EP2880297B1 - Hochdruckpumpe für brennkraftmaschinen - Google Patents

Hochdruckpumpe für brennkraftmaschinen Download PDF

Info

Publication number
EP2880297B1
EP2880297B1 EP13740010.7A EP13740010A EP2880297B1 EP 2880297 B1 EP2880297 B1 EP 2880297B1 EP 13740010 A EP13740010 A EP 13740010A EP 2880297 B1 EP2880297 B1 EP 2880297B1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure
closing body
armature
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13740010.7A
Other languages
English (en)
French (fr)
Other versions
EP2880297A1 (de
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2880297A1 publication Critical patent/EP2880297A1/de
Application granted granted Critical
Publication of EP2880297B1 publication Critical patent/EP2880297B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • F02M59/368Pump inlet valves being closed when actuated

Definitions

  • the invention relates to a suction valve for a high pressure pump, which is used in particular for air-compressing, self-igniting internal combustion engines, and a high pressure pump, in particular a radial or in-line piston pump.
  • the high pressure pump can also serve as a piston pump for pumping other suitable liquids.
  • a high pressure pump which is used in particular as a radial or in-line piston pump for fuel injection systems of air-compressing, self-igniting internal combustion engines.
  • an inlet valve is provided, by means of which a metering of a fuel fed into a pump working chamber is made possible.
  • the pump working space can be completely filled.
  • partial filling of the pump working chamber can also be achieved by suitable control of the inlet valve.
  • the actuation takes place by energizing a magnetic coil.
  • the solenoid is switched off, the force of a valve spring can initiate a closing of the inlet valve largely without delay.
  • the valve spring acts via a valve element and an adjusting washer on an armature which is connected to a valve tappet. The valve tappet is thus acted upon by the preload of the valve spring.
  • the valve spring urges the valve tappet against the valve seat surface.
  • the known high-pressure pump can thus be fed from a low-pressure chamber into the pump working chamber by actuating the inlet valve.
  • the inlet valve is activated during a suction stroke of the pump piston.
  • the inlet valve is preferably closed during the delivery stroke of the pump piston.
  • an inlet valve is implemented that is closed in the de-energized state.
  • High closing dynamics can be achieved via a correspondingly high spring preload of the valve spring.
  • this configuration has the disadvantage that to open and hold open the Inlet valve the solenoid must be energized.
  • a correspondingly strong magnetic field is required, which results in high currents and thus high power losses.
  • there are large control energies since the inlet valve must be kept open over the entire suction phase.
  • a pump with a valve which can be held in a closed position by a control unit via an actuator.
  • a dosage is achieved that is independent of the movement of a piston of the pump.
  • the disclosure document DE 10 2010 039 832 A1 discloses a pump which is designed in particular as a high pressure pump, preferably as a radial piston pump.
  • the high pressure pump according to the invention with the features of claim 1 has the advantage that an improved control for metering fuel is made possible. In particular, energy consumption and the control energy required can be reduced.
  • the valve closing body can be acted upon in the opening direction via the pressure stage.
  • the closing direction which is oriented opposite to the opening direction
  • the valve closing body can be acted upon by the magnetic closing force via the armature.
  • the magnetic closing force therefore serves to support the closing of the suction valve.
  • the closing movement is preferably initiated by the magnetic closing force to such an extent that the suction valve moves from a dethrottled state into the throttling. In the throttling, the closing is then supported or at least largely conditioned by the hydraulic forces.
  • the magnetic closing force is therefore advantageously no longer required at the end of the closing process. This improves the control of the suction valve. In particular, the power consumption and the control energy required for closing are reduced.
  • a guide diameter for guiding the valve closing body is smaller than a seat diameter of the sealing seat.
  • the valve closing body is connected to the armature via a connecting bolt (valve bolt) in such a way that the connecting bolt is guided in a guide bore with the guide diameter, so that a valve chamber is formed between the guide bore and the sealing seat, into which fuel under a pre-feed pressure can be fed.
  • a connecting bolt valve bolt
  • an armature chamber in which the armature is arranged, is separated from the valve chamber by the connecting bolt guided in the guide bore, and that the armature chamber is relieved of pressure in relation to the prefeed pressure.
  • the pre-delivery pressure of the fuel in the valve chamber can thus advantageously bring about an effective force in the opening direction, which, however, is counteracted in the closing direction by a force that is dependent on the pressure in the pump working chamber.
  • a valve spring can be provided which acts on the valve closing body at least indirectly in the closing direction. It is also advantageous here that the valve spring is arranged in an armature space in which the armature is arranged and / or that the valve spring acts on the valve closing body by means of the armature and / or a valve pin that connects the armature to the valve closing body.
  • the closing spring defines an initial position of the suction valve.
  • the spring constant of the closing spring as well as a predetermined preload, a spring force that increases with the deflection and thus the opening stroke can be generated in the closing direction. This enables the suction valve to be tuned.
  • a control which effects the magnetic actuation of the armature by energizing a magnetic coil during a closing stroke of the valve closing body, the control switching the magnetic coil in a currentless state before the sealing seat is completely closed. This reduces the control energy required. This also reduces the cooling requirement for the magnet coil. It is also advantageous here that the control actuates the valve closing body by energizing the magnetic coil during the closing stroke of the valve closing body, to a throttling is achieved at the sealing seat. When the throttling on the sealing seat is reached, then the further closing stroke can be closed purely mechanically by the increasing interior pressure of the pump working space.
  • valve closing body can be actuated by the pressure in the pump working chamber in the closing direction if the valve closing body is actuated so far in the closing direction by the magnetic actuation of the armature that a throttling is reached at the sealing seat.
  • Fig. 1 shows a high-pressure pump 1 in a partial, schematic sectional view according to an embodiment of the invention.
  • the high pressure pump 1 can in particular be designed as a radial or in-line piston pump.
  • the high-pressure pump 1 is particularly suitable as a fuel pump for fuel injection systems of air-compressing, self-igniting internal combustion engines.
  • the high pressure pump 1 has a suction valve 2.
  • a preferred use of the high-pressure pump 1 and the suction valve 2 is for a fuel injection system with a fuel rail that stores diesel fuel under high pressure.
  • suitable liquids that is to say also liquids other than fuel, can also be controlled by the suction valve 2 and conveyed by the high-pressure pump 1.
  • the high-pressure pump 1 has a cylinder head 3 in which a pump working space 4 of a pump assembly 5 is formed.
  • a cylinder bore 6 is configured in the cylinder head 3, in which a pump piston 7 is guided.
  • the pump piston 7 delimits the pump working space 4 in the cylinder bore 6.
  • a drive shaft 8 with a cam 9 is mounted in a housing (not shown). In operation, the drive shaft 8 rotates about its axis of rotation 10. In this case, the pump piston 7 is actuated via the cam 9, which is illustrated by the double arrow 11. Actuation can take place, for example, via a roller mounted in a roller shoe.
  • the suction valve 2 has a valve seat body 12 on which a sealing seat 13 is configured.
  • the sealing seat 13 is circular with a seat diameter 14.
  • a valve closing body 15 is provided which interacts with the sealing seat 13 of the valve seat body 12.
  • valve seat body 12 is fixed to the cylinder head 3 via a screw plug. In this case, a seal is formed between the valve seat body 12 and the cylinder head 3, so that the pump working space 4 is sealed against the environment in a high-pressure resistant manner.
  • the suction valve 2 has a valve chamber 20 into which fuel which is under a pre-feed pressure is fed via one or more bores 21, 22.
  • the valve closing body 15 rests on the one hand against the sealing seat 13 with the seat diameter 14.
  • the valve closing body 15 is connected to a valve pin 23 or is designed in one piece with it.
  • the valve pin 23 is guided in a guide bore 24 of a body 25, which can be designed as a magnetic core.
  • the guide bore 24 has a guide diameter 26 which is smaller than the seat diameter 14 of the sealing seat 13.
  • An armature chamber 27 into which the valve pin 23 protrudes is relieved of pressure in relation to the prefeed pressure in the valve chamber 20.
  • a pressure level is formed which is determined by the seat diameter 14 of the sealing seat 13 and the guide diameter 26 of the guide bore 24. Because of the The pre-delivery pressure therefore results in a force directed in an opening direction 28 along an axis 29 of the valve pin 23 at the pressure stage.
  • the suction valve 2 also has an armature 30, which is connected to the valve pin 23 and is arranged in the armature chamber 27.
  • a magnetic coil 31 is provided, which can be energized by a controller 32.
  • the solenoid 31 When the solenoid 31 is energized, it generates a magnetic force on the armature 30, as a result of which the valve closing body 15 is acted upon in a closing direction 33, which is oriented counter to the opening direction 28, in the direction of the sealing seat 13 of the valve seat body 12.
  • a valve spring 34 is also provided, which acts on the valve closing body 15 via the armature 30 and the valve pin 23 in the closing direction 33.
  • FIG. 2 the stroke of the valve closing body in the opening direction 28 is plotted on the abscissa, while the flow rate dependent on the stroke is plotted on the ordinate.
  • the stroke of the valve closing body 15 in the opening direction 28 is plotted on the abscissa, while the forces acting on the valve closing body 15 in the closing direction 33 are plotted on the ordinate.
  • the time is plotted on the abscissa, while a pressure in the pump working chamber 4, the stroke of the valve closing body 15 in the opening direction 28 and a current flow to the solenoid 31 are plotted on the ordinate.
  • a curve 40 is shown as an example, which illustrates the flow 40 between the valve closing body 15 and the sealing seat 13 from the valve chamber 20 into the pump working chamber 4. If the stroke exceeds a value 41, then the suction valve 2 is in the dethrottled phase, which is in the Fig. 2 is illustrated by area 42. Below the value 41, the suction valve 2 is in the throttling, which is illustrated by a region 43. When the stroke disappears, the flow 40 also disappears.
  • a state 44 is assumed in which the suction valve 2 is located in the dethrottled area 42 and in which a comparatively large, in particular maximum, stroke of the valve closing body 15 is achieved.
  • a curve 45 shows a possible course of the spring force of the valve spring 34, which in the Closing direction 33 acts on valve closing body 15.
  • the ordinate intersection 46 of the curve 45 with the ordinate indicates a non-zero preload.
  • the bias of the valve spring 44 can be selected appropriately.
  • the slope of the curve 45 can also be specified via the spring constant of the valve spring 34.
  • the restoring force is initially applied essentially by valve spring 34.
  • valve closing body 15 already closes due to the restoring force of the valve spring 34, so that a curve 47 initially close to curve 45 is traversed, the direction of the curve traversing is indicated by the arrow 47.
  • the control 32 energizes the solenoid 31.
  • the closing force acting on the valve closing body 15 in the closing direction 33 rises steeply, which is illustrated by the arrow 49.
  • a maximum force 50 is exerted on the valve closing body 15.
  • the value falls below 41, so that the suction valve 2 reaches the throttled area 43.
  • the energization 54 is therefore characterized by a curve 54 with rapidly rising and falling edges.
  • the pressure in the pump working space 4 is illustrated by a curve 55.
  • This increases in the time intervals 48 ', 48 ", whereby the closing of the suction valve 2 in the throttled area 43 is supported by the increasing pressure in the pump working chamber 4.
  • the curve 56 illustrates the course of the stroke of the valve closing body 15. To simplify the illustration, go the curves 54, 55, 56 from a common level, the output values at this level not necessarily being zero.
  • the suction valve 2 is thus designed as an outwardly opening valve 2 with a pressure stage. If the interior pressure in the pump working space 4 is less than the pre-delivery pressure upstream of the suction valve 2, the valve closing body 15 opens against the valve spring 34. The pump working space 4 is filled until the suction valve 2 is electrically pulled out of the dethrottled phase by energizing the solenoid 31. The further closing stroke can then take place purely mechanically through the increasing interior pressure of the pump working chamber 4, since the suction valve 2 is throttling. The advantage of this is a very short activation time with a small stroke delta in order to activate the closing movement of the suction valve 2.
  • the area 48 can thus also include the initial state 44.
  • the closing of the suction valve 2 is then initiated directly by energizing the solenoid 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Saugventil für eine Hochdruckpumpe, die insbesondere für luftverdichtende, selbstzündende Brennkraftmaschinen dient, sowie eine Hochdruckpumpe, insbesondere eine Radial- oder Reihenkolbenpumpe. Die Hochdruckpumpe kann aber auch als Kolbenpumpe zum Fördern von anderen geeigneten Flüssigkeiten dienen.
  • Aus der DE 10 2010 027 745 A1 ist eine Hochdruckpumpe bekannt, die insbesondere als Radial- oder Reihenkolbenpumpe für Brennstoffeinspritzanlagen von luftverdichtenden, selbstzündenden Brennkraftmaschinen dient. Hierbei ist ein Einlassventil vorgesehen, über das eine Zumessung eines in einen Pumpenarbeitsraum geführten Brennstoffs ermöglicht ist. Hierbei kann eine Vollbefüllung des Pumpenarbeitsraums erfolgen. Allerdings kann auch eine Teilbefüllung des Pumpenarbeitsraums durch eine geeignete Ansteuerung des Einlassventils erreicht werden. Die Betätigung erfolgt durch Bestromen einer Magnetspule. Speziell kann dabei beim Stromlosschalten der Magnetspule die Kraft einer Ventilfeder weitgehend verzögerungsfrei ein Schließen des Einlassventils einleiten. Die Ventilfeder wirkt hierbei über ein Ventilelement und eine Einstellscheibe auf einen Anker ein, der mit einem Ventilstößel verbunden ist. Somit wird der Ventilstößel von der Vorspannung der Ventilfeder beaufschlagt. Die Ventilfeder beaufschlagt den Ventilstößel gegen die Ventilsitzfläche.
  • Bei der aus der DE 10 2010 027 745 A1 bekannten Hochdruckpumpe kann somit durch Betätigen des Einlassventils Brennstoff aus einem Niederdruckraum in den Pumpenarbeitsraum geführt werden. Die Betätigung des Einlassventils erfolgt hierbei während eines Saughubs des Pumpenkolbens. Während des Förderhubs des Pumpenkolbens ist das Einlassventil vorzugsweise geschlossen. Somit ist ein Einlassventil realisiert, das im stromlosen Zustand geschlossen ist. Über eine entsprechend hohe Federvorspannung der Ventilfeder kann eine hohe Schließdynamik erreicht werden. Diese Ausgestaltung hat allerdings den Nachteil, dass zum Öffnen und zum Offenhalten des Einlassventils die Magnetspule bestromt werden muss. Gerade bei einer hohen Federvorspannung, die für die hohe Schließdynamik genutzt wird, ist ein entsprechend starkes Magnetfeld erforderlich, was hohe Ströme und damit große Verlustleistungen bedingt. Somit ergeben sich bei der bekannten Ausgestaltung große Ansteuerenergien, da über die gesamte Saugphase das Einlassventil offen gehalten werden muss.
  • Aus der US 2011/0041809 A1 ist eine Pumpe mit einem Ventil bekannt ist, das von einer Steuereinheit über einen Aktor in einer Schließstellung gehalten werden kann. Hierbei wird eine Dosierung erreicht, die unabhängig von der Bewegung eines Kolbens der Pumpe ist.
  • Die Offenlegungsschrift DE 10 2010 039 832 A1 offenbart eine Pumpe, die insbesondere als Hochdruckpumpe, vorzugsweise als Radialkolbenpumpe ausgebildet ist.
  • Offenbarung der Erfindung
  • Die erfindungsgemäße Hochdruckpumpe mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass eine verbesserte Ansteuerung zur Zumessung von Brennstoff ermöglicht ist. Speziell können ein Energieverbrauch und die somit benötigte Ansteuerenergie reduziert werden.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der im Anspruch 1 angegebenen Hochdruckpumpe möglich.
  • Über die Druckstufe ist der Ventilschließkörper in der Öffnungsrichtung beaufschlagbar. In der Schließrichtung, die entgegen der Öffnungsrichtung orientiert ist, ist der Ventilschließkörper über den Anker von der magnetischen Schließkraft beaufschlagbar. Die magnetische Schließkraft dient daher zur Unterstützung des Schließens des Saugventils. Vorzugsweise wird durch die magnetische Schließkraft die Schließbewegung so weit eingeleitet, dass das Saugventil aus einem entdrosselten Zustand in die Drosselung gelangt. In der Drosselung wird dann das Schließen durch die hydraulischen Kräfte unterstützt oder sogar zumindest weitgehend bedingt. Die magnetische Schließkraft wird daher in vorteilhafter Weise am Ende des Schließvorgangs nicht mehr benötigt. Dadurch verbessert sich die Ansteuerung des Saugventils. Insbesondere werden die Leistungsaufnahme und die benötigte Ansteuerenergie zum Schließen reduziert.
  • Vorteilhaft ist es, dass ein Führungsdurchmesser zur Führung des Ventilschließkörpers kleiner ist als ein Sitzdurchmesser des Dichtsitzes. Hierdurch kann die Druckstufe in Abhängigkeit von dem Vorförderdruck den Ventilschließkörper in Öffnungsrichtung mit einer effektiven Kraft beaufschlagen. Bei einem entsprechend großen Vorförderdruck und zugleich einem reduzierten Druck im Pumpenarbeitsraum kommt es somit aufgrund der Druckverhältnisse zum Öffnen des Saugventils, so dass Brennstoff über den geöffneten Dichtsitz in den Pumpenarbeitsraum geführt wird.
  • Erfindungsgemäß ist der Ventilschließkörper über einen Verbindungsbolzen (Ventilbolzen) mit dem Anker derart verbunden, dass der Verbindungsbolzen in einer Führungsbohrung mit dem Führungsdurchmesser geführt ist, dass zwischen der Führungsbohrung und dem Dichtsitz ein Ventilraum ausgebildet ist, in den unter einem Vorförderdruck stehender Brennstoff führbar ist, dass ein Ankerraum, in dem der Anker angeordnet ist, durch den in der Führungsbohrung geführten Verbindungsbolzen von dem Ventilraum getrennt ist und dass der Ankerraum in Bezug zu dem Vorförderdruck druckentlastet ist. Somit kann der Vorförderdruck des Brennstoffs im Ventilraum in vorteilhafter Weise eine effektive Kraft in Öffnungsrichtung bewirken, der allerdings eine vom Druck im Pumpenarbeitsraum abhängige Kraft in Schließrichtung entgegen gerichtet ist. Während des Saughubs des Pumpenkolbens der Hochdruckpumpe wird der Druck im Pumpenarbeitsraum allerdings reduziert, so dass es in der Summe zu einer öffnenden Kraft in der Öffnungsrichtung kommt, die das Einströmen von unter dem Vorförderdruck stehenden Brennstoff in den Pumpenarbeitsraum ermöglicht.
  • In vorteilhafter Weise kann eine Ventilfeder vorgesehen sein, die den Ventilschließkörper zumindest mittelbar in der Schließrichtung beaufschlägt. Hierbei ist es ferner vorteilhaft, dass die Ventilfeder in einem Ankerraum, in dem der Anker angeordnet ist, angeordnet ist und/oder dass die Ventilfeder den Ventilschließkörper mittels des Ankers und/oder eines Ventilbolzens, der den Anker mit dem Ventilschließkörper verbindet, beaufschlägt. Die Schließfeder definiert zum einen eine Ausgangslage des Saugventils. Zum anderen kann über eine Wahl der Federkonstante der Schließfeder sowie eine vorgegebene Vorspannung eine mit der Auslenkung und somit dem Öffnungshub ansteigende Federkraft in der Schließrichtung erzeugt werden. Dies ermöglicht eine Abstimmung des Saugventils.
  • Außerdem ist es vorteilhaft, dass eine Steuerung vorgesehen ist, die die magnetische Betätigung des Ankers durch Bestromen einer Magnetspule während eines Schließhubs des Ventilschließkörpers bewirkt, wobei die Steuerung die Magnetspule vor einem vollständigen Schließen des Dichtsitzes stromlos schaltet. Dies reduziert die benötigte Ansteuerenergie. Dadurch reduziert sich auch der Kühlbedarf für die Magnetspule. Hierbei ist es außerdem von Vorteil, dass die Steuerung durch Bestromen der Magnetspule während des Schließhubs des Ventilschließkörpers den Ventilschließkörper betätigt, bis eine Drosselung an dem Dichtsitz erreicht ist. Wenn die Drosselung an dem Dichtsitz erreicht ist, dann kann der weitere Schließhub rein mechanisch durch den ansteigenden Innenraumdruck des Pumpenarbeitsraums geschlossen werden.
  • Somit kann in vorteilhafter Weise bei einem Saughub der Pumpenbaugruppe, bei dem ein Druck im Pumpenarbeitsraum reduziert wird, über den an der Druckstufe wirkenden Vorförderdruck eine Betätigung des Ventilschließkörpers in der Öffnungsrichtung ermöglicht werden. Ferner kann bei einem Förderhub der Pumpenbaugruppe, bei dem ein Druck im Pumpenarbeitsraum erhöht wird, der Ventilschließkörper von dem Druck im Pumpenarbeitsraum in der Schließrichtung betätigt werden, wenn durch die magnetische Betätigung des Ankers der Ventilschließkörper so weit in der Schließrichtung betätigt ist, dass eine Drosselung an dem Dichtsitz erreicht ist.
  • Kurze Beschreibung der Zeichnungen
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in der nachfolgenden Beschreibung anhand der beigefügten Zeichnungen, in denen sich entsprechende Elemente mit übereinstimmenden Bezugszeichen versehen sind, näher erläutert. Es zeigt:
    • Fig. 1 eine Hochdruckpumpe mit einem Saugventil in einer auszugsweisen, schematischen Schnittdarstellung entsprechend einem Ausführungsbeispiel der Erfindung;
    • Fig. 2 ein Diagramm zur Erläuterung der Funktionsweise der Hochdruckpumpe und des Saugventils entsprechend dem Ausführungsbeispiel der Erfindung;
    • Fig. 3 ein weiteres Diagramm zur Erläuterung der Funktionsweise der Hochdruckpumpe und des Saugventils entsprechend dem Ausführungsbeispiel der Erfindung.
    • Fig. 4 ein weiteres Diagramm zur Erläuterung der Funktionsweise der Hochdruckpumpe und des Saugventils entsprechend dem Ausführungsbeispiel der Erfindung.
    Ausführungsformen der Erfindung
  • Fig. 1 zeigt eine Hochdruckpumpe 1 in einer auszugsweisen, schematischen Schnittdarstellung entsprechend einem Ausführungsbeispiel der Erfindung. Die Hochdruckpumpe 1 kann insbesondere als Radial- oder Reihenkolbenpumpe ausgestaltet sein. Speziell eignet sich die Hochdruckpumpe 1 als Brennstoffpumpe für Brennstoffeinspritzanlagen von luftverdichtenden, selbstzündenden Brennkraftmaschinen. Die Hochdruckpumpe 1 weist ein Saugventil 2 auf.
  • Ein bevorzugter Einsatz der Hochdruckpumpe 1 sowie des Saugventils 2 besteht für eine Brennstoffeinspritzanlage mit einer Brennstoffverteilerleiste, die Dieselbrennstoff unter hohem Druck speichert. Allerdings können auch andere geeignete Flüssigkeiten, also auch andere Flüssigkeiten als Brennstoff, von dem Saugventil 2 gesteuert und von der Hochdruckpumpe 1 gefördert werden.
  • Die Hochdruckpumpe 1 weist einen Zylinderkopf 3 auf, in dem ein Pumpenarbeitsraum 4 einer Pumpenbaugruppe 5 ausgebildet ist. Hierbei ist in dem Zylinderkopf 3 eine Zylinderbohrung 6 ausgestaltet, in der ein Pumpenkolben 7 geführt ist. Der Pumpenkolben 7 begrenzt in der Zylinderbohrung 6 den Pumpenarbeitsraum 4. Ferner ist in einem nicht dargestellten Gehäuse eine Antriebswelle 8 mit einem Nocken 9 gelagert. Im Betrieb rotiert die Antriebswelle 8 um ihre Drehachse 10. Hierbei kommt es über den Nocken 9 zu einer Betätigung des Pumpenkolbens 7, was durch den Doppelpfeil 11 veranschaulicht ist. Die Betätigung kann beispielsweise über eine in einem Rollenschuh gelagerte Rolle erfolgen.
  • Das Saugventil 2 weist einen Ventilsitzkörper 12 auf, an dem ein Dichtsitz 13 ausgestaltet ist. Der Dichtsitz 13 ist in diesem Ausführungsbeispiel kreisförmig mit einem Sitzdurchmesser 14 ausgestaltet. Hierbei ist ein Ventilschließkörper 15 vorgesehen, der mit dem Dichtsitz 13 des Ventilsitzkörpers 12 zusammen wirkt.
  • Der Ventilsitzkörper 12 ist über eine Verschlussschraube an dem Zylinderkopf 3 fixiert. Hierbei ist eine Abdichtung zwischen dem Ventilsitzkörper 12 und dem Zylinderkopf 3 gebildet, so dass der Pumpenarbeitsraum 4 gegenüber der Umgebung hochdruckfest abgedichtet ist.
  • Das Saugventil 2 weist einen Ventilraum 20 auf, in den über ein oder mehrere Bohrungen 21, 22 unter einem Vorförderdruck stehender Brennstoff geführt wird. Im geschlossenen Zustand liegt der Ventilschließkörper 15 einerseits an dem Dichtsitz 13 mit dem Sitzdurchmesser 14 an. Ferner ist der Ventilschließkörper 15 mit einem Ventilbolzen 23 verbunden oder einstückig mit diesem ausgestaltet. Der Ventilbolzen 23 ist in einer Führungsbohrung 24 eines Körpers 25, der als Magnetkern ausgestaltet sein kann, geführt. Die Führungsbohrung 24 weist hierbei einen Führungsdurchmesser 26 auf, der kleiner ist als der Sitzdurchmesser 14 des Dichtsitzes 13. Ein Ankerraum 27, in den der Ventilbolzen 23 ragt, ist gegenüber dem Vorförderdruck im Ventilraum 20 druckentlastet. Somit ist eine Druckstufe gebildet, die über den Sitzdurchmesser 14 des Dichtsitzes 13 und den Führungsdurchmesser 26 der Führungsbohrung 24 bestimmt ist. Aufgrund des Vorförderdrucks ergibt sich daher an der Druckstufe eine in einer Öffnungsrichtung 28 entlang einer Achse 29 des Ventilbolzens 23 gerichtete Kraft.
  • Das Saugventil 2 weist außerdem einen Anker 30 auf, der mit dem Ventilbolzen 23 verbunden ist und im Ankerraum 27 angeordnet ist. Außerdem ist eine Magnetspule 31 vorgesehen, die von einer Steuerung 32 bestrombar ist. Bei einer Bestromung der Magnetspule 31 erzeugt diese eine Magnetkraft auf den Anker 30, wodurch der Ventilschließkörper 15 in einer Schließrichtung 33, die entgegen der Öffnungsrichtung 28 orientiert ist, in Richtung auf den Dichtsitz 13 des Ventilsitzkörpers 12 beaufschlagt wird.
  • In diesem Ausführungsbeispiel ist außerdem eine Ventilfeder 34 vorgesehen, die den Ventilschließkörper 15 über den Anker 30 und den Ventilbolzen 23 in der Schließrichtung 33 beaufschlägt.
  • Die Ausgestaltung und Funktionsweise der Hochdruckpumpe 1 und des Saugventils 2 sind im Folgenden auch unter Bezugnahme auf die Fig. 2, 3 und 4 beschrieben. Die Fig. 2, 3 und 4 zeigen jeweils ein Diagramm zur Erläuterung der Funktionsweise der Hochdruckpumpe 1 und des Saugventils 2. Hierbei ist in der Fig. 2 an der Abszisse der Hub des Ventilschließkörpers in der Öffnungsrichtung 28 angetragen, während an der Ordinate der vom Hub abhängige Durchfluss angetragen ist. In der Fig. 2 ist an der Abszisse der Hub des Ventilschließkörpers 15 in der Öffnungsrichtung 28 angetragen, während an der Ordinate die auf den Ventilschließkörper 15 wirkenden Kräfte in der Schließrichtung 33 angetragen sind. In der Fig. 4 ist an der Abszisse die Zeit angetragen, während an der Ordinate ein Druck im Pumpenarbeitsraum 4, der Hub des Ventilschließkörpers 15 in der Öffnungsrichtung 28 und eine Bestromung der Magnetspule 31 angetragen sind.
  • In der Fig. 2 ist exemplarisch eine Kurve 40 dargestellt, die den Durchfluss 40 zwischen dem Ventilschließkörper 15 und dem Dichtsitz 13 aus dem Ventilraum 20 in den Pumpenarbeitsraum 4 veranschaulicht. Wenn der Hub einen Wert 41 überschreitet, dann befindet sich das Saugventil 2 in der entdrosselten Phase, was in der Fig. 2 durch einen Bereich 42 veranschaulicht ist. Unterhalb des Werts 41 befindet sich das Saugventil 2 in der Drosselung, was durch einen Bereich 43 veranschaulicht ist. Bei verschwindendem Hub verschwindet auch der Durchfluss 40.
  • Zur Erläuterung der Fig. 3 wird von einem Zustand 44 ausgegangen, in dem sich das Saugventil 2 im entdrosselten Bereich 42 befindet und in dem ein vergleichsweiser großer, insbesondere maximaler, Hub des Ventilschließkörpers 15 erzielt ist. Durch eine Kurve 45 ist ein möglicher Verlauf der Federkraft der Ventilfeder 34 dargestellt, die in der Schließrichtung 33 auf den Ventilschließkörper 15 wirkt. Der Ordinatenschnittpunkt 46 der Kurve 45 mit der Ordinate gibt eine nicht verschwindende Vorspannung an. Die Vorspannung der Ventilfeder 44 kann hierbei geeignet gewählt werden. Ebenso kann die Steigung der Kurve 45 über die Federkonstante der Ventilfeder 34 vorgegeben werden. Im Zustand 44 wird die Rückstellkraft zunächst im Wesentlichen von der Ventilfeder 34 aufgebracht. Wenn die Druckverhältnisse im Ventilraum 20 und im Pumpenarbeitsraum 4 dies zulassen, was beispielsweise bei einem Förderhub des Pumpenkolbens 7 der Fall ist, dann schließt der Ventilschließkörper 15 bereits aufgrund der Rückstellkraft der Ventilfeder 34, so dass eine Kurve 47 zunächst in der Nähe der Kurve 45 durchlaufen wird, wobei die Richtung des Kurvendurchlaufs durch den Pfeil 47 angezeigt ist. In einem Bereich 48 wird von der Steuerung 32 die Magnetspule 31 bestromt. Hierdurch steigt die auf den Ventilschließkörper 15 in der Schließrichtung 33 wirkende Schließkraft steil an, was durch den Pfeil 49 veranschaulicht ist. Hierdurch wird eine maximale Kraft 50 auf den Ventilschließkörper 15 ausgeübt. Hierbei wird der Wert 41 unterschritten, so dass das Saugventil 2 in den gedrosselten Bereich 43 gelangt. Hierbei verringert sich der Hub weiter, was durch den Pfeil 51 veranschaulicht ist. Wenn die Bestromung der Magnetspule 31 endet, was anhand des Bereichs 48 veranschaulicht ist, dann befindet sich, das Saugventil 2 bereits innerhalb des gedrosselten Bereichs 43. In einem Bereich 52 kann die weitere Schließkraft daher von der Ventilfeder 34 und dem ansteigenden Druck des Pumpenarbeitsraums 4 aufgebracht werden. Bei einem verschwindenden Hub, bei dem das Saugventil 2 beziehungsweise der Dichtsitz 13 geschlossen ist, verbleibt eine durch den Ordinatenschnittpunkt 53 der Kurve 47 mit der Ordinate gegebene Schließkraft. Diese ergibt sich aus der Vorspannung der Ventilfeder 34 sowie der Druckstufe. Der Ordinatenschnittpunkt 43 hängt somit vom Vorförderdruck (Vorlaufdruck) ab.
  • Somit ergibt sich ein vergleichsweise schmaler Bereich 48, in dem eine Bestromung der Magnetspule 31 erforderlich ist. Somit wird die Leistungsaufnahme erheblich reduziert.
  • In der Fig. 4 sind Zeitintervalle 48', 48" dargestellt, in denen die Magnetspule 31 bestromt ist. Die Bestromung 54 ist daher durch eine Kurve 54 mit rasch ansteigenden und abfallenden Flanken charakterisiert.
  • Durch eine Kurve 55 ist der Druck im Pumpenarbeitsraum 4 veranschaulicht. Dieser steigt in den Zeitintervallen 48', 48" jeweils an, wobei durch den ansteigenden Druck im Pumpenarbeitsraum 4 jeweils das Schließen des Saugventils 2 im gedrosselten Bereich 43 unterstützt wird. Nach dem Schließen des Saugventils 2 steigt der Druck weiter an, was durch den Förderhub des Pumpenkolbens 7 bedingt ist. Die Kurve 56 veranschaulicht den Verlauf des Hubs des Ventilschließkörpers 15. Zur Vereinfachung der Darstellung gehen die Kurven 54, 55, 56 von einem gemeinsamen Niveau aus, wobei die Ausgangswerte auf diesem Niveau nicht notwendigerweise gleich Null sind.
  • Somit ist das Saugventil 2 als nach außen öffnendes Ventil 2 mit einer Druckstufe ausgestaltet. Ist der Innenraumdruck im Pumpenarbeitsraum 4 kleiner als der Vorförderdruck vor dem Saugventil 2, so öffnet der Ventilschließkörper 15 gegen die Ventilfeder 34. Der Pumpenarbeitsraum 4 wird befüllt, bis das Saugventil 2 elektrisch durch Bestromung der Magnetspule 31 aus der entdrosselten Phase herausgezogen wird. Der weitere Schließhub kann dann rein mechanisch durch den ansteigenden Innenraumdruck des Pumpenarbeitsraums 4 erfolgen, da das Saugventil 2 in der Androsselung ist. Als Vorteil ergibt sich somit eine sehr kurze Ansteuerungszeit bei einem kleinen Hubdelta, um die Schließbewegung des Saugventils 2 zu aktivieren.
  • Je nach Ausgestaltung des Saugventils 2 beziehungsweise der Steuerung 32 kann der Bereich 48 somit auch den Ausgangszustand 44 einschließen. Das Schließen des Saugventils 2 wird dann unmittelbar durch Bestromen der Magnetspule 31 eingeleitet.
  • Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt.

Claims (6)

  1. Hochdruckpumpe (1), insbesondere Radial- oder Reihenkolbenpumpe für Brennstoffeinspritzanlagen von luftverdichtenden, selbstzündenden Brennkraftmaschinen, mit zumindest einem Zylinderkopf (3), einer Pumpenbaugruppe (5), die einen in dem Zylinderkopf (3) ausgestalteten Pumpenarbeitsraum (4) umfasst, und zumindest einem Saugventil (2), wobei über den Dichtsitz (13) des Saugventils (2) Brennstoff in den Pumpenarbeitsraum (4) führbar ist, wobei das Saugventil (2) einen Ventilschließkörper (15), der mit einem Dichtsitz (13) zusammen wirkt, und einem magnetisch betätigbaren Anker (30), der mit dem Ventilschließkörper (15) verbunden ist, aufweist und wobei der Anker (30) so magnetisch betätigbar ist, dass der Ventilschließkörper (15) über den Anker (30) von einer magnetischen Schließkraft in einer Schließrichtung (33) gegen den Dichtsitz (13) beaufschlagbar ist, wobei eine Druckstufe vorgesehen ist, über die der Ventilschließkörper (15) in einer Öffnungsrichtung (28) beaufschlagbar ist, und bei einem Saughub der Pumpenbaugruppe (5), bei dem ein Druck im Pumpenarbeitsraum (4) reduziert wird, über einen an der Druckstufe wirkenden Vorförderdruck eine Betätigung des Ventilschließkörpers (15) in der Öffnungsrichtung (28) ermöglicht ist,
    dadurch gekennzeichnet,
    dass ein Führungsdurchmesser (26) des Saugventils (2) zur Führung des Ventilschließkörpers (15) kleiner ist als ein Sitzdurchmesser (14) des Dichtsitzes (13), dass der Ventilschließkörper (15) über einen Ventilbolzen (23) mit dem Anker (30) verbunden ist, dass der Ventilbolzen (23) in einer Führungsbohrung (24) mit dem Führungsdurchmesser (26) geführt ist, dass zwischen der Führungsbohrung (24) und dem Dichtsitz (13) ein Ventilraum (20) des Saugventils (2) ausgebildet ist, in den unter einem Vorförderdruck stehender Brennstoff führbar ist, dass ein Ankerraum (27) des Saugventils (2), in dem der Anker (30) angeordnet ist, durch den in der Führungsbohrung (24) geführten Ventilbolzen (23) von dem Ventilraum (20) getrennt ist und dass der Ankerraum (27) in Bezug zu dem Vorförderdruck druckentlastet ist.
  2. Hochdruckpumpe nach Anspruch 1,
    dadurch gekennzeichnet,
    dass eine Ventilfeder (34) des Saugventils (2) vorgesehen ist, die den Ventilschließkörper (15) zumindest mittelbar in der Schließrichtung (33) beaufschlägt.
  3. Hochdruckpumpe nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Ventilfeder (34) in einem Ankerraum (27) des Saugventils (2), in dem der Anker (30) angeordnet ist, angeordnet ist und/oder dass die Ventilfeder (34) den Ventilschließkörper (15) mittels des Ankers (30) und/oder eines Ventilbolzens (23) des Saugventils (2), der den Anker (30) mit dem Ventilschließkörper (15) verbindet, beaufschlägt.
  4. Hochdruckpumpe nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass eine Steuerung (32) vorgesehen ist, die die magnetische Betätigung des Ankers (30) durch Bestromen einer Magnetspule (31) des Saugventils (2) während eines Schließhubs des Ventilschließkörpers (15) bewirkt, wobei die Steuerung (32) des Saugventils (2) die Magnetspule (31) vor einem vollständigen Schließen des Dichtsitzes (13) stromlos schaltet.
  5. Hochdruckpumpe nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Steuerung (32) durch Bestromen der Magnetspule (31) während des Schließhubs des Ventilschließkörpers (15) den Ventilschließkörper (15) betätigt, bis eine Drosselung an dem Dichtsitz (13) erreicht ist.
  6. Hochdruckpumpe nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass bei einem Förderhub der Pumpenbaugruppe (5), bei dem ein Druck im Pumpenarbeitsraum (4) erhöht wird, der Ventilschließkörper (15) von dem Druck im Pumpenarbeitsraum (4) in der Schließrichtung (33) betätigt wird, wenn durch die magnetische Betätigung des Ankers (30) der Ventilschließkörper (15) so weit in der Schließrichtung (33) betätigt ist, dass eine Drosselung an dem Dichtsitz (13) erreicht ist.
EP13740010.7A 2012-08-01 2013-07-24 Hochdruckpumpe für brennkraftmaschinen Active EP2880297B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213546.4A DE102012213546A1 (de) 2012-08-01 2012-08-01 Hochdruckpumpe für Brennkraftmaschinen
PCT/EP2013/065587 WO2014019904A1 (de) 2012-08-01 2013-07-24 Hochdruckpumpe für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP2880297A1 EP2880297A1 (de) 2015-06-10
EP2880297B1 true EP2880297B1 (de) 2020-10-07

Family

ID=48856630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13740010.7A Active EP2880297B1 (de) 2012-08-01 2013-07-24 Hochdruckpumpe für brennkraftmaschinen

Country Status (5)

Country Link
EP (1) EP2880297B1 (de)
CN (1) CN104508293B (de)
DE (1) DE102012213546A1 (de)
IN (1) IN2014DN10748A (de)
WO (1) WO2014019904A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018018A1 (de) * 2008-04-09 2009-10-15 Continental Automotive Gmbh Pumpe zur Förderung eines Fluids
DE102010039832A1 (de) * 2010-08-26 2012-03-01 Continental Automotive Gmbh Verfahren und Vorrichtung zum Erkennen eines Erreichens eines Schließpunkts eines hydraulischen Ventils

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818607B2 (ja) * 1997-01-27 2006-09-06 株式会社小松製作所 カム駆動式の電子制御ユニットインジェクタの制御装置及びその制御方法
EP2295774A1 (de) * 2009-08-18 2011-03-16 Delphi Technologies Holding S.à.r.l. Verfahren und Vorrichtung zur Steuerung einer Common-Rail-Einspritzpumpe
JP5401360B2 (ja) * 2010-02-26 2014-01-29 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
DE102010027745A1 (de) 2010-04-14 2011-10-20 Robert Bosch Gmbh Hochdruckpumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018018A1 (de) * 2008-04-09 2009-10-15 Continental Automotive Gmbh Pumpe zur Förderung eines Fluids
DE102010039832A1 (de) * 2010-08-26 2012-03-01 Continental Automotive Gmbh Verfahren und Vorrichtung zum Erkennen eines Erreichens eines Schließpunkts eines hydraulischen Ventils

Also Published As

Publication number Publication date
CN104508293B (zh) 2018-07-03
EP2880297A1 (de) 2015-06-10
WO2014019904A1 (de) 2014-02-06
IN2014DN10748A (de) 2015-09-04
CN104508293A (zh) 2015-04-08
DE102012213546A1 (de) 2014-02-06

Similar Documents

Publication Publication Date Title
DE19612413A1 (de) Druckfluid-Versorgungssystem, insbesondere für ein Kraftstoff-Einspritzsystem
WO2014001126A1 (de) Kolben-kraftstoffpumpe
EP2888469B1 (de) Common-rail-system
WO2016058805A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
WO2008061844A1 (de) Kraftstoffinjektor
WO2013092367A1 (de) Einspritzsystem
EP2694796B1 (de) Spülventil für common-rail schweröl-einspritzsysteme
DE102016220326A1 (de) Ventil zum Zumessen eines gasförmigen oder flüssigen Kraftstoffs
WO2018001626A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
EP1045975A1 (de) Steuereinheit zur steuerung des druckaufbaus in einer pumpeneinheit
DE10334615A1 (de) Druckregelventil für Speicherkraftstoffeinspritzsystem
EP2733345A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
EP2880297B1 (de) Hochdruckpumpe für brennkraftmaschinen
DE102016212671B4 (de) Ansteuerverfahren zum Ansteuern eines Einlassventils einer Kraftstoffhochdruckpumpe und Kraftstoffeinspritzsystem
DE102017211361A1 (de) Ventileinrichtung für eine Kraftstoffhochdruckpumpe
DE10334616A1 (de) Druckregelventil für Speicherkraftstoffeinspritzsystem
WO2017108343A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
EP2659127B1 (de) Druck-schaltventil für ein kraftstoffeinspritzsystem einer brennkraftmaschine
EP3423717B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
EP2138709A1 (de) Direkt betätigter Kraftstoffinjektor
WO2016134930A1 (de) Teildruckausgeglichenes druckregelventil für einen hochdruckspeicher
EP3032090A1 (de) Schalt- oder druckregelventil für ein kraftstoffeinspritzsystem
WO2019197067A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
WO2020083550A1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
DE102014221660A1 (de) Verfahren zur Regelung der Fördermenge einer Hochdruckpumpe sowie Hochdruckpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170104

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1321407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015190

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015190

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

26N No opposition filed

Effective date: 20210708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210924

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1321407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013015190

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007