EP2863157A1 - Wärmeübertrager - Google Patents

Wärmeübertrager Download PDF

Info

Publication number
EP2863157A1
EP2863157A1 EP20140189402 EP14189402A EP2863157A1 EP 2863157 A1 EP2863157 A1 EP 2863157A1 EP 20140189402 EP20140189402 EP 20140189402 EP 14189402 A EP14189402 A EP 14189402A EP 2863157 A1 EP2863157 A1 EP 2863157A1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat exchanger
housing
flow channel
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20140189402
Other languages
English (en)
French (fr)
Other versions
EP2863157B1 (de
Inventor
Simon HUND
Albrecht Siegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2863157A1 publication Critical patent/EP2863157A1/de
Application granted granted Critical
Publication of EP2863157B1 publication Critical patent/EP2863157B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0292Other particular headers or end plates with fins

Definitions

  • the invention relates to a heat exchanger with a first flow channel, which is traversed by a first fluid, and with a second flow channel, which is traversed by a second fluid, wherein the first flow channel has a first section, a second section and a deflection, wherein the first subsection is in fluid communication with the second subsection over the deflection region and the first subsection, the second subsection and the deflection region can be flowed around by the second fluid.
  • U-flow heat exchangers are used. These heat exchangers are characterized in that the fluid flowing through the heat exchanger flows in at an end region of the heat exchanger and is deflected by approximately 180 degrees at an end region opposite this end region. The fluid finally flows out of the heat exchanger at the end region where it has flowed.
  • Heat exchangers with such a configuration are preferably used when the installation space no longer permits conventionally flow-through heat exchangers or speak of other boundary conditions for use.
  • the exhaust gas recirculation system in this case has a heat transfer unit, which comprises a heat exchanger, which has a deflection of a fluid to be cooled by about 180 degrees.
  • the heat exchanger has for this purpose a flow channel, which is U-shaped.
  • both the fluid inlet of the flow channel and the fluid outlet are arranged at a common end region of the heat exchanger.
  • the flow channel is in the region of the outflow, in the region of the return flow and in the region of the deflection of a second fluid flows around, whereby a heat transfer between the fluid within the flow channel and the fluid flow around the flow channel is achieved.
  • a disadvantage of the solutions in the prior art is in particular that the deflection of the heat exchanger either not at all or only by the air surrounding the heat exchanger is cooled. Furthermore, in heat exchangers, which provide a flow around the flow channel including the deflection, often the maximum heat transfer is too low.
  • An embodiment of the invention relates to a heat exchanger having a first flow channel through which a first fluid can flow and with a second flow channel through which a second fluid can flow, the first flow channel having a first subsection, a second subsection and a deflection region, wherein the first portion is in fluid communication with the second portion over the deflection region and the first portion, the second portion and the deflection of the second fluid are flowed around, wherein the first portion and / or the second portion of the first flow channel in each case by a plurality of Tubes is formed.
  • a deflected along its flow direction heat exchanger is particularly advantageous because overall the overall length of the heat exchanger can be made shorter than a straight-flow heat exchanger.
  • a deflecting region surrounded by a second fluid is advantageous because it provides an additional heat transfer capability within the heat exchanger, whereby the efficiency or the performance of the heat exchanger can be increased.
  • the first section and / or the second section of the first flow channel is advantageously formed from tubes.
  • Tubes are particularly advantageous because they are inexpensive to produce and are available in a variety of different shapes on the market.
  • the total heat transfer surface can be increased, whereby an improved heat transfer between the fluid within the tubes and the fluid outside the tubes can be achieved.
  • the heat exchanger has a housing which is formed in one or more parts with at least a first housing part and a second housing part.
  • the housing may be better adapted to the shape of the heat exchanger.
  • undercuts can be realized by a multi-part housing, which can not be realized, for example, by one-piece deep-drawn housing.
  • the housing is advantageously made of an aluminum material and produced in a die-casting process. In this case, either all housing parts or only individual housing parts can be generated in this way.
  • the housing or individual housing parts may be made of a steel material, in particular stainless steel, or a plastic. Made of plastic housing or housing parts are preferably made in an injection molding process.
  • the housing at least partially forms the second flow channel.
  • the housing surrounds the first flow channel such that a cavity is formed between the outer walls of the first flow channel and the inner walls of the housing, which forms the second flow channel. By flowing through this second flow channel, the first flow channel is flowed around, whereby a heat transfer between the fluid in the first flow channel and the fluid in the second flow channel can be generated.
  • first housing part surrounds the first and second part section and the second housing part surrounds the deflection area.
  • the subsections can advantageously be encompassed by a simple cuboid structure, while the deflection region can be encompassed, for example, by a further housing part which, for example, in the form of a housing part deep-drawn lid can be formed and can be produced in a separate manufacturing process.
  • the tubesheet with a lid forms a collecting box, wherein the internal volume of the collecting box forms the deflection region.
  • a fluid-tight deflection region can be produced by known production methods.
  • a flow path of the second flow channel is formed between an outer wall delimiting the deflection region and an inner wall of the housing and / or a wall of the first flow channel, which can be flowed through by the second fluid.
  • This flow path is particularly advantageous, since it can flow around the deflection region with the second fluid, which is preferably cooling. As a result, the overall heat transfer area between the first fluid and the second fluid is increased, whereby the performance of the heat exchanger is improved.
  • turbulence inserts and / or cross-sectional narrowing means are arranged on the outer wall of the deflection region and / or on the inner wall of the housing.
  • the fluid flow in the flow path can be advantageously influenced.
  • the effective cross-flow area can be influenced, which has a direct influence on the occurring pressure loss within the heat exchanger.
  • the course of flow within the flow path can also be influenced.
  • the housing has a first fluid connection and a second fluid connection, via which the second fluid can be supplied into the housing and can be discharged from the housing.
  • first section and the second section and / or the deflection of the first flow channel into the housing, which at least partially forms the second flow channel can be integrated such that the second flow channel fluid-tight with respect to the First flow channel and / or the deflection region and the environment is sealed.
  • a fluid-tight seal of the flow channels with respect to the respective other flow channel and the environment is particularly advantageous in order to ensure the functionality of the heat exchanger.
  • a mixing of the fluids could occur, which can lead to damage of the heat exchanger and / or the upstream and downstream components.
  • tubes are accommodated at least at a common end region in a tube plate.
  • the tubes are advantageously accommodated at a common end region in a tube plate. This increases the stability of the heat exchanger. Furthermore, by providing a tube plate at a common end region, a particularly simple connection to a fluid supply line and a fluid discharge can be achieved.
  • the fluid supply and the fluid discharge of the first flow channel are arranged at a common end region of the heat exchanger. This allows a particularly compact design of the heat exchanger.
  • the first fluid is a gas and the second fluid is a coolant.
  • the first fluid is a gas and the second fluid is a coolant.
  • a cooling of the in the first flow channel flowing fluid can be achieved advantageously.
  • the second fluid has a lower temperature level than the first fluid.
  • the second fluid serves to cool the first fluid.
  • the second fluid can advantageously be incorporated into a cooling circuit in order to always ensure the lowest possible temperature level for the second fluid.
  • the second fluid in an alternative embodiment, but also have a higher temperature level than the first fluid. This is especially true when the heat exchanger is used to heat the first fluid.
  • the first fluid in the deflection region can be deflected by 180 degrees along its direction of flow.
  • a deflection of about 180 degrees is particularly advantageous since in this way the fluid connections can be provided at a common end region of the heat exchanger.
  • the maximum amount of heat that can be transferred may be larger or smaller.
  • a second fluid which is preferably a cooling fluid, flows around.
  • the Fig. 1 shows a perspective view of a heat exchanger 1.
  • the heat exchanger 1 is surrounded by a housing 2.
  • the housing 2 has on its outer side a plurality of ribs 5, which increase the structural rigidity of the housing 2.
  • the ribs 5 are for this purpose distributed on the housing 2 load.
  • the housing 2 has a holding element 4, with which the heat exchanger 1 can be attached to a surrounding structure.
  • the housing 2 has a fluid connection 3, through which a fluid can be conveyed into the housing 2.
  • a tube plate 6 is indicated, which belongs to the heat exchanger 1 inserted in the housing 2.
  • the housing 2 is preferably formed from a plastic, which can be processed, for example, in a die-casting process. Alternatively, metallic materials can also be used.
  • the Fig. 2 shows a perspective view of the heat exchanger 1, as in the housing 2 of Fig. 1 is arranged.
  • the heat exchanger 1 has in its lower region a tube plate 6, in which a plurality of first tubes 8 and second tubes 9 is received.
  • the tubes 8 and 9 are arranged in each case in two adjacent tube stacks with several tubes in depth.
  • the tubes 8 are traversed along the flow direction 10 with a first fluid and the tubes 9 are flowed through along the flow direction 11 with the first fluid.
  • the directional deflection between the tubes 8 and tubes 9 takes place in the upper deflection region 7.
  • the deflection region 7 is essentially also through a tube plate 16 is formed, in which the tubes 8, 9 are received and a box-like lid 17, which is inserted into this tubesheet, whereby an internal volume within the deflection region 7 is generated, in which the fluid from the tubes 8 into the tubes 9 flow can.
  • the first tubes 8 form a first section 12 of a first flow channel 15 and the second tubes 9 form a second section 13 of a first flow channel 15. Overall, the tubes 8 and 9 and the deflection 7 form the first flow channel 15.
  • the first flow channel 15 can be flowed around by a second fluid within the housing 2.
  • a second flow channel 14 is formed for this purpose.
  • a heat exchange between the first fluid can be generated both along the tubes 8 of the deflection region 7 and the tubes 9.
  • the heat transfer between the first fluid and the second fluid can be significantly increased, since in particular the deflection region 7 is fully involved in the heat transfer between the first fluid and the second fluid.
  • adeschleitvorraum shown which surrounds both the tubes 8 and the tubes 9.
  • the task of theisserleitvoroplasty is to influence the flow of fluid flowing within the housing. This should primarily be prevented that a short-circuit flow within the housing is formed and thus the fluid flows directly from the fluid inlet to the fluid outlet. This can happen, in particular, if the fluid inlet and the fluid outlet are arranged on a common housing side.
  • the fluid can also be routed specifically between the tubes 8, 9 in such a way that the best possible flow around and thus an improved heat transfer occurs.
  • an increase in the stability of the heat exchanger 1 can be achieved by thehariffenleitvortechnisch.
  • tubes 8 a fluid can be supplied and separated from the tubes 9, a fluid can be removed.
  • the Fig. 3 shows an alternative embodiment of a heat exchanger 21.
  • the heat exchanger 21 is received within the housing 22.
  • the housing 22 is preferably formed of a metallic material. Ideally, the housing 22 is formed of an aluminum.
  • the housing 22 has a plurality of holding elements 24, with which the housing 22 or the heat exchanger 21 can be attached to surrounding structures.
  • a tube plate 26 is indicated, which belongs to the heat exchanger 21 inserted in the housing 22.
  • the Fig. 4 shows a perspective view of the heat exchanger 21, as in the interior of the housing 22 of the Fig. 3 is arranged.
  • the tube plate 26 has a plurality of tubes 28 received in the tubesheet 26 and tubes 29.
  • the tubes 28 and 29 are in the tube plate 26 analogous to the arrangement of the tubes 8 and 9 of the Fig. 2 arranged in the tube sheet 6.
  • the tubes 28 form a first section 36 of a first flow channel 39
  • the tubes 29 form a second section 37 of the first flow channel 39.
  • the tubes 28 and 29 are in the Fig. 4 further from adeschleitvoriques similar to Fig. 2 whereby the fluid flow within the heat exchanger 21 can be improved overall and, in particular, short-circuit flows of the fluid between the fluid inlet and the fluid outlet of the housing can be avoided.
  • the tubes 28 are flowed through along the flow direction 30 with a first fluid and the tubes 29 are flowed through along the flow direction 31 with the first fluid.
  • the deflection of the fluid takes place in the deflection region 27.
  • the tube plate 26 has, in addition to openings in which the tubes 28 and 29 are received and the openings 32 and 33.
  • the interior of the housing 22 or of the second flow channel 38 formed in the interior of the housing 22 can be subjected to a fluid or the fluid can be discharged from the interior of the housing 22.
  • the tube plate has a circumferential shoulder, which is guided both around the openings 32, 33 and the tubes 28 and 29. This paragraph comes when placing the housing 22 on an inner wall of the housing for lying and thus serves to seal the housing 22 relative to the tube sheet 26th
  • a sealing means may further be provided on this shoulder.
  • the tube plate 26 has a plurality of openings, which can serve for screwing the tube plate 26 to the housing 22 and the connection of fluid connections to the tube plate 26 for supplying the tubes 28 with a first fluid or for the discharge of the first Fluids from the pipes 29.
  • the turbulence inserts 34 are designed such that the gap which arises between the outer wall of the deflection region 27 and the inner wall of the housing 22 is influenced such that the fluid flow of the second fluid flowing within the housing 22 is optimized.
  • a flow path 35 is formed in the region between the deflection region 27 and the inner wall of the housing 22.
  • the housing 22 as well as the housing 2 of Fig. 1 designed such that at least between the deflection region 27 and the deflection region 7 and the interior of the housing 22 and 2, a sufficiently large gap remains, as Flow path 35 is formed and can be flowed through by the second fluid within the housing 22 and 2 respectively.
  • the tubes 28 and 29 are also flowed around by the second fluid, whereby along the entire heat exchanger 1, 21, a heat transfer between the first fluid within the tubes 8, 9, 28, 29 of the heat exchanger 1, 21 and the second fluid in the housing 2, 22 of the heat exchanger 1, 21 can take place.
  • the Fig. 5 shows a further perspective view of a heat exchanger 41, which is arranged within a housing 42.
  • the housing 42 is formed in two parts and has a substantially cuboidal region 42 and a housing part 45 connected thereto or placed on this area.
  • Fluid connections 43 and 44 for feeding or discharging a second fluid into the housing 42 are provided on the cuboid housing part 42 intended.
  • a tube plate 46 of the heat exchanger 41 is indicated.
  • the Fig. 6 shows a view of the heat exchanger 41, as in the housing 42 of the Fig. 5 is arranged.
  • the housing part 42 and the housing part 45 is not shown.
  • the fluid ports 43 and 44 of the housing 42 are further shown.
  • the heat exchanger 41 has a plurality of first tubes 48 and a plurality of second tubes 49, which analogous to the Fig. 4 and 2 are arranged.
  • the tubes 48 are traversed along the flow direction 50 and form a first section 52 of the first flow channel 55.
  • the tubes 49 are traversed along the flow direction 51 and form a second section 53 of the first flow channel 55.
  • the deflection between the tubes 48 and the tubes 49 takes place along the deflection region 47, which is analogous to the preceding figures formed by a tube plate 56 and a cover 57 inserted therein. Both the tubes 48, 49 and the deflection region 47 can be flowed around by the second fluid, while they are flowed through by the first fluid.
  • the housing 42, 45 forms a second flow channel 54. In this way, a complete heat transfer also takes place both on the tubes 48, 49 and on the deflection region 47.
  • the Fig. 7 shows a sectional view through a conventional deflected heat exchanger 61, as is known in the art.
  • This has a plurality of tubes 68, which are flowed through along the flow direction 70 and a plurality of tubes 69, which are flowed through along the flow direction 71.
  • the tubes 68, 69 are received in the tube plate 63 in their left-hand region and in the tubesheet 64 at their right-hand end region.
  • the tube plates 63 and 64 are accommodated within the housing 62 in widened regions 65, 66.
  • the tube sheets 64, 64 are welded or soldered to the housing 62.
  • the fluid flow of the first fluid is deflected from the tubes 68 to the tubes 69. This is illustrated with the flow direction 73 within the deflection region 67.
  • the lid is advantageously inserted within the tube bottom 64 with a sealing element 72.
  • a positive connection can be generated, alternatively, a cohesive, for example by gluing, soldering, welding.
  • the in Fig. 7 shown heat exchanger 61 is only flowed through by a first fluid along the tubes 68, 69 and the deflection region 67.
  • the housing 62 can be traversed by a second fluid.
  • the deflection region 67 is shown in the illustration of Fig. 7 does not flow around a cooling second fluid, so that the heat transfer takes place in the heat exchanger 61 only along the tubes 68 and 69. As a result, the overall heat transfer path is reduced compared to the preceding figures, whereby the total amount of heat transferable is reduced.
  • the deflection region 67 can only be exposed to the surrounding medium, such as the air, whereby both an additional cooling of the first fluid and an unwanted heating of the first fluid can take place.
  • the Fig. 8 shows a sectional view through a heat exchanger 81.
  • a heat exchanger 81 is shown, as already in the Fig. 5 or 6 is shown.
  • the heat exchanger 81 has a plurality of first tubes 88 and a plurality of second tubes 89, which are flowed through according to the flow direction 90 and 91, respectively.
  • the first tubes 88 form a first section 97 and the second tubes 89 form a second section 98.
  • the two subsections 97, 98 together with a deflection region 87 form a first flow channel 100.
  • the tubes 88, 89 are received in tube ends 83 and 84 at the ends.
  • the tubes 88 and 89 are surrounded by the housing 82.
  • a second flow channel 99 is formed, which can be traversed by a second fluid.
  • the tube plate 83 is inserted in the housing 82 in a fluid-tight manner.
  • the housing 82 is connected in a fluid-tight manner to the housing part 85 such that the deflection area 87 and the tube bottom 93 are received within the housing part 85.
  • the flow path 94 as already in Fig. 4 indicated by means which reduce the cross-section, or are designed by turbulence inserts such that an optimal heat exchange between the first fluid in the deflection region 87 and the second fluid in the flow path 94 takes place.
  • the provision of means for reducing the cross section of the flow path 94 and / or turbulence inserts can influence the resulting pressure loss in the flow path 94.
  • the deflection region 87 is formed, as in the preceding figures, by a cover 101, which is inserted into the tubesheet 84 and sealed with a sealing agent 93, such that the fluid flow of the first fluid within the deflection region 87 of the fluid flow of the second fluid in the Flow path 94 and within the housing 82 is separated. The deflection within the deflection region 87 takes place along the flow direction 96.
  • the housings 2, 22, 42, 45, 82 and 85 can be formed both from a plastic and from a metallic material. The corresponding material has to be adapted to the application condition. If the respective housing 2, 33, 43, 45, 82 and 85 flows through a second fluid, the connection between the respective tube plates 6, 16, 23, 26, 46, 56, 83, 84 and the housing 2, 22nd , 42, 82 and the additional housing part 45, 85 be designed so fluid-tight that no leaks to the environment or in the circulation of the first fluid arise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmeübertrager (1, 21, 41, 81) mit einem ersten Strömungskanal (15, 39, 55, 100), der von einem ersten Fluid durchströmbar ist, und mit einem zweiten Strömungskanal (14, 38, 54, 99), der von einem zweiten Fluid durchströmbar ist, wobei der erste Strömungskanal (15, 39, 55, 100) einen ersten Teilabschnitt (12, 36, 52, 97), einen zweiten Teilabschnitt (13, 37, 53, 98) und einen Umlenkbereich aufweist, wobei der erste Teilabschnitt mit dem zweiten Teilabschnitt über den Umlenkbereich (7, 27, 47, 87) in Fluidkommunikation steht und der erste Teilabschnitt (12, 36, 52, 97), der zweite Teilabschnitt (13, 37, 53, 98) und der Umlenkbereich (7, 27, 47, 87) von dem zweiten Fluid umströmbar sind, wobei der erste Teilabschnitt (12, 36, 52, 97) und/oder der zweite Teilabschnitt (13, 37, 53, 98) des ersten Strömungskanals (15, 39, 55, 100) jeweils durch eine Mehrzahl von Rohren (8, 9, 28, 29, 48, 49, 88, 89) gebildet ist.

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen Wärmeübertrager mit einem ersten Strömungskanal, der von einem ersten Fluid durchströmbar ist, und mit einem zweiten Strömungskanal, der von einem zweiten Fluid durchströmbar ist, wobei der erste Strömungskanal einen ersten Teilabschnitt, einen zweiten Teilabschnitt und einen Umlenkbereich aufweist, wobei der erste Teilabschnitt mit dem zweiten Teilabschnitt über den Umlenkbereich in Fluidkommunikation steht und der erste Teilabschnitt, der zweite Teilabschnitt und der Umlenkbereich von dem zweiten Fluid umströmbar sind.
  • Stand der Technik
  • In vielen Anwendungsfällen werden sogenannte U-flow Wärmeübertrager verwendet. Diese Wärmeübertrager zeichnen sich dadurch aus, dass das durch den Wärmeübertrager strömende Fluid an einem Endbereich des Wärmeübertragers einströmt und an einem diesem Endbereich gegenüberliegenden Endbereich um ungefähr 180 Grad umgelenkt wird. Das Fluid strömt dabei schließlich an dem Endbereich an dem es eingeströmt ist auch wieder aus dem Wärmeübertrager aus.
  • Wärmeübertrager mit einer solchen Konfiguration werden bevorzugt eingesetzt, wenn der Bauraum konventionell durchströmte Wärmeübertrager nicht mehr zulässt oder andere Randbedingungen für einen Einsatz sprechen.
  • Vorteilhaft an einem solchen Wärmeübertrager ist, dass auf der gleichen Baulänge ungefähr die doppelte Kühlstrecke zur Verfügung steht. Nachteilig ist jedoch, dass nur ein kleinerer Querschnitt pro Kühlstrecke zur Verfügung steht, was sich negativ auf den entstehenden Druckverlust auswirkt.
  • Im Stand der Technik sind vielfältige Ausführungsbeispiele solcher Wärmeübertrager bekannt. So offenbart die DE 10 2004 019 554 B4 ein Abgasrückführsystem für eine Verbrennungskraftmaschine. Das Abgasrückführsystem weist dabei eine Wärmeübertragungseinheit auf, welche einen Wärmeübertrager umfasst, der eine Umlenkung eines zu kühlenden Fluids um ca. 180 Grad aufweist. Der Wärmeübertrager weist hierzu einen Strömungskanal auf, der U-förmig ausgebildet ist. Dadurch sind sowohl der Fluidzufluss des Strömungskanals als auch der Fluidabfluss an einem gemeinsamen Endbereich des Wärmeübertragers angeordnet. Der Strömungskanal wird dabei im Bereich der Hinströmstrecke, im Bereich der Rückströmstrecke und im Bereich der Umlenkung von einem zweiten Fluid umströmt, wodurch ein Wärmeübertrag zwischen dem Fluid innerhalb des Strömungskanals und dem den Strömungskanal umströmenden Fluid erreicht wird.
  • Nachteilig an den Lösungen im Stand der Technik ist insbesondere, dass der Umlenkbereich der Wärmeübertragers entweder gar nicht oder nur durch die den Wärmeübertrager umgebende Luft gekühlt wird. Weiterhin ist bei Wärmeübertragern, welche eine Umströmung des Strömungskanals inklusive des Umlenkbereichs vorsehen, oftmals der maximale Wärmeübertrag zu gering.
  • Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
  • Daher ist es die Aufgabe der vorliegenden Erfindung einen Wärmeübertrager bereitzustellen, der einen temperierbaren Umlenkbereich aufweist und gegenüber dem Stand der Technik hinsichtlich seiner Leistungsfähigkeit optimiert ist.
  • Die Aufgabe der vorliegenden Erfindung wird durch einen Wärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst.
  • Ein Ausführungsbeispiel der Erfindung betrifft einen Wärmeübertrager mit einem ersten Strömungskanal, der von einem ersten Fluid durchströmbar ist, und mit einem zweiten Strömungskanal, der von einem zweiten Fluid durchströmbar ist, wobei der erste Strömungskanal einen ersten Teilabschnitt, einen zweiten Teilabschnitt und einen Umlenkbereich aufweist, wobei der erste Teilabschnitt mit dem zweiten Teilabschnitt über den Umlenkbereich in Fluidkommunikation steht und der erste Teilabschnitt, der zweite Teilabschnitt und der Umlenkbereich von dem zweiten Fluid umströmbar sind, wobei der erste Teilabschnitt und/oder der zweite Teilabschnitt des ersten Strömungskanals jeweils durch eine Mehrzahl von Rohren gebildet ist.
  • Ein entlang seiner Strömungsrichtung umgelenkter Wärmeübertrager ist besonders vorteilhaft, da insgesamt die Baulänge des Wärmeübertragers kürzer gestaltet werden kann als bei einem geradlinig durchströmten Wärmeübertrager. Ein mit einem zweiten Fluid umströmter Umlenkbereich ist vorteilhaft, da dadurch eine zusätzliche Wärmeübertragungsmöglichkeit innerhalb des Wärmeübertragers geschaffen wird, wodurch die Effizienz bzw. die Leistung des Wärmeübertragers erhöht werden kann. Der erste Teilabschnitt und/oder der zweite Teilabschnitt des ersten Strömungskanals ist vorteilhafterweise aus Rohren gebildet.
  • Rohre sind besonders vorteilhaft, da sie kostengünstig herstellbar sind und in einer Vielzahl von unterschiedlichen Ausformungen am Markt verfügbar sind. Durch eine Mehrzahl von Rohren, die jeweils an ihren Außenflächen von einem Fluid umströmt werden, kann insgesamt die Wärmeübertragungsfläche erhöht werden, wodurch ein verbesserter Wärmeübergang zwischen dem Fluid innerhalb der Rohre und dem Fluid außerhalb der Rohre erreicht werden kann.
  • Weiterhin ist es vorteilhaft, wenn der Wärmeübertrager ein Gehäuse aufweist, das einteilig oder mehrteilig mit zumindest einem ersten Gehäuseteil und einem zweiten Gehäuseteil ausgebildet ist.
  • Durch eine mehrteilige Ausführung kann eine bessere Montierbarkeit erreicht werden. Außerdem kann das Gehäuse unter Umständen besser an die Formgebung des Wärmeübertragers angepasst werden. Insbesondere können durch ein mehrteiliges Gehäuse Hinterschneidungen realisiert werden, die beispielsweise durch einteilige tiefgezogene Gehäuse nicht realisiert werden können.
  • Das Gehäuse ist vorteilhafterweise aus einem Aluminiumwerkstoff gefertigt und in einem Druckgussverfahren erzeugt. Dabei können entweder alle Gehäuseteile oder nur einzelne Gehäuseteile auf diese Weise erzeugt sein. Alternativ können das Gehäuse oder einzelne Gehäuseteile aus einem Stahlwerkstoff, insbesondere Edelstahl, oder einem Kunststoff gefertigt sein. Aus Kunststoff gefertigte Gehäuse oder Gehäuseteile sind dabei vorzugsweise in einem Spritzgussverfahren gefertigt.
  • Darüber hinaus ist es zu bevorzugen, wenn das Gehäuse den zweiten Strömungskanal zumindest teilweise ausbildet. Vorteilhafterweise umgibt das Gehäuse den ersten Strömungskanal derart, dass zwischen den Außenwandungen des ersten Strömungskanals und den Innenwandungen des Gehäuses ein Hohlraum entsteht, welcher den zweiten Strömungskanal ausbildet. Durch das Durchströmen dieses zweiten Strömungskanals wird der erste Strömungskanal umströmt, wodurch ein wärmübertrag zwischen dem Fluid im ersten Strömungskanal und dem Fluid im zweiten Strömungskanal erzeugt werden kann.
  • Außerdem ist es zweckmäßig, wenn das erste Gehäuseteil den ersten und zweiten Teilabschnitt umgibt und das zweite Gehäuseteil den Umlenkbereich umgibt.
  • Durch eine solche Trennung kann eine besonders vorteilhafte und kostengünstige Anpassung des Gehäuses an den Wärmeübertrager erreicht werden. Insbesondere die Teilabschnitte können vorteilhafterweise durch eine einfache quaderförmige Struktur umfasst werden, während der Umlenkbereich beispielsweise durch ein weiteres Gehäuseteil umfasst werden kann, welches beispielsweise in Form eines tiefgezogenen Deckels ausgebildet sein kann und in einem separaten Herstellvorgang produziert werden kann.
  • Auch ist es zu bevorzugen, wenn der Rohrboden mit einem Deckel einen Sammelkasten ausbildet, wobei das Innenvolumen des Sammelkastens den Umlenkbereich ausbildet. Auf diese Weise kann durch bekannte Fertigungsmethoden ein fluiddichter Umlenkbereich erzeugt werden.
  • Weiterhin ist es vorteilhaft, wenn zwischen einer den Umlenkbereich begrenzenden Außenwandung und einer Innenwandung des Gehäuses und/oder einer Wandung des ersten Strömungskanals eine Strömungsstrecke des zweiten Strömungskanals ausgebildet ist, welche von dem zweiten Fluid durchströmbar ist.
  • Diese Strömungsstrecke ist besonders vorteilhaft, da entlang dieser der Umlenkbereich mit dem zweiten Fluid, welches vorzugsweise kühlend ist, umströmt werden kann. Hierdurch wird insgesamt die Wärmeübertragungsfläche zwischen dem ersten Fluid und dem zweiten Fluid erhöht, wodurch die Leistungsfähigkeit des Wärmeübertragers verbessert wird.
  • Auch ist es zu bevorzugen, wenn entlang der Strömungsstrecke Turbulenzeinlagen und/oder querschnittverengende Mittel an der Außenwandung des Umlenkbereichs und/oder an der Innenwandung des Gehäuses angeordnet sind.
  • Durch Turbulenzeinlagen, wie beispielsweise Leitrippen, Wellenprofilen, Erhöhungen und Vertiefungen auf der Oberfläche oder durch andere Mittel zur Beeinflussung des Querschnitts kann die Fluidströmung in der Strömungsstrecke vorteilhaft beeinflusst werden. Insbesondere kann dabei der wirksam durchströmte Strömungsquerschnitt beeinflusst werden, was einen direkten Einfluss auf den auftretenden Druckverlust innerhalb des Wärmeübertragers hat. Über Strömungsleitmittel dieser Art kann auch der Strömungsverlauf innerhalb der Strömungsstrecke beeinflusst werden.
  • Darüber hinaus ist es vorteilhaft, wenn das Gehäuse einen ersten Fluidanschluss und einen zweiten Fluidanschluss aufweist, worüber das zweite Fluid in das Gehäuse zuführbar und aus dem Gehäuse abführbar ist.
  • In einem bevorzugten Ausführungsbeispiel der Erfindung kann es vorgesehen sein, dass der erste Teilabschnitt und der zweite Teilabschnitt und/oder der Umlenkbereich des ersten Strömungskanals in das Gehäuse, welches den zweiten Strömungskanal zumindest teilweise ausbildet, derart integrierbar ist, dass der zweite Strömungskanal fluiddicht gegenüber dem ersten Strömungskanal und/oder dem Umlenkbereich und der Umgebung abgedichtet ist.
  • Eine fluiddichte Abdichtung der Strömungskanäle gegenüber dem jeweils anderen Strömungskanal und der Umgebung ist besonders vorteilhaft, um die Funktionsfähigkeit des Wärmeübertragers zu gewährleisten. Bei einer nicht vollständig fluiddichten Ausführung könnte eine Vermischung der Fluide auftreten, was zu einer Beschädigung des Wärmeübertragers und/oder der vorgelagerten und nachgelagerten Komponenten führen kann.
  • Auch ist es vorteilhaft, wenn alle Rohre zumindest an einem gemeinsamen Endbereich in einem Rohrboden aufgenommen sind. Die Rohre sind vorteilhafterweise an einem gemeinsamen Endbereich in einem Rohrboden aufgenommen sind. Dies erhöht die Stabilität des Wärmeübertragers. Weiterhin kann durch das Vorsehen eines Rohrbodens an einem gemeinsamen Endbereich eine besonders einfache Anbindung an eine Fluidzuleitung und eine Fluidableitung erreicht werden.
  • Weiterhin ist es zweckmäßig, wenn die Fluidzuführung und die Fluidabführung des ersten Strömungskanals an einem gemeinsamen Endbereich des Wärmeübertragers angeordnet sind. Dies ermöglicht eine besonders kompakte Bauform des Wärmeübertragers.
  • Auch ist es zu bevorzugen, wenn das erste Fluid ein Gas ist und das zweite Fluid ein Kühlmittel ist. Auf diese Weise kann eine Abkühlung des in dem ersten Strömungskanal strömenden Fluids vorteilhaft erreicht werden. Durch eine Abkühlung im ersten Teilabschnitt, im zweiten Teilabschnitt und im Umlenkbereich kann eine stärkere Abkühlung des ersten Fluids bzw. des Gases erreicht werden.
  • Darüber hinaus ist es zu bevorzugen, wenn das zweite Fluid ein niedrigeres Temperaturniveaus aufweist als das erste Fluid. Das zweite Fluid dient zur Abkühlung des ersten Fluids. Das zweite Fluid kann dabei vorteilhafterweise in einen Kühlkreislauf eingebunden sein, um stets ein möglichst niedriges Temperaturniveau für das zweite Fluid zu gewährleisten. Je nach Auslegung des Wärmeübertragers, kann das zweite Fluid in einer alternativen Ausführung aber auch ein höheres Temperaturniveau als das erste Fluid aufweisen. Dies trifft insbesondere dann zu, wenn der Wärmeübertrager zur Erwärmung des ersten Fluids dient.
  • Auch ist es vorteilhaft, wenn das erste Fluid im Umlenkbereich entlang seiner Strömungsrichtung um 180 Grad umlenkbar ist. Eine Umlenkung um ungefähr 180 Grad ist besonders vorteilhaft, da so die Fluidanschlüsse an einem gemeinsamen Endbereich des Wärmeübertragers vorgesehen werden können. In alternativen Ausführungsformen können auch Umlenkungen vorgesehen werden, die einen anderen Winkel aufweisen oder beispielsweise zwei Umlenkungen mit jeweils 90 Grad.
  • Je nachdem, ob nur der erste und zweite Teilabschnitt oder auch der Umlenkbereich in dem Gehäuse angeordnet sind, kann die maximal übertragbare Wärmemenge größer oder kleiner sein. Insbesondere vorteilhaft ist eine Anordnung, bei welcher sowohl die Teilabschnitte als auch der Umlenkbereich von einem zweiten Fluid, welches vorzugsweise ein kühlendes Fluid ist, umströmt sind.
  • Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und in der nachfolgenden Figurenbeschreibung beschrieben.
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
  • Fig.1
    eine perspektivische Ansicht eines in einem Gehäuse aufgenommenen in seiner Durchströmungsrichtung um 180 Grad umgelenkten Wärmeübertragers,
    Fig. 2
    eine perspektivische Ansicht des Wärmeübertragers gemäß Fig. 1,
    Fig. 3
    eine alternative perspektivische Ansicht eines in einem Gehäuse aufgenommenen Wärmeübertragers,
    Fig. 4
    eine perspektivische Ansicht eines alternativ ausgestalteten Wärmeübertragers gemäß Fig. 3,
    Fig. 5
    eine weitere alternative Ansicht eines in einem Gehäuse aufgenommenen Wärmeübertragers, der in seiner Durchströmungsrichtung um 180 Grad umgelenkt ist,
    Fig. 6
    eine perspektivische Ansicht des Wärmeübertragers gemäß Fig. 5,
    Fig. 7
    eine Schnittansicht durch einen in seiner Durchströmungsrichtung um 180 Grad umgelenkten Wärmeübertrager, wie er im Stand der Technik bekannt ist, und
    Fig. 8
    eine Schnittansicht eines erfindungsgemäßen Wärmeübertragers mit einer zusätzlichen Strömungsstrecke, welche den Umlenkbereich umgibt.
    Bevorzugte Ausführung der Erfindung
  • Die Fig. 1 zeigt eine perspektivische Ansicht eines Wärmeübertragers 1. Der Wärmeübertrager 1 ist von einem Gehäuse 2 umgeben. Das Gehäuse 2 weist an seiner Außenseite eine Mehrzahl von Rippen 5 auf, welche die strukturelle Steifigkeit des Gehäuses 2 erhöhen. Die Rippen 5 sind hierzu belastungsgerecht am Gehäuse 2 verteilt. Weiterhin weist das Gehäuse 2 ein Halteelement 4 auf, mit welchem der Wärmeübertrager 1 an einer umliegenden Struktur befestigt werden kann. Darüber hinaus weist das Gehäuse 2 einen Fluidanschluss 3 auf, durch welchen ein Fluid in das Gehäuse 2 gefördert werden kann. Am unteren Endbereich des Wärmeübertragers 1 ist ein Rohrboden 6 angedeutet, welcher zu dem in dem Gehäuse 2 steckenden Wärmeübertrager 1 gehört.
  • Das Gehäuse 2 ist vorzugsweise aus einem Kunststoff gebildet, welcher sich beispielsweise in einem Druckgussverfahren verarbeiten lässt. Alternativ können auch metallische Werkstoffe verwendet werden.
  • Die Fig. 2 zeigt eine perspektivische Ansicht des Wärmeübertragers 1, wie er in dem Gehäuse 2 der Fig. 1 angeordnet ist.
  • Der Wärmeübertrager 1 weist in seinem unteren Bereich einen Rohrboden 6 auf, in welchem eine Mehrzahl von ersten Rohren 8 und zweiten Rohren 9 aufgenommen ist. Dabei sind die Rohre 8 und 9 jeweils in zwei nebeneinanderliegenden Rohrstapeln mit mehreren Rohren in der Tiefe angeordnet. Die Rohre 8 werden entlang der Strömungsrichtung 10 mit einem ersten Fluid durchströmt und die Rohre 9 werden entlang der Strömungsrichtung 11 mit dem ersten Fluid durchströmt.
  • Die Richtungsumlenkung zwischen den Rohren 8 bzw. Rohren 9 findet in dem oberen Umlenkbereich 7 statt. Der Umlenkbereich 7 ist im Wesentlichen ebenfalls durch einen Rohrboden 16 gebildet, in welchen die Rohre 8, 9 aufgenommen sind und einen kastenartigen Deckel 17, welcher in diesen Rohrboden eingesetzt ist, wodurch ein Innenvolumen innerhalb des Umlenkbereichs 7 erzeugt wird, in welchen das Fluid von den Rohren 8 in die Rohre 9 strömen kann.
  • Die ersten Rohre 8 bilden dabei einen ersten Teilabschnitt 12 eines ersten Strömungskanals 15 und die zweiten Rohre 9 bilden einen zweiten Teilabschnitt 13 eines ersten Strömungskanals 15. Insgesamt bilden die Rohre 8 und 9 sowie der Umlenkbereich 7 den ersten Strömungskanal 15 aus.
  • Der erste Strömungskanal 15 kann von einem zweiten Fluid innerhalb des Gehäuses 2 umströmt werden. Innerhalb des Gehäuses 2 ist zu diesem Zweck ein zweiter Strömungskanal 14 ausgebildet. Auf diese Weise kann ein Wärmeaustausch zwischen dem ersten Fluid sowohl entlang der Rohre 8 des Umlenkbereichs 7 als auch der Rohre 9 erzeugt werden. Insgesamt kann somit der Wärmeübergang zwischen dem ersten Fluid und dem zweiten Fluid deutlich erhöht werden, da insbesondere auch der Umlenkbereich 7 vollständig am Wärmeübertrag zwischen dem ersten Fluid und dem zweiten Fluid beteiligt ist.
  • Weiterhin ist in Fig. 2 eine Kühlmittelleitvorrichtung gezeigt, welche sowohl die Rohre 8 als auch die Rohre 9 umgreift. Die Aufgabe der Kühlmittelleitvorrichtung liegt darin, den Fluss des Fluids, welches innerhalb des Gehäuses strömt, zu beeinflussen. Damit soll primär verhindert werden, dass eine Kurzschlussströmung innerhalb des Gehäuses entsteht und somit das Fluid direkt vom Fluideinlass zum Fluidauslass strömt. Dies kann insbesondere dann geschehen, wenn der Fluideinlass und der Fluidauslass auf einer gemeinsamen Gehäuseseite angeordnet sind. Weiterhin kann das Fluid auch zwischen den Rohren 8, 9 gezielt derart geleitet werden, dass eine möglichst optimale Umströmung und somit ein verbesserter Wärmeübertrag entsteht. Weiterhin kann durch die Kühlmittelleitvorrichtung auch eine Erhöhung der Stabilität des Wärmeübertragers 1 erreicht werden.
  • Unterhalb des Rohrbodens 6 können in vorteilhaften Ausführungsformen Fluidanschlüsse vorgesehen sein, welche beispielsweise an einem Sammelkasten angeordnet sein können. Über diese kann den Rohren 8 ein Fluid zugeführt werden und getrennt davon aus den Rohren 9 ein Fluid abgeführt werden.
  • Die Fig. 3 zeigt eine alternative Ausführungsform eines Wärmeübertragers 21. Der Wärmeübertrager 21 ist innerhalb des Gehäuses 22 aufgenommen. Das Gehäuse 22 ist vorzugsweise aus einem metallischen Werkstoff gebildet. Idealerweise ist das Gehäuse 22 aus einem Aluminium gebildet.
  • Das Gehäuse 22 weist eine Mehrzahl von Halteelementen 24 auf, mit welchem das Gehäuse 22 bzw. der Wärmeübertrager 21 an umliegenden Strukturen befestigt werden kann. Am unteren Endbereich des Gehäuses 22 ist ein Rohrboden 26 angedeutet, welcher zu dem in dem Gehäuse 22 steckenden Wärmeübertrager 21 gehört.
  • Die Fig. 4 zeigt eine perspektivische Ansicht des Wärmeübertragers 21, wie er im Inneren des Gehäuses 22 der Fig. 3 angeordnet ist. Der Rohrboden 26 weist eine Mehrzahl von in dem Rohrboden 26 aufgenommenen Rohren 28 sowie Rohren 29 auf. Die Rohre 28 und 29 sind im Rohrboden 26 analog der Anordnung der Rohre 8 und 9 der Fig. 2 im Rohrboden 6 angeordnet. Die Rohre 28 bilden dabei einen ersten Teilabschnitt 36 eines ersten Strömungskanals 39 aus und die Rohre 29 bilden einen zweiten Teilabschnitt 37 des ersten Strömungskanals 39 aus. Die Rohre 28 und 29 sind in der Fig. 4 weiterhin von einer Kühlmittelleitvorrichtung ähnlich der Fig. 2 umfasst, wodurch der Fluidfluss innerhalb des Wärmeübertragers 21 insgesamt verbessert werden kann und insbesondere Kurzschlussströmungen des Fluids zwischen dem Fluideinlass und dem Fluidauslass des Gehäuses vermieden werden können.
  • Die Rohre 28 werden entlang der Strömungsrichtung 30 mit einem ersten Fluid durchströmt und die Rohre 29 werden entlang der Strömungsrichtung 31 mit dem ersten Fluid durchströmt. Die Umlenkung des Fluids findet im Umlenkbereich 27 statt.
  • Der Rohrboden 26 weist neben Öffnungen, in denen die Rohre 28 und 29 aufgenommen sind auch die Öffnungen 32 und 33 auf. Durch diese kann das Innere des Gehäuses 22 bzw. der im Inneren des Gehäuses 22 ausgebildete zweite Strömungskanal 38 mit einem Fluid beaufschlagt werden bzw. das Fluid aus dem Inneren des Gehäuses 22 abgeleitet werden. Hierzu weist der Rohrboden einen umlaufenden Absatz auf, welcher sowohl um die Öffnungen 32, 33 als auch die Rohre 28 und 29 geführt ist. Dieser Absatz kommt beim Aufsetzen des Gehäuses 22 an einer Innenwandung des Gehäuses zum Liegen und dient somit der Abdichtung des Gehäuses 22 gegenüber dem Rohrboden 26.
  • In einer alternativen Ausführungsform kann an diesem Absatz weiterhin ein Dichtungsmittel vorgesehen sein. Außerhalb dieses Absatzes weist der Rohrboden 26 mehrere Öffnungen auf, welche zum einen der Verschraubung des Rohrbodens 26 mit dem Gehäuses 22 dienen können und auch der Anbindung von Fluidanschlüssen an den Rohrboden 26 zur Versorgung der Rohre 28 mit einem ersten Fluid bzw. zur Ableitung des ersten Fluids aus den Rohren 29.
  • Der Umlenkbereich 27, welcher analog der Fig. 2 durch einen Rohrboden 23 und einen in diesen Rohrboden eingesetzten Deckel 25 gebildet ist, weist an der nach oben gerichteten Außenwandung Turbulenzeinlagen bzw. Strömungsleitelemente 34 auf. Die Turbulenzeinlagen 34 sind derart ausgebildet, dass der Spalt, welcher zwischen der Außenwandung des Umlenkbereichs 27 und der Innenwandung des Gehäuses 22 entsteht, derart beeinflusst wird, dass die Fluidströmung des zweiten Fluids, welches innerhalb des Gehäuses 22 strömt, optimiert wird. Im Bereich zwischen dem Umlenkbereich 27 und der Innenwandung des Gehäuses 22 ist eine Strömungsstrecke 35 ausgebildet. Durch Turbulenzeinlagen 34 können sowohl die Breite dieser Strömungsstrecke 35 entlang des Umlenkbereichs 27 beeinflusst werden als auch die Ausbreitung des zweiten Fluids innerhalb dieser Strömungsstrecke 35.
  • Hierzu ist das Gehäuse 22 wie auch das Gehäuse 2 der Fig. 1 derart gestaltet, dass zumindest zwischen dem Umlenkbereich 27 bzw. dem Umlenkbereich 7 und dem Inneren des Gehäuses 22 bzw. 2 ein ausreichend großer Spalt verbleibt, der als Strömungsstrecke 35 ausgebildet ist und von dem zweiten Fluid innerhalb des Gehäuses 22 bzw. 2 durchströmt werden kann. Darüber hinaus werden ebenfalls die Rohre 28 und 29 von dem zweiten Fluid umströmt, wodurch entlang des gesamten Wärmeübertragers 1, 21 ein Wärmeübertrag zwischen dem ersten Fluid innerhalb der Rohre 8, 9, 28, 29 des Wärmeübertragers 1, 21 und dem zweiten Fluid im Gehäuse 2, 22 des Wärmeübertragers 1, 21 stattfinden kann.
  • Die Fig. 5 zeigt eine weitere perspektivische Ansicht eines Wärmeübertragers 41, welcher innerhalb eines Gehäuses 42 angeordnet ist. Das Gehäuse 42 ist zweiteilig ausgebildet und weist einen im Wesentlichen quaderförmigen Bereich 42 auf und einen daran angeschlossenen bzw. auf diesen Bereich aufgesetzten Gehäuseteil 45. An dem quaderförmigen Gehäuseteil 42 sind Fluidanschlüsse 43 und 44 zur Zuführung bzw. Abführung eines zweiten Fluids in das Gehäuse 42 vorgesehen. Am unteren Endbereich des Gehäuses 42 ist ein Rohrboden 46 des Wärmeübertragers 41 angedeutet.
  • Die Fig. 6 zeigt eine Ansicht des Wärmeübertragers 41, wie er in dem Gehäuse 42 der Fig. 5 angeordnet ist. In der Ansicht der Fig. 6 ist der Gehäuseteil 42 sowie der Gehäuseteil 45 nicht dargestellt. Die Fluidanschlüsse 43 bzw. 44 des Gehäuses 42 sind weiterhin dargestellt.
  • Der Wärmeübertrager 41 weist eine Mehrzahl von ersten Rohren 48 und eine Mehrzahl von zweiten Rohren 49 auf, welche analog der Fig. 4 und 2 angeordnet sind. Die Rohre 48 werden entlang der Strömungsrichtung 50 durchströmt und bilden einen erste Teilabschnitt 52 des ersten Strömungskanals 55. Die Rohre 49 werden entlang der Strömungsrichtung 51 durchströmt und bilden einen zweiten Teilabschnitt 53 des ersten Strömungskanals 55.
  • In einer alternativen Ausführungsform kann die Strömungsrichtung, wie sie in der Fig. 6 und den vorausgegangenen Fig. 2 und 4 angedeutet ist, auch umgekehrt sein.
  • Die Umlenkung zwischen den Rohren 48 und den Rohren 49 findet entlang des Umlenkbereichs 47 statt, welcher analog der vorausgegangenen Figuren durch einen Rohrboden 56 und einen darin eingesetzten Deckel 57 gebildet ist. Sowohl die Rohre 48, 49 als auch der Umlenkbereich 47 können von dem zweiten Fluid umströmt werden, während sie vom ersten Fluid durchströmt werden. Hierzu bildet das Gehäuse 42, 45 einen zweiten Strömungskanal 54 aus. Auf diese Weise findet ebenfalls ein vollständiger Wärmeübergang sowohl an den Rohren 48, 49 als auch an dem Umlenkbereich 47 statt.
  • Die Fig. 7 zeigt eine Schnittansicht durch einen konventionellen umgelenkten Wärmeübertrager 61, wie er im Stand der Technik bekannt ist. Dieser weist eine Mehrzahl von Rohren 68 auf, welche entlang der Strömungsrichtung 70 durchströmt werden und eine Mehrzahl der Rohre 69, welche entlang der Strömungsrichtung 71 durchströmt werden. Die Rohre 68, 69 sind in ihrem linken Bereich in dem Rohrboden 63 aufgenommen und an ihrem rechten Endbereich im Rohrboden 64. Die Rohrböden 63 und 64 sind jeweils innerhalb des Gehäuses 62 in erweiterten Bereichen 65, 66 aufgenommen. Vorteilhafterweise sind die Rohrböden 64, 64 mit dem Gehäuse 62 verschweißt oder verlötet.
  • Innerhalb des Umlenkbereichs 67, welcher analog der vorausgegangenen Figuren durch einen in den Rohrboden 64 eingesetzten Deckel gebildet ist, wird die Fluidströmung des ersten Fluids von den Rohren 68 zu den Rohren 69 umgelenkt. Dies ist mit der Strömungsrichtung 73 innerhalb des Umlenkbereichs 67 dargestellt.
  • Der Deckel ist innerhalb des Rohrbodens 64 vorteilhafterweise mit einem Dichtungselement 72 eingesetzt. Zwischen dem Rohrboden 64 und dem Deckel kann eine formschlüssige Verbindung erzeugt werden, alternativ auch eine stoffschlüssige, durch beispielsweise Kleben, Löten, Schweißen.
  • Der in Fig. 7 gezeigte Wärmeübertrager 61 wird lediglich von einem ersten Fluid entlang der Rohre 68, 69 und dem Umlenkbereich 67 durchströmt. Das Gehäuse 62 kann von einem zweiten Fluid durchströmt werden.
  • Der Umlenkbereich 67 wird in der Darstellung der Fig. 7 nicht von einem kühlenden zweiten Fluid umströmt, so dass der Wärmeübertrag im Wärmeübertrager 61 nur entlang der Rohre 68 und 69 stattfindet. Dadurch ist insgesamt die Wärmeübertragungsstrecke im Vergleich zu den vorausgegangenen Figuren reduziert, wodurch die insgesamt übertragbare Wärmemenge verringert wird. Der Umlenkbereich 67 kann lediglich dem Umgebungsmedium, wie beispielsweise der Luft, ausgesetzt sein, wodurch sowohl eine zusätzliche Abkühlung des ersten Fluids als auch eine ungewollte Erwärmung des ersten Fluids erfolgen kann.
  • Die Fig. 8 zeigt eine Schnittansicht durch einen Wärmeübertrager 81. In der Fig. 8 ist ein Wärmeübertrager 81 dargestellt, wie er bereits in der Fig. 5 bzw. 6 gezeigt ist. Der Wärmeübertrager 81 weist eine Mehrzahl erster Rohre 88 und eine Mehrzahl zweiter Rohre 89 auf, welche entsprechend der Strömungsrichtung 90 bzw. 91 durchströmt werden. Die ersten Rohre 88 bilden einen ersten Teilabschnitt 97 aus und die zweiten Rohre 89 bilden einen zweiten Teilabschnitt 98 aus. Die beiden Teilabschnitte 97, 98 bilden zusammen mit einem Umlenkbereich 87 einen ersten Strömungskanal 100 aus.
  • Die Rohre 88, 89 sind endseitig in Rohrböden 83 bzw. 84 aufgenommen. Die Rohre 88 bzw. 89 sind von dem Gehäuse 82 umgeben. Zwischen den Rohren 88, 89 und dem Gehäuse 82 ist ein zweiter Strömungskanal 99 ausgebildet, welcher von einem zweiten Fluid durchströmt werden kann. In den linken erweiterten Bereich 86 ist der Rohrboden 83 fluiddicht in das Gehäuse 82 eingesetzt. Am rechten erweiterten Bereich 95 ist das Gehäuse 82 mit dem Gehäuseteil 85 fluiddicht verbunden, derart, dass der Umlenkbereich 87 sowie der Rohrboden 93 innerhalb des Gehäuseteils 85 aufgenommen ist.
  • Zwischen dem Gehäuseteil 85 bzw. einer Innenwandung des Gehäuseteils 85 und einer Außenwandung des Umlenkbereichs 87 entsteht dadurch die Strömungsstrecke 94, welche ebenfalls, wie der Freiraum zwischen den Rohren 88 und 89 von dem zweiten Fluid, welches innerhalb des Gehäuses 82 strömt, entlang des zweiten Strömungskanals 99 durchströmt werden kann.
  • Die Strömungsstrecke 94 kann, wie bereits in Fig. 4 angedeutet, durch Mittel, welche den Querschnitt verkleinern, bzw. durch Turbulenzeinlagen derart gestaltet werden, dass ein optimaler Wärmeaustausch zwischen dem ersten Fluid im Umlenkbereich 87 und dem zweiten Fluid in der Strömungsstrecke 94 stattfindet. Insbesondere kann durch die Vorsehung von Mitteln zur Verkleinerung des Querschnitts der Strömungsstrecke 94 und/oder Turbulenzeinlagen der entstehende Druckverlust in der Strömungsstrecke 94 beeinflusst werden.
  • Der Umlenkbereich 87 ist wie in den vorausgegangenen Figuren durch einen Deckel 101 gebildet, welcher in den Rohrboden 84 eingesetzt ist und mit einem Dichtmittel 93 abgedichtet ist, derart, dass die Fluidströmung des ersten Fluids innerhalb des Umlenkbereichs 87 von der Fluidströmung des zweiten Fluids in der Strömungsstrecke 94 bzw. innerhalb des Gehäuses 82 getrennt ist. Die Umlenkung innerhalb des Umlenkbereichs 87 erfolgt entlang der Strömungsrichtung 96.
  • Die Gehäuse 2, 22, 42, 45, 82 und 85 können sowohl aus einem Kunststoff als auch aus einem metallischen Werkstoff gebildet sind. Das entsprechende Material ist angepasst an die Einsatzbedingung zu wählen. Sofern das jeweilige Gehäuse 2, 33, 43, 45, 82 und 85 von einem zweiten Fluid durchströmt wird, muss die Verbindung zwischen den jeweiligen Rohrböden 6, 16, 23, 26, 46, 56, 83, 84 und dem Gehäuse 2, 22, 42, 82 bzw. dem zusätzlichen Gehäuseteil 45, 85 derart fluiddicht ausgeführt sein, dass keine Leckagen zur Umgebung bzw. in den Kreislauf des ersten Fluids entstehen.
  • Durch eine zusätzliche Umströmung des Umlenkbereichs 7, 27, 47, 87 mit einem kühlenden Fluid kann eine Erhöhung der Kühlleistung des Wärmeübertragers 1, 21, 41, 81 insgesamt erreicht werden. Hierbei ist insbesondere darauf zu achten, dass der entstehende Druckverlust innerhalb des Wärmeübertragers 1, 21, 41, 81 durch die Maßnahme möglichst nicht ansteigt oder nur in einem geringen Maße ansteigt. Alle Merkmale der Fig. 1 bis 6 und 8 können einzeln miteinander kombiniert werden. Die Ausführungsformen 1 bis 6 und 8 weisen keinen beschränkenden Charakter auf. Insbesondere hinsichtlich der Abmaße, der Geometrien sowie der Anordnung der einzelnen Komponenten zueinander und der Materialwahl sind die Fig. 1 bis 6 und 8 beispielhaft und dienen zur Verdeutlichung des Erfindungsgedankens.

Claims (12)

  1. Wärmeübertrager (1, 21, 41, 81) mit einem ersten Strömungskanal (15, 39, 55, 100), der von einem ersten Fluid durchströmbar ist, und mit einem zweiten Strömungskanal (14, 38, 54, 99), der von einem zweiten Fluid durchströmbar ist, wobei der erste Strömungskanal (15, 39, 55, 100) einen ersten Teilabschnitt (12, 36, 52, 97), einen zweiten Teilabschnitt (13, 37, 53, 98) und einen Umlenkbereich aufweist, wobei der erste Teilabschnitt mit dem zweiten Teilabschnitt über den Umlenkbereich (7, 27, 47, 87) in Fluidkommunikation steht und der erste Teilabschnitt (12, 36, 52, 97), der zweite Teilabschnitt (13, 37, 53, 98) und der Umlenkbereich (7, 27, 47, 87) von dem zweiten Fluid umströmbar sind, dadurch gekennzeichnet, dass der erste Teilabschnitt (12, 36, 52, 97) und/oder der zweite Teilabschnitt (13, 37, 53, 98) des ersten Strömungskanals (15, 39, 55, 100) jeweils durch eine Mehrzahl von Rohren (8, 9, 28, 29, 48, 49, 88, 89) gebildet ist.
  2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmeübertrager ein Gehäuse (42, 45, 82, 85) aufweist, das einteilig oder mehrteilig mit zumindest einem ersten Gehäuseteil (42, 82) und einem zweiten Gehäuseteil (45, 85) ausgebildet ist.
  3. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass das Gehäuse (42, 45, 82, 85) den zweiten Strömungskanal zumindest teilweise ausbildet.
  4. Wärmeübertrager nach Anspruch 2, dadurch gekennzeichnet, dass das erste Gehäuseteil (42, 82) den ersten und zweiten Teilabschnitt umgibt und das zweite Gehäuseteil (45, 85) den Umlenkbereich (47, 87) umgibt.
  5. Wärmeübertrager nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Rohrboden (16, 23, 56, 84) mit einem Deckel (17, 25, 57, 101) einen Sammelkasten ausbildet, wobei das Innenvolumen des Sammelkastens den Umlenkbereich (7, 27, 47, 87) ausbildet.
  6. Wärmeübertrager (21, 81) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass zwischen einer den Umlenkbereich (27, 87) begrenzenden Außenwandung (25, 101) und einer Innenwandung des Gehäuses (22, 82, 85) und/oder einer Wandung des ersten Strömungskanals (39,100) eine Strömungsstrecke des zweiten Strömungskanals (35, 94) ausgebildet ist, welche von dem zweiten Fluid durchströmbar ist.
  7. Wärmeübertrager (21) nach Anspruch 6, dadurch gekennzeichnet, dass entlang der Strömungsstrecke (35) Turbulenzeinlagen (34) und/oder querschnittverengende Mittel (34) an der Außenwandung des Umlenkbereichs (27) und/oder an der Innenwandung des Gehäuses (22) angeordnet sind.
  8. Wärmeübertrager (21, 41, 81) nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass das Gehäuse (22, 42, 45, 82, 85) einen ersten Fluidanschluss (32, 33, 43, 44) und einen zweiten Fluidanschluss (32, 33, 43, 44) aufweist, worüber das zweite Fluid in das Gehäuse (22, 42, 45, 82, 85) zuführbar und aus dem Gehäuse (22, 42, 45, 82, 85) abführbar ist.
  9. Wärmeübertrager (1, 21, 41, 81) nach einem der vorhergehenden Ansprüche 2 bis 7, dadurch gekennzeichnet, dass der erste Teilabschnitt (12, 36, 52, 97) und der zweite Teilabschnitt (13, 37, 53, 98) (15, 39, 55, 100) und/oder der Umlenkbereich (7, 27, 47, 87) des ersten Strömungskanals in das Gehäuse (2, 22, 42, 45, 82, 85), welches den zweiten Strömungskanal (14, 38, 54, 99) zumindest teilweise ausbildet, derart integrierbar oder integriert ist, dass der zweite Strömungskanal (14, 38, 54, 99) fluiddicht gegenüber dem ersten Strömungskanal (15, 39, 55, 100) und/oder dem Umlenkbereich (7, 27, 47, 87) und der Umgebung abgedichtet ist.
  10. Wärmeübertrager (1, 21, 41, 81) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alle Rohre (8, 9, 28, 29, 48, 49, 88, 89) zumindest an einem gemeinsamen Endbereich in einem Rohrboden (6, 16, 23, 26, 46, 56, 83, 84) aufgenommen sind.
  11. Wärmeübertrager (1, 21, 41, 81) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fluidzuführung und die Fluidabführung des ersten Strömungskanals (15, 39, 55, 100) an einem gemeinsamen Endbereich des Wärmeübertragers (1, 21, 41, 81) angeordnet sind.
  12. Wärmeübertrager (1, 21, 41, 81) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Fluid ein Gas ist und das zweite Fluid ein Kühlmittel ist.
EP14189402.2A 2013-10-17 2014-10-17 Wärmeübertrager Active EP2863157B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201310221151 DE102013221151A1 (de) 2013-10-17 2013-10-17 Wärmeübertrager

Publications (2)

Publication Number Publication Date
EP2863157A1 true EP2863157A1 (de) 2015-04-22
EP2863157B1 EP2863157B1 (de) 2017-12-27

Family

ID=51730423

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14189402.2A Active EP2863157B1 (de) 2013-10-17 2014-10-17 Wärmeübertrager

Country Status (4)

Country Link
US (1) US20150107807A1 (de)
EP (1) EP2863157B1 (de)
CN (1) CN104567474A (de)
DE (1) DE102013221151A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060107A1 (fr) * 2016-12-09 2018-06-15 Valeo Systemes Thermiques Echangeur de chaleur, notamment un refroidisseur d’air de suralimentation de moteur de vehicule automobile

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016011254A1 (de) 2016-09-20 2018-03-22 Modine Manufacturing Company Bypass-Blockiervorrichtung für Wärmeübertrager
KR102371237B1 (ko) * 2017-05-11 2022-03-04 현대자동차 주식회사 수냉식 이지알 쿨러, 및 이의 제조방법
DE102017218254A1 (de) 2017-10-12 2019-04-18 Mahle International Gmbh Abgaswärmeübertrager
DE102017130153B4 (de) * 2017-12-15 2022-12-29 Hanon Systems Vorrichtung zur Wärmeübertragung und Verfahren zum Herstellen der Vorrichtung
WO2019183312A1 (en) 2018-03-23 2019-09-26 Modine Manufacturing Company High pressure capable liquid to refrigerant heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1868661A (en) * 1931-12-10 1932-07-26 Griscom Russell Co Heat exchanger
US2775311A (en) * 1955-09-26 1956-12-25 Standard Oil Co Sulfur removal in gas cooling
DE102004019554B4 (de) 2004-04-22 2007-08-30 Pierburg Gmbh Abgasrückführsystem für eine Verbrennungskraftmaschine
WO2008125485A1 (fr) * 2007-04-13 2008-10-23 Valeo Termico S.A. Echangeur de chaleur pour gaz, et son procede de fabrication correspondant
WO2009070129A2 (en) * 2007-11-30 2009-06-04 Evrovartrade D.O.O. Combined condensing heat exchanger
US20090277606A1 (en) * 2008-05-12 2009-11-12 Reiss Iii Thomas J Heat exchanger support and method of assembling a heat exchanger

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1641975A (en) * 1926-04-08 1927-09-13 Griscom Russell Co Heat exchanger with self-draining tube surface
US1979751A (en) * 1933-11-29 1934-11-06 Charles H Leach Heat exchange apparatus
US2091003A (en) * 1936-03-14 1937-08-24 J P Devine Mfg Co Inc Heat exchange apparatus
US2919903A (en) * 1957-03-18 1960-01-05 Phillips Petroleum Co Shell-tube heat exchange apparatus for condensate subcooling
US3173480A (en) * 1958-10-13 1965-03-16 Kenneth O Parker Heat exchanger assembly
FR2529309B1 (fr) * 1982-06-24 1987-07-10 Comp Generale Electricite Convecteur eau-air a effet de cheminee pour chauffer un local
US8967235B2 (en) * 2005-10-26 2015-03-03 Behr Gmbh & Co. Kg Heat exchanger, method for the production of a heat exchanger
DE102006051000A1 (de) * 2005-10-26 2007-07-12 Behr Gmbh & Co. Kg Wärmetauscher, Verfahren zur Herstellung eines Wärmetauschers
WO2007104491A1 (de) * 2006-03-10 2007-09-20 Behr Gmbh & Co. Kg Wärmetauscher für ein kraftfahrzeug
US8544454B2 (en) * 2006-03-16 2013-10-01 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle
US8794299B2 (en) * 2007-02-27 2014-08-05 Modine Manufacturing Company 2-Pass heat exchanger including thermal expansion joints
GB2444792B (en) * 2007-03-17 2008-11-12 Senior Uk Ltd U-shaped cooler
US9857109B2 (en) * 2008-01-02 2018-01-02 Johnson Controls Technology Company Heat exchanger
DE102009012024A1 (de) * 2009-03-10 2010-09-16 Behr Gmbh & Co. Kg Ladeluftkühler zur Anordnung in einem Saugrohr
DE102009043264A1 (de) * 2009-09-29 2011-03-31 Behr Gmbh & Co. Kg Wärmeübertrager
DE102009050884A1 (de) * 2009-10-27 2011-04-28 Behr Gmbh & Co. Kg Abgaswärmetauscher
DE102011100629B4 (de) * 2011-05-05 2022-05-19 MAHLE Behr GmbH & Co. KG Ladeluftkanal für einen Verbrennungsmotor
FR2977306B1 (fr) * 2011-06-30 2017-12-15 Valeo Systemes Thermiques Echangeur thermique notamment pour vehicule automobile
ITCO20110030A1 (it) * 2011-07-28 2013-01-29 Nuovo Pignone Spa Apparati e metodi di riscaldamento / raffreddamento di gas
DE102012206106A1 (de) * 2012-04-13 2013-10-17 Behr Gmbh & Co. Kg Anordnung eines Ladeluftkühlers in einem Ansaugrohr
JP6092650B2 (ja) * 2013-02-18 2017-03-08 三菱日立パワーシステムズ株式会社 熱交換器及びこれを備えたガスタービンプラント
BR102013014855B1 (pt) * 2013-06-13 2020-12-01 Valeo Sistemas Automotivos Ltda trocador de calor para veículo
WO2015141884A1 (ko) * 2014-03-21 2015-09-24 주식회사 다우정밀 냉각수 유로형 이지알 쿨러
EP2975353A1 (de) * 2014-07-16 2016-01-20 Casale SA Rohrbündelwärmetauscher
US9669377B2 (en) * 2014-12-12 2017-06-06 Uop Llc Ionic liquid reactor with heat exchanger
US20160370120A1 (en) * 2015-06-19 2016-12-22 Ingersoll-Rand Company Modular bonnet for variable-pass heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1868661A (en) * 1931-12-10 1932-07-26 Griscom Russell Co Heat exchanger
US2775311A (en) * 1955-09-26 1956-12-25 Standard Oil Co Sulfur removal in gas cooling
DE102004019554B4 (de) 2004-04-22 2007-08-30 Pierburg Gmbh Abgasrückführsystem für eine Verbrennungskraftmaschine
WO2008125485A1 (fr) * 2007-04-13 2008-10-23 Valeo Termico S.A. Echangeur de chaleur pour gaz, et son procede de fabrication correspondant
WO2009070129A2 (en) * 2007-11-30 2009-06-04 Evrovartrade D.O.O. Combined condensing heat exchanger
US20090277606A1 (en) * 2008-05-12 2009-11-12 Reiss Iii Thomas J Heat exchanger support and method of assembling a heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3060107A1 (fr) * 2016-12-09 2018-06-15 Valeo Systemes Thermiques Echangeur de chaleur, notamment un refroidisseur d’air de suralimentation de moteur de vehicule automobile

Also Published As

Publication number Publication date
EP2863157B1 (de) 2017-12-27
DE102013221151A1 (de) 2015-04-23
US20150107807A1 (en) 2015-04-23
CN104567474A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
EP3169964B1 (de) Wärmeübertrager
EP2863157B1 (de) Wärmeübertrager
EP0828980B1 (de) Wärmetauscher
EP1977185B1 (de) Wärmetauscher für einen verbrennungsmotor
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
DE102007049665A1 (de) Wärmeaustauscher
EP3334992B1 (de) Stapelscheiben-wärmeübertrager, insbesondere ladeluftkühler
DE10302948A1 (de) Wärmeübertrager, insbesondere Abgaskühler für Kraftfahrzeuge
EP1955001A1 (de) Kühlvorrichtung für eine verbrennungskraftmaschine
EP2870336B1 (de) Wärmeübertrager
DE102007024630A1 (de) Wärmetauscher, insbesondere Ladeluftkühler oder Abgaskühler für eine Brennkraftmaschine eines Kraftfahrzeuges und dessen Herstellungsverfahren
EP2628896A2 (de) Wärmeübertrageranordnung
DE102016007089A1 (de) Flanschplatte mit Unterkühlfunktion
DE102006049106A1 (de) Wärmetauscher
WO2013174914A1 (de) Wärmetauscher zum temperieren eines ersten fluids unter verwendung eines zweiten fluids
DE102005006055A1 (de) Wärmetauscher
WO2016146296A1 (de) Wärmetauscher, insbesondere für eine abwärmenutzungseinrichtung
EP1956212A1 (de) Anordnung eines Ladeluftkühlers in einem Ansaugsystem einer Brennkraftmaschine
WO2016146294A1 (de) Wärmetauscher, insbesondere für ein kraftfahrzeug
EP3066407B1 (de) Wärmeübertrager
EP3161402B1 (de) Wärmeübertrager
DE102017115919B4 (de) Abgaswärmetauscher mit zwei voneinander verschiedenen Arbeitsbereichen
DE102010007124B4 (de) Wärmeübertragungsvorrichtung sowie Anordnung zur Abgasrückführung mit einer derartigen Wärmeübertragungsvorrichtung
DE102013211221A1 (de) Wärmeübertrager
DE102015223188A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151022

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 26/32 20160101ALI20170801BHEP

Ipc: F28F 9/02 20060101ALN20170801BHEP

Ipc: F28D 7/16 20060101AFI20170801BHEP

Ipc: F28D 21/00 20060101ALI20170801BHEP

INTG Intention to grant announced

Effective date: 20170818

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

INTC Intention to grant announced (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/02 20060101ALN20171024BHEP

Ipc: F28D 7/16 20060101AFI20171024BHEP

Ipc: F02M 26/32 20160101ALI20171024BHEP

Ipc: F28D 21/00 20060101ALI20171024BHEP

INTG Intention to grant announced

Effective date: 20171114

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 958658

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006725

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006725

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

26N No opposition filed

Effective date: 20180928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181017

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181017

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181017

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141017

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 958658

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211026

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231020

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER:

Effective date: 20240521