EP2848088A2 - Vorrichtung zur induktiven erwärmung eines heizkörpers - Google Patents

Vorrichtung zur induktiven erwärmung eines heizkörpers

Info

Publication number
EP2848088A2
EP2848088A2 EP13721750.1A EP13721750A EP2848088A2 EP 2848088 A2 EP2848088 A2 EP 2848088A2 EP 13721750 A EP13721750 A EP 13721750A EP 2848088 A2 EP2848088 A2 EP 2848088A2
Authority
EP
European Patent Office
Prior art keywords
temperature
radiator
induction coil
resonant circuit
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP13721750.1A
Other languages
English (en)
French (fr)
Inventor
Harri Pankratz
Hans-Joachim Thiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Behr Hella Thermocontrol GmbH
Original Assignee
Behr Hella Thermocontrol GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Hella Thermocontrol GmbH filed Critical Behr Hella Thermocontrol GmbH
Publication of EP2848088A2 publication Critical patent/EP2848088A2/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • G01K7/38Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils the variations of temperature influencing the magnetic permeability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a device for inductive heating of a radiator, in particular Mitteis a magnetic field generated by an induction coil, with an induction coil which is connected to a resonant circuit, and a method for determining a temperature of a radiator.
  • electrically conductive materials can be heated. This is done by placing an electrically conductive material in a magnetic field generated by an induction coil.
  • the magnetic field is generated by alternating current, which leads to a reversal of the magnetic field in the frequency of the alternating current.
  • the alternating magnetic field induces eddy currents into the electrically conductive material. These induced alternating currents counteract the resistivity of the material, generating heat.
  • the induction can take place here through non-conductive materials, which experience no heating. Only the heat radiation of the electrically conductive Material can lead to heating of the surrounding non-conductive materials.
  • Induction heating can be found in many applications today. The most common industrial applications include the annealing, annealing, melting or welding of metals. But also in household technology, inductive heating can be found, for example, in induction hobs.
  • Induction heaters are also used to heat fluids that flow around a radiator.
  • induction heaters are suitable because with a relatively high efficiency electrical energy can be converted into heat. This is particularly advantageous, since in electric vehicles no waste heat is generated by the combustion engine and thus can not be used for heating, for example, the passenger compartment.
  • the temperature of an object can be detected by temperature sensors. These may be either directly attached to the article, or attached to the article in conjunction with a thermal bridge. These temperature sensors work approximately by the principle of the temperature-dependent change in the resistance of the sensor. For this purpose, however, the sensor or the thermal bridge must be used as an additional part, whereby costs arise, and further construction space is claimed.
  • optical temperature measuring devices are also known which determine a temperature without contact via optical methods. In order to be able to use optical methods, the area to be measured must be observable and, in the best case, also accessible. However, this is not possible everywhere.
  • the determination of the temperature of a heated by induction heating body is also carried out by methods that exploit the temperature-dependent permeability properties of a material.
  • the object of the present invention to provide a device for inductive heating of a radiator and a method for determining the temperature of a radiator, an induction heater, which or in a simple and cost-effective manner, without additional components and without requirements on the accessibility of the Radiator allows to determine the temperature of the radiator.
  • the object of the present invention is achieved with respect to the device with the features according to claim 1 and with respect to the method by a Warmweg horrung with the features of claim 7 solved.
  • a device for inductive heating of a radiator in particular by means of a magnetic field generated by an induction coil, with an induction coil which is connected to a resonant circuit, wherein the resonant circuit has at least a first capacitor and at least a first current source, and the coil has a specific inductance and has a resistance, and the material of the radiator has a constant at least in partial temperature ranges permeability.
  • the resonant circuit is operable with alternating current.
  • a magnetic field that repolves with the frequency of the alternating current forms, via which alternating currents are induced in the heating element.
  • the capacitor is connected in series with the current source and the induction coil.
  • the material of the radiator has a temperature-dependent electrical conductivity. Via the electrical conductivity, the resistance of the material can be calculated, since the resistance and the conductivity are inversely proportional. For the method according to the invention, it is necessary for the heating element to have a temperature-dependent resistance.
  • the resonant circuit has at least one first measuring device for determining the resonant frequency of the Oscillatory circuit on and / or has a second measuring device for determining the power consumption of the resonant circuit.
  • the device has at least one third measuring device for measuring the temperature-dependent resistance of the heating element, wherein the temperature of the heating element can be determined from the resistance.
  • the temperature of the radiator is ultimately derived.
  • the temperature of the radiator is determined.
  • the inductance of the induction coil is determined via the resonant frequency of the resonant circuit and / or the resistance of the induction coil is determined via the power consumption of the resonant circuit. It is also expedient for a method if From the inductance and / or the resistance of the induction coil, the temperature of the radiator is determined.
  • FIG. 1 shows a schematic structure of an induction heater
  • Fig. 2 shows a detailed representation of the circuit which is connected to the induction coil which generates the magnetic field
  • FIG. 3 shows a flowchart which illustrates individual method steps of an exemplary embodiment.
  • Figure 1 shows the basic structure of an induction heater. Shown is the induction coil 2, which is connected to a resonant circuit 3, which is operated with AC voltage. Due to the AC voltage in the resonant circuit 3, a magnetic field 1 is generated in the induction coil 2. Due to the alternating current applied in the resonant circuit 3, the magnetic field 1 is an alternating magnetic field which changes its magnetic orientation with the frequency of the alternating current.
  • a radiator 4 In the magnetic field 1, a radiator 4 is inserted, which consists of an electrically conductive material. In the radiator 4 1 eddy currents 5 are induced due to the magnetic field. Since the eddy currents 5 act against the specific resistance of the radiator 4, heat is generated in the radiator 4.
  • the material from which the radiator 4 consists must have a certain specific internal resistance in order to allow effective heating of the radiator 4.
  • the material 4 has a constant permeability in the temperature range relevant for the induction heating, which has the consequence that temperature measuring methods which depend on the Temperature-changing permeability can not be used as a basis
  • the radiator 4 must be arranged at a distance from the induction coil 2 that it is still within the forming magnetic field. Between the radiator 4 and the induction coil 2, other elements may be arranged from electrically non-conductive materials.
  • the radiator 4 may also have other external dimensions and shapes in alternative embodiments. Thus, in principle any regular or even irregular arrangement of the material of the radiator 4 is conceivable.
  • FIG. 2 illustrates a detailed view of the resonant circuit 3.
  • a capacitor 6 is integrated into the resonant circuit 3.
  • the capacitor 6 is connected in series with the induction coil 2 and the voltage source 9.
  • the induction coil 2 has an internal resistance 7 and an inductance 8. These two variables can be determined in the resonant circuit 3 shown in FIG. 2 by measuring the power consumption of the resonant circuit 3 or by measuring the resonant frequency of the resonant circuit 3.
  • the inductance 8 can be determined via the measurement of the resonant frequency of the resonant circuit 3 and the internal resistance 7 via the power consumption of the resonant circuit 3.
  • the internal resistance of the radiator 4. This is in an embodiment according to the invention of the temperature of the radiator 4 dependent.
  • the resistance of the material is directly inversely proportional to the Linked conductivity of the material. The resistance thus corresponds to the reciprocal of the electrical conductivity.
  • the induced eddy currents 5 act in turn on the magnetic field 1 of the induction coil 2 and thereby change the electrical properties of the induction coil 2,
  • FIG. 3 shows a flowchart 10 for clarifying the method for
  • the resonant frequency of the resonant circuit 3 is measured. This can be done for example via a frequency counter. In block 12, the power consumption of the resonant circuit 3 is then measured.
  • the resistance 7 of the induction coil 2 is determined from the measured in block 12 power consumption of the resonant circuit 3.
  • the temperature of the heating element is now determined from the inductance 8 and / or from the resistor 7 of the induction coil 2. This procedure is based on the fact that by changing the temperature-dependent resistance of the radiator 4, the formation of the eddy currents 5 in the radiator 4 changes. The eddy currents 5 in turn have an influence on the magnetic field 1 which, in turn, acts directly on the electrical properties of the induction coil 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • General Induction Heating (AREA)

Description

Vorrichtung zur induktiven Erwärmung eines Heizkörpers
Beschreibung
Technisches Gebiet
Die Erfindung betrifft eine Vorrichtung zur induktiven Erwärmung eines Heizkörpers, insbesondere mitteis eines durch eine Induktionsspule erzeugten Magnetfeldes, mit einer Induktionsspule, die an einen Schwingkreis angeschlossen ist, sowie ein Verfahren zur Bestimmung einer Temperatur eines Heizkörpers.
Stand der Technik Per Induktion können elektrisch leitende Materialien erwärmt werden. Dies geschieht indem ein elektrisch leitfähiges Material in ein Magnetfeld, welches durch eine Induktionsspule erzeugt wird gebracht wird. Das Magnetfeld wird hierbei durch Wechselstrom erzeugt, was zu einer Umpolung des Magnetfeldes in der Frequenz des Wechselstroms führt.
Durch das wechselnde Magnetfeld werden Wirbelströme in das elektrisch leitende Material induziert. Diese induzierten Wechselströme wirken gegen den spezifischen Widerstand des Materials, wodurch Wärme erzeugt wird. Die Induktion kann hierbei durch nicht leitende Materialien hindurch erfolgen, welche keine Erwärmung erfahren. Lediglich die Wärmeabstrahlung des elektrisch leitenden Materials kann zu eine Erwärmung der umgebenden nicht leitenden Materialien führen.
Erwärmung per Induktion ist heute in vielen Anwendungen zu finden. Die häufigsten industriellen Anwendungen sind etwa das Anlassen, Glühen, Schmelzen oder Schweißen von Metallen. Aber auch in der Haushalttechnik ist das induktive Erwärmen etwa in Induktionskochfeldern zu finden.
Induktionsheizungen werden weiterhin auch zur Erwärmung von Fluiden genutzt, welche einen Heizkörper umfließen. Insbesondere zum Einsatz in Wasserkreisläufen in Elektrofahrzeugen sind Induktionsheizungen geeignet, da mit einem relativ hohen Wirkungsgrad elektrische Energie in Wärme umgesetzt werden kann. Dies ist insbesondere vorteilhaft, da bei Elektrofahrzeugen keine Abwärme vom Ve rbre nn u ng smoto r entsteht und diese somit nicht zur Erwärmung etwa des Fahrgastinnenraums genutzt werden kann.
Um die abgegebene Heizleistung einer Induktionsheizung gezielt regeln zu können, und um sicherstellen zu können, dass die Induktionsheizung nicht überhitzt ist es notwendig die Temperatur des Heizkörpers, welcher induktiv erwärmt wird genau bestimmen zu können. Hierfür sind im Stand der Technik unterschiedliche Methoden bekannt.
Unter anderem kann die Temperatur eines Gegenstandes durch Temperatursensoren erfasst werden. Diese können entweder direkt auf dem Gegenstand angebracht sein, oder in Verbindung mit einer thermischen Brücke am Gegenstand befestigt sein. Diese Temperatursensoren arbeiten etwa durch das Prinzip der temperaturabhängigen Veränderung des Widerstandes des Sensors. Hierzu muss jedoch der Sensor oder die thermische Brücke als zusätzliches Teil genutzt werden, wodurch Kosten entstehen, und weiterhin Bauraum beansprucht wird. Außerdem sind ebenfalls optische Temperaturmessvorrichtungen bekannt, welche eine Temperatur berührungslos über optische Verfahren bestimmen. Um optische Verfahren einsetzen zu können muss der zu messende Bereich einsehbar und im Besten Falle auch zugänglich sein. Dies ist jedoch nicht überall möglich. Die Bestimmung der Temperatur eines mittels Induktion erwärmten Heizkörpers ist überdies auch durch Verfahren, welche die temperaturabhängigen Permeabilitätseigenschaften eines Materials ausnutzen erfolgen. Dies ist etwa in der DE 42 38 862 C2 offenbart. Nachteilig an diesem Verfahren ist insbesondere, dass eine Anwendung nicht für Materialien möglich ist, die eine konstante Permeabilität für den im Anwendungsfall interessanten Temperaturbereich aufweisen, wodurch die Materialauswahl eingeschränkt wird, bzw. die Anwendung des Verfahrens nur bei speziellen Material- Temperaturbereich-Kombinationen möglich ist.
Bei allem nach dem Stand der Technik bekannten Verfahren werden zusätzliche Komponenten benötigt um eine Temperaturbestimmung durchführen zu können oder es wird ein ausreichender Zugang zur zu messenden Stelle benötigt.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Daher ist es die Aufgabe der vorliegenden Erfindung eine Vorrichtung zur induktiven Erwärmung eines Heizkörpers und ein Verfahren zur Bestimmung der Temperatur eines Heizkörpers eine Induktionsheizung zu schaffen, welche bzw. welches es auf einfache und kostengünstige Weise, ohne zusätzliche Komponenten und ohne Anforderungen an die Zugänglichkeit des Heizkörpers erlaubt die Temperatur des Heizkörpers zu bestimmen. Die Aufgabe der vorliegenden Erfindung wird bezüglich der Vorrichtung mit den Merkmalen gemäß Anspruch 1 gelöst und bezüglich des Verfahrens durch eine Warmwegsteuerung mit den Merkmalen gemäß Anspruch 7 gelöst. Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen definiert. Vorteilhaft ist eine Vorrichtung zur induktiven Erwärmung eines Heizkörpers, insbesondere mittels eines durch eine Induktionsspule erzeugten Magnetfeldes, mit einer Induktionsspule, die an einen Schwingkreis angeschlossen ist, wobei der Schwingkreis mindestens einen erste Kondensator und mindestens eine erste Stromquelle aufweist, und die Spule eine spezifische Induktivität sowie einen Widerstand aufweist, und das Material des Heizkörpers eine zumindest in Temperaturteilbereichen konstante Permeabilität aufweist.
Weiterhin vorteilhaft ist es, wenn der Schwingkreis mit Wechselstrom betreibbar ist. Hierdurch bildet sich ein sich mit der Frequenz des Wechselstroms umpolarisierendes Magnetfeld aus, über welches Wechselströme in den Heizkörper induziert werden.
Auch ist es zweckmäßig, wenn der Kondensator mit der Stromquelle und der Induktionsspule in Reihe geschaltet ist.
Außerdem vorteilhaft ist es, wenn das Material des Heizkörpers eine temperaturabhängige elektrische Leitfähigkeit aufweist. Über die elektrische Leitfähigkeit ist der Widerstand des Materials berechenbar, da der Widerstand und die Leitfähigkeit umgekehrt proportional zusammenhängen. Für das erfindungsgemäße Verfahren ist es notwendig, dass der Heizkörper einen temperaturabhängigen Widerstand aufweist.
In einer weiteren bevorzugten Ausführungsform weist der Schwingkreis mindestens eine erste Messeinrichtung zur Bestimmung der Resonanzfrequenz des Schwingkreises auf und/oder weist eine zweite Messeinrichtung zur Bestimmung des Leistungsverbrauchs des Schwingkreises auf.
Weiterhin vorteilhaft ist es, wenn die Vorrichtung mindestens eine dritte Messeinrichtung zur Messung des temperaturabhängigen Widerstands des Heizkörpers aufweist, wobei aus dem Widerstand die Temperatur des Heizkörpers ermittelbar ist.
Über den Widerstand des Heizkörpers kann letztlich die Temperatur des Heizkörpers abgeleitet wird.
Auch zweckmäßig ist es, wenn der temperaturabhängige Widerstands des
Heizkörpers ermittelt, wie insbesondere berechnet wird, wobei aus dem Widerstand die Temperatur des Heizkörpers ermittelbar ist. Hinsichtlich des Verfahrens ist es vorteilhaft, wenn zur Bestimmung der Temperatur eines Heizkörpers, die Induktivität der Induktionsspule über die Resonanzfrequenz des Schwingkreises ermittelt wird und/oder der Widerstand der Induktionsspule über den Leistungsverbrauch des Schwingkreises ermittelt wird, Weiterhin zweckmäßig für ein Verfahren ist es, wenn aus der Induktivität und/oder dem Widerstand der Induktionsspule die Temperatur des Heizkörpers ermittelt wird.
Kurze Besch rejbung der Zeichnungen
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung detailliert erläutert. In der Zeichnung zeigen:
Fig.1 zeigt einen schematischen Aufbau einer Induktionsheizung, Fig. 2 zeigt eine Detaildarstellung des Stromkreises, welcher an die Induktionsspule angeschlossen ist, die das Magnetfeld erzeugt, und
Fig. 3 zeigt ein Flussdiagramm, welches einzelne Verfahrensschritte eines Ausführungsbeispiels verdeutlicht.
Bevorzugte Ausführung der Erfindung
Figur 1 zeigt den prinzipiellen Aufbau einer Induktionsheizung. Dargestellt ist die Induktionsspule 2, welche an einen Schwingkreis 3 angeschlossen ist, welcher mit Wechselspannung betrieben wird. Durch die Wechselspannung im Schwingkreis 3 wird in der Induktionsspule 2 ein Magnetfeld 1 erzeugt. Auf Grund des im Schwingkreis 3 anliegenden Wechselstroms ist das Magnetfeld 1 ein Wechselmagnetfeld, welches mit der Frequenz des Wechselstroms seine magnetische Ausrichtung ändert.
In das Magnetfeld 1 ist ein Heizkörper 4 eingebracht, welcher aus einem elektrisch leitenden Material besteht. In den Heizkörper 4 werden auf Grund des Magnetfeldes 1 Wirbelströme 5 induziert. Da die Wirbelströme 5 gegen den spezifischen Widerstand des Heizkörpers 4 wirken, entsteht Wärme im Heizkörper 4.
Hieraus ergibt sich, dass das Material aus dem der Heizkörper 4 besteht einen gewissen spezifischen inneren Widerstand aufweisen muss, um eine wirksame Erwärmung des Heizkörpers 4 zu ermöglichen. Je geringer der innere Widerstand des Materials ist, umso geringer wird der Erwärmungseffekt ausfallen.
In einer erfindungsgemäßen Ausführung weist das Material 4 in den für die Induktionsheizung relevanten Temperaturbereich eine konstante Permeabilität auf, was zur Folge hat, dass Temperaturmessverfahren, die eine sich in Abhängigkeit der Temperatur verändernde Permeabilität zu Grunde legen nicht eingesetzt werden können
Der Heizkörper 4 muss in einem solchen Abstand zur Induktionsspule 2 angeordnet sein, dass er sich noch innerhalb des sich bildenden Magnetfeldes befindet. Zwischen dem Heizkörper 4 und der Induktionsspule 2 können andere Elemente aus elektrisch nicht leitenden Materialien angeordnet sein.
Nach diesem einfachen Prinzip sind Induktionsheizungen aufgebaut. Der Heizkörper 4 kann in alternativen Ausführungsformen auch andere Außenmaße und -formen aufweisen. So ist prinzipiell jede regelmäßige oder auch unregelmäßige Anordnung des Materials des Heizkörpers 4 denkbar.
Figur 2 stellt eine Detailansicht des Schwingkreises 3 dar. Neben der Spannungsquelle 9 und der Induktionsspule 2 ist ein Kondensator 6 in den Schwingkreis 3 integriert. Der Kondensator 6 ist mit der Induktionsspule 2 und der Spannungsquelle 9 in Reihe geschaltet.
Die Induktionsspule 2 weist einen inneren Widerstand 7 und eine Induktivität 8 auf. Diese beiden Größen lassen sich in dem in Figur 2 gezeigten Schwingkreis 3 über die Messung des Leistungsverbrauchs des Schwingkreises 3 oder die Messung der Resonanzfrequenz des Schwingkreises 3 ermitteln.
Hierbei ist insbesondere die Induktivität 8 über die Messung der Resonanzfrequenz des Schwingkreises 3 und der innere Widerstand 7 über den Leistungsverbrauch des Schwingkreises 3 ermittelbar.
In der Figur 2 nicht dargestellt ist der innere Widerstand des Heizkörpers 4. Dieser ist in einer erfindungsgemäßen Ausführung von der Temperatur des Heizkörpers 4 abhängig. Der Widerstand des Materials ist direkt umgekehrt proportional mit der Leitfähigkeit des Materials verknüpft. Der Widerstand entspricht damit dem Kehrwert der elektrischen Leitfähigkeit.
Da die Stärke und die Verteilung der Wirbelströme 5 im Heizkörper 4 in hohem Maße von dem inneren Widerstand, bzw. der Leitfähigkeit des Heizkörpers 4 abhängt, folgt als logische Konsequenz, dass die Veränderung des Widerstandes aufgrund der sich verändernden Temperatur, Auswirkungen auf die Wirbelströme 5 hat. Die Stärke und Verteilung der Wirbelströme 5 ist somit ebenfalls temperaturabhängig.
Die induzierten Wirbelströme 5 wirken ihrerseits auf das Magnetfeld 1 der Induktionsspule 2 ein und verändern hierdurch die elektrischen Eigenschaften der Induktionsspule 2,
Diese Veränderung der elektrischen Eigenschaften betrifft den inneren Widerstand 7 und die Induktivität 8 der Induktionsspule 2. Aus der Veränderung dieser beiden Größen kann damit auf die Veränderung des elektrischen Widerstandes des Heizkörpers 4 und damit auf seine Temperatur geschlossen werden.
Es kann somit ein direkter Bezug zwischen den Größen Induktivität 8, innerer Widerstand 7 der Induktionsspule 2 und dem temperaturabhängigen Widerstand bzw. der Leitfähigkeit des Heizkörpers 4 hergestellt werden. Wodurch direkte Aussagen über die Temperatur des Heizkörpers 4 über die Bestimmung der Induktivität 8 und/oder dem inneren Widerstand 7 der Induktionsspule 2 möglich werden Bei genügend hoher Temperaturabhängigkeit des Widerstandes, bzw. der Leitfähigkeit des Heizkörpers 4 ist es möglich die Temperatur des Heizkörpers 4 aus nur einer der beiden Größen, Induktivität 8 oder Widerstand 7 der Induktionsspule 2 zu ermitteln. Figur 3 zeigt ein Flussdiagramm 10 zur Verdeutlichung des Verfahrens zur
Bestimmung der Temperatur eines Heizkörpers 4, wobei in Block 1 1 die Resonanzfrequenz des Schwingkreises 3 gemessen wird. Dies kann beispielsweise über einen Frequenzzähler bewerkstelligt werden. In Block 12 wird dann der Leistungsverbrauch des Schwingkreises 3 gemessen.
Mit dem in Block 1 1 ermittelten Wert für die Resonanzfrequenz lässt sich nun die Induktivität 8 der Induktionsspule 2 ermitteln. Dies geschieht in Block 13.
In Block 14 wird der Widerstand 7 der Induktionsspule 2 aus dem in Block 12 gemessenen Leistungsverbrauch des Schwingkreises 3 ermittelt.
In Block 15 wird nun aus der Induktivität 8 und/oder aus dem Widerstand 7 der Induktionsspule 2 die Temperatur des Heizkörpers ermittelt. Dieses Vorgehen basiert darauf, dass durch eine Veränderung des temperaturabhängigen Widerstands des Heizkörpers 4 sich auch die Ausbildung der Wirbelströme 5 im Heizkörper 4 verändert. Die Wirbelströme 5 haben ihrerseits Einfluss auf das Magnetfeld 1 welches wiederum direkt auf die elektrischen Eigenschaften der Induktionsspule 2 einwirkt.

Claims

Patentansprüche
1 . Vorrichtung zur induktiven Erwärmung eines Heizkörpers (4), insbesondere mittels eines durch eine Induktionsspule (2) erzeugten Magnetfeldes (1 ), mit einer Induktionsspule (2), die an einen Schwingkreis (3) angeschlossen ist, dadurch gekennzeichnet, dass der Schwingkreis (3) mindestens einen erste Kondensator (6) und mindestens eine erste Stromquelle (9) aufweist, und die Induktionsspule (2) eine spezifische Induktivität (8) sowie einen Widerstand (7) aufweist, und das Material des Heizkörpers (4) eine zumindest in Temperaturteilbereichen im Wesentlichen konstante Permeabilität aufweist.
2. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schwingkreis (3) mit Wechselstrom betreibbar ist.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kondensator (6) mit der Stromquelle (9) und der Induktionsspule (2) in Reihe geschaltet ist.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Material des Heizkörpers (4) eine temperaturabhängige elektrische Leitfähigkeit aufweist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schwingkreis (3) mindestens eine erste Messeinrichtung zur Bestimmung der Resonanzfrequenz des Schwingkreises (3) aufweist und/oder eine zweite Messeinrichtung zur Bestimmung des Leistungsverbrauchs des Schwingkreises (3) aufweist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung mindestens eine dritte Messeinrichtung zur Messung des temperaturabhängigen Widerstands des Heizkörpers (4) aufweist, wobei aus dem Widerstand die Temperatur des Heizkörpers ermittelbar ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der temperaturabhängige Widerstands des Heizkörpers {4} ermittelt, wie insbesondere berechnet wird, wobei aus dem Widerstand die Temperatur des Heizkörpers ermittelbar ist.
8. Verfahren zur Bestimmung der Temperatur eines Heizkörpers (4), insbesondere in einer Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Induktivität (7) der Induktionsspule (2) über die Resonanzfrequenz des Schwingkreises (3) ermittelt wird und/oder der Widerstand (8) der Induktionsspule (2) über den Leistungsverbrauch des Schwingkreises (3) ermittelt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass aus der Induktivität und/oder dem Widerstand der Induktionsspule die Temperatur des Heizkörpers ermittelt wird.
EP13721750.1A 2012-05-10 2013-05-08 Vorrichtung zur induktiven erwärmung eines heizkörpers Ceased EP2848088A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012207847A DE102012207847A1 (de) 2012-05-10 2012-05-10 Vorrichtung zur induktiven Erwärmung eines Heizkörpers
PCT/EP2013/059640 WO2013167686A2 (de) 2012-05-10 2013-05-08 Vorrichtung zur induktiven erwärmung eines heizkörpers

Publications (1)

Publication Number Publication Date
EP2848088A2 true EP2848088A2 (de) 2015-03-18

Family

ID=48407560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13721750.1A Ceased EP2848088A2 (de) 2012-05-10 2013-05-08 Vorrichtung zur induktiven erwärmung eines heizkörpers

Country Status (8)

Country Link
US (1) US9615407B2 (de)
EP (1) EP2848088A2 (de)
JP (1) JP6218809B2 (de)
KR (1) KR20150011827A (de)
CN (1) CN104272863A (de)
CA (1) CA2870241A1 (de)
DE (2) DE102012207847A1 (de)
WO (1) WO2013167686A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201518809D0 (en) * 2015-10-23 2015-12-09 The Technology Partnership Plc Temperature sensor
DE102015016830A1 (de) 2015-12-28 2017-06-29 Haimer Gmbh Schrumpfgerät für den vorzugsweise mobilen Einsatz
DE102015016831A1 (de) * 2015-12-28 2017-06-29 Haimer Gmbh Schrumpfgerät mit Heizkontrolle
WO2017149055A1 (en) * 2016-03-04 2017-09-08 Arcelik Anonim Sirketi Induction heating cooker power control circuit
CN109565910B (zh) 2016-06-29 2021-11-09 Omg公司 操作感应加热装置的方法和对工件进行感应加热的装置
CN106028491A (zh) * 2016-07-22 2016-10-12 深圳市鑫汇科股份有限公司 电磁感应加热装置
DE102016122744A1 (de) 2016-11-25 2018-05-30 Miele & Cie. Kg Verfahren und Ansteuerschaltung für einen induktionsbeheizten Wäschetrockner
CN108338692A (zh) * 2017-01-25 2018-07-31 深圳市鑫汇科股份有限公司 一种电磁感应烧烤炊具
JP6886685B2 (ja) * 2017-02-27 2021-06-16 トクデン株式会社 過熱水蒸気生成装置及び当該装置に用いられる導体管の製造方法
CN107390740A (zh) * 2017-07-26 2017-11-24 珠海格力电器股份有限公司 加热设备控制方法和装置
US11714008B2 (en) * 2019-03-07 2023-08-01 Te Connectivity Solutions Gmbh Isolated temperature sensing for hems contacts
GB2582930B (en) * 2019-04-08 2023-01-11 Edwards Ltd Induction heating method and apparatus
DE102019119731A1 (de) * 2019-07-22 2021-01-28 Miele & Cie. Kg Induktionskochgeschirr für ein Induktionskochsystem mit einem Temperatursensor, Induktionskochsystem und Verfahren zum Betrieb des Induktionskochsystems
CN112714522B (zh) * 2019-10-25 2023-03-31 佛山市顺德区美的电热电器制造有限公司 电磁加热设备及其测温方法和装置
DE102019217690A1 (de) * 2019-11-18 2021-05-20 Mahle International Gmbh Heizmodul
CN113826954B (zh) * 2020-06-23 2022-12-09 比亚迪股份有限公司 一种非接触式的温度检测电路及电子烟

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540408A1 (de) * 1995-10-30 1997-05-07 Herchenbach Wolfgang Kochsystem
JPH10183326A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 誘導加熱装置の制御方法
US5783806A (en) * 1994-12-28 1998-07-21 Canon Kabushiki Kaiaha Image heating device using electromagnetic induction
DE19714701A1 (de) * 1997-04-09 1998-10-15 Innovat Ges Fuer Sondermaschin Geregeltes induktives Erwärmungssystem
JP2003339166A (ja) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
DE102005050038A1 (de) * 2005-10-14 2007-05-24 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Betrieb einer Induktionsheizeinrichtung
WO2008003872A2 (fr) * 2006-07-06 2008-01-10 Seb Sa Plaque de cuisson permettant la détection de la température d'un article culinaire
DE102009047185A1 (de) * 2009-11-26 2011-06-01 E.G.O. Elektro-Gerätebau GmbH Verfahren und Induktionsheizeinrichtung zum Ermittlen einer Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens
EP2437573A1 (de) * 2009-05-26 2012-04-04 Mitsubishi Electric Corporation Induktionskochgerät und induktionserhitzungsverfahren

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2646049B1 (fr) * 1989-04-18 1991-05-24 Cableco Sa Plaque electrique chauffante amovible
DE4238862C2 (de) 1992-01-30 1997-02-06 Daimler Benz Ag Temperatursensor
JP3398172B2 (ja) * 1993-04-09 2003-04-21 電気興業株式会社 高周波誘導加熱における加熱温度制御方法及び高周波誘導加熱温度制御装置
JPH11121154A (ja) * 1997-10-16 1999-04-30 Mitsubishi Electric Corp 誘導加熱装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783806A (en) * 1994-12-28 1998-07-21 Canon Kabushiki Kaiaha Image heating device using electromagnetic induction
DE19540408A1 (de) * 1995-10-30 1997-05-07 Herchenbach Wolfgang Kochsystem
JPH10183326A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 誘導加熱装置の制御方法
DE19714701A1 (de) * 1997-04-09 1998-10-15 Innovat Ges Fuer Sondermaschin Geregeltes induktives Erwärmungssystem
JP2003339166A (ja) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd 誘導加熱装置、およびこれを用いた誘導加熱調理器と炊飯器
DE102005050038A1 (de) * 2005-10-14 2007-05-24 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Betrieb einer Induktionsheizeinrichtung
WO2008003872A2 (fr) * 2006-07-06 2008-01-10 Seb Sa Plaque de cuisson permettant la détection de la température d'un article culinaire
EP2437573A1 (de) * 2009-05-26 2012-04-04 Mitsubishi Electric Corporation Induktionskochgerät und induktionserhitzungsverfahren
DE102009047185A1 (de) * 2009-11-26 2011-06-01 E.G.O. Elektro-Gerätebau GmbH Verfahren und Induktionsheizeinrichtung zum Ermittlen einer Temperatur eines mittels einer Induktionsheizspule erwärmten Kochgefäßbodens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2013167686A2 *

Also Published As

Publication number Publication date
CA2870241A1 (en) 2013-11-14
WO2013167686A2 (de) 2013-11-14
JP6218809B2 (ja) 2017-10-25
US20150060439A1 (en) 2015-03-05
JP2015517715A (ja) 2015-06-22
US9615407B2 (en) 2017-04-04
DE112013002397A5 (de) 2015-01-22
CN104272863A (zh) 2015-01-07
DE102012207847A1 (de) 2013-11-14
KR20150011827A (ko) 2015-02-02

Similar Documents

Publication Publication Date Title
WO2013167686A2 (de) Vorrichtung zur induktiven erwärmung eines heizkörpers
EP2833697B1 (de) Kochfeldvorrichtung
DE202012000569U1 (de) Sensorvorrichtung zur Erfassung von Flüssigkeitseigenschaften
DE102011085082B3 (de) Verfahren und Schaltungsanordnung zur Ermittlung der Temperatur eines Kraftstoffeinspritzventils und Verfahren zur Regelung der Temperatur eines Kraftstoffeinspritzventils
DE102010027833A1 (de) Kochgefäß, Heizeinrichtung und Kochsystem
DE102012208125A1 (de) Temperaturmesseinrichtung, elektrisches Gerät mit einer solchen Temperaturmesseinrichtung und Verfahren zur Temperaturmessung
DE102014117821A1 (de) Sensorsystem für ein Lenkrad eines Kraftfahrzeugs, Lenkrad mit einem solchen Sensorsystem und Verfahren zum Betrieb eines solchen Sensorsystems
DE102015104217A1 (de) Messsystem zum Bestimmen der spezifischen elektrischen Leitfähigkeit
DE102013008068A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Oberflächentemperatur eines induktiv beheizten Walzenmantels
DE102012215257B4 (de) Schaltungsanordnung zum induktiven Heizen zumindest eines Kraftstoffeinspritzventils sowie Kraftstoffeinspritzventilanordnung mit einer solchen Schaltungsanordnung und Verfahren zum Betreiben einer Schaltungsanordnung und einer Kraftstoffeinspritzventilanordnung
DE102013219678A1 (de) Verfahren und Vorrichtung zum Ermitteln eines Fremdobjekts in einem Raumbereich
DE102017114951A1 (de) Verfahren zum Betrieb einer Kochstelle eines Induktionskochfelds mit einem Kochgeschirr
EP3197241A1 (de) Heizeinrichtung und verfahren zur temperaturmessung an der heizeinrichtung
EP3383134A1 (de) Kochsystem und verfahren zu einer positionierung eines kochgeschirrelements
EP2492641B1 (de) Induktive Wegmesseinrichtung
DE102004033115A1 (de) Verfahren und Vorrichtung zur thermostatischen Kochgeschirrregelung
DE202013012057U1 (de) Testplatte zur Überprüfung von Wellenlötprozessen
DE102013213462A1 (de) Verfahren zum Ermitteln einer aktuellen Temperatur eines mit mindestens einer Spule versehenen Sensors sowie entsprechender Sensor
EP3095121B1 (de) Induktor
EP2832182A1 (de) Induktionsheizvorrichtung
DE10337543A1 (de) Vorrichtung und Verfahren zur Messung der Temperatur einer Heizeinrichtung
DE102013110135A1 (de) Verfahren zum Bestimmen einer thermischen Wirkleistung und Induktorheizvorrichtung
DE10058670A1 (de) Temperaturerkennungseinrichtung und Verfahren zur Bestimmung einer Temperatur
DE102008028423B4 (de) Verfahren und Vorrichtung zur Bestimmung von mindestens einer Einflussgröße eines Verbrennungsprozesses
DE102011115922B4 (de) Induktiver Sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141210

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20160506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190930