EP2901816B1 - Circuit de service avec convertisseur cadencé pour l'excitation d'une rangée de del - Google Patents

Circuit de service avec convertisseur cadencé pour l'excitation d'une rangée de del Download PDF

Info

Publication number
EP2901816B1
EP2901816B1 EP13841314.1A EP13841314A EP2901816B1 EP 2901816 B1 EP2901816 B1 EP 2901816B1 EP 13841314 A EP13841314 A EP 13841314A EP 2901816 B1 EP2901816 B1 EP 2901816B1
Authority
EP
European Patent Office
Prior art keywords
switch
led
current
operating circuit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13841314.1A
Other languages
German (de)
English (en)
Other versions
EP2901816A2 (fr
Inventor
Clemens KUCERA
Frank Lochmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ATGM385/2012U external-priority patent/AT13687U1/de
Priority claimed from DE201210217748 external-priority patent/DE102012217748A1/de
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2901816A2 publication Critical patent/EP2901816A2/fr
Application granted granted Critical
Publication of EP2901816B1 publication Critical patent/EP2901816B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology

Definitions

  • the invention relates to an operating circuit for driving an LED track with at least one LED.
  • the LED path is controlled by a clocked converter, preferably by a buck converter.
  • the invention relates in particular to the indirect determination of the current (I LED ) through the LED path.
  • LEDs have become an attractive alternative to conventional light sources such as incandescent or gas discharge lamps.
  • LED Light Emitting Diode
  • LEDs are therefore always operated in a mode in which the current flow through the LED is controlled.
  • switching regulators for example step-down converters or buck converters.
  • a switching regulator is for example from the DE 10 2006 034 371 A1 known.
  • a control unit controls a high-frequency clocked switch (for example, a power transistor, FET, MOSFET).
  • a high-frequency clocked switch for example, a power transistor, FET, MOSFET.
  • the invention provides an operating circuit for an LED track with at least one LED according to claim 1.
  • the operating circuit at at least one input-side terminal, a supply voltage can be supplied, and the operating circuit comprises a coil and a clocked by a control unit first switch, wherein in conductively-switched first switch in the coil, an energy is stored, which is non-conductive switched first switch via a diode and via the LED path discharges, wherein a capacitor is provided, which is arranged parallel to the LED track and the LED is connected during the phase of the discharge of the coil the current through the LED maintains, and wherein the control unit is adapted to determine the switch current through the first switch on a first measuring resistor, preferably the supply voltage to a second measuring resistor and preferably a measuring voltage at the Determine LED distance at a third measuring resistor and calculate the LED current through the D-distance.
  • the control unit can calculate the LED voltage as the difference between the supply voltage and the measurement voltage.
  • the controller may also measure the LED voltage based on a measurement of a voltage on the coil during the turn-off time of the first switch.
  • the controller may calculate the LED current from the product of the supply voltage and the switch current as transmitted power divided by the LED voltage.
  • the control unit may average the switch current (low pass filtering, time averaging, integration).
  • the LED current can be supplied to the control unit as a feedback signal, in particular as an actual value.
  • the control unit may control the on time of the first switch.
  • the control unit may specify a switch-off threshold value for the first switch.
  • the averaging of the switch current can be done by a low-pass filter, which can detect the time average of the current.
  • Fig. 1 shows a circuit arrangement - inter alia - a buck converter (Buck converter) for the operation of at least the LED track (with one or more series-connected LEDs), with a first switch LS, which is also used as a converter switch of the buck converter Example of a clocked converter, can be called.
  • the circuit arrangement also referred to below as the operating circuit, is supplied with a DC voltage or a rectified AC voltage V bus .
  • the DC voltage or a rectified AC voltage V bus can be fed via a mains rectifier directly from an AC voltage network or by the interposition of an active power factor correction circuit or via a DC-DC converter, for example, a potential-separated DC-DC converter.
  • a capacitor C bus is arranged.
  • a first measurement resistor R VbusShunt is connected via a first resistor R Vbus to the supply voltage V bus.
  • the supply voltage V bus can be detected by a control unit SE (eg a microcontroller, an ASIC, an IC, etc.).
  • the actual converter wherein first a diode D1, the first switch LS and a second measuring resistor R shunt are connected in series parallel to the capacitor C bus . Between diode D1 and the first switch LS, the potential-lower side of the diode D1 is connected via a coil L buck to a second optional capacitor C LED connected in parallel with the diode D1. At the second measuring resistor R shunt , for example from the control unit SE, the switch current I LS can be detected by the first switch LS.
  • a choke winding ZX also referred to as choke ZX
  • the charging and discharging processes (magnetization and demagnetization) of the coil L buck can be detected in a measuring circuit.
  • zero crossings ie a demagnetization and thus discharge of the coil L buck to the zero level, can be detected.
  • the control unit SE for example by the current I Lbuck is detected by the coil, for example on the inductor winding ZX.
  • the demagnetization of the coil L buck which connected to the drop of the current I Lbuck to zero, by means of a voltage monitoring to throttle winding ZX be detected by due control unit SE.
  • a third measuring resistor R VLEDShunt is connected via a further resistor R VLED , to which a measuring voltage V LED can be detected by the control unit SE.
  • the LED voltage can thus be determined. It results from the difference between the supply voltage V bus and the measured voltage V LED determined at the third measuring resistor.
  • a second switch FS is connected to its potential-lower side between the first switch LS and the second measuring resistor R Shunt via a further resistor, via which a filter of the first order (low pass) can be switched on or off ,
  • the first switch is driven via a driver circuit LS DRV with a driver voltage V gate
  • the second switch FS is driven via a driver circuit with the voltage V duty
  • the respective control can also be effected by a control unit SE, wherein, for example, the driver circuit LS DRV and / or the driver circuit with the voltage V duty can be part of the control unit SE.
  • the low-pass filter TPF is now used to average the detected at the second measuring resistor R shunt switch current I LS .
  • the invention provides the following for measuring the LED current I LED as an actual value:
  • the switch current I LS through the first switch LS is detected when the first switch LS on the second measuring resistor R shunt . This current increases substantially linearly during the switch-on time phase of the first switch LS and drops to zero when the switch LS is opened.
  • the current through the coil L buck thus shows a zigzag-shaped time course: when the first switch is turned on, the current shows a rising edge, with the first switch turned off there is a falling edge.
  • the switch current I LS is therefore zero before it rises again when the first switch LS is switched on again.
  • the switch LS is turned off when a shutdown threshold (stored, for example, in the control unit SE) is reached.
  • This switch current profile I LS is now averaged by being supplied to the low-pass circuit TPF.
  • the averaging switch current I LS is detected.
  • the high-frequency, approximately zigzag course of the LED current I LED (in the exemplary embodiment, the LED current I LED drops to zero by the coil L buck before being switched on again, which corresponds to operation in the so-called "borderline mode") can be combined be with a relatively low-frequency PWM control (LF PWM, low-frequent PWM).
  • LF PWM low-frequency PWM control
  • a large fluctuation range of the current can have a disadvantageous effect on LEDs, since the spectrum of the emitted light can change as the current amplitude changes.
  • a pulse modulation method for example the PWM (Pulse-Width Modulation) method.
  • the LEDs are supplied by the operating circuit with low-frequency (typically with a frequency in the range of 100-1000 Hz) pulse packets with (in the time average) constant current amplitude.
  • the electricity within one Pulse packets are superimposed on the above-mentioned high-frequency ripple.
  • the brightness of the LEDs can now be controlled by the frequency of the pulse packets; For example, the LEDs can be dimmed by increasing the time interval between the pulse packets.
  • the high-frequency clocking of the first switch LS is combined with a PWM signal, wherein the frequency of the PWM signal is low-frequency in relation to the frequency of the high-frequency clocking of the first switch (LS).
  • the frequency of the high-frequency clocking and the low-frequency PWM signal are matched to one another in order to avoid flickering effects.
  • the frequency of the high-frequency clocking may be an integer multiple of the frequency of the low-frequency PWM signal.
  • the switch can be operated in a high-frequency PWM mode.
  • the duty cycle for the high-frequency clocking of the first switch is set depending on the average value of the determined LED current or switch current at a fixed predetermined frequency.
  • a maintenance of the current through the LED can be done by the parallel connection of a capacitor C LED , as will be explained later.
  • the adjustment of the current through the LED can be done by appropriate selection of the turn-on and turn-off times. For example, these times may be selected such that the first switch LS is turned on when the current falls below a certain minimum reference value and the switch is turned off when the current exceeds a maximum reference value (turn-off threshold).
  • the minimum reference value can also be zero.
  • the current path between the second measuring resistor R shunt in series with the first switch LS, the converter switch, towards the low-pass filter TPF is enabled only during the switch-on period of the low-frequency PWM signal.
  • the current path is interrupted, so that the resulting low-pass filtered (averaged) signal is maintained and thus an evaluation of the mean value in the turn-off of the low-frequency PWM signal can be performed by the control unit.
  • the LED current I LED can be determined by referring (eg, dividing or otherwise correlating) the power transmitted through the converter to the LED voltage.
  • the transmitted power is calculated by the determined at the first measuring resistance supply voltage V bus , which is multiplied by the time-averaged switch current I LS . This can again be done by the control unit SE, for example.
  • the LED voltage is determined for example by means of a measurement on the third measuring resistor R VLEDShunt , which is connected in series with the LED track LED.
  • the LED voltage results from the difference between the supply voltage V bus and the measured voltage V LED determined at the third measuring resistor.
  • the control unit SE could measure the LED voltage but also, for example, by measuring a voltage on the coil L buck during the turn-off of the first switch LS, for example by means of a voltage measurement on the inductor winding ZX during the demagnetization phase of the coil L buck .
  • the voltage across the coil L bucx corresponds to the sum of the voltages across the diode D1 and the LED voltage. It can thus be concluded that the LED voltage, since when deducting the passage Spannug the diode D1, the voltage across the coil L buck corresponds to the LED voltage.
  • the LED current I LED is indirectly determined by calculating the transmitted power and the indirect determination of the LED voltage.
  • the investigations and / or the calculations are preferably carried out by the control unit SE. It can also be included in the calculation of the transmitted power, a correction factor that includes, for example, the switching behavior or the losses of the converter.
  • the calculated LED current can thus be used as actual value variable for a regulation of the LED current.
  • the turn-on time T on of the first switch LS of the (buck) converter can be used as the control variable for the control.
  • the duty cycle of the low-frequency PWM drive if present, can be used.
  • the switch-off threshold for the first switch LS in the control unit SE can be shifted depending on the mean value of the switch current I LS .
  • the duty cycle of the low-frequency PWM control can be fixed at least in a partial range of the LED operation, for example at high brightness, at 100% duty cycle or near this range. In this area, the height of the LED current and thus the brightness of the LED can be influenced by adjusting the switch-off threshold for the first switch LS and thus via the control variable the switch-on time T on of the converter.
  • the control unit SE are thus preferably a signal representing the supply voltage V bus , a signal representing the time average of the switch current I LS (in the on time periods of the low-frequency PWM modulation, if present), and / or a signal which supplies the supply voltage V bus minus the voltage V LED detected at the third measuring resistor R VLEDSchunt .
  • control unit SE can also selectively release the low-pass filter TPF via activation of the second switch FS (eg during the switch-on period of the PWM signal) or disconnect (eg during the switch-off period of the PWM signal), ie the path between the second measuring resistor R shunt the first switch LS and the low-pass filter TPF.
  • the optional capacitor C LED parallel to the LED track LED is known as such and can serve to avoid that the LED current identically traces the course through the coil L buck .
  • non-conductive switched first switch LS in particular during the phase of demagnetization of the coil L Buck , the current through the LED due to the cached in the capacitor C LED energy can be maintained.
  • it is disadvantageous in terms of the spectrum of the LED track LED if the LED current performs such large strokes (except for a pure PWM drive between 0 and 1, then only one current flows at 1).
  • the low-frequency PWM signal need not be generated by the control unit itself, but it can be supplied from outside, for example by an externally supplied PWM control signal, and then of course the release / disconnecting element, the second switch FS, for the low-pass filter TPF be supplied.
  • the release / disconnect window for the connection element, the second switch FS, between low-pass filter TPF and the second measurement resistor R Shun t may deviate from a PWM switch-on pulse in that the "disconnect" occurs only when a zero crossing or the fall of the current through the coil L buck is detected to zero. This can take place via the throttle winding ZX, for example via a pin on the throttle winding ZX, by the control unit SE. This ensures that the averaging window for the low-pass circuit TPF always covers complete triangular waveforms of the coil current.
  • the coil L buck can also be arranged between the second capacitor C LED and the LED track LED.
  • the low-pass filter TPF and the second switch FS can optionally also be integrated in the control unit SE.
  • Fig. 2 shows by way of example the current I LS through the first switch LS, the average current I LS , which is determined by the low-pass filter TPF, the current waveform I Lbuck on the coil L buck and a low-frequency PWM signal LF PWM.
  • the inventive detection of the switch current only during the turn-on period of the low-frequency PWM signal can also be used in a simplified embodiment, if only the switch current but not the LED voltage and / or the supply voltage for determining the LED current is considered , This may be the case, in particular, when the LED voltage and / or the supply voltage are fixed. So the LED voltage can be known if the number of LEDs of the LED range is known. The supply voltage can be fixed, for example, when connecting an active power factor correction circuit.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)

Claims (9)

  1. Circuit de service pour une rangée de DEL comportant au moins une DEL,
    - une tension d'alimentation (Vbus) pouvant être conduite au circuit de service sur au moins une connexion côté entrée, et le circuit de service présentant une bobine (LBuck) et un premier commutateur (LS) cadencé à haute fréquence par une unité de commande (SE) du circuit de service, une première résistance de mesure (RVbusShunt), une deuxième résistance de mesure (RShunt) et une troisième résistance de mesure (RVledShunt),
    - l'unité de commande étant agencée pour détecter sur la deuxième résistance de mesure (RShunt) un courant de commutateur (ILS) traversant le premier commutateur (LS) quand le premier commutateur (LS) est en circuit,
    - le circuit de service étant constitué de telle sorte que, quand le premier commutateur (LS) est commuté sur conduction, une énergie est stockée de façon intermédiaire dans la bobine (LBuck) et se décharge, quand le premier commutateur (LS) est commuté sur non-conduction, par le biais d'une diode (D1) du circuit de service et par le biais de la rangée de DEL,
    caractérisé en ce que
    - le circuit de service présente en outre un filtre passe-bas (TPF), le filtre passe-bas (TPF) étant agencé pour calculer la moyenne dans le temps du courant de commutateur (ILS) détecté sur la deuxième résistance de mesure (RShunt),
    - l'unité de commande (SE) étant agencée
    - pour déterminer le courant de commutateur (ILS), dont la valeur moyenne dans le temps a été calculée, traversant le premier commutateur sur la deuxième résistance de mesure (RShunt) et le filtre passe-bas (TPF),
    - la tension d'alimentation (Vbus) sur la première résistance de mesure (RVbusShunt) et
    - une tension de mesure (Vled) sur la rangée de DEL sur la troisième résistance de mesure (RVledShunt),
    et pour calculer à partir de cela le courant de DEL (ILED) traversant la rangée de DEL,
    - l'unité de commande (SE) étant agencée pour combiner le cadencement haute fréquence du courant de commutateur (ILS) avec un signal PWM basse fréquence par comparaison,
    un deuxième commutateur (FS) étant prévu dans le circuit de service, qui est agencé pour ne libérer un trajet de courant entre la deuxième résistance de mesure (RShunt) et le filtre passe-bas (TPF) que pendant une durée de mise en circuit du signal PWM et pour interrompre le trajet de courant pendant une durée de mise hors circuit du signal PWM.
  2. Circuit de service selon la revendication 1, l'unité de commande (SE) étant agencée pour calculer la tension de DEL en tant que différence entre la tension d'alimentation (Vbus) et la tension de mesure (Vled).
  3. Circuit de service selon la revendication 1 ou 2, l'unité de commande (SE) étant agencée pour calculer le courant de DEL (ILED) à partir du produit de la tension d'alimentation (Vbus) et du courant de commutateur (ILS) en tant que puissance transmise divisée par la tension de DEL.
  4. Circuit de service selon l'une des revendications précédentes, l'unité de commande (SE) étant agencée pour spécifier une valeur de seuil de coupure pour le premier commutateur (LS).
  5. Circuit de service selon l'une des revendications précédentes, le courant de commutateur (ILS), dont la valeur moyenne a été calculée, et filtré en passe-bas, étant maintenu pendant la durée de mise hors circuit, et l'unité de commande (SE) étant agencée pour analyser le courant de commutateur (ILS), dont la valeur moyenne a été calculée, pendant la durée de mise hors circuit du signal PWM.
  6. Circuit de service selon l'une des revendications précédentes, l'unité de commande (SE) étant agencée pour commander un rapport cyclique du signal PWM, et l'unité de commande (SE) étant agencée pour régler la valeur de seuil de coupure pour le premier commutateur (LS) en fonction du courant de commutateur (ILS) dont la valeur moyenne a été calculée.
  7. Circuit de service selon l'une des revendications précédentes, un signal reproduisant la tension d'alimentation (Vbus), un signal reproduisant le courant de commutateur (ILS) dont la valeur moyenne a été calculée et/ou un signal qui reproduit la différence entre la tension d'alimentation (Vbus) et la tension de mesure (Vled) pouvant être conduit à l'unité de commande (SE).
  8. Circuit de service selon l'une des revendications précédentes, un condensateur étant prévu dans le circuit de service et étant disposé parallèlement à la rangée de DEL et étant agencé pour maintenir le courant traversant la DEL quand le premier commutateur (LS) est commuté sur non-conduction.
  9. Procédé de fonctionnement, par un circuit de service, d'une rangée de DEL, avec
    au moins une DEL, présentant les étapes suivantes :
    - amenée d'une tension d'alimentation (Vbus) au circuit de service sur au moins une connexion côté entrée,
    le circuit de service présentant une bobine (LBuck) et un premier commutateur (LS) cadencé à haute fréquence par une unité de commande (SE) du circuit de service, une première résistance de mesure (RVbusShunt), une deuxième résistance de mesure (RShunt) et une troisième résistance de mesure (RVledShunt),
    - détection, par l'unité de commande, sur la deuxième résistance de mesure (RShunt), d'un courant de commutateur (ILS) traversant le premier commutateur (LS) quand le premier commutateur (LS) est en circuit,
    - stockage intermédiaire d'une énergie dans la bobine quand le premier commutateur est commuté sur conduction, la bobine se déchargeant, quand le premier commutateur (LS) est commuté sur non-conduction, par le biais d'une diode (D1) du circuit de service et par le biais de la rangée de DEL,
    caractérisé par les étapes suivantes :
    - calcul de la moyenne temporelle par un filtre passe-bas (TPF) du circuit de service, du courant de commutateur (LS) détecté sur la deuxième résistance de mesure (RShunt),
    - détermination, par l'unité de commande (SE), du courant de commutateur (ILS), dont la valeur moyenne dans le temps a été calculée, traversant le premier commutateur sur la deuxième résistance de mesure (RShunt) et le filtre passe-bas (TPF),
    - détermination, par l'unité de commande (SE), de la tension d'alimentation (Vbus) sur la première résistance de mesure (RVbusShunt), et
    - détermination, par l'unité de commande (SE), d'une tension de mesure (Vled) sur la rangée de DEL sur la troisième résistance de mesure (RVledShunt)
    et, à partir de là, calcul du courant de DEL (ILED) traversant la rangée de DEL,
    - combinaison du cadencement haute fréquence du courant de commutateur (ILS) avec un signal PWM basse fréquence par comparaison,
    - libération, par un deuxième commutateur (FS) du circuit de service, d'un trajet de courant entre la deuxième résistance de mesure (RShunt) et le filtre passe-bas (TPF) uniquement pendant une durée de mise en circuit du signal PWM, et
    - interruption du trajet de courant pendant une durée de mise hors circuit du signal PWM.
EP13841314.1A 2012-09-28 2013-09-30 Circuit de service avec convertisseur cadencé pour l'excitation d'une rangée de del Active EP2901816B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATGM385/2012U AT13687U1 (de) 2012-09-28 2012-09-28 Betriebsschaltung mit getaktetem Konverter zur Ansteuerung einer LED-Strecke
DE201210217748 DE102012217748A1 (de) 2012-09-28 2012-09-28 Betriebsschaltung mit getaktetem Konverter zur Ansteuerung einer LED-Strecke
PCT/AT2013/000157 WO2014047668A2 (fr) 2012-09-28 2013-09-30 Circuit de service avec convertisseur cadencé pour l'excitation d'une rangée de del

Publications (2)

Publication Number Publication Date
EP2901816A2 EP2901816A2 (fr) 2015-08-05
EP2901816B1 true EP2901816B1 (fr) 2017-11-08

Family

ID=50389065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13841314.1A Active EP2901816B1 (fr) 2012-09-28 2013-09-30 Circuit de service avec convertisseur cadencé pour l'excitation d'une rangée de del

Country Status (2)

Country Link
EP (1) EP2901816B1 (fr)
WO (1) WO2014047668A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015101996U1 (de) * 2015-04-22 2015-05-11 Tridonic Gmbh & Co Kg Getakteter Wandler für dimmbare Leuchtmittel mit dynamisch einstellbarem Filter
KR102301218B1 (ko) * 2018-01-30 2021-09-10 주식회사 엘지에너지솔루션 릴레이 구동 회로 진단 장치
EP4345211A1 (fr) 2022-09-29 2024-04-03 Apison Dispositif pour le compactage de materiaux

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034371B4 (de) * 2006-04-21 2019-01-31 Tridonic Ag Betriebsschaltung und Betriebsverfahren für Leuchtdioden
US7550934B1 (en) * 2008-04-02 2009-06-23 Micrel, Inc. LED driver with fast open circuit protection, short circuit compensation, and rapid brightness control response
US8344638B2 (en) * 2008-07-29 2013-01-01 Point Somee Limited Liability Company Apparatus, system and method for cascaded power conversion
JP5760169B2 (ja) * 2010-10-25 2015-08-05 パナソニックIpマネジメント株式会社 点灯装置および、これを用いた照明器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014047668A2 (fr) 2014-04-03
WO2014047668A3 (fr) 2014-06-26
EP2901816A2 (fr) 2015-08-05

Similar Documents

Publication Publication Date Title
EP2334146B1 (fr) Circuit de commande pour diodes électroluminescentes
EP2345308B1 (fr) Circuit de fonctionnement destiné à des led
EP2829157B1 (fr) Circuit de commande pour diodes électroluminescentes avec signal de variation de lumière issu d`un signal en trains d'impulsions modulés a haute fréquence, avec des fréquences accordées
EP2425680B1 (fr) Circuit pour faire fonctionner des diodes luminescentes
EP2548409A1 (fr) Commande de del
CN105917740A (zh) Led驱动器和控制方法
DE102015203249A1 (de) Abwärtswandler zum Betreiben von Leuchtmitteln mit Spitzenstromwertsteuerung und Mittelstromwerterfassung
DE112009002500B4 (de) Betriebsschaltung für LEDs und Verfahren zum Betreiben von LEDs
EP2901816B1 (fr) Circuit de service avec convertisseur cadencé pour l'excitation d'une rangée de del
WO2012045475A1 (fr) Circuit de fonctionnement pour diodes électroluminescentes
EP2523533B1 (fr) Circuit de ballast pour diodes luminescentes
EP3064038B1 (fr) Circuit de commande d'élément luminescent comportant un convertisseur cadencé pour le réglage numérique d'une température de couleur et/ou d'un niveau de variation d'intensité lumineuse
AT12495U1 (de) Fehlererkennung für leuchtdioden
DE102013211767A1 (de) Betriebsschaltung für leuchtdioden
DE102012217748A1 (de) Betriebsschaltung mit getaktetem Konverter zur Ansteuerung einer LED-Strecke
AT17649U1 (de) Betriebsgerät für eine elektrische Last und Verfahren
AT13687U1 (de) Betriebsschaltung mit getaktetem Konverter zur Ansteuerung einer LED-Strecke
AT17755U1 (de) Einstufige Konverterschaltungsanordnung mit Linearregler
DE102014221554A1 (de) Pulsweitenmodulierte Ansteuerung einer getakteten Schaltung mit einstellbarer Leistungsübertragung
AT13981U1 (de) Betriebsschaltung für Leuchtdioden
EP2896273A1 (fr) Boucle de régulation à constante de temps modifiable d'une correction du facteur de puissance pour circuit de charge pourvu de moyens d'éclairage
WO2013067563A2 (fr) Circuit de commande pour diodes électroluminescentes
DE102014215835A1 (de) Primärseitig gesteuerter Konstantstrom-Konverter für Beleuchtungseinrichtungen
AT13857U1 (de) Fehlererkennung für Leuchtdioden
WO2011130770A1 (fr) Ballast pour diodes électroluminescentes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 945319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008788

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

26N No opposition filed

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180927

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013008788

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 945319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013008788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220927

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230930