EP2901816B1 - Operating circuit with clocked converter for actuating an led section - Google Patents

Operating circuit with clocked converter for actuating an led section Download PDF

Info

Publication number
EP2901816B1
EP2901816B1 EP13841314.1A EP13841314A EP2901816B1 EP 2901816 B1 EP2901816 B1 EP 2901816B1 EP 13841314 A EP13841314 A EP 13841314A EP 2901816 B1 EP2901816 B1 EP 2901816B1
Authority
EP
European Patent Office
Prior art keywords
switch
led
current
operating circuit
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13841314.1A
Other languages
German (de)
French (fr)
Other versions
EP2901816A2 (en
Inventor
Clemens KUCERA
Frank Lochmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201210217748 external-priority patent/DE102012217748A1/en
Priority claimed from ATGM385/2012U external-priority patent/AT13687U1/en
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP2901816A2 publication Critical patent/EP2901816A2/en
Application granted granted Critical
Publication of EP2901816B1 publication Critical patent/EP2901816B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/375Switched mode power supply [SMPS] using buck topology

Definitions

  • the invention relates to an operating circuit for driving an LED track with at least one LED.
  • the LED path is controlled by a clocked converter, preferably by a buck converter.
  • the invention relates in particular to the indirect determination of the current (I LED ) through the LED path.
  • LEDs have become an attractive alternative to conventional light sources such as incandescent or gas discharge lamps.
  • LED Light Emitting Diode
  • LEDs are therefore always operated in a mode in which the current flow through the LED is controlled.
  • switching regulators for example step-down converters or buck converters.
  • a switching regulator is for example from the DE 10 2006 034 371 A1 known.
  • a control unit controls a high-frequency clocked switch (for example, a power transistor, FET, MOSFET).
  • a high-frequency clocked switch for example, a power transistor, FET, MOSFET.
  • the invention provides an operating circuit for an LED track with at least one LED according to claim 1.
  • the operating circuit at at least one input-side terminal, a supply voltage can be supplied, and the operating circuit comprises a coil and a clocked by a control unit first switch, wherein in conductively-switched first switch in the coil, an energy is stored, which is non-conductive switched first switch via a diode and via the LED path discharges, wherein a capacitor is provided, which is arranged parallel to the LED track and the LED is connected during the phase of the discharge of the coil the current through the LED maintains, and wherein the control unit is adapted to determine the switch current through the first switch on a first measuring resistor, preferably the supply voltage to a second measuring resistor and preferably a measuring voltage at the Determine LED distance at a third measuring resistor and calculate the LED current through the D-distance.
  • the control unit can calculate the LED voltage as the difference between the supply voltage and the measurement voltage.
  • the controller may also measure the LED voltage based on a measurement of a voltage on the coil during the turn-off time of the first switch.
  • the controller may calculate the LED current from the product of the supply voltage and the switch current as transmitted power divided by the LED voltage.
  • the control unit may average the switch current (low pass filtering, time averaging, integration).
  • the LED current can be supplied to the control unit as a feedback signal, in particular as an actual value.
  • the control unit may control the on time of the first switch.
  • the control unit may specify a switch-off threshold value for the first switch.
  • the averaging of the switch current can be done by a low-pass filter, which can detect the time average of the current.
  • Fig. 1 shows a circuit arrangement - inter alia - a buck converter (Buck converter) for the operation of at least the LED track (with one or more series-connected LEDs), with a first switch LS, which is also used as a converter switch of the buck converter Example of a clocked converter, can be called.
  • the circuit arrangement also referred to below as the operating circuit, is supplied with a DC voltage or a rectified AC voltage V bus .
  • the DC voltage or a rectified AC voltage V bus can be fed via a mains rectifier directly from an AC voltage network or by the interposition of an active power factor correction circuit or via a DC-DC converter, for example, a potential-separated DC-DC converter.
  • a capacitor C bus is arranged.
  • a first measurement resistor R VbusShunt is connected via a first resistor R Vbus to the supply voltage V bus.
  • the supply voltage V bus can be detected by a control unit SE (eg a microcontroller, an ASIC, an IC, etc.).
  • the actual converter wherein first a diode D1, the first switch LS and a second measuring resistor R shunt are connected in series parallel to the capacitor C bus . Between diode D1 and the first switch LS, the potential-lower side of the diode D1 is connected via a coil L buck to a second optional capacitor C LED connected in parallel with the diode D1. At the second measuring resistor R shunt , for example from the control unit SE, the switch current I LS can be detected by the first switch LS.
  • a choke winding ZX also referred to as choke ZX
  • the charging and discharging processes (magnetization and demagnetization) of the coil L buck can be detected in a measuring circuit.
  • zero crossings ie a demagnetization and thus discharge of the coil L buck to the zero level, can be detected.
  • the control unit SE for example by the current I Lbuck is detected by the coil, for example on the inductor winding ZX.
  • the demagnetization of the coil L buck which connected to the drop of the current I Lbuck to zero, by means of a voltage monitoring to throttle winding ZX be detected by due control unit SE.
  • a third measuring resistor R VLEDShunt is connected via a further resistor R VLED , to which a measuring voltage V LED can be detected by the control unit SE.
  • the LED voltage can thus be determined. It results from the difference between the supply voltage V bus and the measured voltage V LED determined at the third measuring resistor.
  • a second switch FS is connected to its potential-lower side between the first switch LS and the second measuring resistor R Shunt via a further resistor, via which a filter of the first order (low pass) can be switched on or off ,
  • the first switch is driven via a driver circuit LS DRV with a driver voltage V gate
  • the second switch FS is driven via a driver circuit with the voltage V duty
  • the respective control can also be effected by a control unit SE, wherein, for example, the driver circuit LS DRV and / or the driver circuit with the voltage V duty can be part of the control unit SE.
  • the low-pass filter TPF is now used to average the detected at the second measuring resistor R shunt switch current I LS .
  • the invention provides the following for measuring the LED current I LED as an actual value:
  • the switch current I LS through the first switch LS is detected when the first switch LS on the second measuring resistor R shunt . This current increases substantially linearly during the switch-on time phase of the first switch LS and drops to zero when the switch LS is opened.
  • the current through the coil L buck thus shows a zigzag-shaped time course: when the first switch is turned on, the current shows a rising edge, with the first switch turned off there is a falling edge.
  • the switch current I LS is therefore zero before it rises again when the first switch LS is switched on again.
  • the switch LS is turned off when a shutdown threshold (stored, for example, in the control unit SE) is reached.
  • This switch current profile I LS is now averaged by being supplied to the low-pass circuit TPF.
  • the averaging switch current I LS is detected.
  • the high-frequency, approximately zigzag course of the LED current I LED (in the exemplary embodiment, the LED current I LED drops to zero by the coil L buck before being switched on again, which corresponds to operation in the so-called "borderline mode") can be combined be with a relatively low-frequency PWM control (LF PWM, low-frequent PWM).
  • LF PWM low-frequency PWM control
  • a large fluctuation range of the current can have a disadvantageous effect on LEDs, since the spectrum of the emitted light can change as the current amplitude changes.
  • a pulse modulation method for example the PWM (Pulse-Width Modulation) method.
  • the LEDs are supplied by the operating circuit with low-frequency (typically with a frequency in the range of 100-1000 Hz) pulse packets with (in the time average) constant current amplitude.
  • the electricity within one Pulse packets are superimposed on the above-mentioned high-frequency ripple.
  • the brightness of the LEDs can now be controlled by the frequency of the pulse packets; For example, the LEDs can be dimmed by increasing the time interval between the pulse packets.
  • the high-frequency clocking of the first switch LS is combined with a PWM signal, wherein the frequency of the PWM signal is low-frequency in relation to the frequency of the high-frequency clocking of the first switch (LS).
  • the frequency of the high-frequency clocking and the low-frequency PWM signal are matched to one another in order to avoid flickering effects.
  • the frequency of the high-frequency clocking may be an integer multiple of the frequency of the low-frequency PWM signal.
  • the switch can be operated in a high-frequency PWM mode.
  • the duty cycle for the high-frequency clocking of the first switch is set depending on the average value of the determined LED current or switch current at a fixed predetermined frequency.
  • a maintenance of the current through the LED can be done by the parallel connection of a capacitor C LED , as will be explained later.
  • the adjustment of the current through the LED can be done by appropriate selection of the turn-on and turn-off times. For example, these times may be selected such that the first switch LS is turned on when the current falls below a certain minimum reference value and the switch is turned off when the current exceeds a maximum reference value (turn-off threshold).
  • the minimum reference value can also be zero.
  • the current path between the second measuring resistor R shunt in series with the first switch LS, the converter switch, towards the low-pass filter TPF is enabled only during the switch-on period of the low-frequency PWM signal.
  • the current path is interrupted, so that the resulting low-pass filtered (averaged) signal is maintained and thus an evaluation of the mean value in the turn-off of the low-frequency PWM signal can be performed by the control unit.
  • the LED current I LED can be determined by referring (eg, dividing or otherwise correlating) the power transmitted through the converter to the LED voltage.
  • the transmitted power is calculated by the determined at the first measuring resistance supply voltage V bus , which is multiplied by the time-averaged switch current I LS . This can again be done by the control unit SE, for example.
  • the LED voltage is determined for example by means of a measurement on the third measuring resistor R VLEDShunt , which is connected in series with the LED track LED.
  • the LED voltage results from the difference between the supply voltage V bus and the measured voltage V LED determined at the third measuring resistor.
  • the control unit SE could measure the LED voltage but also, for example, by measuring a voltage on the coil L buck during the turn-off of the first switch LS, for example by means of a voltage measurement on the inductor winding ZX during the demagnetization phase of the coil L buck .
  • the voltage across the coil L bucx corresponds to the sum of the voltages across the diode D1 and the LED voltage. It can thus be concluded that the LED voltage, since when deducting the passage Spannug the diode D1, the voltage across the coil L buck corresponds to the LED voltage.
  • the LED current I LED is indirectly determined by calculating the transmitted power and the indirect determination of the LED voltage.
  • the investigations and / or the calculations are preferably carried out by the control unit SE. It can also be included in the calculation of the transmitted power, a correction factor that includes, for example, the switching behavior or the losses of the converter.
  • the calculated LED current can thus be used as actual value variable for a regulation of the LED current.
  • the turn-on time T on of the first switch LS of the (buck) converter can be used as the control variable for the control.
  • the duty cycle of the low-frequency PWM drive if present, can be used.
  • the switch-off threshold for the first switch LS in the control unit SE can be shifted depending on the mean value of the switch current I LS .
  • the duty cycle of the low-frequency PWM control can be fixed at least in a partial range of the LED operation, for example at high brightness, at 100% duty cycle or near this range. In this area, the height of the LED current and thus the brightness of the LED can be influenced by adjusting the switch-off threshold for the first switch LS and thus via the control variable the switch-on time T on of the converter.
  • the control unit SE are thus preferably a signal representing the supply voltage V bus , a signal representing the time average of the switch current I LS (in the on time periods of the low-frequency PWM modulation, if present), and / or a signal which supplies the supply voltage V bus minus the voltage V LED detected at the third measuring resistor R VLEDSchunt .
  • control unit SE can also selectively release the low-pass filter TPF via activation of the second switch FS (eg during the switch-on period of the PWM signal) or disconnect (eg during the switch-off period of the PWM signal), ie the path between the second measuring resistor R shunt the first switch LS and the low-pass filter TPF.
  • the optional capacitor C LED parallel to the LED track LED is known as such and can serve to avoid that the LED current identically traces the course through the coil L buck .
  • non-conductive switched first switch LS in particular during the phase of demagnetization of the coil L Buck , the current through the LED due to the cached in the capacitor C LED energy can be maintained.
  • it is disadvantageous in terms of the spectrum of the LED track LED if the LED current performs such large strokes (except for a pure PWM drive between 0 and 1, then only one current flows at 1).
  • the low-frequency PWM signal need not be generated by the control unit itself, but it can be supplied from outside, for example by an externally supplied PWM control signal, and then of course the release / disconnecting element, the second switch FS, for the low-pass filter TPF be supplied.
  • the release / disconnect window for the connection element, the second switch FS, between low-pass filter TPF and the second measurement resistor R Shun t may deviate from a PWM switch-on pulse in that the "disconnect" occurs only when a zero crossing or the fall of the current through the coil L buck is detected to zero. This can take place via the throttle winding ZX, for example via a pin on the throttle winding ZX, by the control unit SE. This ensures that the averaging window for the low-pass circuit TPF always covers complete triangular waveforms of the coil current.
  • the coil L buck can also be arranged between the second capacitor C LED and the LED track LED.
  • the low-pass filter TPF and the second switch FS can optionally also be integrated in the control unit SE.
  • Fig. 2 shows by way of example the current I LS through the first switch LS, the average current I LS , which is determined by the low-pass filter TPF, the current waveform I Lbuck on the coil L buck and a low-frequency PWM signal LF PWM.
  • the inventive detection of the switch current only during the turn-on period of the low-frequency PWM signal can also be used in a simplified embodiment, if only the switch current but not the LED voltage and / or the supply voltage for determining the LED current is considered , This may be the case, in particular, when the LED voltage and / or the supply voltage are fixed. So the LED voltage can be known if the number of LEDs of the LED range is known. The supply voltage can be fixed, for example, when connecting an active power factor correction circuit.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)

Description

Die Erfindung betrifft eine Betriebsschaltung zur Ansteuerung einer LED-Strecke mit wenigstens einer LED. Die LED-Strecke wird dabei von einem getakteten Konverter angesteuert, vorzugsweise von einem Buck-Konverter. Die Erfindung bezieht sich insbesondere auf die indirekte Ermittlung des Stroms (ILED) durch die LED-Strecke.The invention relates to an operating circuit for driving an LED track with at least one LED. The LED path is controlled by a clocked converter, preferably by a buck converter. The invention relates in particular to the indirect determination of the current (I LED ) through the LED path.

Halbleiterlichtquellen wie beispielsweise Leuchtdioden sind während der letzten Jahre für Beleuchtungsanwendungen zunehmend interessant geworden. Der Grund dafür liegt unter anderem darin, dass entscheidende technische Innovationen und große Fortschritte sowohl bei der Helligkeit als auch bei der Lichteffizienz (Lichtleistung pro Watt) dieser Lichtquellen erzielt werden konnten. Nicht zuletzt durch die vergleichsweise lange Lebensdauer konnten sich Leuchtdioden zu einer attraktiven Alternative zu herkömmlichen Lichtquellen wie Glüh-oder Gasentladungslampen entwickeln.Semiconductor light sources such as light emitting diodes have become increasingly interesting for lighting applications in recent years. The reason for this is, among other things, that decisive technical innovations and great advances in terms of brightness as well as light efficiency (light output per watt) of these light sources could be achieved. Not least due to the comparatively long service life, LEDs have become an attractive alternative to conventional light sources such as incandescent or gas discharge lamps.

Halbleiterlichtquellen sind aus dem Stand der Technik hinreichend bekannt und werden im Folgenden allgemein als "LED" (Light Emitting Diode) bezeichnet. Dieser Begriff soll im Folgenden sowohl Leuchtdioden aus anorganischen Materialien als auch Leuchtdioden aus organischen Materialien umfassen.Semiconductor light sources are well known in the art and will be referred to hereafter generally as "LED" (Light Emitting Diode). This term is intended below to include both light emitting diodes of inorganic materials and light emitting diodes of organic materials.

Es ist bekannt, dass die Lichtabstrahlung von LEDs mit dem Stromfluss durch die LEDs korreliert. Zur Helligkeitsregelung werden LEDs daher grundsätzlich in einem Modus betrieben, in dem der Stromfluss durch die LED geregelt wird.It is known that the light emission of LEDs correlates with the current flow through the LEDs. For brightness control, LEDs are therefore always operated in a mode in which the current flow through the LED is controlled.

In der Praxis werden zur Ansteuerung einer Anordnung von einer LED oder mehreren LEDs vorzugsweise Schaltregler, beispielsweise Tiefsetzsteller (Step-Down- oder Buck-Konverter) verwendet. Ein solcher Schaltregler ist beispielsweise aus der DE 10 2006 034 371 A1 bekannt. Dabei steuert eine Steuereinheit einen hochfrequent getakteten Schalter (beispielsweise einen Leistungstransistor, FET, MOSFET) an. Im eingeschalteten Zustand des Schalters fließt Strom über die LED Anordnung und eine Spule, die dadurch aufgeladen wird. Die zwischengespeicherte Energie der Spule entlädt sich im ausgeschalteten Zustand des Schalters über die LED(s) (Freilaufphase).In practice, for controlling an arrangement of one LED or a plurality of LEDs, switching regulators, for example step-down converters or buck converters, are preferably used. used. Such a switching regulator is for example from the DE 10 2006 034 371 A1 known. In this case, a control unit controls a high-frequency clocked switch (for example, a power transistor, FET, MOSFET). When the switch is turned on, current flows through the LED assembly and a coil, which is charged by it. The cached energy of the coil discharges in the off state of the switch via the LED (s) (freewheeling phase).

Bekanntlich kann jedoch bei einer derartigen Konfiguration und vor allem bei Verwendung eines Niederpotential ("Low-Side")-Schalters nicht ohne weiteres der LED-Strom in der Freilaufphase, d.h. bei geöffnetem, nichtleitend-geschalteten Schalter, gemessen werden. Diese Messung ist jedoch nötig, wenn der LED-Strom als Istwert zur Steuerung der LED-Strecke zugeführt werden soll.
Die Erfindung löst nun dieses Problem durch Bereitstellen einer Betriebsschaltung und eines Verfahrens gemäß der unabhängigen Ansprüche. Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
In einem ersten Aspekt stellt die Erfindung eine Betriebsschaltung für eine LED-Strecke mit wenigstens einer LED gemäß Anspruch 1 bereit.
As is known, however, in such a configuration, and especially when using a low-potential ("low-side") switch, the LED current in the freewheeling phase, ie when the switch is not switched off, can not be readily measured. However, this measurement is necessary if the LED current is to be supplied as the actual value for controlling the LED path.
The invention now solves this problem by providing an operating circuit and a method according to the independent claims. Further developments of the invention are the subject of the dependent claims.
In a first aspect, the invention provides an operating circuit for an LED track with at least one LED according to claim 1.

Der Betriebsschaltung an wenigstens einem eingangsseitigen Anschluss eine Versorgungsspannung zuführbar ist, und die Betriebsschaltung eine Spule und einen durch eine Steuereinheit getakteten ersten Schalter aufweist, wobei bei leitfähig-geschalteten ersten Schalter in der Spule eine Energie zwischengespeichert wird, die sich bei nichtleitfähig-geschalteten ersten Schalter über eine Diode und über die LED-Strecke entlädt, wobei ein Kondensator vorgesehen ist, der parallel zu der LED-Strecke angeordnet ist und der bei angeschlossener LED während der Phase der Entladung der Spule den Strom durch die LED aufrecht erhält, und wobei die Steuereinheit dazu eingerichtet ist, den Schalter-Strom durch den ersten Schalter an einem ersten Mess-Widerstand zu ermitteln, vorzugsweise die Versorgungsspannung an einem zweiten Mess-Widerstand und vorzugsweise eine Mess-Spannung an der LED-Strecke an einem dritten Mess-Widerstand zu ermitteln und daraus den LED-Strom durch die D-Strecke zu berechnen.The operating circuit at at least one input-side terminal, a supply voltage can be supplied, and the operating circuit comprises a coil and a clocked by a control unit first switch, wherein in conductively-switched first switch in the coil, an energy is stored, which is non-conductive switched first switch via a diode and via the LED path discharges, wherein a capacitor is provided, which is arranged parallel to the LED track and the LED is connected during the phase of the discharge of the coil the current through the LED maintains, and wherein the control unit is adapted to determine the switch current through the first switch on a first measuring resistor, preferably the supply voltage to a second measuring resistor and preferably a measuring voltage at the Determine LED distance at a third measuring resistor and calculate the LED current through the D-distance.

Die Steuereinheit kann die LED-Spannung als Differenz aus der Versorgungsspannung und der Mess-Spannung berechnen. Die Steuereinheit kann die LED-Spannung auch anhand einer Messung einer Spannung an der Spule während der Ausschaltzeit des ersten Schalters messen.The control unit can calculate the LED voltage as the difference between the supply voltage and the measurement voltage. The controller may also measure the LED voltage based on a measurement of a voltage on the coil during the turn-off time of the first switch.

Die Steuereinheit kann den LED-Strom berechnen aus dem Produkt der Versorgungsspannung und des Schalter-Stroms als übertragene Leistung dividiert durch die LED-Spannung.The controller may calculate the LED current from the product of the supply voltage and the switch current as transmitted power divided by the LED voltage.

Die Steuereinheit kann den Schalter-Strom einer Durchschnittsbildung (Tiefpassfilterung, zeitliche Mittelung, Integration) unterziehen.The control unit may average the switch current (low pass filtering, time averaging, integration).

Der LED-Strom kann der Steuereinheit als Rückführsignal, insbesondere als Ist-Wert, zugeführt werden. Die Steuereinheit kann die Einschaltzeitdauer des ersten Schalters steuern.The LED current can be supplied to the control unit as a feedback signal, in particular as an actual value. The control unit may control the on time of the first switch.

Die Steuereinheit kann einen Abschaltschwellwert für den ersten Schalter vorgeben.The control unit may specify a switch-off threshold value for the first switch.

Die Mittelung des Schalter-Stroms kann durch einen Tiefpassfilter erfolgen, der den zeitlichen Mittelwert des Stroms erfassen kann.The averaging of the switch current can be done by a low-pass filter, which can detect the time average of the current.

Der Schalter-Strom kann mit einem PWM-Signal kombiniert werden. Das PWM-Signal kann im Verhältnis zur Frequenz des Schalter-Stroms niederfrequent sein.
Ein zweiter Schalter kann einen Strompfad zwischen dem ersten Mess-Widerstand und dem Tiefpassfilter nur während einer Einschaltzeitdauer des PWM-Signals freigeben, und während einer Ausschaltzeitdauer des PWM-Signals den Strompfad unterbrechen.
Während der Ausschaltzeitdauer kann der gemittelte, tiefpassgefilterte, Schalter-Strom gehalten werden. Die Steuereinheit kann den gemittelten Schalter-Strom während der Ausschaltzeitdauer des PWM-Signals auswerten.
Die Steuereinheit kann ein Tastverhältnis des PWM-Signals steuern. Die Steuereinheit kann den Abschaltschwellwert für den ersten Schalter abhängig von dem gemittelten Schalter-Strom einstellen.
Der Steuereinheit kann ein die Versorgungsspannung wiedergebendes Signal, ein den gemittelten Schalter-Strom wiedergebendes Signal, ein Signal, welches die Spannung über der LED wiedergibt und/oder ein Signal, dass die Differenz aus der Versorgungsspannung und der Mess-Spannung wiedergibt, zugeführt werden.
Die Steuereinheit kann den zweiten Schalter steuern. Der zweite Schalter kann den Tiefpassfilter von dem ersten Mess-Widerstand trennen, wenn die Steuereinheit einen Nulldurchgang, insbesondere das Abfallen des Stroms in der Spule bzw. einer Drossel, feststellt. Ein weiterer Aspekt betrifft eine Leuchte mit einer LED-Strecke und einer Betriebsschaltung, wie sie oben beschrieben ist. In noch einem weiteren Aspekt stellt die Erfindung ein Verfahren zum Betreiben von einer LED-Strecke mit wenigstens einer LED gemäß Anspruch 9. Ein weiterer Aspekt betrifft auch eine Betriebsschaltung für eine LED-Strecke mit wenigstens einer LED, wobei die Betriebsschaltung durch einen getakteten Konverter, beispielsweise einen Tiefsetzsteller (Buck-Converter), Hochsetzsteller (Boost-Konverter), Sperrwandler (Inverter) oder Buck-Boost Konverter, für den Betrieb zumindest der LED-Strecke gebildet wird.
Die Erfindung wird nunmehr auch mit Bezug auf die Zeichnungen beschrieben. Dabei zeigen:

Fig. 1
eine Schaltungsanordnung gemäß der Erfindung.
Fig. 2
exemplarisch einige Stromverläufe in der Schaltungsanordnung.
The switch current can be combined with a PWM signal. The PWM signal may be low frequency in proportion to the frequency of the switch current.
A second switch may enable a current path between the first sense resistor and the low pass filter only during a turn-on period of the PWM signal, and interrupt the current path during a turn-off period of the PWM signal.
During the turn-off period, the averaged, low-pass-filtered, switch current can be held. The control unit may evaluate the averaged switch current during the turn-off period of the PWM signal.
The control unit may control a duty cycle of the PWM signal. The control unit may adjust the turn-off threshold for the first switch depending on the averaged switch current.
The control unit may be supplied with a signal representing the supply voltage, a signal representing the averaged switch current, a signal representing the voltage across the LED and / or a signal representing the difference between the supply voltage and the measurement voltage.
The control unit can control the second switch. The second switch may disconnect the low pass filter from the first sense resistor when the controller detects a zero crossing, in particular, the drop in the current in the inductor. Another aspect relates to a luminaire having an LED track and an operating circuit as described above. In yet another aspect, the invention provides a method of operating an LED track with at least one LED according to claim 9. Another aspect also relates to an operating circuit for an LED track with at least one LED, wherein the operating circuit by a clocked converter, such as a buck converter (buck converter), boost converter (boost converter), flyback converter (inverter) or buck-boost converter , for the operation of at least the LED track is formed.
The invention will now be described with reference to the drawings. Showing:
Fig. 1
a circuit arrangement according to the invention.
Fig. 2
as an example, some current curves in the circuit arrangement.

In Fig. 1 zeigt eine Schaltungsanordnung - unter anderem - einem Tiefsetzsteller (Buck-Converter) für den Betrieb zumindest der LED-Strecke (mit einer oder mehreren in Serie geschalteten LEDs), mit einem ersten Schalter LS, der auch als Konverter-Schalter des Buck-Konverters als Beispiel für einen getakteten Konverter, bezeichnet werden kann. Die Schaltungsanordnung, im Folgenden auch als Betriebsschaltung bezeichnet, wird mit einer Gleichspannung bzw. einer gleichgerichteten Wechselspannung Vbus versorgt. Die Gleichspannung bzw. einer gleichgerichteten Wechselspannung Vbus kann über einem Netzgleichrichter direkt aus einem Wechselspannungsnetz oder auch durch Zwischenschaltung einer aktiven Leistungsfaktorkorrekturschaltung oder auch über einen Gleichspannungswandler, beispielsweise auch einen potentialgetrennten Gleichspannungswandler, gespeist werden.In Fig. 1 shows a circuit arrangement - inter alia - a buck converter (Buck converter) for the operation of at least the LED track (with one or more series-connected LEDs), with a first switch LS, which is also used as a converter switch of the buck converter Example of a clocked converter, can be called. The circuit arrangement, also referred to below as the operating circuit, is supplied with a DC voltage or a rectified AC voltage V bus . The DC voltage or a rectified AC voltage V bus can be fed via a mains rectifier directly from an AC voltage network or by the interposition of an active power factor correction circuit or via a DC-DC converter, for example, a potential-separated DC-DC converter.

Parallel zu der Versorgungsspannung Vbus ist ein Kondensator Cbus angeordnet. Ein erster Mess-Widerstand RVbusShunt ist über einen ersten Widerstand RVbus mit der Versorgungsspannung Vbus verbunden. An diesem ersten Mess-Widerstand RVbusShunt kann die Versorgungsspannung Vbus von einer Steuereinheit SE (z.B. einem Mikrocontroller, einer ASIC, einem IC, ...) erfasst werden.Parallel to the supply voltage V bus , a capacitor C bus is arranged. A first measurement resistor R VbusShunt is connected via a first resistor R Vbus to the supply voltage V bus. At this first measuring resistor R VbusShunt , the supply voltage V bus can be detected by a control unit SE (eg a microcontroller, an ASIC, an IC, etc.).

Es schließt sich der eigentliche Konverter an, wobei zunächst eine Diode D1, der erste Schalter LS und ein zweiter Mess-Widerstand RShunt in Serie parallel zum Kondensator Cbus verschaltet sind. Zwischen Diode D1 und dem ersten Schalter LS ist die potentialniedrigere Seite der Diode D1 über eine Spule Lbuck mit einem zu der Diode D1 parallelgeschalteten zweiten optionalen Kondensator CLED verbunden. An dem zweiten Mess-Widerstand RShunt kann, z.B. von der Steuereinheit SE, der Schalter-Strom ILS durch den ersten Schalter LS erfasst werden.This is followed by the actual converter, wherein first a diode D1, the first switch LS and a second measuring resistor R shunt are connected in series parallel to the capacitor C bus . Between diode D1 and the first switch LS, the potential-lower side of the diode D1 is connected via a coil L buck to a second optional capacitor C LED connected in parallel with the diode D1. At the second measuring resistor R shunt , for example from the control unit SE, the switch current I LS can be detected by the first switch LS.

Parallel zu dem zweiten Kondensator CLED ist schließlich die LED-Strecke LED geschaltet.Parallel to the second capacitor C LED finally the LED track LED is switched.

Im eingeschalteten Zustand des ersten Schalters LS (während der Einschaltzeitdauer Ton) wird in der Spule Lbuck Energie aufgebaut, die sich im ausgeschalteten Zustand des ersten Schalters LS (Ausschaltzeitdauer oder Zeitdauer Toff) über die LED-Strecke LED entlädt.In the switched-on state of the first switch LS (during the switch-on time T on ) energy is built up in the coil L buck , which discharges in the switched-off state of the first switch LS (Ausschaltzeitdauer or time T off ) on the LED track LED.

Induktiv mit der Spule Lbuck ist eine Drosselwicklung ZX (auch als Drossel ZX bezeichnet) gekoppelt, über die in einem Messkreis die Lade- und Entlade-Vorgänge (Magnetisierung und Entmagnetisierung) der Spule Lbuck erfasst werden können. Insbesondere können über die Drosselwicklung ZX Nulldurchgänge, d.h. eine Entmagnetisierung und somit Entladung der Spule Lbuck auf den Null-Pegel, erfasst werden. Dies kann z.B. durch die Steuereinheit SE erfolgen, indem z.B. der Strom ILbuck durch die Spule, z.B. an der Drosselwicklung ZX erfasst wird. Beispielsweise kann die Entmagnetisierung der Spule Lbuck, welche verbunden ist mit dem Abfall des Stromes ILbuck auf Null, mittels eines Spannungsüberwachung an Drosselwicklung ZX durch due Steuereinheit SE erfasst werden.Inductively coupled to the coil L buck is a choke winding ZX (also referred to as choke ZX), via which the charging and discharging processes (magnetization and demagnetization) of the coil L buck can be detected in a measuring circuit. In particular, via the inductor winding ZX zero crossings, ie a demagnetization and thus discharge of the coil L buck to the zero level, can be detected. This can be done for example by the control unit SE, for example by the current I Lbuck is detected by the coil, for example on the inductor winding ZX. For example, the demagnetization of the coil L buck , which connected to the drop of the current I Lbuck to zero, by means of a voltage monitoring to throttle winding ZX be detected by due control unit SE.

In Serie zu dem Leuchtmittle ist über einen weiteren Widerstand RVLED ein dritter Mess-Widerstand RVLEDShunt angeschlossen, an dem eine Mess-Spannung VLED von der Steuereinheit SE erfasst werden kann. Die LED-Spannung kann somit ermittelt werden. Sie ergibt sich dabei aus der Differenz zwischen der Versorgungsspannung Vbus und der am dritten Mess-Widerstand ermittelten Mess-Spannung VLED.In series with the illuminant, a third measuring resistor R VLEDShunt is connected via a further resistor R VLED , to which a measuring voltage V LED can be detected by the control unit SE. The LED voltage can thus be determined. It results from the difference between the supply voltage V bus and the measured voltage V LED determined at the third measuring resistor.

Zurück an dem ersten Schalter LS ist an dessen potentialniedrigere Seite zwischen dem ersten Schalter LS und dem zweiten Mess-Widerstand RShunt über einen weiteren Widerstand ein zweiter Schalter FS verschaltet, über den ein Filter 1. Ordnung (Tiefpass) zu- oder abgeschaltet werden kann.Back at the first switch LS, a second switch FS is connected to its potential-lower side between the first switch LS and the second measuring resistor R Shunt via a further resistor, via which a filter of the first order (low pass) can be switched on or off ,

Der erste Schalter wird dabei über eine Treiberschaltung LSDRV mit einer Treiber Spannung Vgate angesteuert, während der zweite Schalter FS über eine Treiberschaltung mit der Spannung Vduty angesteuert wird. Die jeweilige Ansteuerung kann auch durch eine Steuereinheit SE erfolgen, wobei beispielsweise die Treiberschaltung LSDRV und /oder die Treiberschaltung mit der Spannung Vduty Teil der Steuereinheit SE sein können.The first switch is driven via a driver circuit LS DRV with a driver voltage V gate , while the second switch FS is driven via a driver circuit with the voltage V duty . The respective control can also be effected by a control unit SE, wherein, for example, the driver circuit LS DRV and / or the driver circuit with the voltage V duty can be part of the control unit SE.

Das Tiefpassfilter TPF dient nun dazu, den an dem zweiten Mess-Widerstand RShunt erfassten Schalter-Strom ILS zeitlich zu mitteln. Die Erfindung sieht nämlich zur Messung des LED-Stroms ILED als Istwert folgendes vor:The low-pass filter TPF is now used to average the detected at the second measuring resistor R shunt switch current I LS . Namely, the invention provides the following for measuring the LED current I LED as an actual value:

Der Schalter-Strom ILS durch den ersten Schalter LS wird bei eingeschaltetem ersten Schalter LS an dem zweiten Mess-Widerstand RShunt erfasst. Dieser Strom steigt während der Einschaltzeitphase des ersten Schalters LS im Wesentlichen linear an und fällt beim Öffnen des Schalters LS auf null ab.The switch current I LS through the first switch LS is detected when the first switch LS on the second measuring resistor R shunt . This current increases substantially linearly during the switch-on time phase of the first switch LS and drops to zero when the switch LS is opened.

Der Strom durch die Spule Lbuck zeigt also einen zickzackförmigen zeitlichen Verlauf: bei eingeschaltetem ersten Schalter zeigt der Strom eine ansteigende Flanke, bei ausgeschaltetem ersten Schalter ergibt sich eine abfallende Flanke. Während der Freilaufphase ist der Schalter-Strom ILS daher Null, bevor er beim erneuten Einschalten des ersten Schalters LS wieder ansteigt.The current through the coil L buck thus shows a zigzag-shaped time course: when the first switch is turned on, the current shows a rising edge, with the first switch turned off there is a falling edge. During the freewheeling phase, the switch current I LS is therefore zero before it rises again when the first switch LS is switched on again.

Vorzugsweise wird der Schalter LS ausgeschaltet, wenn eine Abschaltschwelle (abgelegt beispielsweise in der Steuereinheit SE) erreicht ist. Dieser Schalter-Stromverlauf ILS wird nunmehr gemittelt, indem er der Tiefpassschaltung TPF zugeführt wird. Somit wird der sich im zeitlichen Mittel einstellende Schalter-Strom ILS erfasst.Preferably, the switch LS is turned off when a shutdown threshold (stored, for example, in the control unit SE) is reached. This switch current profile I LS is now averaged by being supplied to the low-pass circuit TPF. Thus, the averaging switch current I LS is detected.

Der hochfrequente, näherungsweise zickzackförmigen Verlauf des LED-Stroms ILED (im Ausführungsbeispiel fällt der LED-Strom ILED durch die Spule Lbuck auf Null ab, bevor wieder eingeschaltet wird, was einem Betrieb im sog. "Borderline Mode" entspricht) kann kombiniert werden mit einer im Verhältnis dazu niederfrequenteren PWM-Ansteuerung (LF PWM, low-frequent PWM).The high-frequency, approximately zigzag course of the LED current I LED (in the exemplary embodiment, the LED current I LED drops to zero by the coil L buck before being switched on again, which corresponds to operation in the so-called "borderline mode") can be combined be with a relatively low-frequency PWM control (LF PWM, low-frequent PWM).

Eine große Schwankungsbreite des Stroms (Welligkeit oder Rippel) kann sich nämlich bei LEDs nachteilig auswirken, da mit Veränderung der Stromamplitude sich das Spektrum des emittierten Lichts verändern kann. Um das emittierte Lichtspektrum während des Betriebs möglichst konstant zu halten, ist es bekannt, bei LEDs für Helligkeitsregelungen nicht die Stromamplitude zu variieren, sondern alternativ oder zusätzlich ein Pulsmodulationsverfahren, beispielsweise das PWM (Pulse- Width Modulation)-Verfahren, anzuwenden.A large fluctuation range of the current (ripple or ripple) can have a disadvantageous effect on LEDs, since the spectrum of the emitted light can change as the current amplitude changes. In order to keep the emitted light spectrum as constant as possible during operation, it is known not to vary the current amplitude for LEDs for brightness control, but alternatively or additionally to use a pulse modulation method, for example the PWM (Pulse-Width Modulation) method.

Dabei werden den LEDs durch die Betriebsschaltung niederfrequente (typischerweise mit einer Frequenz im Bereich von 100-1000 Hz) Pulspakete mit (im zeitlichen Mittel) konstanter Stromamplitude zugeführt. Dem Strom innerhalb eines Pulspakets ist der oben angeführte hochfrequente Rippel überlagert. Die Helligkeit der LEDs kann nun durch die Frequenz der Pulspakete gesteuert werden; die LEDs können beispielsweise gedimmt werden, indem der zeitliche Abstand zwischen den Pulspaketen vergrößert wird. Es wird somit also die hochfrequente Taktung des ersten Schalters LS mit einem PWM-Signal kombiniert, wobei die Frequenz des PWM-Signals im Verhältnis zur Frequenz der hochfrequenten Taktung des ersten Schalters (LS) niederfrequent ist. Es ergibt sich dadurch eine hochfrequente Taktung des ersten Schalters LS, welche von längeren Pausen ohne Taktung unterbrochen wird, wobei diese längeren Pausen die Ausschaltphase des niederfrequenten PWM-Signals sind. Vorzugsweise sind die Frequenz der hochfrequenten Taktung und des niederfrequenten PWM-Signals aufeinander abgestimmt, um Flackereffekte zu vermeiden.
Beispielsweise kann die Frequenz der hochfrequenten Taktung ein ganzzahliges Vielfaches der Frequenz des niederfrequenten PWM-Signals sein.
In this case, the LEDs are supplied by the operating circuit with low-frequency (typically with a frequency in the range of 100-1000 Hz) pulse packets with (in the time average) constant current amplitude. The electricity within one Pulse packets are superimposed on the above-mentioned high-frequency ripple. The brightness of the LEDs can now be controlled by the frequency of the pulse packets; For example, the LEDs can be dimmed by increasing the time interval between the pulse packets. Thus, therefore, the high-frequency clocking of the first switch LS is combined with a PWM signal, wherein the frequency of the PWM signal is low-frequency in relation to the frequency of the high-frequency clocking of the first switch (LS). This results in a high-frequency clocking of the first switch LS, which is interrupted by longer pauses without clocking, these longer pauses are the switch-off phase of the low-frequency PWM signal. Preferably, the frequency of the high-frequency clocking and the low-frequency PWM signal are matched to one another in order to avoid flickering effects.
For example, the frequency of the high-frequency clocking may be an integer multiple of the frequency of the low-frequency PWM signal.

Aus Gründen der Farbkonstanz soll innerhalb eines Pulspakets die Amplitude des Rippels möglichst gering sein. Dabei kann der Schalter in einem hochfrequenten PWM-Modus betrieben werden. In diesem Fall wird bei fix vorgegebener Frequenz das Einschaltverhältnis für die hochfrequente Taktung des ersten Schalters abhängig vom Mittelwert des ermittelten LED-Stromes oder Schalterstomes eingestellt. Eine Aufrechterhaltung des Stromes durch die LED kann durch die Parallelschaltung eines Kondensators CLED erfolgen, wie dies später noch erläutert wird. Alternativ kann die Einstellung des Stromes durch die LED durch geeignete Wahl des Einschaltzeitpunkts und Ausschaltzeitpunkts erfolgen. So können diese Zeitpunkte beispielsweise so gewählt werden, dass der erste Schalter LS eingeschaltet wird, wenn der Strom einen bestimmten minimalen Referenzwert unterschreitet und der Schalter ausgeschaltet wird, wenn der Strom einen maximalen Referenzwert überschreitet (Abschaltschwellwert). Der minimale Referenzwert kann auch Null sein.For reasons of color constancy, the amplitude of the ripple should be as low as possible within a pulse packet. The switch can be operated in a high-frequency PWM mode. In this case, the duty cycle for the high-frequency clocking of the first switch is set depending on the average value of the determined LED current or switch current at a fixed predetermined frequency. A maintenance of the current through the LED can be done by the parallel connection of a capacitor C LED , as will be explained later. Alternatively, the adjustment of the current through the LED can be done by appropriate selection of the turn-on and turn-off times. For example, these times may be selected such that the first switch LS is turned on when the current falls below a certain minimum reference value and the switch is turned off when the current exceeds a maximum reference value (turn-off threshold). The minimum reference value can also be zero.

Daher ist vorgesehen, dass der Strompfad zwischen dem zweiten Mess-Widerstand Rshunt in Serie zu dem ersten Schalter LS, dem Konverter-Schalter, hin zu dem Tiefpassfilter TPF nur während der Einschaltzeitdauer des Niederfrequenten PWM-Signals freigegeben ist. Während der Ausschaltzeitdauer des Niederfrequenten PWM-Signals wird der Strompfad unterbrochen, so dass das sich einstellende tiefpassgefilterte (gemittelte) Signal gehalten wird und somit auch eine Auswertung des Mittelwertes in der Ausschaltzeitdauer des niederfrequenten PWM-Signals durch die Steuereinheit erfolgen kann.It is therefore provided that the current path between the second measuring resistor R shunt in series with the first switch LS, the converter switch, towards the low-pass filter TPF is enabled only during the switch-on period of the low-frequency PWM signal. During the turn-off period of the low-frequency PWM signal, the current path is interrupted, so that the resulting low-pass filtered (averaged) signal is maintained and thus an evaluation of the mean value in the turn-off of the low-frequency PWM signal can be performed by the control unit.

Der LED-Strom ILED kann ermittelt werden durch Inbezugsetzen (bspw. Dividieren oder anderes Korrelieren) der durch den Konverter übertragenen Leistung durch die LED-Spannung. Die übertragene Leistung wird dabei berechnet durch die am ersten Mess-Widerstand ermittelte Versorgungsspannung Vbus, die multipliziert wird mit dem zeitlich gemittelten Schalter-Strom ILS. Dies kann z.B. wiederum durch die Steuereinheit SE erfolgen.The LED current I LED can be determined by referring (eg, dividing or otherwise correlating) the power transmitted through the converter to the LED voltage. The transmitted power is calculated by the determined at the first measuring resistance supply voltage V bus , which is multiplied by the time-averaged switch current I LS . This can again be done by the control unit SE, for example.

Die LED-Spannung wird beispielsweise mit Hilfe einer Messung an dem dritten Mess-Widerstand RVLEDShunt ermittelt, der in Serie zu der LED-Strecke LED geschaltet ist. Die LED-Spannung ergibt sich dabei aus der Differenz zwischen der Versorgungsspannung Vbus und der am dritten Mess-Widerstand ermittelten Mess-Spannung VLED. Die Steuereinheit SE könnte die LED-Spannung aber beispielsweise auch anhand einer Messung einer Spannung an der Spule Lbuck während der Ausschaltzeit des ersten Schalters LS messen, beispielsweise mittels einer Spannungsmessung an der Drosselwicklung ZX während der Entmagnetisierungsphase der Spule Lbuck. Während dieser Entmagnetisierungsphase entspricht die Spannung über der Spule Lbucx der Summe der Spannungen über der Diode D1 und der LED-Spannung. Es kann somit auf die LED-Spannung geschlossen werden, da bei Abzug der Durchlaß-Spannug der Diode D1 die Spannung über der Spule Lbuck der LED-Spannung entspricht.The LED voltage is determined for example by means of a measurement on the third measuring resistor R VLEDShunt , which is connected in series with the LED track LED. The LED voltage results from the difference between the supply voltage V bus and the measured voltage V LED determined at the third measuring resistor. The control unit SE could measure the LED voltage but also, for example, by measuring a voltage on the coil L buck during the turn-off of the first switch LS, for example by means of a voltage measurement on the inductor winding ZX during the demagnetization phase of the coil L buck . During this demagnetization phase , the voltage across the coil L bucx corresponds to the sum of the voltages across the diode D1 and the LED voltage. It can thus be concluded that the LED voltage, since when deducting the passage Spannug the diode D1, the voltage across the coil L buck corresponds to the LED voltage.

Somit wird indirekt der LED-Strom ILED durch Berechnung der übertragenen Leistung und der indirekten Ermittlung der LED-Spannung ermittelt. Die Ermittlungen und/oder die Berechnungen erfolgen dabei vorzugsweise durch die Steuereinheit SE. Es kann bei der Berechnung der übertragenen Leistung auch ein Korrekturfaktor mit einbezogen werden, der beispielsweise das Schaltverhalten oder die Verluste des Konverters mit einbezieht.Thus, the LED current I LED is indirectly determined by calculating the transmitted power and the indirect determination of the LED voltage. The investigations and / or the calculations are preferably carried out by the control unit SE. It can also be included in the calculation of the transmitted power, a correction factor that includes, for example, the switching behavior or the losses of the converter.

Der berechnete LED-Strom kann somit als Istwertgröße für eine Regelung des LED-Stroms verwendet werden. Als Steuergröße für die Regelung kann einerseits die Einschaltzeitdauer Ton des ersten Schalters LS des (Buck-)Konverters verwendet werden. Alternativ oder zusätzlich kann das Tastverhältnis der niederfrequenten PWM-Ansteuerung, falls vorhanden, verwendet werden.The calculated LED current can thus be used as actual value variable for a regulation of the LED current. On the one hand, the turn-on time T on of the first switch LS of the (buck) converter can be used as the control variable for the control. Alternatively or additionally, the duty cycle of the low-frequency PWM drive, if present, can be used.

Ist die Steuergröße die Einschaltzeitdauer Ton des Konverters, kann die Abschaltschwelle für den ersten Schalter LS in der Steuereinheit SE abhängig von dem Mittelwert des Schalter-Stroms ILS verschoben werden. Das Tastverhältnis der niederfrequenten PWM-Ansteuerung kann zumindest in einem Teilbereich des LED Betriebs, beispielsweise bei hohen Helligkeiten, bei 100 % Einschaltverhältnis oder nahe diesem Bereich fixiert werden. In diesem Bereich kann die Höhe des LED Stromes und somit die Helligkeit der LED durch die Anpassung der Abschaltschwelle für den ersten Schalter LS und somit über die Steuergröße die Einschaltzeitdauer Ton des Konverters beeinflusst werden. Es ist aber auch möglich, dass eine kombinierte Änderung sowohl des Tastverhältnisses der niederfrequenten PWM-Ansteuerung als auch der Anpassung der Abschaltschwelle für den ersten Schalter LS zumindest in einem Teilbereich des LED Betriebs erfolgen kann. Alternativ kann in einem Teilbereich des LED Betriebs auch nur eine Anpassung der Abschaltschwelle für den ersten Schalter LS erfolgen.If the control variable is the switch-on time T on of the converter, the switch-off threshold for the first switch LS in the control unit SE can be shifted depending on the mean value of the switch current I LS . The duty cycle of the low-frequency PWM control can be fixed at least in a partial range of the LED operation, for example at high brightness, at 100% duty cycle or near this range. In this area, the height of the LED current and thus the brightness of the LED can be influenced by adjusting the switch-off threshold for the first switch LS and thus via the control variable the switch-on time T on of the converter. But it is also possible that a combined change of both the duty cycle of the low-frequency PWM control and the adjustment of the switch-off threshold for the first switch LS can be carried out at least in a partial area of the LED operation. Alternatively, only one adaptation of the switch-off threshold for the first switch LS can take place in a subarea of the LED operation.

Der Steuereinheit SE werden vorzugsweise also ein Signal, das die Versorgungsspannung Vbus wiedergibt, ein Signal, das den zeitlichen Mittelwert des Schalter-Stroms ILS wiedergibt (in den Einschaltzeitdauern der niederfrequenten PWM-Modulation, falls vorhanden), und/oder ein Signal, das die Versorgungsspannung Vbus minus die am dritten Mess-Widerstand RVLEDSchunt ermittelte Spannung VLED wiedergibt, zugeführt.The control unit SE are thus preferably a signal representing the supply voltage V bus , a signal representing the time average of the switch current I LS (in the on time periods of the low-frequency PWM modulation, if present), and / or a signal which supplies the supply voltage V bus minus the voltage V LED detected at the third measuring resistor R VLEDSchunt .

Auch neben der Ansteuerung des ersten Schalters LS kann die Steuereinheit SE im Übrigen auch selektiv den Tiefpassfilter TPF über Ansteuerung des zweiten Schalters FS freigeben (z.B. während der Einschaltzeitdauer des PWM-Signals) bzw. abtrennen (z.B. während der Ausschaltzeitdauer des PWM-Signals), d.h. des Pfads zwischen dem zweiten Mess-Widerstand RShunt dem ersten Schalter LS und dem Tiefpassfilter TPF.In addition to the activation of the first switch LS, the control unit SE can also selectively release the low-pass filter TPF via activation of the second switch FS (eg during the switch-on period of the PWM signal) or disconnect (eg during the switch-off period of the PWM signal), ie the path between the second measuring resistor R shunt the first switch LS and the low-pass filter TPF.

Der optionale Kondensator CLED parallel zur LED-Strecke LED ist als solcher bekannt und kann dazu dienen, zu vermeiden, dass der LED-Strom identisch den Verlauf durch die Spule Lbuck nachvollzieht. Bei nichtleitfähig-geschalteten ersten Schalter LS, insbesondere während der Phase der Entmagnetisierung der Spule LBuck, kann der Strom durch die LED aufgrund der in dem Kondensator CLED zwischengespeicherten Energie aufrecht erhalten werden. Bekanntlich ist es hinsichtlich des Spektrums der LED-Strecke LED nachteilig, wenn der LED-Strom derartig große Hübe ausführt (außer bei einer reinen PWM-Ansteuerung zwischen 0 und 1, dann fließt nur ein Strom bei 1).The optional capacitor C LED parallel to the LED track LED is known as such and can serve to avoid that the LED current identically traces the course through the coil L buck . In non-conductive switched first switch LS, in particular during the phase of demagnetization of the coil L Buck , the current through the LED due to the cached in the capacitor C LED energy can be maintained. As is known, it is disadvantageous in terms of the spectrum of the LED track LED if the LED current performs such large strokes (except for a pure PWM drive between 0 and 1, then only one current flows at 1).

Das niederfrequente PWM-Signal muss nicht von der Steuereinheit selbst erzeugt werden, vielmehr kann es von außerhalb, beispielsweise durch ein extern zugeführtes PWM-Steuersignal, zugeführt werden und kann dann natürlich auch dem Freigabe/Abtrennelement, dem zweiten Schalter FS, für den Tiefpassfilter TPF zugeführt werden.The low-frequency PWM signal need not be generated by the control unit itself, but it can be supplied from outside, for example by an externally supplied PWM control signal, and then of course the release / disconnecting element, the second switch FS, for the low-pass filter TPF be supplied.

Gemäß einer bevorzugten Ausführungsform kann das Freigabe-/Abtrennfenster für das Verbindungselement, der zweite Schalter FS, zwischen Tiefpassfilter TPF und dem zweiten Mess-Widerstand RShunt von einem PWM-Einschaltimpuls dahingehend abweichen, dass das "Abtrennen" erst erfolgt, wenn ein Nulldurchgang bzw. das Abfallen des Stroms durch die Spule Lbuck auf null erfasst wird. Dies kann über die Drosselwicklung ZX, z.B. über einen Pin an der Drosselwicklung ZX, durch die Steuereinheit SE erfolgen. Somit wird sichergestellt, dass das Mittelungsfenster für die Tiefpassschaltung TPF immer vollständige dreieckförmige Verläufe des Spulenstroms abdeckt.According to a preferred embodiment, the release / disconnect window for the connection element, the second switch FS, between low-pass filter TPF and the second measurement resistor R Shun t may deviate from a PWM switch-on pulse in that the "disconnect" occurs only when a zero crossing or the fall of the current through the coil L buck is detected to zero. This can take place via the throttle winding ZX, for example via a pin on the throttle winding ZX, by the control unit SE. This ensures that the averaging window for the low-pass circuit TPF always covers complete triangular waveforms of the coil current.

Es ist auch zu bemerken, dass die Spule Lbuck auch zwischen dem zweiten Kondensator CLED und der LED-Strecke LED angeordnet sein kann.It should also be noted that the coil L buck can also be arranged between the second capacitor C LED and the LED track LED.

Der Tiefpaßfilter TPF und der zweite Schalter FS können optional auch in die Steuereinheit SE integriert sein.The low-pass filter TPF and the second switch FS can optionally also be integrated in the control unit SE.

Fig. 2 zeigt exemplarisch den Strom ILS durch den ersten Schalter LS, den gemittelten Strom ILS, der durch den Tiefpassfilter TPF ermittelt wird, den Stromverlauf ILbuck an der Spule Lbuck und ein niederfrequentes PWM-Signal LF PWM. Fig. 2 shows by way of example the current I LS through the first switch LS, the average current I LS , which is determined by the low-pass filter TPF, the current waveform I Lbuck on the coil L buck and a low-frequency PWM signal LF PWM.

Die erfindungsgemäße Erfassung des Schalter-Stroms nur während der Einschaltzeitdauer des niederfrequenten PWM-Signals kann auch in einer vereinfachten Ausführungsform genutzt werden, wenn nur der Schalter-Strom aber nicht die LED-Spannung und / oder die Versorgungsspannung für die Ermittlung des LED Stromes betrachtet wird. Die kann insbesondere der Fall sein, wenn die LED-Spannung und / oder die Versorgungsspannung fix eingestellt sind. So kann die LED-Spannung bekannt sein, wenn die Anzahl der LED der LED Strecke bekannt ist. Die Versorgungsspannung kann beispielsweise bei Vorschalten einer aktiven Leistungsfaktorkorrekturschaltung fix vorgegeben sein.The inventive detection of the switch current only during the turn-on period of the low-frequency PWM signal can also be used in a simplified embodiment, if only the switch current but not the LED voltage and / or the supply voltage for determining the LED current is considered , This may be the case, in particular, when the LED voltage and / or the supply voltage are fixed. So the LED voltage can be known if the number of LEDs of the LED range is known. The supply voltage can be fixed, for example, when connecting an active power factor correction circuit.

Claims (9)

  1. Operating circuit for an LED circuit with at least one LED,
    - wherein the operating circuit may be supplied by a supply voltage (Vbus) via at least one input-side connection (LS), and wherein the operating circuit comprises a coil (LBuck) and a first switch (LS), which is high-frequency clocked by a control unit (SE) of the operating circuit, a first shunt resistor (RVbusShunt), a second shunt resistor (RShunt), and a third shunt resistor (RvledShunt),
    - wherein the control unit is arranged to detect a switch current (ILS) through the first switch (LS) when the first switch (LS) is switched to the second shunt resistor (RShunt),
    - wherein the operating circuit is so configured such that, when the first switch is switched in a conductive manner, energy is temporarily stored in the coil (LBurk), while the LED circuit discharges via a diode (D1) of the operating circuit when the first switch is switched in a non-conductive manner,
    characterized in that
    - the operating circuit further comprises a low-pass filter (TPF), wherein the low-pass filter (TPF) is adapted to time-average the switch current (ILS) detected at the second shunt resistor (RShunt),
    - wherein the control unit (SE) is configured to calculate
    - the time-averaged switch current (ILS) through the first switch to the second shunt resistor (RShunt) and the low-pass filter (TPF),
    - the supply voltage (Vbus) at the first shunt resistor (RVbusShunt), and
    - to determine a measured voltage (Vled) at the LED circuit at the third shunt resistor (RVledShunt), and to calculate the LED current (ILED) through the LED circuit therefrom,
    - wherein the control unit (SE) is configured to combine the high-frequency clocking of the switch current (ILS) with a PWM signal, which is low-frequency compared to the former,
    - wherein a second switch (FS) is provided in the operating circuit, which is configured to open a current path between the second shunt resistor (RShunt) and the low-pass filter (TPF) only during a switched-on period of the PWM signal, and to interrupt the current path during a switched-off period of the PWM signal.
  2. Operating circuit according to claim 1, wherein the control unit (SE) is configured to calculate the LED voltage as a difference between the supply voltage (Vbus) and the measuring voltage (Vled).
  3. Operating circuit according to claim 1 or 2, wherein the control unit (SE) is configured to calculate the LED current (Iled) from the product of the supply voltage (Vbus) and the switch current (ILS) as the transmitted power divided by the LED voltage.
  4. Operating circuit according to one of the preceding claims, wherein the control unit (SE) is configured to provide a switch-off threshold value for the first switch (LS).
  5. Operating circuit according to one of the preceding claims, wherein the averaged, low-pass-filtered switch current (ILS) is maintained during the switched-off period, and wherein the control unit (SE) is configured to evaluate the averaged switch current (ILS) during the switched-off period of the PWM signal.
  6. Operating circuit according to one of the preceding claims, wherein the control unit (SE) is configured to control a duty cycle of the PWM signal, and wherein the control unit (SE) is configured to adjust the switch-off threshold value for the first switch (LS) as a function of the averaged switch current (ILS).
  7. Operating circuit according to one of the preceding claims, wherein the control unit (SE) may be supplied with a signal representing the supply voltage (Vbus), a signal representing the averaged switch current (ILS) and/or a signal representing the difference between the supply voltage (Vbus) and the measuring voltage (Vied).
  8. Operating circuit according to one of the preceding claims, wherein a capacitor is provided in the operating circuit, which is arranged in parallel to the LED circuit and which is configured to maintain the current through the LED in the case of a first switch (LS) being switched in a non-conductive manner.
  9. Method for operating, by means of an operating circuit, an LED circuit with at least one LED, comprising the following steps:
    - supply of the operating circuit via at least one input-side terminal with a supply voltage (Vbus), wherein the operating circuit comprises a coil (LBuck) and a first switch (LS), which is high-frequency clocked by a control unit (SE) of the operating circuit, a first shunt resistor (RVbusShunt), a second shunt resistor (RShunt), and a third shunt resistor (RVledShunt),
    - wherein the control unit is arranged to detect a switch current (ILS) through the first switch (LS) when the first switch (LS) is switched to the second shunt resistor (RShunt),
    - when the first switch is switched in a conductive manner, energy is temporarily stored in the coil (LBuck), while the LED circuit discharges via a diode (D1) of the operating circuit when the first switch is switched in a non-conductive manner, characterized by the following steps:
    - time-averaging of the switch current (ILS) detected at the second shunt resistor (RShunt) through a low-pass filter (TPF) of the operating circuit,
    - determination, by means of the control unit (SE), of the time-averaged switch current (ILS) by the first switch to the second shunt resistor (RShunt) and the low-pass filter (TPF),
    - determination, by means of the control unit (SE), of the supply voltage (Vbus) at the first shunt resistor (RVbusShunt), and
    - determination, by means of the control unit (SE), of a measuring voltage (Vled) of the LED circuit at the third shunt resistor (RVledShunt) and, from this, calculation of the LED current (ILED) through the LED circuit,
    - combining the high-frequency clocking of the switch current (ILS) with a PWM signal that is low-frequency in comparison,
    - releasing, by means of a second switch (FS) of the operating circuit, of a current path between the second shunt resistor (RShunt) and the low-pass filter (TPF) only during a switched-on period of the PWM signal, and
    - interruption of the current path during a switched-off period of the PWM signal.
EP13841314.1A 2012-09-28 2013-09-30 Operating circuit with clocked converter for actuating an led section Active EP2901816B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201210217748 DE102012217748A1 (en) 2012-09-28 2012-09-28 Operating circuit of lamp for LED line, has control unit configured to control switch current detected by conductive-connected switch and to calculate LED current through LED range
ATGM385/2012U AT13687U1 (en) 2012-09-28 2012-09-28 Operating circuit with clocked converter for controlling an LED track
PCT/AT2013/000157 WO2014047668A2 (en) 2012-09-28 2013-09-30 Operating circuit with clocked converter for actuating an led section

Publications (2)

Publication Number Publication Date
EP2901816A2 EP2901816A2 (en) 2015-08-05
EP2901816B1 true EP2901816B1 (en) 2017-11-08

Family

ID=50389065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13841314.1A Active EP2901816B1 (en) 2012-09-28 2013-09-30 Operating circuit with clocked converter for actuating an led section

Country Status (2)

Country Link
EP (1) EP2901816B1 (en)
WO (1) WO2014047668A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015101996U1 (en) 2015-04-22 2015-05-11 Tridonic Gmbh & Co Kg Clocked converter for dimmable bulbs with dynamically adjustable filter
KR102301218B1 (en) * 2018-01-30 2021-09-10 주식회사 엘지에너지솔루션 Apparatus for diagnosing relay drive circuit
EP4345211A1 (en) 2022-09-29 2024-04-03 Apison Device for compacting materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006034371B4 (en) * 2006-04-21 2019-01-31 Tridonic Ag Operating circuit and operating method for light-emitting diodes
US7550934B1 (en) * 2008-04-02 2009-06-23 Micrel, Inc. LED driver with fast open circuit protection, short circuit compensation, and rapid brightness control response
US8344638B2 (en) * 2008-07-29 2013-01-01 Point Somee Limited Liability Company Apparatus, system and method for cascaded power conversion
JP5760169B2 (en) * 2010-10-25 2015-08-05 パナソニックIpマネジメント株式会社 Lighting device and lighting apparatus using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014047668A3 (en) 2014-06-26
EP2901816A2 (en) 2015-08-05
WO2014047668A2 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
EP2334146B1 (en) Operating circuit for light-emitting diodes
EP2345308B1 (en) Operating circuit for leds
EP2829157B1 (en) Operating circuit for leds, having dimming signal comprising high-frequency modulated pulse packet signal with harmonised frequencies
EP2425680B1 (en) Operating circuit for light-emitting diodes
WO2011113955A1 (en) Led controller comprising a clocked current source
CN105917740A (en) Led driver and control method
DE102015203249A1 (en) Down converter for operating bulbs with peak current value control and average current value detection
DE112009002500B4 (en) Driving circuit for LEDs and method for driving LEDs
EP2901816B1 (en) Operating circuit with clocked converter for actuating an led section
WO2012045475A1 (en) Operating circuit for light-emitting diodes
EP2523533B1 (en) Operating circuit for light diodes
EP3064038B1 (en) Illuminating means operating circuit having a clocked converter for the digital adjustment of a color temperature and/or a dimming level
AT12495U1 (en) ERROR DETECTION FOR LUMINAIRE DIODES
DE102013211767A1 (en) Operating circuit for LED, has switches closed before start of low-frequency pulse packets to store energy in coil, where one switch is repeatedly clocked in pulse packets while another switch is controllable independent of former switch
DE102012217748A1 (en) Operating circuit of lamp for LED line, has control unit configured to control switch current detected by conductive-connected switch and to calculate LED current through LED range
AT17649U1 (en) Operating device for an electrical load and method
AT13687U1 (en) Operating circuit with clocked converter for controlling an LED track
AT17755U1 (en) Single stage converter circuit arrangement with linear regulator
DE102014221554A1 (en) Pulse width modulated control of a clocked circuit with adjustable power transmission
AT13981U1 (en) Operating circuit for LEDs
WO2014040097A1 (en) Control loop with a variable time constant of power factor correction for a load circuit with luminous means
WO2013067563A2 (en) Operating circuit for light-emitting diodes
DE102014215835A1 (en) Primary-side controlled constant current converter for lighting equipment
AT13857U1 (en) Error detection for LEDs
WO2011130770A1 (en) Operating circuit for light-emitting diodes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 945319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008788

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

26N No opposition filed

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180927

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013008788

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 945319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502013008788

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220927

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230930