviation of course. So the figure 15 shows a balance spring whose ferrule radius R 'is equal to 300 μm and whose inner coil 10 is shaped according to a Grossmann curve. To the figure 16 , we can see that the rate difference between the vertical positions for this hairspring is only 0.6 s / d at an oscillation amplitude of 250 °. In a comparable manner, a hairspring with a stiffened portion 11 on the inner coil as shown in figure 17 (the interior stiffened portion 11 having, like the exterior stiffened portion 9 ''', a greater thickness than the rest of the turns) will make it possible to obtain a path difference between the vertical positions of 0.6 s / d at an oscillation amplitude of 250 ° ( figure 18 ). In the case of the hairspring of the figure 15 , the stiffened portion 9 "of the outer coil is arranged so that the hairspring produces a forward advance due to the lack of concentricity of the development of the hairspring of 4.2 s / d between the amplitudes of 150 ° and 300 °, to compensate for a delay in walking due to the exhaust of the same order of magnitude. In the case of the hairspring of the figure 17 , the stiffened portion 9 '''of the outer coil is arranged so that the hairspring produces a forward advance due to the lack of concentricity of the development of the hairspring of 5.4 s / d between the amplitudes of 150 ° and 300 °, for compensate for a running delay due to the exhaust of the same order of magnitude.

Bien que la combinaison d'une courbe Grossmann ou d'une portion de spire intérieure rigidifiée avec un petit rayon de virole R' soit particulièrement avantageuse, on notera que la courbe Grossmann 10 ou la portion de spire intérieure rigidifiée 11 pourrait aussi être utilisée avec une virole de plus grand rayon R. On pourrait aussi combiner un petit rayon de virole R', une courbe Grossmann et une portion de spire intérieure rigidifiée. Dans tous les cas, la portion de spire extérieure rigidifiée pourra être agencée selon l'un quelconque des principes exposés en relation avec les figures 4, 7 et 9 ou selon une combinaison de ces principes. Par ailleurs, il va de soi que l'on pourrait appliquer lesdits principes à un mouvement dont l'échappement produirait une avance de marche au lieu d'un retard de marche. Pour compenser une telle avance de marche on pourrait ainsi, par exemple, éloigner la portion de spire extérieure rigidifiée de l'extrémité extérieure du spiral ou augmenter l'étendue angulaire de la portion de spire extérieure rigidifiée.Although the combination of a Grossmann curve or a stiffened inner coil portion with a small ferrule radius R 'is particularly advantageous, it should be noted that the Grossmann curve 10 or the stiffened inner coil portion 11 could also be used with a shell with a larger radius R. One could also combine a small shell radius R ', a Grossmann curve and a stiffened inner coil portion. In all cases, the stiffened outer coil portion may be arranged according to any one of the principles explained in relation to the figures 4 , 7 and 9 or according to a combination of these principles. Moreover, it goes without saying that one could apply said principles to a movement whose escapement would produce a forward movement instead of a backward movement. To compensate for such a forward advance, it would thus be possible, for example, to move the stiffened outer turn portion away from the outer end of the hairspring or increase the angular extent of the stiffened outer turn portion.

Les spiraux décrits ci-dessus sont chacun destinés à faire partie d'un oscillateur d'un mouvement horloger du type du mouvement 12 illustré sous la forme d'un bloc-diagramme à la figure 19. Outre l'oscillateur, désigné par 16, le mouvement 12 comprend, de manière traditionnelle, un organe moteur 13 tel qu'un barillet, un rouage 14, un échappement 15 et un affichage 17.The balance springs described above are each intended to form part of an oscillator of a watch movement of the type of movement 12 illustrated in the form of a block diagram on the left. figure 19 . In addition to the oscillator, designated by 16, the movement 12 comprises, in the traditional way, a driving member 13 such as a barrel, a gear 14, an escapement 15 and a display 17.

Claims (12)

  1. Timepiece movement comprising a balance-and-hairspring oscillator (16) and an escapement (15) cooperating with the oscillator (16), the outer turn of the hairspring comprising a stiffened portion (9'; 9"; 9''') arranged so that the hairspring produces a rate difference caused by the lack of concentricity of the development of the hairspring of at least 2 s/d at an amplitude of 150° with respect to an amplitude of 300°, at least partially compensating for the variation in the rate of the movement in dependence upon the oscillation amplitude of the balance caused by the escapement, the hairspring further comprising at least one of the following features:
    a) a distance (R') between the inner end of the hairspring and the centre of rotation of the hairspring lower than 400 µm,
    b) a Grossmann curve (10) defined by the inner turn of the hairspring,
    c) a stiffened portion (11) defined by the inner turn of the hairspring.
  2. Timepiece movement as claimed in claim 1, characterised in that the stiffened portion (9'; 9"; 9''') of the outer turn is arranged so that the hairspring produces a rate difference caused by the lack of concentricity of the development of the hairspring of at least 4 s/d at an amplitude of 150° with respect to an amplitude of 300°, at least partially compensating for said rate variation caused by the escapement.
  3. Timepiece movement as claimed in claim 2, characterised in that the stiffened portion (9'; 9"; 9''') of the outer turn is arranged so that the hairspring produces a rate difference caused by the lack of concentricity of the development of the hairspring of at least 6 s/d at an amplitude of 150° with respect to an amplitude of 300°, at least partially compensating for said rate variation caused by the escapement.
  4. Timepiece movement as claimed in claim 3, characterised in that the stiffened portion (9'; 9"; 9''') of the outer turn is arranged so that the hairspring produces a rate difference caused by the lack of concentricity of the development of the hairspring of at least 8 s/d at an amplitude of 150° with respect to an amplitude of 300°, at least partially compensating for said rate variation caused by the escapement.
  5. Timepiece movement according to any one of claims 1 to 4, characterised in that said rate difference is a rate gain.
  6. Timepiece movement as claimed in any one of claims 1 to 5, characterised in that the stiffened portion (6') of the outer turn is closer to the outer end (4) of the hairspring than a theoretical stiffened portion (6) which would have the same features as the stiffened portion (6') except for its position along the outer turn and which would make the development of the hairspring concentric.
  7. Timepiece movement as claimed in any one of claims 1 to 5, characterised in that the stiffened portion (6") of the outer turn is thinner than a theoretical stiffened portion (6) which would have the same features as the stiffened portion (6") except for its thickness and which would make the development of the hairspring concentric.
  8. Timepiece movement as claimed in any one of claims 1 to 5, characterised in that the stiffened portion (6''') of the outer turn is less extended than a theoretical stiffened portion (6) which would have the same features as the stiffened portion (6''') except for its extent and which would make the development of the hairspring concentric.
  9. Timepiece movement according to any one of claims 1 to 8, characterised in that the hairspring comprises the feature a).
  10. Timepiece movement according to claim 9, characterised in that said distance (R') is of about 300 µm.
  11. Timepiece movement according to claim 9 or 10, characterised in that the hairspring further comprises the feature b).
  12. Timepiece movement according to any one of claims 9 to 11, characterised in that the hairspring further comprises the feature c).
EP13812065.4A 2012-11-07 2013-10-22 Clock movement having a balance and a hairspring Active EP2917787B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH02282/12A CH707165B1 (en) 2012-11-07 2012-11-07 Watch movement with sprung balance.
PCT/IB2013/002355 WO2014072781A2 (en) 2012-11-07 2013-10-22 Clock movement having a balance and a hairspring

Publications (2)

Publication Number Publication Date
EP2917787A2 EP2917787A2 (en) 2015-09-16
EP2917787B1 true EP2917787B1 (en) 2020-08-19

Family

ID=49880836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13812065.4A Active EP2917787B1 (en) 2012-11-07 2013-10-22 Clock movement having a balance and a hairspring

Country Status (8)

Country Link
US (1) US9323223B2 (en)
EP (1) EP2917787B1 (en)
JP (1) JP6334548B2 (en)
CN (1) CN104756019B (en)
CH (1) CH707165B1 (en)
HK (1) HK1208739A1 (en)
SG (1) SG11201501727QA (en)
WO (1) WO2014072781A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2916177B1 (en) * 2014-03-05 2018-11-07 Nivarox-FAR S.A. Hairspring intended for being clamped by a spring washer
EP3159748B1 (en) * 2015-10-22 2018-12-12 ETA SA Manufacture Horlogère Suisse Compact hairspring with variable cross-section
SG11201806735QA (en) 2016-03-23 2018-09-27 Patek Philippe Sa Geneve Balance-hairspring oscillator for a timepiece
CN110308635B (en) * 2018-03-20 2022-03-01 精工电子有限公司 Reset spring, gear train mechanism, movement for clock and mechanical clock
EP3913441B1 (en) 2020-05-22 2024-05-01 Patek Philippe SA Genève Oscillator for a timepiece
JP7476768B2 (en) * 2020-11-13 2024-05-01 セイコーエプソン株式会社 Balance, movement, mechanical watch and balance manufacturing method
EP4293428A1 (en) 2022-06-14 2023-12-20 Patek Philippe SA Genève Hairspring for timepiece resonator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH327796A (en) * 1954-02-22 1958-02-15 Horlogerie Suisse S A Asuag Flat hairspring
EP1445670A1 (en) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Balance-spring resonator spiral and its method of fabrication
EP2224293B1 (en) 2003-04-29 2012-07-18 Patek Philippe SA Genève Balance and flat hairspring regulator for a watch movement
ATE430953T1 (en) * 2004-07-02 2009-05-15 Nivarox Sa HAIR SPRING MADE OF TWO MATERIALS WITH SELF-COMPENSATION
EP2151722B8 (en) * 2008-07-29 2021-03-31 Rolex Sa Hairspring for balance-spring resonator
CH701783B1 (en) * 2009-09-07 2015-01-30 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S A spiral spring watch movement.
CH701846B8 (en) * 2009-09-21 2015-06-15 Rolex Sa Flat spiral for clockwork pendulum and balance-sprung assembly.
DE102009048733A1 (en) 2009-10-08 2011-04-14 Konrad Damasko Spiral spring for mechanical oscillating system of watches, particularly for wrist watches, comprises number of windings between inner spring end and outer spring end, where winding section is provided at outer winding
EP2687917A3 (en) * 2012-07-17 2018-01-24 Master Dynamic Limited Hairspring for a timepiece and hairspring design for concentricity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2917787A2 (en) 2015-09-16
WO2014072781A3 (en) 2014-06-26
SG11201501727QA (en) 2015-04-29
CH707165B1 (en) 2016-12-30
CH707165A2 (en) 2014-05-15
US20150248113A1 (en) 2015-09-03
US9323223B2 (en) 2016-04-26
CN104756019B (en) 2017-08-04
JP6334548B2 (en) 2018-05-30
JP2015533423A (en) 2015-11-24
HK1208739A1 (en) 2016-03-11
CN104756019A (en) 2015-07-01
WO2014072781A2 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
EP2917787B1 (en) Clock movement having a balance and a hairspring
EP2102717B1 (en) Mechanical oscillator for timepiece
EP2104006B1 (en) Single-body double spiral and method for manufacturing same
EP2363762B1 (en) Timepiece including a high-frequency mechanical movement
EP2613206B1 (en) Hairspring with two spiral springs with improved isochronism
EP4009115A1 (en) Hairspring for timepiece resonator mechanism provided with a means for adjusting rigidity
EP3433680B1 (en) Spring balance oscillator for timepiece
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
WO2015189278A2 (en) Oscillator for a timepiece balance spring assembly
CH709052A2 (en) Spiral balance, movement and timepiece.
EP2690506B1 (en) Anti-tripping clock hairspring
WO2014016094A1 (en) Horology hairspring
EP2753985B1 (en) Clock movement having a balance-wheel and hairspring
CH707742A2 (en) sprung balance system, part of clockwork and timepiece.
CH713409A2 (en) Spiral balance of the thermocompensated type, movement and timepiece.
EP2631721A1 (en) Diamond-covered titanium clock components
EP2466397A1 (en) Rotating clock component with peripheral guide
EP3391154B1 (en) Oscillating system for timepiece
CH706543B1 (en) Clock exhaust mechanism comprising means for decoupling between the pinion and the escape wheel.
EP3913441A1 (en) Oscillator for a timepiece
EP3273312A1 (en) Method for adjusting the running of a timepiece
CH718113A2 (en) Hairspring for clock resonator mechanism provided with means for adjusting the rigidity.
WO2023242756A1 (en) Timepiece movement with increased power reserve
EP4187326A1 (en) Hairspring for timepiece resonator mechanism provided with a means for adjusting stiffness
CH716783B1 (en) Timepiece comprising two regulating organs.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150324

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1208739

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013071814

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1304644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201221

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1304644

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201219

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013071814

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201022

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

26N No opposition filed

Effective date: 20210520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230830

Year of fee payment: 11

Ref country code: CH

Payment date: 20231102

Year of fee payment: 11