EP2821242B1 - Sicherheitselement für Wertdokumente - Google Patents

Sicherheitselement für Wertdokumente Download PDF

Info

Publication number
EP2821242B1
EP2821242B1 EP14002031.4A EP14002031A EP2821242B1 EP 2821242 B1 EP2821242 B1 EP 2821242B1 EP 14002031 A EP14002031 A EP 14002031A EP 2821242 B1 EP2821242 B1 EP 2821242B1
Authority
EP
European Patent Office
Prior art keywords
micro
image
security element
cavity structure
microcavities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14002031.4A
Other languages
English (en)
French (fr)
Other versions
EP2821242A1 (de
Inventor
Hans Lochbihler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP2821242A1 publication Critical patent/EP2821242A1/de
Application granted granted Critical
Publication of EP2821242B1 publication Critical patent/EP2821242B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/425Marking by deformation, e.g. embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser

Definitions

  • the invention relates to a security element for producing value documents, such as banknotes, checks or the like, which has a substrate with a top side and at least one image, the image being formed by a microcavity structure having a plurality of adjacent microcavities and a smooth region in that the microcavities each have a feature width of 0.5 ⁇ m to 3 ⁇ m and a structure depth perpendicularly thereto in a spatial direction lying parallel to the top side and have an aspect ratio which is defined by the ratio of structure depth to feature size, and on the microcavity structure and the smooth Area a metal-containing coating is applied.
  • the invention further relates to a value document with such a security element.
  • the invention also relates to a production method for a security element for documents of value, such as banknotes, checks or the like, which provides at least one image, wherein on a substrate having an upper side, to form an image, a microcavity structure having a multiplicity of adjacent microcavities, and a smooth region is formed, the microcavities are each formed in a spatial direction lying parallel to the upper side with a feature width of 0.5 .mu.m to 3 .mu.m and perpendicular to it with a structure depth and have an aspect ratio which is defined by the ratio of structure depth to structure width , And on the micro cavity structure and the smooth area a metal-containing coating is applied.
  • Microcavity structures are also known to effect absorption of incident radiation thereby providing, for example, a background to an image.
  • the EP 1434695 B1 describes an absorbent structure having a period less than the wavelength of light.
  • the structure is constructed as a cross lattice with a sinusoidal profile.
  • the WO 2005/106601 A2 relates to moiré magnification arrangements with microimages consisting of antireflecting areas and partially reflecting areas.
  • the antireflective surface is formed by nanostructures with a period less than 700 nm and a depth between 150 and 350 nm.
  • microlens array multilayer bodies are described in which micro images are generated by micro-holes or by areas with different opacity.
  • the WO 2002/101669 A2 describes microimages formed by fine dots or perforations.
  • the EP 1476317 A1 as well as the US 7468842 B2 describe concave surfaces, picture elements as relief surfaces which are filled with color, and light trap patterns formed by sub-wavelength structures for generating microimages for moiré magnification arrangements.
  • a matte structure for a security element which has a plurality of microelements each having a lateral dimension of less than 50 microns, wherein at least one geometry parameter The microelements vary randomly to produce the matte effect.
  • the geometry parameter can be the depth of the microelements.
  • the WO 2005/095119 A1 describes a security element in the form of a multi-layered film body, which shows an angle-dependent color shift effect by means of interference.
  • a relief structure is formed in a replication lacquer layer, which is designed with regard to its geometry in such a way that the color shift effect is produced only in individual sections.
  • the aspect ratio of the relief structure is varied.
  • the DE 102006050047 A1 describes a see-through security element with microstructures formed as microcavities spaced 1 ⁇ m apart.
  • Metallized security elements which have an increased transmission in finely structured areas are known from US Pat EP 1786632 B1 known. It discloses a relief structure provided with a metal layer, which is designed as a diffractive structure and contains regions of sinusoidal linear gratings or of cross gratings which have a period in the sub-wavelength range. In order to achieve the desired transmission effect, the structural elements have an aspect ratio of greater than 0.5. The production of such structures, in particular also the replication and embossing of sub-wavelength structures with a high aspect ratio, is not without problems.
  • a reflective security element that has a microcavity structure that functions as retroreflectors.
  • a colored image is produced in plan view.
  • the invention is therefore based on the object to avoid the disadvantages of the prior art and in particular to provide an improved security element with microcavities structured image, which is less restricted in terms of manufacturing and yet can provide a visible in transmission high-resolution image.
  • the increased transmission of the microcavity structure of the invention can be used, in particular, to produce security elements with high-resolution see-through motifs.
  • the image information of the image is coded by the shape of the microcavity structure. A high degree of detail is possible without a complicated printing process, etc. would be required.
  • the transmission of the microcavities is adjusted by the aspect ratio in combination with the coating of the microcavities.
  • the aspect ratio of the microcavities is preferably between 0.3 and 0.8, more preferably between 0.3 and 0.5.
  • microcavities whose structure width is in the range of 5 ⁇ m and more and thus orders of magnitude greater than the wavelength of the incident light can be described by the beam optics.
  • Such microcavities may have retroreflective properties for certain geometries.
  • the structure width is on the order of the wavelength of light, the light diffraction dominates the microcavities, whereas the laws of geometric optics are only valid as approximation (cf. H. Ichikawa, "Numerical analysis of microretroreflectors: transition from reflection to diffraction", J. Opt. A, Pure Appl. Opt. 6, p. 121, 2004 ).
  • the diffraction behavior of microcavities with feature sizes in the micrometer range, as used in the invention, has not been fully investigated scientifically. This applies in particular to microcavities which are coated with a multilayer structure.
  • microcavities used in the security element are so large that light diffraction does not (anymore) dominate, but on the other hand so small that radiation optical reflection does not (yet) dominate.
  • This intermediate area has been found to be advantageous for manufacturability and security against forgery of the security element.
  • a dimension or aperture width of 2 to 3 .mu.m diffraction of the light gradually occurs at structures in the order of magnitude of the wavelength, as a result of which the scattering or the diffraction fraction increases. Above this limit, on the other hand, the proportion of specular reflection increases. Then the profile shape of the microcavities becomes more relevant. A lateral feature size of a microcavity not exceeding 3 ⁇ m is therefore favorable.
  • a total lateral size of the microcavities in at least one spatial direction is between 0.5 ⁇ m and 3 ⁇ m, particularly preferably greater than or equal to 0.7 ⁇ m and / or less than or equal to 2 ⁇ m.
  • microcavities according to the invention are in particular no retroreflectors.
  • Each microcavity can be understood as a picture element in the form of a pixel producing a transparency in the form of a transparency.
  • the selected size range leads to a good pixel density with usual image sizes.
  • a specific coating method, in particular a directional coating method is not required for this purpose.
  • the coating thickness in each microcavity can be homogeneous and there is no thinning of the coating z. B. on the flanks of the microcavities needed.
  • the layer thickness is thus optionally equal to the bottom and flanks of the microcavity.
  • a metal-containing coating is to be understood as meaning both a coating which consists only of metal and a layer structure which contains metal.
  • a layer structure may consist of a single composite layer which has metal deposits. But it can also consist of a multi-layer structure in which one or more layers are metallic.
  • An example explained in more detail below comprises an interference layer structure comprising a metal layer.
  • the invention further achieves that the security element can also be seen in reflection, since the metal-containing coating produces a higher reflection in the smooth areas than at the locations of the security element which carry microcavity structures. Since the microcavity structures increase the transparency of the see-through element, but reduce the reflection, an intensity inversion takes place between viewing in reflected light and in view. This increases the recognizability and formative effect of the security element.
  • the smooth areas may have some roughness unless an average aspect ratio of 0.2 is overlapped.
  • the microcavity structure allows to structure the image.
  • the transmission is reduced in accordance with the area fraction of the microcavities with respect to the total area.
  • a distance between two adjacent microcavities in the microcavity structure which is between 0 and 200 nm, is therefore advantageous.
  • the microcavities in the microcavity structure abut each other directly.
  • the aspect ratio of the microcavities has an effect on their transmission behavior. It is therefore preferred to structure the first image area of the image, in particular the foreground, by two different types of microcavities which differ in aspect ratio. Deeper microcavities have higher brightness in transmitted light viewing than shallower microcavities.
  • a continuous intensity variation in transmitted light can be achieved if the aspect ratio of the microcavities in the microcavity structure varies according to a predetermined pattern defining the first image area, in particular the foreground of the image.
  • the metal-containing coating is an interference layer structure with the layer sequence metal-dielectric-metal. Then, resonance effects can be exploited that play a role in certain aspect ratios, in particular in combination with specific aperture widths. In this way, not only the transmission and reflection effect of the micro cavity structures can be adjusted, it can also produce a color effect, which may depend for example on the viewing angle.
  • microcavities coated with an interference layer structure show a strong intensity or color contrast with respect to the smooth area.
  • SiO 2 is suitable as the dielectric, as aluminum aluminum or chromium.
  • a particularly good brightness difference in transmitted light is obtained in the case of an interference layer structure which is symmetrical with respect to its material sequence and / or layer thickness sequence.
  • a layer sequence of aluminum SiO 2 -aluminium wherein the layer thickness of the aluminum between 7 and 25 nm, preferably between 10 and 15 nm, and that of SiO 2 is between 70 and 250 nm.
  • the metal-containing coating may be formed by a metal layer.
  • a metal layer Such a configuration is particularly advantageous if the smooth areas should appear opaque.
  • metal also includes metal alloys.
  • metal layers for example, layers of aluminum, copper, chromium, silver, gold or an Al-Cu alloy into consideration, wherein the layer thickness of the metal layer is preferably between 10 and 100 nm.
  • a particularly strong light-dark contrast in the transmitted light can be generated.
  • this contrast comes at the expense of a color effect, which can then be realized only very weakly. It is therefore particularly preferred for such embodiments that above or below the microcavity structure and the smooth area a color layer is provided in order to produce a color effect in the transmitted light.
  • the aspect ratio of the microcavities and the coating modulate the intensity with which the individual microcavities transmit light and thus make the image visible in transmitted light.
  • the aspect ratio is the ratio of maximum depth to minimum lateral extent and varies according to the desired image structure in the security element. Elaborate printing processes to provide small yet finely structured images are therefore no longer necessary. Instead, simple replication methods can be used to create microcavities.
  • the image information can be represented by the corresponding distribution of the microcavities in the form of a monochrome image. Different aspect ratios or a continuous variation of the aspect ratio are of course possible and lead to a grayscale image.
  • the surface coating on the microcavities does not laterally change in the security element in order to generate different magnitudes in transmission. It is essentially the same for all microcavities, and yet a different transimpression of the microcavities with respect to the smooth area and also within the microcavity structure is achieved by microcavities with different aspect ratios.
  • microcavities can basically have any shape in their opening, for example square apertures. However, it is also possible to design microcavities in such a way that their edges form the boundary region of a picture element or motif of the picture. As a result, image elements within the image can be sharply delimited from one another, since the edges of the image elements are very clearly visible.
  • the geometry of the microcavities is by no means limited to rotationally symmetrical shapes or shapes which have a circular outline in plan view, ie in their aperture. Aspheres or free-form surfaces, such as B. of lamp reflectors are known, can be used equally.
  • a non-rotationally symmetric aperture in particular a channel-shaped aperture, is furthermore possible. The two types may then differ in the direction along which the non-rotationally symmetric microcavities extend.
  • groove-shaped depressions can be used, the For example, have the shape of a half-cylinder, which is curved only in one direction, but in the other longitudinally extended.
  • non-rotationally symmetric microcavities with different orientations can also be used to realize effects that convey a three-dimensional object impression to a viewer.
  • the height information or the distance of the object to be displayed to the observer can be coded by the orientation angle of such microcavities.
  • a viewer perceives a laterally different parallax in the flat, microcavity-structured surface.
  • the spatial impression can be enhanced by additionally varying the structure depth of the microcavities as a function of the height or the reflection properties of the object during the production of the microcavities.
  • a spatial impression can also be achieved if the intensity profile of the motif is converted pixel by pixel into such microcavities with encoded orientation angle.
  • the preparation can be carried out analogously to the known production method for microlenses.
  • the original of the microcavity structure is written via direct exposure with the help of a laserwriter in a photoresist coated substrate and then removed the exposed portion of the photoresist.
  • An exposed original can then be galvanically formed and thus an embossing stamp can be created.
  • the structure is replicated by means of an embossing process, for example in UV varnish on film or directly (for example by hot stamping in the surface of the film).
  • a nanoimprint method can be used.
  • a coating of the surface, z. B. with a metal layer and / or an interference layer structure is possible.
  • electron beam vapor deposition, sputtering or thermal evaporation under vacuum are possible.
  • the structure for protection is preferably laminated with a cover layer.
  • microcavities with different aspect ratios can also be produced solely by varying the depth of the microcavities, for example via a corresponding variation of the exposure intensity of a laserwriter. Such an approach offers the advantage of a much simpler data preparation.
  • the security element can in particular be designed as a security thread, tear-open thread, security tape, security strip, patch, film element or as a label.
  • the security element may span transparent areas or recesses and / or be used for a security card or identity document (e.g., passport).
  • the security element can be part of a precursor that can not yet be processed to a value document which, in addition to the security element according to the invention, can also have further authenticity features (such as, for example, luminescent substances provided in the volume).
  • value documents are here understood on the one hand as having the security element having documents.
  • value documents can also be other documents and objects which can be provided with the security element according to the invention, so that the value documents have non-copyable authenticity features, whereby a verification of authenticity is possible and unwanted copies are prevented at the same time.
  • Chip or security cards such. Bank or credit cards are other examples of a value document.
  • the manufacturing method according to the invention can be designed so that the described preferred embodiments and embodiments of the security element are produced.
  • a security element 1 is described below, which is an image in transmission, d. H. in transmitted light.
  • the image is created by a microcavity structure.
  • the security element 1 is constructed on a transparent film 2 on which an embossing lacquer layer 3 is located.
  • a microcavity structure 4 is formed, which has microcavities 5, 6 of different depths.
  • a smooth area 7 is present on the security element 1.
  • the microcavities have expansions that can not be resolved by the unaided eye.
  • FIG. 2 shows a schematic illustration of some microcavities.
  • a feature width w is entered. It represents the smallest cross section in a plan view of the microcavity structure 4
  • FIG. 2 the structure depth t of the individual microcavities is entered.
  • the structure width w of each microcavity is between 0.5 and 3 ⁇ m.
  • the texture depth t is selected such that an aspect ratio t / w for each of the microcavities of the microcavity structure 4 is greater than 0, 3, preferably between 0.3 and 0.5.
  • the microcavities are so big that a light diffraction not (anymore) dominated, but on the other hand so small in terms of their structure width w and the structure depth t that radiation-optical effects do not (yet) dominate.
  • the microcavity structure 4 forms the security element 1 as a see-through element, the brightness in transmission being different in the area of the microcavity structure 4 than in the smooth area 7.
  • FIG. 1 shows schematically in the micro cavity structure 4 microcavities 5 and 6 different aspect ratio.
  • the size ranges mentioned apply, in particular an aspect ratio of 0.3 to 0.5.
  • the smooth area 7 and the shallower microcavities cause less light transmission than the deeper microcavities.
  • embossing lacquer layer 5 would be thinner in the region of the microcavity structure 4. Due to the layer thicknesses of the embossing lacquer layer, which are several orders of magnitude thicker than the structure depth t, and due to the fact that the embossing lacquer layer 3 is transparent, the different transmission in transmitted light can not be due to a lack of material thickness of the embossing lacquer layer 3.
  • the difference or the observed effect of the increased transmission in the areas provided with microcavities does not come about solely because relatively less metal accumulates in the microcavities because of the increased surface area of the microcavities compared to a flat area.
  • the different transmission is effected in particular by providing a metal-containing coating 9 on the upper side of the security element 1 both in the area of the microcavity structure 4 and in the smooth area 7.
  • a metal-containing coating 9 on the upper side of the security element 1 both in the area of the microcavity structure 4 and in the smooth area 7.
  • the coating 9 is constructed as an interference layer system, for example in the form of a three-layer system.
  • the layer sequence Al-SiO 2 -Al is used.
  • a structuring is thus provided in the security element which provides image areas, namely image areas 8a, which are formed by the smooth area 7 and appear dark.
  • image areas 8b and 8c in which the microcavity structure 4 lies are lighter, the image area 8b appearing brighter than the image area 8c because its microcavities 5 have a lower aspect ratio than the microcavities 6 of the image area 8c.
  • the microcavity structure 4 like the smooth area 7, be provided with the same coating 9.
  • the brightness differences in transmission then require no structuring of the coating 9.
  • the image information is coded by an embossing process, namely by the appropriate embossing of the embossing lacquer layer 3. A high-resolution printing process, etc. is not necessary.
  • the thickness of the coating 9 is also uniform within each microcavity 5, 6. Then it is not necessary to use special coating methods which lead to a thinning of the coating 9 in the flanks of the microcavities 5, 6 of the microcavity structure 4, although of course such coating methods according to the invention are possible.
  • a coating method which comprises an undirected vapor deposition of the layers.
  • a coating method is, for example, sputtering.
  • other layer application methods are used, for example, chemical deposition methods, etc., which achieve a uniform layer thickness 9, in each case as far as the surface normal.
  • deposition method a layer thickness is realized which is essentially the same on the microcavity structure 4 and the smooth region 7.
  • the thickness of the coating 9 at the flanks of the microcavities 5, 6 of the microcavity structure 4 is thinned out. Such thinning on the flanks additionally increases the transmission in the region of the microcavities.
  • Suitable coating methods with which a directional coating is possible For example, electron beam evaporation or thermal evaporation.
  • the coating 9 is embodied in all embodiments in such a way that the brightness differs between the smooth regions 7 and the microcavity structure 4 in transmission by at least 10%.
  • By appropriate design of the coating 9 in combination with corresponding geometry of the micro cavity structure 4 is ensured in this way that in transmitted light sufficient brightness difference between the smooth areas 7 and the micro cavity structure 4 is present.
  • the metallic coating 9 brings about a further advantage.
  • the motif produced by the microcavity structure 4 is also recognizable - with a contrast reversal compared to the transmitted-light observation.
  • the brightness L * is thus almost twice as large in the region of the microcavity structure 4 as in the smooth region 7.
  • the chroma C * is considerably higher in the smooth region 7.
  • the color h is largely similar for both areas.
  • a security element has microcavities of different depths, namely comparatively flat microcavities 5 with an aspect ratio of 0.3 and comparatively deep microcavities 6 with an aspect ratio of 0.5.
  • the element is vapor-deposited with an 80 nm-thick aluminum layer.
  • the following L * C * h values are obtained: Area L * C * H 5 50 5 82 6 69 4 73 7 ⁇ 1 - -
  • the brightness values L * show that the bright-dark contrast is very pronounced.
  • the smooth area 7 is almost opaque. But there is also a clear contrast between deep and shallow microcavities 5, 6 recognizable.
  • the transmission is almost color neutral. It appears in a slight shade of green.
  • the chroma values C * are relatively small. It is therefore provided in a development, by applying a color layer above or below the embossing lacquer layer 3 additionally to produce a color in transmission.
  • the spectral transmission was measured with a spectrophotometer (Lambda 900, Perkin Elmer) and the color values L *, C *, h then according to the known method (see, inter alia GA Klein, Industrial Color Physics, Springer, 2010 ) calculated from the measured spectra.
  • the calculation of the values L *, C * and h of the above tables was based on the spectral emission of a D65 standard illumination and on the sensitivity curves of a 10 ° observer.
  • FIG. 2 shows by way of example that the microcavity structure 4 and the smooth regions 7 are covered with an additional topcoat layer 13 and, for example Protected against contamination or impression by counterfeiters.
  • the color layer mentioned for one embodiment may, for example, be applied below the embossing lacquer layer 3 or above the topcoat layer 13.
  • FIGS. 3 to 6 show examples of different possible microcavities 4.
  • FIG. 1 an example of a micro cavity structure 4 is shown, whose surface is formed in each case by the geometry of a conic section.
  • the apertures, ie the plan views along the optical axis, are equal in two lateral spatial directions, ie transverse to the optical axis.
  • the apertures of the microcavities 3 are not limited to rotationally symmetric and not even for all microcavities forms.
  • FIG. 3 shows a square aperture for the microcavities 5, which each show the same depth profile in sectional planes which are perpendicular to each other and intersect in the optical axis.
  • FIG. 4 shows an embodiment with such a micro cavity structure 4.
  • microcavity structures 4 of FIGS. 3 to 4 is common that their apertures, exemplified as a square or circle, have no structure width greater than 3 microns. For the generation of an image, however, it is sufficient if this limitation is observed only in one direction parallel to the surface.
  • Corresponding non-rotationally symmetrical, channel-shaped microcavities 5 shows the FIG. 5 , The microcavities 5 of the microcavity structure 4 shown there extend along a direction 8, possibly even over significantly more than 3 ⁇ m.
  • the concave curvature of the microcavities 5 is not limited to semi-ellipses or semicircles. It can be used aspherical bulges or asymmetric forms, such as the FIG. 6 shows.
  • microcavities 5 of such micro cavity structures hardly depends on the detailed surface curvature since the minimum feature sizes are between 0.5 ⁇ m and 3 ⁇ m. Therefore, when interacting with the incident light, the laws of geometrical optics are no longer compulsory and only an interaction of electromagnetic waves takes place. Modifications or smaller deviations in the curvature of microcavities in the wavelength or sub-wavelength range therefore have no significant effect on the transmission behavior of such microcavities 5.
  • This has the advantage that in the production of the microcavity structure 4, the microcavities 5, which should show different transmission , Essentially only in one parameter, namely in the aspect ratio (maximum depth to minimum lateral extent) must be varied. This facilitates the production considerably, since no increased precision requirements are imposed on the profile shape.
  • FIG. 7 shows an image 11 with a motif 12 as a number "25". It is according to microcavities FIG. 3 formed, so from micro cavities, which have a square aperture. Each microcavity forms a pixel 10, so that the microcavity structure 4 as a whole provides a first image area, in the exemplary embodiment the foreground of the image 11.
  • the microcavities are arranged by way of example periodically in a fixed pattern. That is not mandatory; also an aperiodic or quasi-statistical pattern is possible.
  • Gray values displayed for the individual pixels reflect the aspect ratio of the individual microcavities.
  • the microcavities within motif 12 are about 20% deeper than the microcavities in the surrounding area.
  • the smooth area 7 is provided which forms a second image area and here the background of the image 11.
  • Microcavities that lie in the border area of the subject 12 are optionally lower on the side of the subject 12 than on the other side. This has the advantage that relatively fine patterns can be reproduced even with large pixelation or a small number of pixels due to the microcavities.
  • an image 11 is not limited to microcavities with square or symmetric apertures, such as FIG. 8 shows.
  • a picture 11 showing a star as a motif 12.
  • the edges of the apertures of the pixels 10, ie, the microcavities, are formed to coincide with the edge of the subject 12. This causes these edges to be reproduced very clearly by the image scattered at the boundary and the edge of the subject 12 is particularly well and sharply recognizable.
  • the microcavity structure 4 is surrounded by the smooth area 7, which here represents the image background.
  • this background is designed as a comparatively narrow strip. This can only be seen as an example. Rather, the smooth regions 7 can also cover larger surface portions of the security element 1 or of the image 11. It is also possible for the smooth area 7 to have a demetallised subarea for generating a further clearly visible in the same way as reflection Motive or pattern contains. Such demetallizations are also known in the art under the name "Cleartext”.
  • the design of the motif 12 by the image 11 is not limited to the choice between periodic pattern and aperiodic pattern for the microcavity structure 4. It is thus possible to continuously change the distance of the centers of the microcavities 5, that is to say the minimum structure width w, according to predetermined functions along at least one direction.
  • FIG. 9 shows the image of a bird is represented by a microcavity structure 4 consisting of microcavities 6 of greater depth and microcavities 5 of smaller depth.
  • FIG. 9 shows the brightness distribution in transmitted light. Due to their comparatively higher aspect ratio, the microcavities 6 produce a higher intensity in transmitted light than the microcavities 5 FIG. 9 is simplified to the effect that the microcavities themselves are not shown.
  • the light gray areas are thus formed by a multiplicity of microcavities 6, the dark gray areas by a plurality of microcavities 5.
  • the dark sections of the image 11 are formed by the background 7.
  • Figure 11 is additionally and exemplarily a highly transparent image element is present, which is generated by a demetallization 14 in the smooth area 7. It is the already mentioned "Cleartext" element.
  • the representation of the year in the upper part of the image 11 was generated by a structure of microcavities 6. While the numerical representations show a strong contrast in reflection, both appear bright in transmission in front of an opaque environment, although the year-number representation produced by the micro-cavities 6 is less bright than the demetallized region 14.
  • the highly transparent region 14 can be produced, for example, by laser irradiation of metallized microcavities.
  • the laser light is preferably absorbed while it is reflected at a corresponding dosage in the region of the smooth surface. This results in laser ablation in the area of the microcavities.
  • highly transparent regions with a high resolution can be produced.
  • microcavity structure 4 is preferably carried out, as explained in the general part of the description, by laser direct exposure in a photolithographic process.
  • Micro cavities 5, 6 with dimensions up to a minimum diameter of 0.5 ⁇ m can be written directly into photoresist with the help of a laserwriter. Due to the non-linear sensitivity of common photoresists, structures can be produced with a suitable choice of the exposure intensity, which are significantly finer than the beam diameter of the laser. The texture depth can be easily varied by choosing the exposure intensity.
  • UV varnish can be replicated on foil or directly into the surface of the foil.
  • nanoimprint methods can also be used.
  • the coating of the surface, z. B. by undirected steaming Metallized surfaces or interference layer systems can be applied by electron beam evaporation, sputtering or by evaporation under vacuum.
  • the coated side is preferably provided with the topcoat layer 13 for protection.
  • the pictures can also contain hidden information, eg. As micro-font, serial numbers, symbols, etc., which can not be resolved with an unaided eye, set down on a value document.
  • the micro images advantageously have much smaller structures than known laser engravings.
  • the use of the micro-cavity structure 4 allows a very fine structuring of images or motifs with high lateral resolution, which is not possible with conventional printing methods.
  • FIG. 10 shows an embodiment of the security element, in which the transmission effects of the invention microcavities are exploited for only to be considered in reflection color security element.
  • a color layer 15 and below a reflective layer 16 is provided in the security element under the embossing lacquer layer 3.
  • the reflective layer 16 may in particular be formed by a metal layer, for example by a layer of aluminum, copper, chromium, silver or gold. In this way, a color effect can also be produced in the case of a metallic coating (and therefore, under certain circumstances, almost neutral color) 9 in the microcavity structure 4 and the smooth region 7.
  • the color layer 15 may be translucent.
  • the security element 1 contains (like the previously described security elements as well) smooth areas 7, which form image areas I and a micro cavity structure 4, which form an image area II.
  • the coating 9 is designed in such a way that light is attenuated to an intensity of at most 10% in the case of two transmissions through the image areas I, but twice transmission through the microcavity structure 4 in the image area II is still ensured with sufficient intensity. This is the case, for example, with aluminum from a layer thickness of about 13 nm.
  • the image areas I and II differ by the optical effect of the microcavity structure 4.
  • the incident light E falls on the underlying color layer 15. Due to the metal layer 16 provided there, it is mirrored and transmitted again through the microcavity structure 4 (arrow R). An observer therefore perceives this light path and thus the image area II in reflection in color, whereas the image areas I appear substantially unchanged metallic due to the low intensity of the transmitted light.
  • an embossing lacquer layer can be provided instead of the topcoat layer 13, into which the microcavity structure 4 is shaped.
  • FIG. 10 can be provided in this embodiment between the color layer 15 and the coating 9, for example, a further lacquer layer.
  • the reflective layer 16 is left off, which is possible in a further embodiment, an observer sees the transmitted radiation T in the area of the microcavity structure 4, ie in the image area II, lighter and with a color predetermined by the color layer 15.
  • FIG. 11 the in FIG. 11 is shown and also to the transmission effects according to the invention microcavities
  • another color layer 17 is located above the microcavity structure 4 and the smooth area 7.
  • This color layer 17 preferably has a different color shade than the color layer 15.
  • Below the color layer 15 is also a reflective layer 16, for example a layer made of aluminum.
  • the image areas I are correspondingly perceived in reflection in the hue of the upper color layer, the image area II with the micro cavity structure 4, however, as a mixed color of the two color layers 15 and 17.
  • the reflective layer 16 is omitted. Then the image area II in the mixed color, which is given by the color layers 15 and 17, appears for the transmitted radiation T.
  • the aspect ratio is set in the above embodiments by the variation of the texture depth t.
  • a variation of the feature size w is possible to modify the aspect ratio.
  • both t and w can be varied within the given dimensions.
  • the smooth area 7 is registered in the drawings as completely smooth. This is not mandatory. It can also have a residual roughness, wherein an aspect ratio of 0.2 is not exceeded.
  • the orientation of the microcavity structure is irrelevant to the transmitted light effect.
  • An inversion of the security element compared to the representation of the FIG. 1 or 2 is possible at any time.
  • microcavity structure and the smooth region for generating a transmitted light image can be combined in any manner with other security features known for the protection of value documents. This additional counterfeit security is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Credit Cards Or The Like (AREA)

Description

  • Die Erfindung betrifft ein Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das ein Substrat mit einer Oberseite aufweist und mindestens ein Bild bereitstellt, wobei das Bild durch eine Mikrokavitätenstruktur, die eine Vielzahl nebeneinanderliegender Mikrokavitäten aufweist, und einen glatten Bereich gebildet ist, die Mikrokavitäten jeweils in einer zur Oberseite parallel liegenden Raumrichtung eine Strukturweite von 0,5 µm bis 3 µm und senkrecht dazu eine Strukturtiefe aufweisen und ein Aspektverhältnis haben, das durch das Verhältnis von Strukturtiefe zu Strukturweite definiert ist, und auf die Mikrokavitätenstruktur und den glatten Bereich eine metallhaltige Beschichtung aufgebracht ist.
  • Die Erfindung betrifft weiter ein Wertdokument mit einem solchen Sicherheitselement.
  • Die Erfindung betrifft ebenfalls ein Herstellungsverfahren für ein Sicherheitselement für Wertdokumente, wie Banknoten, Schecks oder dergleichen, das mindestens ein Bild bereitstellt, wobei an einem Substrat, das eine Oberseite aufweist, zur Erzeugung eines Bilds eine Mikrokavitätenstruktur, die eine Vielzahl nebeneinanderliegender Mikrokavitäten aufweist, und ein glatter Bereich ausgebildet wird, die Mikrokavitäten jeweils in einer zur Oberseite parallel liegenden Raumrichtung mit einer Strukturweite von 0,5 µm bis 3 µm und senkrecht dazu mit einer Strukturtiefe ausgebildet sind und ein Aspektverhältnis haben, das durch das Verhältnis von Strukturtiefe zu Strukturweite definiert ist, und auf die Mikrokavitätenstruktur und den glatten Bereich eine metallhaltige Beschichtung aufgebracht wird.
  • Im Stand der Technik sind Sicherheitselemente bekannt, die eine Mikrokavitätenstruktur aufweisen. Sie stellen Mikrobilder bereit, die mit Moire-Vergrößerungsanordnungen vergrößert sichtbar sind. Die Gestaltung von Mikrobildern für Moire-Vergrößerungsanordnungen ist im Stand der Technik bereits in vielerlei Hinsicht diskutiert.
  • Mikrokavitätenstrukturen sind auch bekannt, um eine Absorption von einfallender Strahlung zu bewirken und dadurch beispielsweise einen Hintergrund für ein Bild bereitzustellen. Die EP 1434695 B1 beschreibt eine absorbierende Struktur mit einer Periode kleiner als die Lichtwellenlänge. Die Struktur ist als Kreuzgitter mit sinusförmigem Profil aufgebaut. Die WO 2005/106601 A2 betrifft Moire-Vergrößerungsanordnungen mit Mikrobildern, welche aus antireflektierenden Bereichen und teilweise reflektierenden Bereichen bestehen. Die antireflektierende Fläche wird durch Nanostrukturen mit einer Periode kleiner als 700 nm und einer Tiefe zwischen 150 und 350 nm gebildet. In der EP 1979768 A1 sind Mehrschichtkörper mit Mikrolinsenanordnung erläutert, bei denen Mikrobilder durch Mikrolöcher bzw. durch Bereiche mit unterschiedlicher Opazität erzeugt werden. Die WO 2002/101669 A2 beschreibt Mikrobilder, welche durch feine Punkte oder Perforationen gebildet werden. Die EP 1476317 A1 sowie die US 7468842 B2 beschreiben konkave bzw. konvexe Oberflächen, Bildelemente als Reliefoberflächen, welche mit Farbe gefüllt werden, und "light trap patterns", gebildet durch Sub-Wellenlängenstrukturen, zur Erzeugung von Mikrobildern für Moiré-Vergrößerungsanordnungen.
  • Aus der DE 102008046128 A1 ist eine Mattstruktur für ein Sicherheitselement bekannt, die eine Vielzahl von Mikroelementen mit jeweils einer lateralen Abmessung unter 50 µm aufweist, wobei mindestens ein Geometrieparameter der Mikroelemente zufällig variiert, um den Matteffekt zu erzeugen. Der Geometrieparameter kann die Tiefe der Mikroelemente sein.
  • Die WO 2005/095119 A1 beschreibt ein Sicherheitselement in Form eines mehrschichtigen Folienkörpers, der einen blickwinkelabhängigen Farbverschiebungseffekt mittels Interferenz zeigt. In einer Replizierlackschicht ist dabei eine Reliefstruktur abgeformt, die hinsichtlich ihrer Geometrie so ausgestaltet ist, dass der Farbverschiebungseffekt nur in einzelnen Abschnitten erzeugt wird. Dazu wird das Aspektverhältnis der Reliefstruktur variiert.
  • Die DE 102006050047 A1 beschreibt ein Durchsichtsicherheitselement mit Mikrostrukturen, die als Mikrokavitäten ausgebildet sind, welche einen Abstand von 1 µm voneinander haben.
  • Metallisierte Sicherheitselemente, welche eine erhöhte Transmission in fein strukturierten Bereichen aufweisen, sind aus der EP 1786632 B1 bekannt. Darin ist eine mit einer Metallschicht versehene Reliefstruktur offenbart, die als diffraktive Struktur ausgebildet ist und Bereiche aus sinusförmigen Lineargittern oder aus Kreuzgittern enthält, die eine Periode im Subwellenlängenbereich haben. Um den gewünschten Transmissionseffekt zu erzielen, weisen die Strukturelemente ein Aspektverhältnis von größer als 0,5 auf. Die Herstellung solcher Strukturen, insbesondere auch die Replizierung und die Prägung von Subwellenlängenstrukturen mit hohem Aspektverhältnis, ist nicht ganz unproblematisch.
  • Aus der WO 2012/069163 A1 ist ein reflektives Sicherheitselement bekannt, das eine Mikrokavitätenstruktur aufweist, die als Retroreflektoren arbeiten. Durch geeignete Strukturierung wird ein farbiges Bild in Draufsicht erzeugt. Der Erfindung liegt deshalb die Aufgabe zugrunde, die Nachteile des Standes der Technik zu vermeiden und insbesondere ein verbessertes Sicherheitselement mit durch Mikrokavitäten strukturiertem Bild zu schaffen, das hinsichtlich des Herstellverfahrens weniger eingeschränkt ist und dennoch ein in Transmission erkennbares hochaufgelöstes Bild bereitstellen kann.
  • Die Aufgabe wird erfindungsgemäß gelöst mit einem Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das ein Substrat mit einer Oberseite aufweist und mindestens ein Bild bereitstellt, wobei
    • das Bild durch eine Mikrokavitätenstruktur, die eine Vielzahl nebeneinanderliegender Mikrokavitäten aufweist, und einen glatten Bereich gebildet ist,
    • die Mikrokavitäten jeweils in einer zur Oberseite parallel liegenden Raumrichtung eine Strukturweite von 0,5 µm bis 3 µm und senkrecht dazu eine Strukturtiefe aufweisen und ein Aspektverhältnis haben, das durch das Verhältnis von Strukturtiefe zu Strukturweite definiert ist, und
    • auf die Mikrokavitätenstruktur und den glatten Bereich eine metallhaltige Beschichtung aufgebracht ist,
    • das Aspektverhältnis der Mikrokavitäten größer als 0,3 ist und
    • die metallhaltige Beschichtung so ausgebildet ist, dass Mikrokavitätenstruktur und glatter Bereich in Durchlichtbetrachtung einen Helligkeitsunterschied von mindestens 10 % haben, so dass die Mikrokavitätenstruktur einen ersten Bildbereich und der glatte Bereich einen zweiten Bildbereich des Bildes bilden.
  • Die Aufgabe wird weiter gelöst mit einem Herstellungsverfahren für ein Sicherheitselement für Wertdokumente, wie Banknoten, Schecks oder dergleichen, das mindestens ein Bild bereitstellt, wobei
    • an einem Substrat, das eine Oberseite aufweist, zur Erzeugung eines Bilds eine Mikrokavitätenstruktur, die eine Vielzahl nebeneinanderliegender Mikrokavitäten aufweist, und ein glatter Bereich ausgebildet wird,
    • die Mikrokavitäten jeweils in einer zur Oberseite parallel liegenden Raumrichtung mit einer Strukturweite von 0,5 µm bis 3 µm und senkrecht dazu mit einer Strukturtiefe ausgebildet sind und ein Aspektverhältnis haben, das durch das Verhältnis von Strukturtiefe zu Strukturweite definiert ist,
    • auf die Mikrokavitätenstruktur und den glatten Bereich eine metallhaltige Beschichtung aufgebracht wird,
    • das Aspektverhältnis der Mikrokavitäten größer als 0,3 ist und
    • die metallhaltige Beschichtung so ausgebildet wird, dass Mikrokavitätenstruktur und glatter Bereich in Durchlichtbetrachtung einen Helligkeitsunterschied von mindestens 10 % haben, so dass die Mikrokavitätenstruktur einen ersten Bildbereich und der glatte Bereich einen zweiten Bildbereich des Bildes bilden.
  • Die Aufgabe wird schließlich auch gelöst mit einem Wertdokument, das ein Sicherheitselement der genannten Art aufweist.
  • Die erhöhte Transmission der Mikrokavitätenstruktur der Erfindung kann insbesondere genutzt werden, um Sicherheitselemente mit hochaufgelösten Durchsichtsmotiven zu erzeugen. Die Bildinformation des Bildes wird durch die Form der Mikrokavitätenstruktur codiert. Ein hoher Detailreichtum ist möglich, ohne dass ein aufwendiges Druckverfahren etc. erforderlich wäre. Die Transmission der Mikrokavitäten ist dabei durch das Aspektverhältnis in Kombination mit der Beschichtung der Mikrokavitäten eingestellt. Das Aspektverhältnis der Mikrokavitäten liegt dabei vorzugsweise zwischen 0,3 und 0,8, besonders bevorzugt zwischen 0,3 und 0,5.
  • Die optischen Eigenschaften von Mikrokavitäten, deren Strukturweite im Bereich von 5 µm und mehr liegt und damit Größenordnungen größer ist als die Wellenlänge des einfallenden Lichtes, können durch die Strahlenoptik beschrieben werden. Solche Mikrokavitäten können bei bestimmten Geometrien retroreflektierende Eigenschaften haben. Wenn jedoch die Strukturweite in der Größenordnung der Lichtwellenlänge liegt, dominiert die Lichtbeugung an den Mikrokavitäten, während die Gesetze der geometrischen Optik nur noch als Annäherung gültig sind (vgl. H. Ichikawa, "Numerical analysis of microretroreflectors: transition from reflection to diffraction", J. Opt. A, Pure Appl. Opt. 6, S. 121, 2004). Das Beugungsverhalten von Mikrokavitäten mit Strukturweiten im Mikrometerbereich, wie sie die Erfindung verwendet, ist wissenschaftlich noch nicht vollständig untersucht. Dies trifft insbesondere auf Mikrokavitäten zu, welche mit einem Mehrschichtaufbau überzogen sind.
  • Die im Sicherheitselement eingesetzten Mikrokavitäten sind so groß, dass eine Lichtbeugung nicht (mehr) dominiert, andererseits so klein, dass strahlenoptische Reflexion (noch) nicht dominiert. Dieser Zwischenbereich hat sich als vorteilhaft für Herstellbarkeit und Fälschungssicherheit des Sicherheitselementes herausgestellt. Unterhalb einer Abmessung bzw. Aperturweite von 2 bis 3 µm tritt allmählich Beugung des Lichtes an Strukturen in Größenordnungen der Wellenlänge auf, wodurch der Streu- bzw. der Beugungsanteil steigt. Oberhalb dieser Grenze steigt hingegen der Anteil der spekularen Reflektion. Dann wird die Profilform der Mikrokavitäten relevanter. Eine laterale Strukturweite einer Mikrokavität nicht über 3 µm ist deshalb günstig. Unterhalb 0,5 µm dominiert die Lichtbeugung, was eine einfache Bildgebung erheblich erschweren würde. Somit ergibt sich insgesamt eine laterale Größe der Mikrokavitäten in zumindest einer Raumrichtung zwischen 0,5 µm und 3 µm, besonders bevorzugt größer/ gleich 0,7 µm und/ oder kleiner/ gleich 2 µm.
  • Der gewählte Größenbereich realisiert eine gute optische Wirkung der Mikrokavitäten bei vergleichbar einfacher Herstellung. Überraschenderweise würden größere Mikrokavitäten den Herstellaufwand steigern, da dann die genaue Profilform relevant würde. Die erfindungsgemäßen Mikrokavitäten sind insbesondere keine Retroreflektoren.
  • Jede Mikrokavität kann als Bildelement in Form eines in Durchsicht eine gewisse Transparenz herstellenden Pixels aufgefasst werden kann. Der gewählte Größenbereich führt zu einer guten Pixeldichte bei üblichen Bildgrößen.
  • Erfinderseitig wurde erkannt, dass das Zusammenwirken von Aspektverhältnis der Mikrokavitätenstruktur und metallhaltiger Beschichtung bei den erfindungsgemäßen Aperturweiten ein in Durchsicht gut erkennbares und auch durch die Anordnung der Mikrokavitäten strukturiertes Bild ermöglichen, ohne dass beispielsweise eine Strukturierung der Beschichtung nötig wäre.
  • Ein bestimmtes Beschichtungsverfahren, insbesondere ein gerichtetes Beschichtungsverfahren ist hierfür nicht erforderlich. So kann die Beschichtungsdicke in jeder Mikrokavität homogen sein und es ist keine Ausdünnung der Beschichtung z. B. an den Flanken der Mikrokavitäten nötig. Die Schichtdicke ist damit optional an Boden und Flanken der Mikrokavität gleich. Die Herstellung des Sicherheitselementes ist damit vereinfacht, und dennoch ist ein in Durchsicht fein strukturiertes Bild möglich.
  • Unter einer metallhaltigen Beschichtung ist im Sinne dieser Beschreibung sowohl eine Beschichtung zu verstehen, die nur aus Metall besteht, als auch eine Schichtstruktur, die Metall enthält. Eine solche Schichtstruktur kann aus einer einzigen Komposit-Schicht bestehen, die Metalleinlagerungen hat. Sie kann aber auch aus einem Mehrschichtaufbau bestehen, in dem eine oder mehrere Schichten metallisch sind. Ein nachfolgend noch näher erläutertes Beispiel umfasst einen Interferenzschichtaufbau, der eine Metallschicht aufweist.
  • Die Erfindung erreicht weiter, dass das Sicherheitselement auch in Reflexion erkennbar ist, da die metallhaltige Beschichtung in den glatten Bereichen eine höhere Reflexion erzeugt als an den Stellen des Sicherheitselementes, die Mikrokavitätenstrukturen tragen. Da die Mikrokavitätenstrukturen die Transparenz des Durchsichtelementes erhöhen, die Reflexion jedoch herabsetzen, findet zwischen Betrachtung im Auflicht und in Durchsicht eine Intensitätsinvertierung statt. Dies erhöht die Erkennbarkeit und prägende Wirkung des Sicherheitselementes.
  • Die glatten Bereiche können eine gewisse Rauhigkeit aufweisen, solange ein mittleres Aspektverhältnis von 0,2 nicht überschnitten wird.
  • Die Mikrokavitätenstruktur erlaubt es, das Bild zu strukturieren. Dabei reduziert sich für zunehmende Abstände zwischen benachbarten Mikrokavitäten die Transmission gemäß dem Flächenanteil der Mikrokavitäten in Bezug auf die Gesamtfläche. Ein Abstand zwischen zwei benachbarten Mikrokavitäten in der Mikrokavitätenstruktur, der zwischen 0 und 200 nm liegt, ist daher vorteilhaft. Gemäß einer besonders bevorzugten Ausgestaltung stoßen die Mikrokavitäten in der Mikrokavitätenstruktur unmittelbar aneinander. Das Aspektverhältnis der Mikrokavitäten wirkt sich, wie bereits erwähnt, auf ihr Transmissionsverhalten aus. Es ist deshalb bevorzugt, den ersten Bildbereich des Bildes, insbesondere den Vordergrund, durch zwei verschiedene Arten von Mikrokavitäten zu strukturieren, die sich hinsichtlich des Aspektverhältnisses unterscheiden. Tiefere Mikrokavitäten haben eine höhere Helligkeit in Durchlichtbetrachtung als flachere Mikrokavitäten.
  • Eine kontinuierliche Intensitätsvariation im Durchlicht kann man erreichen, wenn das Aspektverhältnis der Mikrokavitäten in der Mikrokavitätenstruktur gemäß einem den ersten Bildbereich, insbesondere den Vordergrund des Bildes definierenden, vorbestimmten Muster variiert.
  • Es ist besonders bevorzugt, dass die metallhaltige Beschichtung ein Interferenzschichtaufbau mit der Schichtfolge Metall-Dielektrikum-Metall ist. Dann können Resonanzeffekte ausgenutzt werden, die bei bestimmten Aspektverhältnissen, insbesondere in Kombination mit bestimmten Aperturweiten, eine Rolle spielen. Auf diese Weise kann nicht nur die Transmissions- und Reflexionswirkung der Mikrokavitätenstrukturen eingestellt werden, es lässt sich auch ein Farbeffekt erzeugen, der beispielsweise vom Betrachtungswinkel abhängen kann. Mit einem Interferenzschichtaufbau überzogene Mikrokavitäten zeigen insbesondere einen starken Intensitäts- bzw. Farbkontrast gegenüber dem glatten Bereich. Als Dielektrikum kommt insbesondere SiO2 in Frage, als Metall Aluminium oder Chrom.
  • Einen besonders guten Helligkeitsunterschied im Durchlicht erhält man bei einem Interferenzschichtaufbau, der hinsichtlich seiner Materialfolge und/oder Schichtdickenfolge symmetrisch ist. Besonders bevorzugt ist eine Schichtfolge Aluminium-SiO2-Aluminium, wobei die Schichtdicke des Aluminiums zwischen 7 und 25 nm, bevorzugt zwischen 10 und 15 nm, und die des SiO2 zwischen 70 und 250 nm liegt.
  • Gemäß einer weiteren bevorzugten Ausgestaltung kann die metallhaltige Beschichtung durch eine Metallschicht gebildet sein. Eine solche Ausgestaltung ist insbesondere dann von Vorteil, wenn die glatten Bereiche opak erscheinen sollen. Der Begriff Metall schließt dabei auch Metall-Legierungen ein. Als Metallschichten kommen beispielsweise Schichten aus Aluminium, Kupfer, Chrom, Silber, Gold oder einer Al-Cu-Legierung in Betracht, wobei die Schichtdicke der Metallschicht vorzugsweise zwischen 10 und 100 nm liegt.
  • Mit bestimmten Ausführungsformen der metallhaltigen Beschichtung, nämlich bei besonders hohen Metallschichtdicken, kann ein besonders starker Hell-Dunkel-Kontrast im Durchlicht erzeugt werden. Dieser Kontrast geht jedoch auf Kosten eines Farbeffektes, der dann nur noch sehr schwach ausgeprägt realisiert werden kann. Es ist deshalb insbesondere für solche Ausgestaltungen bevorzugt, dass über oder unter der Mikrokavitätenstruktur und dem glatten Bereich eine Farbschicht vorgesehen ist, um einen Farbeffekt im Durchlicht zu erzeugen.
  • Durch das Aspektverhältnis der Mikrokavitäten und die Beschichtung wird die Intensität, mit der die einzelnen Mikrokavitäten Licht durchlassen und so das Bild im Durchlicht sichtbar machen, moduliert. Das Aspektverhältnis ist das Verhältnis von maximaler Tiefe zu minimaler lateraler Ausdehnung und gemäß der gewünschten Bildstruktur im Sicherheitselement variiert. Aufwendige Druckverfahren zur Bereitstellung kleiner und dennoch fein strukturierter Bilder sind deshalb nicht mehr nötig. Stattdessen können einfache Replizierverfahren zur Erzeugung von Mikrokavitäten verwendet werden.
  • Die Bildinformation kann durch die entsprechende Verteilung der Mikrokavitäten in Form eines monochromen Bildes dargestellt werden. Verschiedene Aspektverhältnisse bzw. eine kontinuierliche Variation des Aspektverhältnisses sind natürlich möglich und führen zu einem Graustufenbild.
  • Unter Herstellgesichtspunkten ist es vorteilhaft, dass sich im Sicherheitselement die Oberflächenbeschichtung auf den Mikrokavitäten lateral nicht ändert, um unterschiedliche Helligkeiten in Transmission zu erzeugen. Sie ist für alle Mikrokavitäten im Wesentlichen gleich, und dennoch wird ein unterschiedlicher Durchlichteindruck für die Mikrokavitäten gegenüber dem glatten Bereich und auch innerhalb der Mikrokavitätenstruktur durch Mikrokavitäten mit verschiedenem Aspektverhältnis erreicht.
  • Die Mikrokavitäten können in ihrer Öffnung grundsätzlich jede beliebige Form haben, beispielsweise quadratische Aperturen. Es ist aber auch möglich, Mikrokavitäten so zu gestalten, dass deren Kanten den Grenzbereich eines Bildelementes oder Motivs des Bildes bilden. Dadurch können Bildelemente innerhalb des Bildes scharf gegeneinander abgegrenzt werden, da die Ränder der Bildelemente sehr deutlich sichtbar sind.
  • Die Geometrie der Mikrokavitäten ist keinesfalls auf rotationssymmetrische Formen oder Formen, die in Draufsicht, also in ihrer Apertur, einen kreisförmigen Umriss haben, beschränkt. Asphären oder Freiformflächen, wie sie z. B. von Lampenreflektoren bekannt sind, können gleichermaßen verwendet werden. Für die Mikrokavitäten ist weiter eine nicht-rotationssymmetrische Apertur, insbesondere eine rinnenförmige Apertur möglich. Die zwei Arten können sich dann hinsichtlich der Richtung, entlang der sich die nichtrotationssymmetrischen Mikrokavitäten erstrecken, unterscheiden. Insbesondere können auch rinnenförmige Vertiefungen verwendet werden, die beispielsweise die Form eines Halbzylinders haben, welcher nur in einer Richtung gekrümmt, in der anderen jedoch längserstreckt ist.
  • Ferner können durch nicht-rotationssymmetrische Mikrokavitäten mit unterschiedlicher Orientierung auch Effekte realisiert werden, die einem Betrachter einen dreidimensionalen Objekteindruck vermitteln. Hierzu kann die Höheninformation bzw. die Distanz des wiederzugebenden Objektes zum Betrachter durch den Orientierungswinkel solcher Mikrokavitäten codiert werden. In diesem Fall nimmt ein Betrachter eine lateral unterschiedliche Parallaxe in der ebenen, mit Mikrokavitäten strukturierten Oberfläche wahr. Der räumliche Eindruck kann verstärkt werden, indem bei der Herstellung der Mikrokavitäten zusätzlich die Strukturtiefe der Mikrokavitäten als Funktion der Höhe bzw. der Reflexionseigenschaften des Objektes variiert wird. Ein räumlicher Eindruck lässt sich ebenfalls erzielen, wenn das Intensitätsprofil des Motivs pixelweise in solche Mikrokavitäten mit codiertem Orientierungswinkel umgesetzt wird.
  • Für das erfindungsgemäße Herstellungsverfahren kommen insbesondere Direktbelichtungstechniken, z. B. mit Hilfe eines Laserwriters in Frage. Die Herstellung kann analog zu den bekannten Herstellungsverfahren für Mikrolinsen erfolgen. Das Original der Mikrokavitätenstruktur wird über Direktbelichtung mit Hilfe eines Laserwriters in ein mit Photolack beschichtetes Substrat geschrieben und anschließend der belichtete Anteil des Photolacks entfernt. Ein belichtetes Original kann anschließend galvanisch abgeformt und somit ein Prägestempel erzeugt werden. Letztendlich wird die Struktur über einen Prägeprozess beispielsweise in UV-Lack auf Folie oder direkt (z. B. per Heißprägen in die Oberfläche der Folie) repliziert. Alternativ kann ein Nanoimprint-Verfahren eingesetzt werden. Aufwendigere Verfahren zur Originalherstellung wie Elektronenstrahl- oder "Focussed Ion Beam"-Belichtungsverfahren erlauben eine noch feinere Ausgestaltung der Geometrie der Mikrokavitäten. Diese Herstellungsverfahren bieten viele Gestaltungsmöglichkeiten in der Wahl der Geometrie der Mikrokavitäten. So können ohne Mehraufwand auch nicht-rotationssymmetrische bzw. nichtsphärische Geometrien von Mikrokavitäten mit höherer Genauigkeit als mit dem oben genannten Laser-Direktbelichtungsverfahren realisiert werden.
  • Anschließend erfolgt eine Beschichtung der Oberfläche, z. B. mit einer Metallschicht und/oder einem Interferenzschichtaufbau. Hierzu kommen unter anderem Elektronenstrahlbedampfen, Sputtern oder thermisches Verdampfen unter Vakuum in Frage. Zum Abschluss wird die Struktur zum Schutz vorzugsweise mit einer Deckschicht kaschiert.
  • Bei konstanter Aperturweite können Mikrokavitäten mit unterschiedlichen Aspektverhältnissen auch allein durch eine Variation der Tiefe der Mikrokavitäten, beispielsweise über eine entsprechende Variation der Belichtungsintensität eines Laserwriters, erzeugt werden. Eine solche Vorgehensweise bietet den Vorteil einer wesentlich einfacheren Datenaufbereitung.
  • Das Sicherheitselement kann insbesondere als Sicherheitsfaden, Aufreißfaden, Sicherheitsband, Sicherheitsstreifen, Patch, Folienelement oder als Etikett ausgebildet sein. Insbesondere kann das Sicherheitselement transparente Bereiche oder Ausnehmungen überspannen und/ oder für eine Sicherheitskarte oder ein Ausweisdokument (z.B. Reisepass) eingesetzt werden.
  • Das Sicherheitselement kann insbesondere Teil einer noch nicht umlauffähige Vorstufe zu einem Wertdokument sein, das neben dem erfindungsgemäßen Sicherheitselement beispielsweise auch weitere Echtheitsmerkmale (wie z. B. im Volumen vorgesehene Lumineszenzstoffe) aufweisen kann. Unter Wertdokumenten werden hier einerseits das Sicherheitselement aufweisende Dokumente verstanden. Andererseits können Wertdokumente auch sonstige Dokumente und Gegenstände sein, die mit dem erfindungsgemäßen Sicherheitselement versehen werden können, damit die Wertdokumente nicht kopierbare Echtheitsmerkmale aufweisen, wodurch eine Echtheitsüberprüfung möglich ist und zugleich unerwünschte Kopien verhindert werden. Chip- oder Sicherheitskarten, wie z. B. Bank- oder Kreditkarten, sind weitere Beispiele für ein Wertdokument.
  • Das erfindungsgemäße Herstellungsverfahren kann so ausgebildet werden, dass die beschriebenen bevorzugten Ausbildungen und Ausführungsformen des Sicherheitselementes hergestellt werden.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung einsetzbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Nachfolgend wird die Erfindung beispielshalber anhand der beigefügten Zeichnungen, die auch erfindungswesentliche Merkmale offenbaren, noch näher erläutert. Zur besseren Anschaulichkeit wird in den Figuren auf eine maßstabs- und proportionsgetreue Darstellung verzichtet. Es zeigen:
  • Fig. 1
    eine schematische Darstellung eines Teils eines Sicherheitselementes mit einer Mikrokavitätenstruktur,
    Fig. 2
    eine schematische Darstellung zur Verdeutlichung einer Beschichtung der Mikrokavitätenstruktur,
    Fig. 3 bis 6
    schematische Darstellungen verschiedener Geometrien, welche für die Mikrokavitätenstruktur der Figur 1 möglich sind,
    Fig. 7 bis 9
    Draufsichten auf ein Mikrobild, wie es in der Ausführungsform gemäß Figur 1 erzeugt werden kann, und
    Fig. 10 und 11
    schematische Darstellungen zweier weiterer Ausführungsformen.
  • In den Figuren wird nachfolgend ein Sicherheitselement 1 beschrieben, das ein Bild in Transmission, d. h. im Durchlicht bereitstellt. Das Bild wird durch eine Mikrokavitätenstruktur erzeugt.
  • Im Einzelnen ist das Sicherheitselement 1 auf einer transparenten Folie 2 aufgebaut, auf welcher sich eine Prägelackschicht 3 befindet. In die Prägelackschicht 3 ist eine Mikrokavitätenstruktur 4 abgeformt, die Mikrokavitäten 5, 6 unterschiedlicher Tiefe aufweist. Ebenfalls ist am Sicherheitselement 1 ein glatter Bereich 7 vorhanden. Die Mikrokavitäten haben, wie noch erläutert werden wird, Ausdehnungen, die mit dem unbewaffneten Auge nicht aufgelöst werden können.
  • Figur 2 zeigt schematisch zur Veranschaulichung einige Mikrokavitäten. In der Figur ist eine Strukturweite w eingetragen. Sie stellt in Draufsicht auf die Mikrokavitätenstruktur 4 den kleinsten Querschnitt dar. Ebenfalls in Figur 2 eingetragen ist die Strukturtiefe t der einzelnen Mikrokavitäten. Die Strukturweite w jeder Mikrokavität beträgt zwischen 0,5 und 3 µm. Die Strukturtiefe t ist so gewählt, dass ein Aspektverhältnis t/w für jede der Mikrokavitäten der Mikrokavitätenstruktur 4 größer als 0, 3, vorzugsweise zwischen 0,3 und 0,5, gegeben ist. Die Mikrokavitäten sind so groß, dass eine Lichtbeugung nicht (mehr) dominiert, andererseits hinsichtlich ihrer Strukturweite w und der Strukturtiefe t so klein, dass strahlenoptische Effekte (noch) nicht dominieren.
  • Die Mikrokavitätenstruktur 4 bildet das Sicherheitselement 1 als Durchsichtselement aus, wobei die Helligkeit in Transmission im Bereich der Mikrokavitätenstruktur 4 anders ist als im glatten Bereich 7.
  • Figur 1 zeigt schematisch in der Mikrokavitätenstruktur 4 Mikrokavitäten 5 und 6 unterschiedlichen Aspektverhältnisses. Für beide Mikrokavitäten 5, 6 gelten die genannten Größenbereiche, insbesondere ein Aspektverhältnis von 0,3 bis 0,5. Der glatte Bereich 7 und die flacheren Mikrokavitäten bewirken eine geringere Lichttransmission als die tieferen Mikrokavitäten.
  • Dieser Unterschied hängt jedoch nicht damit zusammen, dass die Prägelackschicht 5 im Bereich der Mikrokavitätenstruktur 4 dünner wäre. Aufgrund der Schichtdicken der Prägelackschicht, die um mehrere Größenordnungen dicker sind als die Strukturtiefe t, und aufgrund der Tatsache, dass die Prägelackschicht 3 transparent ist, kann die unterschiedliche Transmission im Durchlicht nicht von fehlender Materialdicke der Prägelackschicht 3 herrühren.
  • Auch kommt der Unterschied bzw. der beobachtete Effekt der erhöhten Transmission in den mit Mikrokavitäten versehenen Bereichen nicht allein dadurch zustande, dass sich wegen der vergrößerten Oberfläche der Mikrokavitäten im Vergleich zu einer ebenen Fläche relativ gesehen weniger Metall in den Mikrokavitäten anlagert.
  • Die unterschiedliche Transmission ist vielmehr insbesondere dadurch bewirkt, dass an der Oberseite des Sicherheitselementes 1 sowohl im Bereich der Mikrokavitätenstruktur 4 als auch im glatten Bereich 7 eine metallhaltige Beschichtung 9 vorgesehen ist. Ohne an diese Erklärung gebunden zu sein, tritt durch das Zusammenwirken von Aspektverhältnis der Mikrokavitätenstruktur und metallhaltiger Beschichtung bei den erfindungsgemäßen Aperturweiten vermutlich ein elektromagnetischer Resonanzeffekt auf, welcher zusätzlich dafür sorgt, dass die einfallende Strahlung E zu einem höheren Anteil als transmittierte Strahlung T transmittiert wird, wenn die eirifallende Strahlung E durch die Mikrokavitätenstruktur 4 fällt. In der Durchlichtbetrachtung ist damit das Sicherheitselement heller an denjenigen Stellen, an denen sich die Mikrokavitätenstruktur 4 befindet. Innerhalb der Mikrokavitätenstruktur 4 erscheinen dabei Abschnitte mit tieferen Mikrokavitäten 6 nochmals heller als Abschnitte mit vergleichsweise flacheren Mikrokavitäten 5.
  • In einer bevorzugten Ausführungsform ist die Beschichtung 9 als Interferenzschichtsystem aufgebaut, beispielsweise in Form eines Dreilagenschichtsystems. In einer Ausführungsform kommt die Schichtfolge Al-SiO2-Al zur Anwendung.
  • In Durchsicht ist damit im Sicherheitselement eine Strukturierung geschaffen, die Bildbereiche bereitstellt, nämlich Bildbereiche 8a, die durch den glatten Bereich 7 gebildet sind und dunkel erscheinen. Heller dagegen abgegrenzt sind Bildbereiche 8b und 8c, in denen die Mikrokavitätenstruktur 4 liegt, wobei der Bildbereich 8b heller erscheint als der Bildbereich 8c, weil dessen Mikrokavitäten 5 ein geringeres Aspektverhältnis haben als die Mikrokavitäten 6 des Bildbereiches 8c.
  • Für den Effekt, der, wie nachfolgend noch erläutert wird, zur Bilderzeugung eingesetzt wird, ist es wesentlich, dass die Mikrokavitätenstruktur 4 wie der glatte Bereich 7 mit derselben Beschichtung 9 versehen werden. Die Helligkeitsunterschiede in Transmission erfordern dann keine Strukturierung der Beschichtung 9. Die Bildinformation ist durch einen Prägeprozess codiert, nämlich durch die geeignete Prägung der Prägelackschicht 3. Ein hochauflösender Druckprozess etc. ist nicht nötig.
  • In einer Ausführungsform ist es vorgesehen, dass die Dicke der Beschichtung 9 auch innerhalb jeder Mikrokavität 5, 6 einheitlich ist. Dann ist es nicht erforderlich, spezielle Beschichtungsverfahren anzuwenden, die zu einer Ausdünnung der Beschichtung 9 in den Flanken der Mikrokavitäten 5, 6 der Mikrokavitätenstruktur 4 führen, auch wenn solche Beschichtungsverfahren gemäß der Erfindung natürlich möglich sind.
  • In einer Ausführungsform der Erfindung wird ein Beschichtungsverfahren verwendet, das ein ungerichtetes Aufdampfen der Schichten umfasst. Ein solches Beschichtungsverfahren ist beispielsweise Sputtern. In weiteren Ausführungsformen werden andere Schichtauftragverfahren verwendet, beispielsweise chemische Abscheideverfahren etc., die eine gleichmäßige Schichtdicke 9 - jeweils gesehen zur Flächennormalen - erreichen. Mit Abscheideverfahren wird eine Schichtdicke realisiert, die auf der Mikrokavitätenstruktur 4 und dem glatten Bereich 7 im Wesentlichen gleich ist.
  • In einer weiteren Ausführungsform ist vorgesehen, dass die Dicke der Beschichtung 9 an den Flanken der Mikrokavitäten 5, 6 der Mikrokavitätenstruktur 4 ausgedünnt ist. Eine solche Ausdünnung an den Flanken erhöht die Transmission im Bereich der Mikrokavitäten noch zusätzlich. Geeignete Beschichtungsverfahren, mit denen ein gerichtetes Beschichten möglich ist, sind beispielsweise Elektronenstrahlbedampfung oder thermisches Verdampfen.
  • Die Beschichtung 9 ist in allen Ausführungsformen so ausgeführt, dass sich die Helligkeit zwischen den glatten Bereichen 7 und der Mikrokavitätenstruktur 4 in Transmission um mindestens 10 % unterscheidet. Durch entsprechende Gestaltung der Beschichtung 9 in Kombination mit entsprechender Geometrie der Mikrokavitätenstruktur 4 ist auf diese Weise sichergestellt, dass im Durchlicht ein ausreichender Helligkeitsunterschied zwischen den glatten Bereichen 7 und der Mikrokavitätenstruktur 4 vorhanden ist.
  • Die metallische Beschichtung 9 bewirkt einen weiteren Vorteil. Im Drauflicht ist das von der Mikrokavitätenstruktur 4 erzeugte Motiv ebenfalls erkennbar - mit einer Kontrastumkehr gegenüber der Durchlichtbetrachtung.
  • Verwendet man den erwähnten Interferenzschichtaufbau aus Aluminium und Siliziumdioxid in der Schichtfolge 15 nm Al/90 nm SiO2/15 nm Al, erhält man bei einem Aspektverhältnis von 0,5 für die Mikrokavitäten in Transmission folgende L*C*h-Werte:
    Bereich L* C* h
    4 45 11 285
    7 25 53 290
  • Die Helligkeit L* ist damit im Bereich der Mikrokavitätenstruktur 4 fast doppelt so groß wie im glatten Bereich 7. Die Buntheit C* ist dagegen im glatten Bereich 7 wesentlich höher. Der Farbeindruck h ist für beide Bereiche weitgehend ähnlich.
  • In einem weiteren Ausführungsbeispiel weist ein Sicherheitselement unterschiedlich tiefe Mikrokavitäten auf, nämlich vergleichsweise flache Mikrokavitäten 5 mit einem Aspektverhältnis von 0,3 und vergleichsweise tiefe Mikrokavitäten 6 mit einem Aspektverhältnis von 0,5. Das Element ist mit einer 80 nm dicken Aluminiumschicht bedampft. Man erhält folgende L*C*h-Werte:
    Bereich L* C* h
    5 50 5 82
    6 69 4 73
    7 <1 - -
  • Die Helligkeitswerte L* zeigen, dass der Hell-Dunkel-Kontrast sehr deutlich ausgeprägt ist. Der glatte Bereich 7 ist nahezu opak. Es ist aber auch ein deutlicher Kontrast zwischen tiefen und flachen Mikrokavitäten 5, 6 erkennbar. Die Transmission ist nahezu farblich neutral. Sie erscheint in einem leichten Grünton. Die Buntheitswerte C* sind relativ klein. Es ist deshalb in einer Weiterbildung vorgesehen, durch Aufbringen einer Farbschicht über oder unterhalb der Prägelackschicht 3 zusätzlich eine Farbe in Transmission zu erzeugen.
  • Die spektrale Transmission wurde mit einem Spektralphotometer (Lambda 900, Perkin Elmer) gemessen und die Farbwerte L*, C*, h dann nach dem bekannten Verfahren (siehe u.a. G. A. Klein, Industrial Color Physics, Springer, 2010) aus den gemessenen Spektren errechnet. Bei der Berechnung der Werte L*, C* und h der vorstehenden Tabellen wurden die spektrale Emission einer D65 Normbeleuchtung und die Empfindlichkeitskurven (englisch: stimulus) eines 10° Beobachters zugrunde gelegt.
    Figur 2 zeigt exemplarisch, dass die Mikrokavitätenstruktur 4 und die glatten Bereiche 7 mit einer zusätzlichen Decklackschicht 13 abgedeckt und beispielsweise vor Verschmutzung oder Abformung durch Fälscher geschützt werden können. Die für eine Ausführungsform genannte Farbschicht kann beispielsweise unter der Prägelackschicht 3 oder über der Decklackschicht 13 angebracht werden.
  • Die Figuren 3 bis 6 zeigen Beispiele verschiedener möglicher Mikrokavitäten 4. In Figur 1 ist exemplarisch eine Mikrokavitätenstruktur 4 dargestellt, deren Oberfläche jeweils durch die Geometrie eines Kegelschnittes gebildet ist. Die Aperturen, d. h. die Draufsichten längs der optischen Achse, sind in zwei lateralen Raumrichtungen, d. h. quer zur optischen Achse gleich. Die Aperturen der Mikrokavitäten 3 sind nicht auf rotationssymmetrische und auch nicht auf für alle Mikrokavitäten einheitliche Formen beschränkt. Figur 3 zeigt eine quadratische Apertur für die Mikrokavitäten 5, die in Schnittebenen, welche zueinander senkrecht stehen und sich in der optischen Achse schneiden, jeweils das gleiche Tiefenprofil zeigen.
  • Es sind auch Vertiefungen möglich, welche nur in einer Richtung gekrümmt sind und der anderen Richtung ungekrümmt sind. Figur 4 zeigt eine Ausführungsform mit einer solchen Mikrokavitätenstruktur 4.
  • Den Mikrokavitätenstrukturen 4 der Figuren 3 bis 4 ist gemein, dass ihre Aperturen, exemplarisch als Quadrat oder Kreis, keine Strukturweite haben, die größer als 3 µm ist. Für die Erzeugung eines Bildes genügt es jedoch, wenn diese Begrenzung nur in einer Richtung parallel zur Oberfläche eingehalten wird. Entsprechende nicht-rotationssymmetrische, rinnenförmige Mikrokavitäten 5 zeigt die Figur 5. Die Mikrokavitäten 5 der dort dargestellten Mikrokavitätenstruktur 4 erstrecken sich längs einer Richtung 8, ggf. auch über deutlich mehr als 3 µm.
  • Die konkave Wölbung der Mikrokavitäten 5 ist nicht auf Halbellipsen oder Halbkreise beschränkt. Es können asphärische Wölbungen oder auch asymmetrische Formen Verwendung finden, wie beispielsweise die Figur 6 zeigt. Hier haben die Mikrokavitäten 5, obschon insgesamt immer noch konkav, irregulär gewölbte Oberflächen und zum Teil auch konvexe Abschnitte.
  • Die Steigerung der Lichttransmission an Mikrokavitäten 5 solcher Mikrokavitätenstrukturen hängt kaum von der detaillierten Oberflächenkrümmung ab, da die minimalen Strukturweiten zwischen 0,5 µm und 3 µm liegen. Daher gelten bei der Wechselwirkung mit dem einfallenden Licht nicht mehr zwingend und allein die Gesetze der geometrischen Optik, sondern es findet auch eine Wechselwirkung von elektromagnetischen Wellen statt. Modifikationen bzw. kleinere Abweichungen in der Wölbung von Mikrokavitäten im Wellenlängen- oder Sub-Wellenlängenbereich haben daher keine signifikante Auswirkung auf das Transmissionsverhalten solcher Mikrokavitäten 5. Dies hat den Vorteil, dass bei der Herstellung der Mikrokavitätenstruktur 4 die Mikrokavitäten 5, welche unterschiedliche Transmission zeigen sollen, im Wesentlichen nur in einem Parameter, nämlich im Aspektverhältnis (maximale Tiefe zu minimaler lateraler Ausdehnung) variiert werden müssen. Dies erleichtert die Herstellung erheblich, da keine gesteigerten Präzisionsanforderungen an die Profilform gestellt werden.
  • Figur 7 zeigt ein Bild 11 mit einem Motiv 12 als Zahl "25". Es ist durch Mikrokavitäten gemäß Figur 3 gebildet, also aus Mikrokavitäten, die eine quadratische Apertur haben. Jede Mikrokavität bildet ein Pixel 10, so dass die Mikrokavitätenstruktur 4 insgesamt einen ersten Bildbereich, im Ausführungsbeispiel den Vordergrund des Bildes 11 bereitstellt. In der Mikrokavitätenstruktur 4 sind die Mikrokavitäten exemplarisch periodisch in einem festen Muster angeordnet. Das ist nicht zwingend; auch ein aperiodisches oder quasi-statistisches Muster ist möglich. Die in Figur 7 für die einzelnen Pixel dargestellten Grauwerte geben das Aspektverhältnis der einzelnen Mikrokavitäten wieder. Die Mikrokavitäten innerhalb des Motivs 12 sind um etwa 20 % tiefer als die Mikrokavitäten im umgebenden Bereich. Um die Mikrokavitätenstruktur 4 herum ist der glatte Bereich 7 vorgesehen, der einen zweiten Bildbereich und hier den Hintergrund des Bildes 11 bildet.
  • Mikrokavitäten, welche im Grenzbereich des Motivs 12 liegen, sind optional auf der Seite des Motivs 12 tiefer als auf der anderen Seite. Dies hat den Vorteil, dass auch mit großer Pixelierung oder geringer Pixelanzahl durch die Mikrokavitäten relativ feine Muster nachgebildet werden können.
  • Die Gestaltung eines Bildes 11 ist nicht auf Mikrokavitäten mit quadratischen oder symmetrischen Aperturen beschränkt, wie Figur 8 zeigt. Hier ist ein Bild 11 zu sehen, das einen Stern als Motiv 12 aufweist. Die Kanten der Aperturen der Pixel 10, d. h. der Mikrokavitäten sind so ausgebildet, dass sie mit dem Rand des Motivs 12 zusammenfallen. Dies bewirkt, dass diese Kanten sehr deutlich durch das am Grenzbereich gestreute Bild nachgebildet werden und der Rand des Motivs 12 besonders gut und scharf erkennbar ist.
  • Auch in der Ausführungsform gemäß Figur 8 ist die Mikrokavitätenstruktur 4 durch den glatten Bereich 7 umgeben, welcher hier den Bildhintergrund darstellt. In den Abbildungen der Figuren 7 und 8 ist dieser Hintergrund als vergleichsweise schmaler Streifen ausgestaltet. Dies ist lediglich exemplarisch zu sehen. Vielmehr können die glatten Bereiche 7 auch größere Flächenabschnitte des Sicherheitselementes 1 bzw. des Bildes 11 abdecken. Auch ist es möglich, dass der glatte Bereich 7 einen demetallisierten Teilbereich zur Erzeugung eines in Durchsicht wie Reflexion klar sichtbaren weiteren Motivs oder Musters enthält. Solche Demetallisierungen sind im Stand der Technik auch unter der Bezeichnung "Cleartext" bekannt.
  • Die Gestaltung des Motivs 12 durch das Bild 11 ist nicht auf die Wahl zwischen periodischem Muster und aperiodischem Muster für die Mikrokavitätenstruktur 4 eingeschränkt. So ist es möglich, den Abstand der Zentren der Mikrokavitäten 5, also die minimale Strukturweite w, gemäß vorgegebenen Funktionen kontinuierlich entlang zumindest einer Richtung zu verändern.
  • Die Realisierung eines Bildes 11 auf Basis der Mikrokavitätenstruktur 4 erfolgt in einer besonders bevorzugten Ausführungsform so, dass die Mikrokavitätenstruktur 4 mit ihrem Umriss ein Motiv darstellt. Eine exemplarische Ausführung zeigt Figur 9. Dort ist das Bild eines Vogels durch eine Mikrokavitätenstruktur 4 bestehend aus Mikrokavitäten 6 größerer Tiefe und Mikrokavitäten 5 kleinerer Tiefe dargestellt. Figur 9 zeigt die Helligkeitsverteilung im Durchlicht. Die Mikrokavitäten 6 erzeugen aufgrund ihres vergleichsweise höheren Aspektverhältnisses eine höhere Intensität im Durchlicht als die Mikrokavitäten 5. Die Darstellung der Figur 9 ist dabei dahingehend vereinfacht, als die Mikrokavitäten selbst nicht gezeigt sind. Die hellgrauen Bereiche werden also von einer Vielzahl an Mikrokavitäten 6 gebildet, die dunkelgrauen Bereiche von einer Vielzahl an Mikrokavitäten 5. Die dunklen Abschnitte des Bildes 11 werden durch den Hintergrund 7 gebildet.
  • Im Bild 11 ist zusätzlich und exemplarisch ein hochtransparentes Bildelement vorhanden, das durch eine Demetallisierung 14 im glatten Bereich 7 erzeugt wird. Es handelt sich um das bereits erwähnte "Cleartext"-Element. Die Jahreszahldarstellung im oberen Teil des Bildes 11 wurde hingegen durch eine Struktur aus Mikrokavitäten 6 erzeugt. Während die Jahreszahldarstellungen einen starken Kontrast in Reflexion aufweisen, erscheinen beide in Transmission hell vor einer opaken Umgebung, wobei allerdings die durch die Mikrokavitäten 6 erzeugte Jahreszahldarstellung weniger hell ist als der demetallisierte Bereich 14.
  • Der hochtransparente Bereich 14 kann beispielsweise durch Laserbestrahlung metallisierter Mikrokavitäten erzeugt werden. Durch die Erhöhung des elektromagnetischen Feldes in den Mikrokavitäten wird dort das Laserlicht bevorzugt absorbiert, während es bei einer entsprechenden Dosierung im Bereich der glatten Oberfläche reflektiert wird. Es kommt dadurch im Bereich der Mikrokavitäten zu einer Laserablation. Auf diese Weise lassen sich durch feine Strukturierung der Mikrokavitäten im Zusammenwirken mit einer Laserbestrahlung hochtransparente Bereiche mit einer hohen Auflösung erzeugen.
  • Die Herstellung der Mikrokavitätenstruktur 4 erfolgt bevorzugt, wie im allgemeinen Teil der Beschreibung erläutert, durch Laserdirektbelichtung in einem photolithografischen Verfahren. Mikrokavitäten 5, 6 mit Abmessungen bis zu einem minimalen Durchmesser von 0,5 µm können mithilfe eines Laserwriters direkt in Photolack geschrieben werden. Aufgrund der nichtlinearen Empfindlichkeit gängiger Photolacke können bei geeigneter Wahl der Belichtungsintensität Strukturen erzeugt werden, die deutlich feiner als der Strahldurchmesser des Lasers sind. Die Strukturtiefe kann sehr einfach durch die Wahl der Belichtungsintensität variiert werden.
  • Zur Herstellung von Mikrokavitäten mit hoher Genauigkeit können optional auch Elektronenstrahl- bzw. "Focussed Ion Beam"-Belichtungsverfahren infrage kommen. Ein belichtetes Original kann nach dem Entwickeln des Photolacks anschließend galvanisch abgeformt und über einen Prägeprozess in UV-Lack auf Folie oder direkt in die Oberfläche der Folie repliziert werden. Alternativ können auch Nanoimprint-Verfahren eingesetzt werden.
  • In einem letzten Schritt erfolgt die Beschichtung der Oberfläche, z. B. durch ungerichtetes Bedampfen. Metallisierte Oberflächen bzw. Interferenzschichtsysteme können durch Elektronenstrahlbedampfung, Sputtern oder durch Verdampfen unter Vakuum aufgebracht werden. Anschließend wird bevorzugt die beschichtete Seite zum Schutz mit der Decklackschicht 13 versehen.
  • Die Bilder können auch versteckte Informationen, z. B. Mikroschrift, Seriennummern, Symbole, etc., welche mit einem unbewaffneten Auge nicht aufgelöst werden können, auf einem Wertdokument niederlegen. Die Mikrobilder haben vorteilhafterweise wesentlich kleinere Strukturen als bekannte Lasergravuren. Die Verwendung der Mikrokavitätenstruktur 4 erlaubt eine sehr feine Strukturierung von Bildern oder Motiven mit hoher lateraler Auflösung, die mit herkömmlichen Druckverfahren nicht möglich ist.
  • Figur 10 zeigt eine Ausgestaltung des Sicherheitselementes, bei der die Transmissionseffekte erfindungsgemäßer Mikrokavitäten für ein nur in Reflexion zu betrachtendes farbiges Sicherheitselement ausgenutzt werden. Bei dem Sicherheitselement ist unter der Prägelackschicht 3 eine Farbschicht 15 und darunter eine reflektierende Schicht 16 vorgesehen ist. Die reflektierende Schicht 16 kann insbesondere durch eine Metallschicht gebildet sein, beispielsweise durch eine Schicht aus Aluminium, Kupfer, Chrom, Silber oder Gold. Auf diese Weise kann auch bei einer metallischen (und daher unter Umständen farblich nahezu neutralen) Beschichtung 9 in der Mikrokavitätenstruktur 4 und dem glatten Bereich 7 ein Farbeffekt erzeugt werden. Optional kann die Farbschicht 15 transluzent ausgebildet sein. Das Sicherheitselement 1 enthält (wie die vorher beschriebenen Sicherheitselemente auch) glatte Bereiche 7, welche Bildbereiche I bilden sowie eine Mikrokavitätenstruktur 4, welche einen Bildbereich II bilden. Die Beschichtung 9 ist so ausgebildet, dass bei einer zweimaligen Transmission durch die Bildbereiche I Licht auf eine Intensität von maximal 10% abgeschwächt wird, eine zweimalige Transmission durch die Mikrokavitätenstruktur 4 im Bildbereich II jedoch noch mit ausreichender Intensität gewährleistet ist. Dies ist beispielsweise bei Aluminium ab einer Schichtdicke von etwa 13 nm der Fall. In Reflexion unterscheiden sich die Bildbereiche I und II durch die optische Wirkung der Mikrokavitätenstruktur 4. Dabei fällt das einfallende Licht E auf die darunterliegende Farbschicht 15. Aufgrund der dort vorgesehenen Metallschicht 16 wird es gespiegelt und transmittiert erneut durch die Mikrokavitätenstruktur 4 (Pfeil R). Ein Beobachter nimmt diesen Lichtpfad und damit den Bildbereich II in Reflexion daher farbig wahr, wohingegen die Bildbereiche I aufgrund der geringen Intensität des transmittierten Lichts im Wesentlichen unverändert metallisch erscheinen.
  • In einer hier nicht gezeigten Ausgestaltung kann anstelle der Decklackschicht 13 eine Prägelackschicht vorgesehen sein, in die die Mikrokavitätenstruktur 4 abgeformt ist. Anstelle der Prägelackschicht 3 aus Figur 10 kann bei dieser Ausgestaltung zwischen der Farbschicht 15 und der Beschichtung 9 beispielsweise eine weitere Lackschicht vorgesehen sein.
  • Lässt man die reflektierende Schicht 16 weg, was in einer weiteren Ausführungsform möglich ist, sieht ein Beobachter die transmittierte Strahlung T im Bereich der Mikrokavitätenstruktur 4, also im Bildbereich II, heller und mit einer durch die Farbschicht 15 vorgegebenen Farbe.
  • In einer weiteren Ausführungsform, die in Figur 11 gezeigt ist und die sich ebenfalls die Transmissionseffekte erfindungsgemäßer Mikrokavitäten zu Nutze macht, befindet sich zusätzlich zur Farbschicht 15 eine weitere Farbschicht 17 oberhalb der Mikrokavitätenstruktur 4 und dem glatten Bereich 7. Diese Farbschicht 17 hat vorzugsweise einen anderen Farbton als die Farbschicht 15. Unter der Farbschicht 15 ist ferner eine reflektierende Schicht 16, beispielsweise eine Schicht aus Aluminium vorgesehen. Die Bildbereiche I werden entsprechend in Reflexion im Farbton der oberen Farbschicht wahrgenommen, der Bildbereich II mit der Mikrokavitätenstruktur 4 dagegen als Mischfarbe der beiden Farbschichten 15 und 17. Natürlich kann auch in der Ausführungsform der Figur 11 die reflektierende Schicht 16 entfallen. Dann erscheint der Bildbereich II in der Mischfarbe, die durch die Farbschichten 15 und 17 vorgegeben ist, für die transmittierte Strahlung T.
  • Wie bereits im allgemeinen Teil der Beschreibung erläutert, sind im Rahmen der anspruchsgemäßen Definition der Erfindung verschiedene Abwandlungen möglich. Einige seien hier exemplarisch erwähnt:
    • Die Mikrokavitätenstruktur 4 wurde vorstehend in einem Ausführungsbeispiel geschildert, das Mikrokavitäten 5, 6 mit unterschiedlichem Aspektverhältnis aufweist. Dies ist nicht zwingend. Es ist sowohl möglich, Mikrokavitäten mit einheitlichem Aspektverhältnis zu verwenden, als auch Aspektverhältnisse, die mehr als zwei verschiedene Werte realisieren.
  • Das Aspektverhältnis ist in den vorstehenden Ausführungsbeispielen durch die Variation der Strukturtiefe t eingestellt. Gleichermaßen ist auch eine Variation der Strukturweite w möglich, um das Aspektverhältnis zu modifizieren. Im Rahmen der angegebenen Bemaßung kann natürlich sowohl t als auch w variiert werden.
  • Der glatte Bereich 7 ist in den Zeichnungen als vollständig glatt eingetragen. Dies ist nicht zwingend erforderlich. Er kann auch eine Restrauhigkeit haben, wobei ein Aspektverhältnis von 0,2 nicht überschritten wird.
  • Die Ausrichtung der Mikrokavitätenstruktur ist für den Durchlichteffekt irrelevant. Eine Invertierung des Sicherheitselements gegenüber der Darstellung der Figur 1 bzw. 2 ist damit jederzeit möglich.
  • Die Mikrokavitätenstruktur und der glatte Bereich zum Erzeugen eines Durchlichtbildes können mit anderen Sicherheitsmerkmalen, die zum Schutz von Wertdokumenten bekannt sind, in beliebiger Weise kombiniert werden. Damit wird zusätzliche Fälschungssicherheit erreicht.
  • Bezugszeichenliste
  • 1
    Sicherheitselement
    2
    Folie
    3
    Prägelackschicht
    4
    Mikrokavitätenstruktur
    5, 6
    Mikrokavitäten
    7
    glatter Bereich
    8a-c
    Bildbereich
    9
    Beschichtung
    10
    Pixel
    11
    Bild
    12
    Motiv
    13
    Decklackschicht
    14
    Demetallisierung
    15
    Farbschicht
    16
    reflektierende Schicht
    17
    Farbschicht
    t
    Strukturtiefe
    w
    Strukturweite
    E
    einfallende Strahlung
    R
    reflektierte Strahlung
    I, II
    Bildbereich

Claims (23)

  1. Sicherheitselement zur Herstellung von Wertdokumenten, wie Banknoten, Schecks oder dergleichen, das ein Substrat (3) mit einer Oberseite aufweist und mindestens ein Bild (11) bereitstellt, wobei
    - das Bild (11) durch eine Mikrokavitätenstruktur (4), die eine Vielzahl nebeneinanderliegender Mikrokavitäten (5, 6) aufweist, und einen glatten Bereich (7) gebildet ist,
    - die Mikrokavitäten (4) jeweils in einer zur Oberseite parallel liegenden Raumrichtung eine Strukturweite (w) von 0,5 µm bis 3 µm und senkrecht dazu eine Strukturtiefe (t) aufweisen und ein Aspektverhältnis haben, das durch das Verhältnis von Strukturtiefe (t) zu Strukturweite (w) definiert ist, und
    - auf die Mikrokavitätenstruktur (4) und den glatten Bereich (7) eine metallhaltige Beschichtung aufgebracht ist,
    dadurch gekennzeichnet, dass
    - das Aspektverhältnis der Mikrokavitäten (5, 6) größer als 0,3 ist und
    - die metallhaltige Beschichtung (9) auf der Mikrokavitätenstruktur (4) so ausgebildet ist, dass die Mikrokavitätenstruktur (4) und der glatte Bereich (7) in Durchlichtbetrachtung einen Helligkeitsunterschied von mindestens 10 % haben, so dass die Mikrokavitätenstruktur (4) einen ersten Bildbereich und der glatte Bereich (7) einen zweiten Bildbereich des Bildes (11) bilden.
  2. Sicherheitselement nach Anspruch 1, dadurch gekennzeichnet, dass das Aspektverhältnis der Mikrokavitäten (5, 6) zwischen 0,3 und 0,8, bevorzugt zwischen 0,3 und 0,5 liegt.
  3. Sicherheitselement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die metallhaltige Beschichtung (9) auf der Mikrokavitätenstruktur (4) die gleiche Schichtdicke hat.
  4. Sicherheitselement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in der Mikrokavitätenstruktur (4) die Mikrokavitäten (5, 6) unmittelbar aneinander stoßen.
  5. Sicherheitselement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mikrokavitätenstruktur (4) mindestens zwei Arten von Mikrokavitäten (5, 6) aufweist, die sich hinsichtlich des Aspektverhältnisses unterscheiden, wobei der erste Bildbereich des Bildes (11) durch die mindestens zwei verschiedenen Arten von Mikrokavitäten (5, 6) strukturiert ist.
  6. Sicherheitselement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Aspektverhältnis der Mikrokavitäten (5, 6) in der Mikrokavitätenstruktur (4) gemäß einen den ersten Bildbereich des Bildes (11) definierenden, vorbestimmten Muster variiert.
  7. Sicherheitselement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die metallhaltige Beschichtung (9) ein Interferenzschichtaufbau mit der Schichtfolge Metall - Dielektrikum - Metall ist.
  8. Sicherheitselement nach Anspruch 7, dadurch gekennzeichnet, dass das Dielektrikum SiO2 ist und/ oder das Metall Al oder Cr ist.
  9. Sicherheitselement nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Interferenzschichtaufbau hinsichtlich seiner Materialfolge und/oder Schichtdickenfolge symmetrisch ist, insbesondere die Schichtfolge Al- SiO2 -Al aufweist.
  10. Sicherheitselement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die metallhaltige Beschichtung (9) durch eine Metallschicht gebildet ist.
  11. Sicherheitselement nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass über oder unter der Mikrokavitätenstruktur (4) eine Farbschicht vorgesehen ist.
  12. Sicherheitselement nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Mikrokavitäten (5, 6) nicht-rotationssymmetrisch, insbesondere rinnenförmig sind, und sich jeweils entlang einer Richtung erstrecken.
  13. Wertdokument mit einem Sicherheitselement (1) nach einem der Ansprüche 1 bis 12.
  14. Herstellungsverfahren für ein Sicherheitselement (1) für Wertdokumente, wie Banknoten, Schecks oder dergleichen, das mindestens ein Bild (11) bereitstellt, wobei
    - an einem Substrat (3), das eine Oberseite aufweist, zur Erzeugung eines Bilds (11) eine Mikrokavitätenstruktur (4), die eine Vielzahl nebeneinanderliegender Mikrokavitäten (5, 6) aufweist, und ein glatter Bereich (7) ausgebildet wird,
    - die Mikrokavitäten (5, 6) jeweils in einer zur Oberseite parallel liegenden Raumrichtung mit einer Strukturweite (w) von 0,5 µm bis 3 µm und senkrecht dazu mit einer Strukturtiefe (t) ausgebildet sind und ein Aspektverhältnis haben, das durch das Verhältnis von Strukturtiefe (t) zu Strukturweite (w) definiert ist, und
    - auf die Mikrokavitätenstruktur (4) und den glatten Bereich (7) eine metallhaltige Beschichtung (9) aufgebracht wird,
    dadurch gekennzeichnet, dass
    - das Aspektverhältnis der Mikrokavitäten (5, 6) größer als 0,3 ist und
    - die metallhaltige Beschichtung (9) auf der Mikrokavitätenstruktur (4) so ausgebildet wird, dass die Mikrokavitätenstruktur (4) und der glatte Bereich (7) in Durchlichtbetrachtung einen Helligkeitsunterschied von mindestens 10 % haben, so dass die Mikrokavitätenstruktur (4) einen ersten Bildbereich und der glatte Bereich (7) einen zweiten Bildbereich des Bildes (11) bilden.
  15. Herstellungsverfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Aspektverhältnis der Mikrokavitäten (5, 6) zwischen 0,3 und 0,8, bevorzugt zwischen 0,3 und 0,5 liegt.
  16. Herstellungsverfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die metallhaltige Beschichtung (9) auf der Mikrokavitätenstruktur (4) in der gleichen Schichtdicke ausgebildet wird.
  17. Herstellungsverfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass in der Mikrokavitätenstruktur (4) die Mikrokavitäten (5, 6) unmittelbar aneinanderstoßend ausgebildet werden.
  18. Herstellungsverfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass die Mikrokavitätenstruktur (4) mit mindestens zwei Arten von Mikrokavitäten (5, 6) aufgebildet wird, die sich hinsichtlich des Aspektverhältnisses unterscheiden, wobei der erste Bildbereich des Bildes (11) durch die mindestens zwei verschiedenen Arten von Mikrokavitäten (5, 6) strukturiert wird.
  19. Herstellungsverfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, dass das Aspektverhältnis der Mikrokavitäten (5, 6) in der Mikrokavitätenstruktur (4) gemäß einem den ersten Bildbereich des Bildes (11) definierenden, vorbestimmten Muster variiert wird.
  20. Herstellungsverfahren nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass als Beschichtung (9) ein Interferenzschichtaufbau mit der Schichtfolge Metall - Dielektrikum - Metall verwendet wird.
  21. Herstellungsverfahren nach Anspruch 20, dadurch gekennzeichnet, dass als Dielektrikum SiO2 und/oder als Metall Al oder Cr verwendet wird.
  22. Herstellungsverfahren nach einem der Ansprüche 14 bis 21, dadurch gekennzeichnet, dass über oder unter der Mikrokavitätenstruktur (4) eine Farbschicht vorgesehen wird.
  23. Herstellungsverfahren nach einem der Ansprüche 14 bis 22, dadurch gekennzeichnet, dass die Mikrokavitäten (5, 6) nicht-rotationssymmetrisch, insbesondere rinnenförmig ausgebildet werden, und sich jeweils entlang einer Richtung (8) erstrecken.
EP14002031.4A 2013-06-14 2014-06-12 Sicherheitselement für Wertdokumente Active EP2821242B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013009972.2A DE102013009972A1 (de) 2013-06-14 2013-06-14 Sicherheitselement

Publications (2)

Publication Number Publication Date
EP2821242A1 EP2821242A1 (de) 2015-01-07
EP2821242B1 true EP2821242B1 (de) 2016-03-23

Family

ID=50972414

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14002031.4A Active EP2821242B1 (de) 2013-06-14 2014-06-12 Sicherheitselement für Wertdokumente

Country Status (2)

Country Link
EP (1) EP2821242B1 (de)
DE (1) DE102013009972A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724793B2 (ja) 2015-01-15 2020-07-15 凸版印刷株式会社 光学素子、物品、および、光学素子の製造方法
DE102016015335A1 (de) 2016-12-21 2018-06-21 Giesecke+Devrient Currency Technology Gmbh Holographisches Sicherheitselement und Verfahren zu dessen Herstellung
CN108454265B (zh) 2017-02-20 2023-09-08 中钞特种防伪科技有限公司 防伪元件及光学防伪产品
GB2586456A (en) * 2019-08-16 2021-02-24 Bae Systems Plc Vehicle surface

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819775B2 (en) 1996-07-05 2004-11-16 ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE Authentication of documents and valuable articles by using moire intensity profiles
DE10150293B4 (de) 2001-10-12 2005-05-12 Ovd Kinegram Ag Sicherheitselement
US7221512B2 (en) 2002-01-24 2007-05-22 Nanoventions, Inc. Light control material for displaying color information, and images
US7468842B2 (en) 2004-11-22 2008-12-23 Nanoventions Holdings, Llc Image presentation and micro-optic security system
DE102004016596B4 (de) 2004-04-03 2006-07-27 Ovd Kinegram Ag Sicherheitselement in Form eines mehrschichtigen Folienkörpers und Verfahren zur Herstellung eines Sicherheitselements
EA012512B1 (ru) 2004-04-30 2009-10-30 Де Ля Рю Интернэшнл Лимитед Защитное устройство и способ его изготовления
DE102004042136B4 (de) * 2004-08-30 2006-11-09 Ovd Kinegram Ag Metallisiertes Sicherheitselement
DE102006005000B4 (de) 2006-02-01 2016-05-04 Ovd Kinegram Ag Mehrschichtkörper mit Mikrolinsen-Anordnung
DE102006050047A1 (de) 2006-10-24 2008-04-30 Giesecke & Devrient Gmbh Durchsichtssicherheitselement mit Mikrostrukturen
DE102008046128B4 (de) 2008-09-05 2024-03-07 Giesecke+Devrient Currency Technology Gmbh Optisch variables Sicherheitselement mit Mattbereich
DE102010052665A1 (de) 2010-11-26 2012-05-31 Giesecke & Devrient Gmbh Reflektierendes Sicherheitselement für Sicherheitspapier, Wertdokumente oder dergleichen
DE102011121588A1 (de) * 2011-12-20 2013-06-20 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere, Wertdokumente oder dergleichen
DE102013005938A1 (de) * 2013-04-05 2014-10-09 Giesecke & Devrient Gmbh Sicherheitsfaden oder Fensterelement für einen Wertgegenstand und Herstellverfahren dafür

Also Published As

Publication number Publication date
EP2821242A1 (de) 2015-01-07
DE102013009972A1 (de) 2014-12-18

Similar Documents

Publication Publication Date Title
EP2795376B1 (de) Sicherheitselement für sicherheitspapiere, wertdokumente oder dergleichen
EP1562758B2 (de) Optisch variables element und dessen verwendung
EP3174728B1 (de) Sicherheitselement zur herstellung von wertdokumenten
EP1747100B1 (de) Sicherheitselement in form eines mehrschichtigen folienkörpers
EP2882598B1 (de) Sicherheitselement mit farbeffekterzeugender struktur
EP3422056B1 (de) Dekorelement sowie sicherheitsdokument mit einem dekorelement
EP1786632B2 (de) Metallisiertes sicherheitselement
EP2708371B1 (de) Optisch variables Sicherheitselement mit zusätzlichem Auf-/Durchsichtseffekt
EP2927715B1 (de) Sicherheitselement für sicherheitspapiere, wertdokumente oder dergleichen
EP3820714A1 (de) Optisch variables sicherheitselement mit reflektivem flächenbereich
EP3339048A1 (de) Sicherheitselement mit reflektivem flächenbereich
EP2874820B1 (de) Sicherheitselement für sicherheitspapiere, wertdokumente oder dergleichen
EP3302995B1 (de) Optisch variables sicherheitselement
EP2821242B1 (de) Sicherheitselement für Wertdokumente
EP2981418B1 (de) Sicherheitsfaden oder fensterelement für einen wertgegenstand und herstellverfahren dafür
EP3606765B1 (de) Sicherheitselement mit reliefstruktur und herstellungsverfahren hierfür
EP3727870B1 (de) Sicherheitselement mit zweidimensionaler nanostruktur und herstellverfahren für dieses sicherheitselement
EP3184319B1 (de) Sicherheitselement für sicherheitspapiere, wertdokumente oder dergleichen und verfahren zum herstellen eines sicherheitselementes
EP4190582A1 (de) Sicherheitselement mit reflektivem flächenbereich, datenträger und herstellungsverfahren
WO2024056129A1 (de) Sicherheitselement mit nanostrukturen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150707

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014000474

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B42D0025290000

Ipc: B42D0025000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B42D 25/425 20140101ALI20150904BHEP

Ipc: B42D 25/435 20140101ALI20150904BHEP

Ipc: B42D 25/29 20140101ALI20150904BHEP

Ipc: B42D 25/324 20140101ALI20150904BHEP

Ipc: B42D 25/328 20140101ALI20150904BHEP

Ipc: B42D 25/00 20140101AFI20150904BHEP

INTG Intention to grant announced

Effective date: 20150925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 782758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000474

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL AND PARTN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000474

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160612

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014000474

Country of ref document: DE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE & DEVRIENT GMBH, 81677 MUENCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Free format text: FORMER OWNER: GIESECKE AND DEVRIENT GMBH, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180118 AND 20180124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140612

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 782758

Country of ref document: AT

Kind code of ref document: T

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160612

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220629

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 10

Ref country code: DE

Payment date: 20230630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230616

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 10

Ref country code: GB

Payment date: 20230622

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630