EP2795218B1 - Düseneinrichtung für einen ofen zum wärmebehandeln eines stahlflachprodukts und mit einer solchen düseneinrichtung ausgestatteter ofen - Google Patents

Düseneinrichtung für einen ofen zum wärmebehandeln eines stahlflachprodukts und mit einer solchen düseneinrichtung ausgestatteter ofen Download PDF

Info

Publication number
EP2795218B1
EP2795218B1 EP12812574.7A EP12812574A EP2795218B1 EP 2795218 B1 EP2795218 B1 EP 2795218B1 EP 12812574 A EP12812574 A EP 12812574A EP 2795218 B1 EP2795218 B1 EP 2795218B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
nozzle device
gas
section
laa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12812574.7A
Other languages
English (en)
French (fr)
Other versions
EP2795218A1 (de
Inventor
Martin Norden
Marc Blumenau
Joachim HÜLSTRUNG
Karsten MACHALITZA
Rudolf Schönenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP2795218A1 publication Critical patent/EP2795218A1/de
Application granted granted Critical
Publication of EP2795218B1 publication Critical patent/EP2795218B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/063Special atmospheres, e.g. high pressure atmospheres

Definitions

  • the invention relates to a nozzle device for a furnace for heat treating a flat steel product according to the preamble of claim 1.
  • nozzle devices are for example from GB 670,337 A or the US 2004/0121697 A1 known.
  • the invention also relates to a furnace for heat treating a flat steel product, wherein the furnace comprises at least one furnace zone, which passes through the respective steel flat product to be treated via a conveying path under a certain composite zone atmosphere.
  • a nozzle device is provided which is connected via at least one feed connection to a gas supply, which feeds a gas, which forms the zone atmosphere, into the nozzle device.
  • hot or cold rolled flat steel products such as steel strip or sheet, are used.
  • the demands placed on such flat steel products are manifold. They should on the one hand be well deformable and on the other hand have a high strength.
  • the high strength is achieved by adding certain alloying constituents, such as Mn, Si, Al and Cr, to the iron.
  • the so-alloyed flat steel products are provided with a metallic contactor coating. Hot-dip coating has proved to be a particularly cost-effective process for large-scale use, in which the respective flat steel product passes through a melt bath while passing through a Zn or Al-based coating.
  • DFF Direct Fired Furnace
  • the increased oxygen potential leads to oxidation of the iron at the strip surface.
  • the iron oxide layer thus formed is reduced. Since the thickness of the iron oxide layer is directly dependent on the time that the flat steel product is exposed to the oxidizing atmosphere, a targeted adjustment of the oxide layer thickness at the strip surface in practice is problematic. From the layer thickness, which is difficult to set exactly, the subsequent reduction of the oxide layer under a reducing atmosphere is followed by the difficulty of ensuring a clearly defined condition of the strip surface. However, an unfavorable surface finish can again lead to adhesion problems of the coating on the strip surface.
  • RTF Radiant Tube Furnace
  • a two-stage hot dip coating method of a chromium-containing steel alloy strip is known.
  • the strip is annealed in a first stage to obtain iron enrichment at the strip surface.
  • the tape is heated in a non-oxidizing atmosphere to the temperature of the coating metal.
  • jet pipe variant When in the US 2010/0173072 A1 described jet pipe variant flows into the jet pipe, a fuel gas to which a furnace atmosphere or its dew point regulating gas or gas mixture is added.
  • a fuel gas to which a furnace atmosphere or its dew point regulating gas or gas mixture is added.
  • carbon monoxide or carbon dioxide can penetrate into the furnace chamber in addition to the oxidizing gases, which can lead to a carburization of the material and thus to a change in the material properties.
  • the atmosphere must be designed as a function of the furnace load, because the temperature of the furnace chamber and the heating of the material, ie a thickness-dependent process is controlled by the fuel gas.
  • a nozzle device consisting of a braided or slotted tube, which is connected to a gas supply which supplies a carbon-free gas mixture, is also used.
  • This variant avoids the disadvantages of the introduction of fuel gases into the furnace atmosphere, but in practice has the disadvantage that the homogeneity of the annealing gas-metal reaction in the respective furnace zone is sufficient. This applies not only to the distribution of the oxidation medium over the width of the flat steel product, but also to the distribution of the oxidation medium within the respective furnace zones.
  • the object of the invention was to provide, by simple means, a nozzle device and a furnace provided with such a nozzle device, with which optimally uniform results of the respective heat treatment can be ensured.
  • the invention solves the above object, however, by the fact that such an oven has the features mentioned in claim 14.
  • a nozzle device according to the invention for a furnace for heat treating a flat steel product is equipped with a central supply pipe, at which at least one nozzle opening and a feed connection are provided for connecting the nozzle device to a gas supply, which comprises a gas flowing through the nozzle device and leaving the at least one nozzle opening Injects nozzle device.
  • a nozzle device has a first section in which it has a smaller effective nozzle opening cross-section than in a second section, which, seen in the flow direction of the gas flowing from the respective feed connection through the nozzle device, is arranged farther away from the relevant feed connection.
  • the inventive design of a nozzle device takes into account the fact that the pressure of the gas introduced into the nozzle device decreases with increasing distance from the feed connection. According to the invention, this pressure drop is compensated for by the fact that the outlet cross-sectional area of the at least one nozzle opening of the nozzle device increases with increasing distance to the associated feed connection. Optimally, the enlargement of the nozzle openings takes place directly proportional to the pressure drop in the gas-conducting pipe supplying the nozzle openings of the nozzle device.
  • Dosierrohrgeometrie significantly improves the homogeneity of the feed of the oxidative medium by optimizing the inflow into the furnace zone. This applies both with regard to the steel strip width, as well as for the distribution of the oxidative medium within the respective furnace zone. This again reduces coating defects and increases process robustness.
  • Gas refers to all clean gases and all gas mixtures capable of effecting the purpose of heat treatment under the zone atmosphere. In practice, these may be gases that are inert with respect to the particular steel flat product to be treated, or they may be gases that cause a certain reaction at the surface of the flat steel product at the temperatures prevailing in the furnace zone. With regard to certain alloying elements of the flat steel product, gases which are typically used in practice include reducing gas mixtures, for example nitrogen-hydrogen mixtures, gas mixtures intended to oxidise the surface of the flat steel product, for example N 2 -H 2 -O 2 - Gas mixtures, or nitrogen alone, if the flat steel product is to be screened when heated against reactive gases of the environment.
  • gases which are typically used in practice include reducing gas mixtures, for example nitrogen-hydrogen mixtures, gas mixtures intended to oxidise the surface of the flat steel product, for example N 2 -H 2 -O 2 - Gas mixtures, or nitrogen alone, if the flat steel product is to be screened when heated against reactive gases
  • a nozzle device has at least one nozzle opening, via which in each case a gas jet is blown into the zone of the furnace assigned to the nozzle device.
  • this nozzle opening is advantageously formed slot-shaped and also aligned transversely to the conveying path.
  • the nozzle orifice in question also in this case has at least two adjacently arranged sections, of which the section of the nozzle device arranged closer to the associated feed connection in the flow direction of the gas flowing through the nozzle device has a smaller effective nozzle opening cross-section than the section further arranged by the respective feed connection the nozzle device.
  • the above-explained variant of the invention includes the possibility that the effective opening cross-section of the nozzle opening formed as a slot nozzle continuously widens in the flow direction of the gas flowing through the supply pipe.
  • the slot-shaped nozzle opening thus has an unlimited number of adjacent sections, of which the section further away from the feed connection in the flow direction of the gas has a larger opening cross-section than that arranged closer to the feed connection.
  • the nozzle device has in each case more than one nozzle opening, at least two being seen in the flow direction of the gas flowing through the nozzle device to each other arranged portions are present, of which at the respectively closer to the associated feed port portion of the nozzle device, the effective nozzle opening cross-section of each existing there at least one nozzle opening is smaller than the effective nozzle opening area of the at least one nozzle opening, which is present in that portion of the nozzle device, the further away from the relevant feed connection.
  • Optimum uniformity of the gas jets flowing out of the nozzle openings can be achieved in that the opening diameter in the flow direction of the gas continuously increases from nozzle opening to nozzle opening, so that nozzle openings arranged adjacent to one another always have different opening diameters.
  • the production-related expense associated with such a continuous increase in the opening cross-sections of the nozzle openings can be reduced by providing a plurality of nozzle openings, but of course assigning two or more nozzle openings with the same opening cross-section combined into a group to each section of the nozzle device.
  • not every nozzle opening differs in terms of the size of its opening cross section of the next adjacent nozzle opening. Rather, only that nozzle opening which is associated with a boundary of the respective section has a different opening cross-sectional size than the same boundary associated nozzle opening of the adjacent other section.
  • another embodiment of the invention which is important in practice provides that, in the event that a plurality of nozzle openings are present, the nozzle openings are arranged distributed next to one another in the longitudinal direction of the nozzle device and that the nozzle opening is viewed in the direction of flow of the gas flowing through the nozzle device Is located closer to the associated feed port portion of the nozzle device is smaller than the nozzle opening, which is located in the farther away from the respective feed port portion of the nozzle device.
  • the uniformity with regard to the spatial distribution as well as with respect to the gas volume flow emerging per section of the nozzle device can also be assisted by the nozzle openings being arranged distributed in the longitudinal direction of the nozzle device next to one another and viewed in the flow direction of the gas flowing through the nozzle device with increasing distance from the associated feed connection Distance between adjacent nozzle openings is smaller.
  • the nozzle openings in the portions of the nozzle device which are farther away from the feed connection are arranged on the middle in a narrower manner than in the portions adjacent to the feed connection.
  • the gas jets applied in the region of the one section may be oriented differently than the gas jets applied in the adjacent section in at least two adjacent sections of the nozzle device.
  • a main flow and a secondary flow can be generated, of which the main flow takes over the cover of the product conveyed through the furnace, while the secondary flow is used for this purpose can protect the respective furnace zone in the sense of a reverse current against the ingress of a foreign atmosphere.
  • a further improvement of the distribution of the gas jets emerging from the nozzle device according to the invention within the respective zone of the furnace can also be effected by arranging the nozzle openings in two or more rows in at least one section of the nozzle device, which flow in the direction of flow of the nozzle device Gas seen extending.
  • different gas jets and an optimal spatial distribution of the gas jets can be achieved by the fact that the gas jets emerging from the nozzle openings of one series are aligned differently than the gas jets emerging from the nozzle openings of the other row.
  • the feed connection of a nozzle device according to the invention is in each case arranged so that the incoming gas is distributed as uniformly as possible in the supply pipe of the nozzle device.
  • the feed connection is arranged centrally with respect to the length of the supply pipe for this purpose. The gas flowing into the supply pipe then automatically distributes itself approximately equally to the two outgoing regions of the supply pipe, so that a uniform distribution of the gas to the respective regions is ensured with little effort.
  • the gas supply via a feed connection, the is arranged at one of the ends of the supply pipe.
  • An optimally uniform supply of all nozzle openings of the nozzle device can thereby be achieved by providing a separate feed connection at each end of the supply tube.
  • furthest removed from the feed ports nozzle openings are certainly supplied with a sufficient amount of gas.
  • a high kinetic energy and, concomitantly, a particularly thorough mixing of the gas jets discharged via the nozzle device with the atmosphere prevailing in the respective furnace zone can be achieved by tapering the nozzle openings in cross-section starting from the interior of the supply pipe in the direction of its outer surface narrow. Due to the constriction of each flowing through the nozzle openings gas stream is accelerated and enters as a concentrated gas jet with a high pulse in the existing in the respective furnace zone atmosphere, with which he mixed intensively due to its own flow energy. In this case, the pulse of the gas jet benefits that the nozzle channel has a large cross section in the region of its inlet opening, which reduces flow losses when the gas flows into the nozzle.
  • An inventive furnace for heat treating a flat steel product comprises at least one furnace zone, which passes through the steel flat product to be treated in a conveying path under a certain composite zone atmosphere, wherein in the furnace zone an inventively designed and arranged transversely to the conveying path of the flat steel product nozzle device is provided, which at least over one Supply terminal is connected to a gas supply, which feeds a gas which forms the zone atmosphere in the nozzle device.
  • the oven according to the invention is an RTF-type oven that is indirectly heated.
  • a particularly accurate adjustment of the furnace atmosphere and its dew point can be achieved in that the gas supply of the furnace comprises a mixing device for premixing and optional humidifying the gas.
  • nozzle devices designed according to the invention can be used in furnaces comprising a plurality of adjoining furnace zones, which successively pass through the respective steel flat product to be treated, wherein each furnace zone is assigned in each case at least one nozzle device designed according to the invention.
  • the nozzle devices can be designed in such a way that they generate a main flow and at least one secondary flow, which is used as a blocking flow to seal off the respective furnace zone from the ingress of foreign atmosphere.
  • the nozzle device according to the invention is particularly suitable for use in an indirectly heated continuous furnace in which a flat steel product is heat treated, in a continuous sequence a heating zone in which the flat steel product is heated under a heating atmosphere to a target temperature within a target temperature range target temperature, and passes through a holding zone in which the flat steel product is maintained under a holding atmosphere at a holding temperature within the target temperature range, wherein in order to maintain the heating atmosphere and the holding atmosphere via at least one nozzle device according to the invention in each case a mixed gas stream is passed into the heating zone and the holding zone.
  • a nozzle bar nozzle device 1 formed in the manner of a nozzle bar nozzle device 1 comprises a central supply pipe 2, which has a circular cross-section and is sealed at its one end face 3, while at its opposite end face 4, a feed connection 5 is arranged, via which a gas flow G1 in the supply pipe 2 is headed.
  • Adjacent nozzle openings 6a-6k are formed in the supply pipe 2 in the flow direction S of the gas stream G1 flowing in the supply pipe 2, the opening center points of which lie on a line aligned coaxially with the longitudinal axis XL of the supply pipe 2.
  • the nozzle openings 6a-6k are each positioned equidistantly spaced from each other, but each have different, in the flow direction S gradually increasing opening cross-sections Q on.
  • the nozzle opening 6a positioned next to the feed connection 5 has the smallest opening cross-section Qa, while the nozzle opening 6k which is farthest from the feed connection 5 in the flow direction S has the largest opening cross section Qk and each of the nozzle openings 6a-6j has a smaller opening cross section than the nozzle opening 6b-6k respectively adjacent in the flow direction S.
  • the sum of the effective opening cross-sections Qa-Qk of the nozzle openings 6a-6k attributable to equal length sections LA1-LA6 of the nozzle openings 6a-6k proceeding from the length section LA1-LA6 assigned to the feed connection 5 in the flow direction S of the length section LA1-LA5 to the length section LA2 - LA6 increases.
  • FIG. 2 illustrated also formed in the manner of a nozzle bar nozzle means 11 comprises a central, circular in cross-section supply pipe 12, which is here, however, closed at its two end faces 13,14.
  • a central feed connection 15 which is centrally aligned with respect to the length L of the supply pipe 12 and via which a gas flow G 2 flows into the supply pipe 12 in a flow direction S2 oriented perpendicular to the longitudinal axis XL of the supply pipe 12.
  • nozzle orifices 16, 16a'-16d ', 16a "-16d” are formed whose ⁇ réellesmittelein are also on a coaxial with the longitudinal axis XL of the supply pipe 12 aligned line.
  • the nozzle openings 16, 16a'-16d ', 16a “-16d” are also spaced equidistant from each other, positioned, but each have different, starting from the centrally disposed nozzle opening 16 in the respective flow direction S2a, S2b of the supply pipe 12 flowing through Gas partial flows G2a, G2b gradually increasing opening cross sections.
  • the nozzle openings 16a ', 16a "arranged laterally of the central nozzle opening 16 have a larger opening cross-section than the central nozzle opening 16, while the nozzle openings 16b', 16b arranged next to the nozzle openings 16a ', 16a" in the respective flow direction S2a, S2b "again have a larger nozzle opening area than the nozzle openings 16a ', 16a" and so on.
  • the respective outer, directly adjacent to the respective end face 13,14 and furthest away from the feed port 15 nozzle openings 16d ', 16d “have accordingly the largest opening cross-section.
  • a nozzle bar nozzle device 21 also includes a central, circular cross-section, supply pipe 22.
  • a feed connection 25 ', 25 " provided, via which in each case a gas flow G3a, G3b in a coaxially to the longitudinal axis XL of the supply pipe 22 aligned flow direction S3a, S3b flows into the supply pipe 22.
  • the gas streams G3a, G3b are accordingly directed against each other and meet in the center M of the supply pipe 22nd
  • nozzle openings 26a'-26c ', 26a "-26c” are provided, which are formed by nozzle inserts set in corresponding receptacles of the supply pipe 22.
  • the nozzle openings 26a'-26c ', 26a "-26c” each have identical opening cross-sections.
  • the longitudinal sections LAc ', LAc "adjacent to each other in the center of the supply pipe 22 have four nozzle openings 26c', 26c", while those adjacent to the respective associated supply connection 25 ', 25 “are adjacent Length sections LAb ', LAb “are provided only three nozzle openings 26c', 26c” and so on.
  • the nozzle device 31 When in Fig. 4 1, the nozzle device 31 likewise has a supply tube 32 with a circular cross section and a single feed connection 35, which, as in the case of the nozzle device 1, is arranged on the one end face 33 of the supply tube 32.
  • the other end face 34 of the supply pipe 32 is closed.
  • the supply pipe 32 is subdivided into three equal length lengths LAx, LAy, LAz, to each of which two slot-like nozzle openings 36a ', 36a ", 36b', 36b", 36c ', 36c "are assigned.
  • 36a "of the length of the next adjacent to the feed port 35 LAx are smaller than the opening cross-sections of the nozzle openings 36b ', 36b" in the flow direction S4 of the gas flowing through the supply pipe 32 gas stream G4, present in the middle of the length L of the supply pipe 32 length section LAy.
  • the opening cross sections of the nozzle openings 36b ', 36b "of the longitudinal section LAy are smaller than the opening cross sections of the nozzle openings 36c', 36c" of the length section LAz furthest from the feed connection 35 in the flow direction S4.
  • the nozzle openings 36a '- 36c "narrow conically, starting from the interior 37 of the supply pipe 32 in the direction of the outer surface 38 thereof, so that the gas stream flowing through the nozzle openings 36a' - 36c" is accelerated and as a concentrated gas jet with high Pulse enters the atmosphere present in the respective furnace zone.
  • the height Kinetic energy, with which the gas jets enter the environment, causes a particularly good mixing of the prevailing in the respective furnace zone atmosphere.
  • Fig. 5 has three axially parallel to each other arranged rows R1, R2, R3 of nozzle openings 46a, 46b, 46c and at their end faces 43,44 each have a feed port 45a, 45b, via which the nozzle openings 46a , 46b, 46c are supplied with a gas flow G4a, G4b.
  • the opening cross sections of the nozzle openings 46a, 46b, 46c formed in the supply pipe 42 of the nozzle device 41 gradually increase starting from the respective feed connection 45a, 45b in the direction of the center of the supply pipe 42, so that the nozzle opening with the smallest opening cross section is next adjacent to the respectively assigned supply connection 45a, 45b is seated, while the nozzle opening with the largest opening cross section in each of the rows R1-R3 is arranged centrally in the center M of the length L of the supply pipe 42.
  • the nozzle openings 46a, 46b, 46c assigned to the individual rows R1, R2, R3 can each be aligned in different directions, so that the gas jets GS emerging from the nozzle openings 46a, 46b, 46c are distributed in different spatial directions.
  • An in Fig. 6 schematically illustrated continuous furnace 100 for heat treatment of a conveyed in the conveying direction F through the continuous furnace 100 steel strip B comprises Typically, a preheating zone 101, in which the steel strip B is preheated to a preheating temperature under normal atmosphere, for example, a heating zone 102, in which the steel strip B is heated to a heating temperature under an N 2 -H 2 -containing atmosphere, a holding zone 103, in the the steel strip B is maintained under the N 2 -H 2 -containing atmosphere at the heating temperature or possibly further heated, a cooling zone 104, in which the steel strip B is cooled to a Schmelzbadbadeinauchtemperatur, and a compensation and overaging zone 105, in which the Steel belt B is maintained at the melt bath immersion temperature under an N 2 -H 2 -containing atmosphere.
  • a preheating zone 101 in which the steel strip B is preheated to a preheating temperature under normal atmosphere, for example, a heating zone 102, in which the steel strip B is heated
  • steel strip B is sealed off from the ambient atmosphere via a spout 106 into a melt bath 107, where it is provided with a metallic, corrosion-protective coating.
  • nozzle devices 41 of FIG Fig. 5 arranged type arranged.
  • the nozzle devices 41 are connected to a central gas supply 110, the dry N 2 -H 2 gas leads.
  • reference numeral element 1 nozzle device 2 supply pipe 3 Front side of the supply pipe 2 4 Front side of the supply pipe 2 5 feed connection 6a-6k orifices G1 gas flow LA1-LA6 Length sections of the supply pipe 2 Q Opening cross sections of the nozzle openings 6b-6j Qa Opening cross-section of the nozzle opening 6a qk Opening cross section of the nozzle opening 6k S flow direction 11 nozzle device 12 supply pipe 13.14 End sides of the supply pipe 12 15 feed connection 16-16d " orifices G2 gas flow G2a, G2b Gas partial flows S2, S2a, S2b flow directions 21.
  • nozzle device 22 supply pipe 23.24 End faces of the supply pipe 22nd 26a'-26c ' orifices 25 ', 25 " supply terminals G 3a, G 3b gas flows LAa'-LAc " lengths S3a, S3b flow direction 31 nozzle device 32 supply pipe 35 feed connection 33, 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Nozzles (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Tunnel Furnaces (AREA)

Description

  • Die Erfindung betrifft eine Düseneinrichtung für einen Ofen zum Wärmebehandeln eines Stahlflachprodukts gemäß dem Oberbegriff von Anspruch 1. Solche Düseneinrichtungen sind beispielsweise aus der GB 670,337 A oder der US 2004/0121697 A1 bekannt.
  • Ebenso betrifft die Erfindung einen Ofen zum Wärmebehandeln eines Stahlflachprodukts, wobei der Ofen mindestens eine Ofenzone umfasst, die das jeweils zu behandelnde Stahlflachprodukt über einen Förderweg unter einer bestimmt zusammengesetzten Zonenatmosphäre durchläuft. In der Ofenzone ist dabei eine Düseneinrichtung vorgesehen, die über mindestens einen Speiseanschluss an eine Gasversorgung angeschlossen ist, welche ein Gas, das die Zonenatmosphäre bildet, in die Düseneinrichtung einspeist.
  • Im Automobilkarosseriebau werden warm- oder kaltgewalzte Stahlflachprodukte, wie Stahlband oder -blech, eingesetzt.
  • Die an solche Stahlflachprodukte gestellten Anforderungen sind vielfältig. Sie sollen einerseits gut verformbar sein und andererseits eine hohe Festigkeit haben. Die hohe Festigkeit erreicht man durch Zusatz von bestimmten Legierungsbestandteilen, wie Mn, Si, Al und Cr, zum Eisen. Zum Schutz vor Korrosion werden die so legierten Stahlflachprodukte mit einem metallischen Schützüberzug versehen. Hier hat sich als besonders kostengünstiges Verfahren für den großtechnischen Einsatz das Schmelztauchbeschichten bewährt, bei dem das jeweilige Stahlflachprodukt im Durchlauf durch ein Schmelzenbad gleitet und dabei mit einem Zn- oder Al-basierten Überzug versehen wird.
  • Möglichkeiten, ein solches Schmelztauchbeschichten in der Praxis besonders effektiv durchzuführen, sind beispielsweise in der EP 2 010 690 B1 beschrieben. Den bekannten Verfahren gemeinsam ist, dass das Stahlflachprodukt vor dem Eintauchen in das Schmelzenbad einer Wärmebehandlung unterzogen wird, bei der seine Oberfläche in einen Zustand versetzt wird, der eine optimale Haftung des beim Schmelztauchbeschichten aufgetragenen metallischen Überzugs gewährleistet.
  • Eine Variante einer solchen Wärmebehandlung sieht vor, dass das zu beschichtende Band einen direkt beheizten Vorwärmer (DFF = Direct Fired Furnace) durchläuft, in dem mittels der direkt auf das Stahlflachprodukt wirkenden Gasbrenner ein Oxidationspotential in der das Brand umgebenden Atmosphäre erzeugt werden kann. Das erhöhte Sauerstoffpotential führt zu einer Oxidation des Eisens an der Bandoberfläche. In einer anschließenden Ofenstrecke wird die derart gebildete Eisenoxidschicht reduziert. Da die Dicke der Eisenoxidschicht direkt abhängig ist von der Zeit, die das Stahlflachprodukt der oxidierenden Atmosphäre ausgesetzt ist, ist eine gezielte Einstellung der Oxidschichtdicke an der Bandoberfläche in der Praxis problematisch. Aus der nur schlecht exakt einzustellende Schichtdicke folgt bei der anschließenden Reduzierung der Oxidschicht unter einer reduzierenden Atmosphäre die Schwierigkeit, eine eindeutig definierte Beschaffenheit der Bandoberfläche zu gewährleisten. Eine ungünstige Oberflächenbeschaffenheit kann jedoch wiederum zu Haftungsproblemen des Überzugs an der Bandoberfläche führen.
  • In modernen Schmelztauchbeschichtungslinien mit einem RTF-Vorwärmer (RTF = Radiant Tube Furnace) werden anders als bei Öfen des DFF-Typs keine gasbeheizten offenen Brenner eingesetzt. In RTF-Anlagen erfolgt vielmehr die komplette Glühbehandlung des Bandes unter einer Schutzgasatmosphäre. Bei einer solchen Glühbehandlung eines Bandes aus Stahl mit höheren Legierungsbestandteilen können jedoch diese Legierungsbestandteile an die Bandoberfläche diffundieren und nicht reduzierbare Oxide bilden. Diese Oxide behindern eine einwandfreie Beschichtung mit Zink und/oder Aluminium im Schmelzbad.
  • Aus der DE 689 12 243 T2 ist ein Verfahren zur kontinuierlichen Heißtauchbeschichtung eines Stahlbandes mit Aluminium bekannt, bei dem das Band in einem Dürchlaufofen erwärmt wird. In einer ersten Zone werden Oberflächenverunreinigungen entfernt. Dafür hat die Ofenatmosphäre eine sehr hohe Temperatur. Da das Band diese Zone aber mit hoher Geschwindigkeit durchläuft, wird es nur etwa auf die halbe Temperatur der Atmosphäre erwärmt. In der anschließenden zweiten Zone, die unter Schutzgas steht, wird das Band auf die Temperatur des Beschichtungsmaterials Aluminium erwärmt.
  • Des Weiteren ist aus der DE 695 07 977 T2 ein zweistufiges Heißtauchbeschichtungsverfahren eines Chrom enthaltenden Stahllegierungsbandes bekannt. Gemäß diesem Verfahren wird das Band in einer ersten Stufe geglüht, um an der Bandoberfläche eine Eisenanreicherung zu erhalten. Anschließend wird das Band in einer nicht oxydierenden Atmosphäre auf die Temperatur des Beschichtungsmetalls erhitzt.
  • Aus der JP 02285057 A ist es zudem bekannt, ein Stahlband in einem mehrstufigen Verfahren zu verzinken. Dafür wird das zuvor gereinigte Band in einer nicht oxydierenden Atmosphäre bei einer Temperatur von etwa 820 °C behandelt. Dann wird das Band bei etwa 400 °C bis 700 °C in einer schwach oxydierenden Atmosphäre behandelt, bevor es an seiner Oberfläche in einer reduzierenden Atmosphäre reduziert wird. Abschließend wird das auf etwa 420 °C bis 500 °C abgekühlte Band in üblicher Weise verzinkt.
  • Schließlich ist aus der US 2010/0173072 A1 ein Verfahren. zum Wärmebehandeln eines Stahlflachprodukts in einem Durchlaufofen bekannt, bei dem das jeweils zu behandelnde Stahlflachprodukt einer oxidierenden Gasatmosphäre ausgesetzt wird, die mittels mit Bohrungen versehenen Strahlrohren oder Dosierrohren in die jeweilige Ofenzone geblasen wird.
  • Bei der in der US 2010/0173072 A1 beschriebenen Strahlrohrvariante strömt in das Strahlrohr ein Brenngas, dem ein die Ofenatmosphäre bzw. deren Taupunkt regulierendes Gas oder Gasgemisch zugegeben wird. Durch die Bohrungen des Strahlrohrs kann neben den oxidierend wirkenden Gasen Kohlenstoffmonoxid oder Kohlenstoffdioxid in den Ofenraum eindringen, was zu einer Aufkohlung des Werkstoffs und damit zu einer Veränderung der Werkstoffeigenschaften führen kann. Auch muss bei dieser Variante die Atmosphäre in Abhängigkeit von der Ofenlast ausgelegt werden, weil über das Brenngas die Temperatur des Ofenraums und die Durchwärmung des Materials, d.h. ein dickenabhängiger Prozess, geregelt wird.
  • Bei der aus der US 2010/0173072 A1 ebenfalls bekannten Dosierrohrvariante wird dagegen eine aus einem geflochten oder geschlitzten Rohr bestehende Düseneinrichtung eingesetzt, die an eine Gasversorgung angeschlossen ist, welche ein kohlenstofffreies Gasgemisch zuführt. Diese Variante vermeidet die Nachteile der Einleitung von Brenngasen in die Ofenatmosphäre, zeigt in der Praxis jedoch den Nachteil, dass die Homogenität der Glühgas-Metall-Reaktion in der jeweiligen Ofenzone urizureichend ist. Dies gilt nicht nur in Bezug auf die Verteilung des Oxidationsmediums über die Breite des Stahlflachprodukts, sondern auch auf die Verteilung des Oxidationsmediums innerhalb der jeweiligen Ofenzonen. So kann es in direkter Umgebung der Düseneinrichtung zu einer zu starken Oxidation kommen, während an einer weiter entfernt liegenden Stelle das Oxidationspotential zu gering ist: Trotz ihrer grundsätzlichen Vorteile ergeben sich daher auch bei Verwendung einer Düseneinrichtung der aus der US 2010/0173072 A1 bekannten Art Beschichtungsmängel.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, mit einfachen Mitteln eine Düseneinrichtung und einen mit einer solchen Düseneinrichtung versehenen Ofen zu schaffen, mit denen sich optimal gleichmäßige Ergebnisse der jeweiligen Wärmebehandlung gewährleisten lassen.
  • In Bezug auf die Düseneinrichtung ist diese Aufgabe erfindungsgemäß dadurch gelöst worden, dass die Düseneinrichtung die in Anspruch 1 angegebenen Merkmale aufweist.
  • In Bezug auf den Wärmebehandlungsofen löst die Erfindung die voranstehend genannte Aufgabe dagegen dadurch, dass ein solcher Ofen die in Anspruch 14 genannten Merkmale besitzt.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend genauso wie der allgemeine Erfindungsgedanke erläutert.
  • Eine erfindungsgemäße Düseneinrichtung für einen Ofen zum Wärmebehandeln eines Stahlflachprodukts ist mit einem zentralen Versorgungsrohr ausgestattet, an dem mindestens eine Düsenöffnung und ein Speiseanschluss zum Anschließen der Düseneinrichtung an eine Gasversorgung vorgesehen sind, welche ein die Düseneinrichtung durchströmendes und aus der mindestens einen Düsenöffnung austretendes Gas in die Düseneinrichtung einspeist.
  • Eine erfindungsgemäße Düseneinrichtung weist dabei einen ersten Abschnitt auf, in dem sie einen kleineren wirksamen Düsenöffnungsquerschnitt besitzt als in einem zweiten Abschnitt, der in Strömungsrichtung des ausgehend vom jeweiligen Speiseanschluss durch die Düseneinrichtung strömenden Gases gesehen weiter entfernt vom betreffenden Speiseanschluss angeordnet ist.
  • Die erfindungsgemäße Gestaltung einer Düseneinrichtung berücksichtigt den Umstand, dass der Druck des in die Düseneinrichtung eingelassenen Gases mit zunehmendem Abstand vom Speiseanschluss sinkt. Erfindungsgemäß wird dieser Druckabfall dadurch ausgeglichen, dass die Auslassquerschnittsfläche der mindestens einen Düsenöffnung der Düseneinrichtung mit zunehmendem Abstand zum zugeordneten Speiseanschluss zunimmt. Optimaler Weise erfolgt die Vergrößerung der Düsenöffnungen dabei direkt proportional zum Druckabfall im die Düsenöffnungen der Düseneinrichtung versorgenden gasführenden Rohr.
  • Eine stets ausreichende Versorgung der jeweils vorhandenen Düsenöffnungen einer erfindungsgemäßen Düseneinrichtung wird bei jeweils ausreichend hohem Impuls der aus den jeweils vorhandenen Düsenöffnungen austretenden Gasstrahlen dadurch gewährleistet, dass erfindungsgemäß die Summe der Öffnungsflächen aller Düsenöffnungen kleiner oder gleich dem halben Querschnitt des Versorgungsrohrs ist.
  • Die erfindungsgemäße Auslegung der Dosierrohrgeometrie verbessert die Homogenität der Einspeisung des oxidativen Mediums erheblich durch Optimierung der Einströmung in die Ofenzone. Dies gilt sowohl in Bezug auf die Stahlbandbreite, als auch für die Verteilung des oxidativen Mediums innerhalb der jeweiligen Ofenzone. Dies reduziert abermals Beschichtungsfehler und erhöht die Prozessrobustheit.
  • Wenn im vorliegenden Text von Gas die Rede ist, sind damit alle reinen Gase und alle Gasgemische gemeint, die geeignet sind, den mit der Wärmebehandlung unter der Zonenatmosphäre angestrebten Zweck zu bewirken. In der Praxis können dies Gase sein, die sich in Bezug auf das jeweils zu behandelnde Stahlflachprodukt inert verhalten, oder es können Gase sein, die bei den in der Ofenzone jeweils herrschenden Temperaturen eine bestimmte Reaktion an der Oberfläche des Stahlflachprodukts bewirken. Zu den in der Praxis typischerweise verwendeten Gasen zählen in Bezug auf bestimmte Legierungselemente des Stahlflachprodukts reduzierend wirkende Gasgemische, z.B. Stickstoff-Wasserstoff-Gemische, Gasgemische, die eine Oxidation der Oberfläche des Stahlflachprodukts bewirken sollen, wie z.B. N2-H2-O2-Gasgemische, oder Stickstoff alleine, wenn das Stahlflachprodukt bei der Erwärmung gegenüber reaktiven Gasen der Umgebung abgeschirmt werden soll.
  • Eine erfindungsgemäße Düseneinrichtung weist mindestens eine Düsenöffnung auf, über die jeweils ein Gasstrahl in die der Düseneinrichtung zugeordneten Zone des Ofens geblasen wird. Im Fall, dass die Düseneinrichtung eine Düsenöffnung aufweist, die sich in Längsrichtung der Düseneinrichtung mindestens über einen überwiegenden Teil der Länge des Versorgungsrohrs erstreckt, ist diese Düsenöffnung vorteilhafterweise schlitzförmig ausgebildet und ebenfalls quer zum Förderweg ausgerichtet. Dabei weist die betreffende Düsenöffnung auch in diesem Fall mindestens zwei benachbart zueinander angeordnete Abschnitte auf, von denen der in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gesehen näher zum zugeordneten Speiseanschluss angeordnete Abschnitt der Düseneinrichtung einen kleineren wirksamen Düsenöffnungsquerschnitt besitzt als der weiter vom betreffenden Speiseanschluss angeordnete Abschnitt der Düseneinrichtung.
  • Selbstverständlich umfasst die voranstehend erläuterte Variante der Erfindung die Möglichkeit, dass sich der wirksame Öffnungsquerschnitt der als Schlitzdüse ausgebildeten Düsenöffnung in Strömungsrichtung des durch das Versorgungsrohr strömenden Gases gesehen kontinuierlich aufweitet. Bei einer solchen kontinuierlich zunehmenden Aufweitung weist die schlitzförmige Düsenöffnung also unbegrenzt viele benachbarte Abschnitte auf, von denen der in Strömungsrichtung des Gases jeweils weiter vom Speiseanschluss entfernte Abschnitt einen größeren Öffnungsquerschnitt besitzt als der näher zum Speiseanschluss angeordnete.
  • Gemäß einer anderen Variante der Erfindung besitzt die Düseneinrichtung jeweils mehr als eine Düsenöffnung, wobei in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gesehen mindestens zwei benachbart zueinander angeordnete Abschnitte vorhanden sind, von denen bei dem jeweils näher zum zugeordneten Speiseanschluss angeordneten Abschnitt der Düseneinrichtung der wirksame Düsenöffnungsquerschnitt der dort jeweils vorhandenen mindestens einen Düsenöffnung kleiner ist als der wirksame Düsenöffnungsquerschnitt der mindestens einen Düsenöffnung, die in demjenigen Abschnitt der Düseneinrichtung vorhanden ist, der weiter entfernt vom betreffenden Speiseanschluss angeordnet ist.
  • Eine optimale Gleichmäßigkeit der aus den Düsenöffnungen ausströmenden Gasstrahlen kann dabei dadurch erreicht werden, dass der Öffnungsdurchmesser in Strömungsrichtung des Gases von Düsenöffnung zu Düsenöffnung stetig zunimmt, so dass benachbart zueinander angeordnete Düsenöffnungen stets unterschiedliche Öffnungsdurchmesser aufweisen.
  • In der Praxis lässt sich der mit einer solchen kontinuierlichen Zunahme der Öffnungsquerschnitte der Düsenöffnungen verbundene herstellungstechnische Aufwand dadurch vermindern, dass zwar mehrere Düsenöffnungen vorgesehen sind, dass aber jedem Abschnitt der Düseneinrichtung selbstverständlich auch zwei oder mehr zu einer Gruppe zusammengefasste Düsenöffnungen mit gleichem Öffnungsquerschnitt zugeordnet werden. In diesem Fall unterscheidet sich nicht jede Düsenöffnung hinsichtlich der Größe ihres Öffnungsquerschnitts von der jeweils nächst benachbarten Düsenöffnung. Vielmehr weist nur diejenige Düsenöffnung, die einer Grenze des jeweiligen Abschnitts zugeordnet ist, eine andere Öffnungsquerschnittsgröße auf als die derselben Grenze zugeordnete Düsenöffnung des angrenzenden anderen Abschnitts.
  • Dementsprechend sieht eine weitere für die Praxis wichtige Ausgestaltung der Erfindung vor, dass im Fall, dass mehrere Düsenöffnungen vorhanden sind, die Düsenöffnungen in Längsrichtung der Düseneinrichtung verteilt nebeneinander angeordnet sind und dass die Düsenöffnung, die sich im in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gesehen näher zum zugeordneten Speiseanschluss angeordneten Abschnitt der Düseneinrichtung befindet, kleiner ist als die Düsenöffnung, die sich im weiter entfernt vom betreffenden Speiseanschluss angeordneten Abschnitt der Düseneinrichtung befindet.
  • Die Gleichmäßigkeit hinsichtlich der räumlichen Aufteilung als auch hinsichtlich des pro Abschnitt der Düseneinrichtung austretenden Gasvolumenstroms kann auch dadurch unterstützt werden, dass die Düsenöffnungen in Längsrichtung der Düseneinrichtung verteilt nebeneinander angeordnet sind und in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gesehen mit zunehmender Entfernung vom zugeordneten Speiseanschluss der Abstand benachbarter Düsenöffnungen kleiner wird. In diesem Fall sind die Düsenöffnungen in den vom Speiseanschluss weiter entfernten Abschnitten der Düseneinrichtung im Mittel enger angeordnet als in den näher zum Speiseanschluss benachbarten Abschnitten.
  • Gleiche oder mit zunehmender Entfernung vom zugeordneten Speiseanschluss zunehmende Öffnungsquerschnitte der Düsenöffnungen unterstellt ergibt sich so in Summe pro Abschnitt der Düseneinrichtung ein größer werdender Öffnungsquerschnitt. Werden Abschnitte angenommen, deren in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gemessene Länge der Abschnitte der Düseneinrichtung gleich ist, so sind dann, insbesondere im Fall, dass die Düsenöffnungen jeweils eine identische Öffnungsquerschnittsgröße besitzen, im in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gesehen näher zum zugeordneten Speiseanschluss angeordneten Abschnitt der Düseneinrichtung weniger Düsenöffnungen vorhanden als in dem Abschnitt der Düseneinrichtung, der weiter entfernt vom betreffenden Speiseanschluss ist. Der Vorteil dieser Ausgestaltung besteht darin, dass sich die erfindungsgemäße Düseneinrichtung besonders einfach herstellen lässt. Dies gilt insbesondere dann, wenn die Düsenöffnungen durch identische, separat vorgefertigte Düseneinsätze gebildet sind.
  • Sollen im Ofenraum gezielt bestimmte Gasströmungen bewirkt werden oder unter Berücksichtigung der jeweiligen baulichen Bedingungen Strömungshindernisse ausgeglichen werden, so können dazu bei mindestens zwei benachbaren Abschnitten der Düseneinrichtung die im Bereich des einen Abschnitts ausgebrachten Gasstrahlen anders ausgerichtet sein als die im benachbarten Abschnitt ausgebrachten Gasstrahlen. Mit Hilfe einer entsprechenden Ausrichtung der Düsenöffnungen lassen sich beispielsweise ein Hauptstrom und ein Nebenstrom erzeugen, von denen der Hauptstrom die Abdeckung des durch den Ofen geförderten Guts übernimmt, während der Nebenstrom dazu genutzt werden kann, die jeweilige Ofenzone im Sinne eines Sperrstroms gegen das Eindringen einer Fremdatmosphäre zu schützen.
  • Eine weitere Verbesserung der Verteilung der aus der erfindungsgemäßen Düseneinrichtung austretenden Gasstrahlen innerhalb der jeweiligen Zone des Ofens kann auch dadurch bewirkt werden, dass in mindestens einem Abschnitt der Düseneinrichtung die Düsenöffnungen in zwei oder mehr Reihen angeordnet sind, die sich in Strömungsrichtung des durch die Düseneinrichtung strömenden Gases gesehen erstrecken. Dabei lassen sich unterschiedliche Gasstrahlen und eine optimale räumliche Aufteilung der Gasstrahlen dadurch erzielen, dass die aus den Düsenöffnungen der einen Reihe austretenden Gasstrahlen anders ausgerichtet sind als die Gasstrahlen, die aus den Düsenöffnungen der anderen Reihe austreten.
  • Der Speiseanschluss einer erfindungsgemäßen Düseneinrichtung wird jeweils so angeordnet, dass sich das einströmende Gas möglichst gleichmäßig im Versorgungsrohr der Düseneinrichtung verteilt. Gemäß einer ersten Ausgestaltung ist zu diesem Zweck der Speiseanschluss in Bezug auf die Länge des Versorgungsrohrs mittig angeordnet. Das in das Versorgungsrohr einströmende Gas verteilt sich dann selbsttätig annähernd zu gleichen Teilen auf die beiden seitlich von der Mitte abgehenden Bereiche des Versorgungsrohrs, so dass mit geringem Aufwand eine gleichmäßige Verteilung des Gases auf die betreffenden Bereiche gewährleistet ist.
  • Alternativ oder ergänzend ist es auch möglich, die Gaszuleitung über einen Speiseanschluss vorzunehmen, der an einem der Enden des Versorgungsrohrs angeordnet ist. Eine optimal gleichmäßige Versorgung aller Düsenöffnungen der Düseneinrichtung kann dabei dadurch erreicht werden, dass an jedem Ende des Versorgungsrohrs ein eigener Speiseanschluss vorgesehen ist. In diesem Fall strömt von jedem Ende des Versorgungsrohrs her Gas in die Düseneinrichtung, so dass innerhalb des Versorgüngsrohrs gegeneinander gerichtete Gasströmungen vorhanden sind, die sich etwa in der Mitte des Rohrs treffen. Auf diese Weise werden auch die in der Mitte des Versorgungsrohrs angeordneten, bei dieser Ausgestaltung am weitesten von den Speiseanschlüssen entfernten Düsenöffnungen sicher mit einer ausreichenden Gasmenge versorgt.
  • Eine hohe kinetische Energie und damit einhergehend eine besonders gute Durchmischung der über die Düseneinrichtung jeweils ausgebrachten Gasstrahlen mit der in der jeweiligen Ofenzone herrschenden Atmosphäre kann dadurch erreicht werden, dass sich die Düsenöffnungen im Querschnitt gesehen jeweils ausgehend vom Innenraum des Versorgüngsrohrs in Richtung von dessen Außenfläche konisch verengen. Durch die Verengung wird der jeweils durch die Düsenöffnungen strömende Gasstrom beschleunigt und tritt als konzentrierter Gasstrahl mit hohem Impuls in die in der jeweiligen Ofenzone vorhandene Atmosphäre ein, mit der er sich auf Grund der ihm eigenen Strömungsenergie intensiv vermischt. Dabei kommt dem Impuls des Gasstrahls zu Gute, dass der Düsenkanal im Bereich seiner Eintrittsöffnung einen großen Querschnitt aufweist, der Strömungsverluste beim Einströmen des Gases in die Düse vermindert.
  • Ein erfindungsgemäßer Ofen zum Wärmebehandeln eines Stahlflachprodukts umfasst mindestens eine Ofenzone, die das jeweils zu behandelnde Stahlflachprodukt in einem Förderweg unter einer bestimmt zusammengesetzten Zonenatmosphäre durchläuft, wobei in der Ofenzone eine erfindungsgemäß ausgebildete und quer zum Förderweg des Stahlflachprodukts angeordnete Düseneinrichtung vorgesehen ist, die über mindestens einen Speiseanschluss an eine Gasversorgung angeschlossen ist, welche ein Gas, das die Zonenatmosphäre bildet, in die Düseneinrichtung einspeist. Typischerweise handelt es sich bei dem erfindungsgemäßen Ofen um einen Ofen des RTF-Typs, der indirekt beheizt ist.
  • Eine besonders exakte Einstellung der Ofenatmosphäre und ihres Taupunkts kann dadurch erreicht werden, dass die Gasversorgung des Ofens eine Mischeinrichtung zum Vormischen und optionalen Befeuchten des Gases umfasst.
  • Besonders vorteilhaft lassen sich erfindungsgemäß ausgebildete Düseneinrichtungen in Öfen anwenden, die mehrere aneinander anschließende Ofenzonen umfassen, welche das jeweils zu behandelnde Stahlflachprodukt nacheinander durchläuft, wobei jeder Ofenzone jeweils mindestens eine erfindungsgemäß ausgebildete Düseneinrichtung zugeordnet ist. Die Düseneinrichtungen können dabei, wie bereits oben erläutert, derart ausgebildet sein, dass sie einen Haupt- und mindestens einen Nebenstrom erzeugen, der als Sperrstrom dazu genutzt wird, die jeweilige Ofenzone gegen das Eindringen von Fremdatmosphäre abzuschotten.
  • Die erfindungsgemäße Düseneinrichtung eignet sich in besonderem Maße für den Einsatz in einem indirekt beheizten Durchlaufofen, in dem ein Stahlflachprodukt wärmebehandelt wird, das in einer kontinuierlichen Abfolge eine Aufheizzone, in der das Stahlflachprodukt unter einer Aufheizatmosphäre auf eine innerhalb eines Zieltemperaturbereichs liegende Zieltemperatur aufgeheizt wird, und eine Haltezone durchläuft, in der das Stahlflachprodukt unter einer Halteatmosphäre bei einer innerhalb des Zieltemperaturbereichs liegenden Haltetemperatur gehalten wird, wobei zur Aufrechterhaltung der Aufheizatmosphäre und der Halteatmosphäre über jeweils mindestens eine erfindungsgemäße Düseneinrichtung jeweils ein Gasgemischstrom in die Aufheizzone und die Haltezone geleitet wird.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es zeigen jeweils schematisch und nicht maßstäblich:
  • Fig. 1
    eine erste Düseneinrichtung in seitlicher Ansicht;
    Fig. 2
    eine zweite Düseneinrichtung in seitlicher Ansicht;
    Fig. 3
    eine dritte Düseneinrichtung in seitlicher Ansicht;
    Fig. 4
    eine vierte Düseneinrichtung in seitlicher Ansicht;
    Fig. 4a
    die Düseneinrichtung gemäß Fig. 4 in einem Schnitt entlang der in Fig. 4 eingezeichneten Schnittlinie X-X;
    Fig. 4b
    die Düseneinrichtung gemäß Fig. 4 in einem Schnitt entlang der in Fig. 4 eingezeichneten Schnittlinie Y-Y;
    Fig. 4c
    die Düseneinrichtung gemäß Fig. 4 in einem Schnitt entlang der in Fig. 4 eingezeichneten Schnittlinie Z-Z;
    Fig. 5
    eine fünfte Düseneinrichtung in seitlicher Ansicht;
    Fig. 6
    ein Schema eines Durchlaufofens zum Wärmbehandeln eines Stahlbands.
  • Die in Fig. 1 dargestellte, nach Art eines Düsenbalkens ausgebildete Düseneinrichtung 1 umfasst ein zentrales Versorgungsrohr 2, das einen kreisrunden Querschnitt aufweist und an seiner einen Stirnseite 3 dicht verschlossen ist, während an seiner gegenüberliegenden Stirnseite 4 ein Speiseanschluss 5 angeordnet ist, über den ein Gasstrom G1 in das Versorgungsrohr 2 geleitet wird.
  • In das Versorgungsrohr 2 sind in Strömungsrichtung S des im Versorgungsrohr 2 strömenden Gasstroms G1 nebeneinander angeordnete Düsenöffnungen 6a - 6k eingeformt, deren Öffnungsmittelpunkte auf einer koaxial zur Längsachse XL des Versorgungsrohrs 2 ausgerichteten Linie liegen. Die Düsenöffnungen 6a - 6k sind jeweils in gleichen Abständen zueinander beabstandet positioniert, weisen jedoch jeweils unterschiedliche, in Strömungsrichtung S schrittweise zunehmende Öffnungsquerschnitte Q auf. So besitzt die zum Speiseanschluss 5 nächstbenachbart positionierte Düsenöffnung 6a den kleinsten Öffnungsquerschnitt Qa, während die in Strömungsrichtung S am weitesten vom Speiseanschluss 5 entfernte Düsenöffnung 6k den größten Öffnungsquerschnitt Qk hat und jede der Düsenöffnungen 6a-6j einen kleineren Öffnungsquerschnitt hat als die in Strömungsrichtung S jeweils nächstbenachbarte Düsenöffnung 6b - 6k. Im Ergebnis ist so erreicht, dass die Summe der jeweils auf gleichlange Längenabschnitte LA1 - LA6 des Versorgungsrohrs entfallenden wirksamen Öffnungsquerschnitte Qa - Qk der Düsenöffnungen 6a - 6k ausgehend vom dem Speiseanschluss 5 zugeordneten Längenabschnitt LA1 - LA6 in Strömungsrichtung S von Längenabschnitt LA1 - LA5 zu Längenabschnitt LA2 - LA6 zunimmt.
  • Auch die in Fig. 2 dargestellte ebenfalls nach Art eines Düsenbalkens ausgebildete Düseneinrichtung 11 umfasst ein zentrales, im Querschnitt kreisrundes Versorgungsrohr 12, das hier jedoch an seinen beiden Stirnseiten 13,14 verschlossen ist. An dem Versorgungsrohr 12 ist ein zentraler Speiseanschluss 15 vorgesehen, der in Bezug auf die Länge L des Versorgungsrohrs 12 mittig ausgerichtet ist und über den ein Gasstrom G2 in einer senkrecht zur Längsachse XL des Versorgungsrohrs 12 ausgerichteten Strömungsrichtung S2 in das Versorgungsrohr 12 strömt. An der zum Speiseanschluss 15 gegenüberliegenden Wand des Versorgungsrohrs 12 teilt sich der Gasstrom G2 zu annähernd gleich großen Gasteilströmen G2a, G2b, von denen der eine in einer koaxial zur Längsachse XL ausgerichteten Strömungsrichtung S2a in Richtung der einen Stirnseite 13 und der in einer entgegengesetzten, ebenfalls koaxial zur Längsachse XL ausgerichteten Strömungsrichtung S2b in Richtung der anderen Stirnseite 14 des Versorgungsrohrs 12 strömt.
  • In das Versorgungsrohr 12 sind nebeneinander Düsenöffnungen 16, 16a'-16d',16a"-16d" eingeformt, deren Öffnungsmittelpunkte ebenfalls auf einer koaxial zur Längsachse XL des Versorgungsrohrs 12 ausgerichteten Linie liegen. Auch die Düsenöffnungen 16,16a'-16d',16a"-16d" sind jeweils in gleichen Abständen zueinander beabstandet, positioniert, weisen jedoch jeweils unterschiedliche, ausgehend von der mittig angeordneten Düsenöffnung 16 in der jeweiligen Strömungsrichtung S2a,S2b der das Versorgungsrohr 12 durchströmenden Gasteilströme G2a,G2b schrittweise zunehmende Öffnungsquerschnitte auf. So besitzen die jeweils seitlich der zentralen Düsenöffnung 16 angeordneten Düsenöffnungen 16a',16a" einen größeren Öffnungsquerschnitt als die zentrale Düsenöffnung 16, während die in der jeweiligen Strömungsrichtung S2a,S2b jeweils nächstbenachbart zu den Düsenöffnungen 16a',16a" angeordnete Düsenöffnungen 16b',16b" wiederum einen größeren Düsenöffnungsquerschnitt besitzen als die Düsenöffnungen 16a',16a" und so fort. Die jeweils außen, direkt benachbart zu der jeweiligen Stirnseite 13,14 und am weitesten entfernt vom Speiseanschluss 15 liegenden Düsenöffnungen 16d',16d" haben dementsprechend den größten Öffnungsquerschnitt.
  • Die in Fig. 3 dargestellte ebenfalls nach Art eines Düsenbalkens ausgebildete Düseneinrichtung 21 umfasst ebenfalls ein zentrales, im Querschnitt kreisrundes, Versorgungsrohr 22. Jedoch ist bei dieser Ausgestaltung an jeder der Stirnseiten 23,24 ein Speiseanschluss 25',25" vorgesehen, über den jeweils ein Gasstrom G3a,G3b in einer koaxial zur Längsachse XL des Versorgungsrohrs 22 ausgerichteten Strömungsrichtung S3ä,S3b in das Versorgungsrohr 22 strömt. Die Gasströme G3a,G3b sind dementsprechend gegeneinander gerichtet und treffen sich in der Mitte M des Versorgungsrohrs 22.
  • Im Versorgungsrohr 22 sind Düsenöffnungen 26a'-26c', 26a"-26c" vorgesehen, die durch in entsprechende Aufnahmen des Versorgungsrohrs 22 gesetzte Düseneinsätze gebildet sind. Die Düsenöffnungen 26a'-26c', 26a"-26c" weisen dabei jeweils identische Öffnungsquerschnitte auf. Jedoch nimmt ausgehend von dem jeweils einem der Speiseanschlüsse 25',25" zugeordneten Längenabschnitt LAa',LAa" in Richtung der Mitte des Versorgungsrohrs 22 die Zahl der pro Längenabschnitt LAa'-LAc" vorgesehenen Düsenöffnungen 26a'-26c',26a"-26c" zu. Dementsprechend weisen die bezogen auf die Länge L in der Mitte des Versorgungsrohrs 22 aneinander grenzenden Längenabschnitte LAc',LAc" jeweils vier Düsenöffnungen 26c',26c" auf, während in den in Richtung des jeweils zugeordneten Speiseanschluss 25',25" nächstbenachbarten Längenabschnitten LAb',LAb" jeweils nur drei Düsenöffnungen 26c',26c" vorgesehen sind und so fort. Der unmittelbar an den Speiseanschluss 25',25" angrenzende Längenabschnitt LAa',LAa" besitzt somit die wenigsten Düsenöffnungen 26a',26a" und daher auch den kleinsten wirksamen Öffnungsquerschnitt, während die in der Mitte des Versorgungsröhrs 22 angeordneten, am weitesten vom jeweiligen Speiseanschluss 25',25" entfernten Längenabschnitte LAc',LAc" die meisten Düsenöffnungen 26c',26c" und daher auch den größten wirksamen Düsenöffnungsquerschnitt aufweisen.
  • Beim in Fig. 4 dargestellten Ausführungsbeispiel weist die Düseneinrichtung 31 ebenfalls ein Versorgungsrohr 32 mit kreisrundem Querschnitt und einen einzigen Speiseanschluss 35 auf, der wie bei der Düseneinrichtung 1 an der einen Stirnseite 33 des Versorgungsrohrs 32 angeordnet ist. Die andere Stirnseite 34 des Versorgungsrohrs 32 ist dagegen verschlossen.
  • Das Versorgungsrohr 32 ist in diesem Fall in drei Längenabschnitte LAx,LAy,LAz gleicher Länge unterteilt, denen jeweils zwei schlitzartige Düsenöffnungen 36a',36a", 36b',36b",36c',36c" zugeordnet sind. Die Öffnungsquerschnitte der Düsenöffnungen 36a',36a" des zum Speiseanschluss 35 nächstbenachbarten Längenabschnitts LAx sind dabei kleiner als die Öffnungsquerschnitte der Düsenöffnungen 36b',36b" des in Strömungsrichtung S4 des durch das Versorgungsrohr 32 strömenden Gasstroms G4 benachbarten, in der Mitte der Länge L des Versorgungsrohrs 32 vorhandenen Längenabschnitts LAy. Genauso sind die Öffnungsquerschnitte der Düsenöffnungen 36b',36b" des Längenabschnitts LAy kleiner als die Öffnungsquerschnitte der Düsenöffnungen 36c',36c" des in Strömungsrichtung S4 am weitesten vom Speiseanschluss 35 entfernten Längenabschnitts LAz.
  • Im Querschnitt gesehen verengen sich die Düsenöffnungen 36a' - 36c" jeweils ausgehend vom Innenraum 37 des Versorgungsrohrs 32 in Richtung von dessen Außenfläche 38 konisch, so dass der durch die Düsenöffnungen 36a' - 36c" jeweils strömende Gasstrom beschleunigt wird und als konzentrierter Gasstrahl mit hohem Impuls in die in der jeweiligen Ofenzone vorhandene Atmosphäre tritt. Die hohe kinetische Energie, mit der die Gasstrahlen in die Umgebung treten, bewirkt eine besonders gute Durchmischung der in der jeweiligen Ofenzone herrschenden Atmosphäre.
  • Die in Fig. 5 dargestellte Düseneinrichtung 41 entspricht in ihrem Grundaufbau der Düseneinrichtung 31, weist jedoch drei achsparallel zueinander angeordnete Reihen R1,R2,R3 von Düsenöffnungen 46a,46b,46c und an ihren Stirnseiten 43,44 jeweils einen Speiseanschluss 45a,45b auf, über den die Düsenöffnungen 46a,46b,46c mit einem Gasstrom G4a,G4b versorgt werden. Die Öffnungsquerschnitte der in das Versorgungsrohr 42 der Düseneinrichtung 41 eingeformten Düsenöffnungen 46a,46b,46c nehmen dabei ausgehend vom jeweiligen Speiseanschluss 45a,45b in Richtung der Mitte des Versorgungsrohrs 42 schrittweise zu, so dass die Düsenöffnung mit dem kleinsten Öffnungsquerschnitt jeweils nächstbenachbart zum jeweils zugeordneten Speiseanschluss 45a,45b sitzt, während die Düsenöffnung mit dem größten Öffnungsquerschnitt in jeder der Reihen R1-R3 zentral in der Mitte M der Länge L des Versorgungsrohrs 42 angeordnet ist.
  • Die den einzelnen Reihen R1,R2,R3 zugeordneten Düsenöffnungen 46a,46b,46c können dabei jeweils in unterschiedlichen Richtungen ausgerichtet sein, so dass die aus den Düsenöffnungen 46a,46b,46c austretenden Gasstrahlen GS sich in unterschiedlichen Raumrichtungen verteilen.
  • Ein in Fig. 6 schematisch dargestellter Durchlaufofen 100 zur Wärmebehandlung eines in Förderrichtung F durch den Durchlaufofen 100 geförderten Stahlbands B umfasst typischerweise eine Vorheizzone 101, in der das Stahlband B beispielsweise unter Normalatmosphäre auf eine Vorheiztemperatur vorgeheizt wird, eine Aufheizzone 102, in der das Stahlband B unter einer N2-H2-haltigen Atmosphäre auf eine Aufheiztemperatur aufgeheizt wird, eine Haltezone 103, in der das Stahlband B unter einer N2-H2-haltigen Atmosphäre bei der Aufheiztemperatur gehalten oder ggf. weiter erwärmt wird, eine Kühlzone 104, in der das Stahlband B auf eine Schmelzenbadeintauchtemperatur abgekühlt wird, und eine Ausgleichs- und Überalterungszone 105, in der das Stahlband B unter einer N2-H2-haltigen Atmosphäre auf der Schmelzenbadeintauchtemperatur gehalten wird.
  • Von der Ausgleichs- und Überalterungszone 105 wird Stahlband B unter Abschluss gegenüber der Umgebungsatmosphäre über einen Rüssel 106 in ein Schmelzenbad 107 geleitet, in dem es mit einem metallischen, vor Korrosion schützenden Überzug versehen wird.
  • Um die N2-H2-haltige Atmosphäre aufrechtzuerhalten, sind in der Aufheizzone 102, der Haltezone 103 und der Ausgleichs- und Überalterungszone 105 und dem Rüssel 106 beispielsweise jeweils Düseneinrichtungen 41 der in Fig. 5 dargestellten Art angeordnet. Die Düseneinrichtungen 41 sind dabei an eine zentrale Gasversorgung 110 angeschlossen, die trockenes N2-H2-Gas führt.
  • Um den Taupunkt und das Oxidationspotenzial der in der Aufheizzone 102 und der Haltezone 103 jeweils herrschenden Atmosphäre regeln zu können, ist eine mit den diesen Zonen 102,103 zugeordneten Düseneinrichtungen 41 verbundene Vormischeinrichtung 111 vorgesehen, über die ein mit H2O und/oder O2 gemischtes N2-H2-Gasgemisch gebildet werden kann.
    Bezugszeichen Element
    1 Düseneinrichtung
    2 Versorgungsrohr
    3 Stirnseite des Versorgungsrohrs 2
    4 Stirnseite des Versorgungsrohrs 2
    5 Speiseanschluss
    6a-6k Düsenöffnungen
    G1 Gasstrom
    LA1-LA6 Längenabschnitte des Versorgungsrohrs 2
    Q Öffnungsquerschnitte der Düsenöffnungen 6b-6j
    Qa Öffnungsquerschnitt der Düsenöffnung 6a
    Qk Öffnungsquerschnitt der Düsenöffnung 6k
    S Strömungsrichtung
    11 Düseneinrichtung
    12 Versorgungsrohr
    13,14 Stirnseiten des Versorgungsrohrs 12
    15 Speiseanschluss
    16-16d" Düsenöffnungen
    G2 Gasstrom
    G2a,G2b Gasteilströme
    S2,S2a,S2b Strömungsrichtungen
    21 . Düseneinrichtung
    22 Versorgungsrohr
    23,24 Stirnseiten des Versorgungsrohrs 22
    26a'-26c" Düsenöffnungen
    25',25" Speiseanschlüsse
    G3a,G3b Gasströme
    LAa'-LAc" Längenabschnitte
    S3a,S3b Strömungsrichtung
    31 Düseneinrichtung
    32 Versorgungsrohr
    35 Speiseanschluss
    33, 34. Stirnseite des Versorgungsrohrs 32
    36a'-36c" Düsenöffnungen
    G4 Gasstrom
    LAx-LAz Längenabschnitte
    S4 Strömungsrichtung
    37 Innenraum des Versorgungsrohrs 32
    38 Außenfläche des Versorgungsrohrs 32
    41 Düseneinrichtung
    42 Versorgungsrohr der Düseneirichtung 41
    43, 44 Stirnseiten des Versorgungsrohrs 42
    45',45" Speiseanschlüsse
    46a-46c Düsenöffnungen
    G4a,G4b Gasströme
    GS Gasstrahlen
    R1-R3 Reihen von Düsenöffnungen
    100 Durchlaufofen
    101 Vorheizzone
    102 Aufheizzone
    103 Haltezone
    104 Kühlzone
    105 Ausgleichs- und Überalterungszone
    106 Rüssel
    107 Schmelzenbad
    110 Gasversorgung
    111 Vormischeinrichtung
    F Förderrichtung
    B Stahlband
    L Länge der Versorgungsrohre 2,12,22,32,42
    XL Längsachse der Versorgungsrohre 2,12,22,32,42
    M Mitte der Länge L der Versorgungsrohre 2,12,22,32,92

Claims (17)

  1. Düseneinrichtung für einen Ofen (100) zum Wärmebehandeln eines Stahlflachprodukts (B), mit einem zentralen Versorgungsrohr (2,12,22,32,42), an dem mindestens eine Düsenöffnung (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) und ein Speiseanschluss (5,15, 25',25",35,45',45") zum Anschließen der Düseneinrichtung (1,11,21,31,41) an eine Gasversorgung vorgesehen sind, welche ein die Düseneinrichtung (1,11,21,31,41) durchströmendes und aus der mindestens einen Düsenöffnung (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) austretendes Gas (G1,G2,G3a,G3b,G4,G4a,G4b) in die Düseneinrichtung (1,11,21,31,41) einspeist, wobei die Düseneinrichtung (1,11,21,31,41) einen ersten Abschnitt (LA1 - LA6,LAa'-LAc",LAx-LAz) aufweist, in dem sie einen kleineren wirksamen Düsenöffnungsquerschnitt (Q,Qa,Qk) besitzt als in einem zweiten Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz), der in Strömungsrichtung des ausgehend vom jeweiligen Speiseanschluss (5,15,25',25",35,45',45") durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4, G4a,G4b) gesehen weiter entfernt vom betreffenden Speiseanschluss (5,15,25',25",35,45',45") angeordnet ist, dadurch gekennzeichnet, dass die Summe der wirksamen Öffnungsquerschnitte aller Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) kleiner oder gleich dem halben Querschnitt des Versorgungsrohrs (2,12,22,32) ist.
  2. Düseneinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sie eine Düsenöffnung aufweist, die sich in Längsrichtung der Düseneinrichtung (1,11,21,31,41) mindestens über einen überwiegenden Teil der Länge des Versorgungsrohrs (2,12,22,32,42) erstreckt, dass die,Düsenöffnung schlitzförmig ausgebildet und ebenfalls quer zum Förderweg ausgerichtet ist und dass die Düsenöffnung mindestens zwei benachbart zueinander angeordnete Abschnitte (LA1-LA6,LAa'-LAc",LAx-LAz) aufweist, von denen der in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4,G4a,G4b) gesehen näher zum zugeordneten Speiseanschluss (5,15,25',25",35,45',45") angeordnete Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) einen kleineren wirksamen Düsenöffnungsquerschnitt besitzt als der weiter vom betreffenden Speiseanschluss (5,15,25',25",35,45',45") angeordnete Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41).
  3. Düseneinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sie mehr als eine Düsenöffnung (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) besitzt und dass in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,,G4,G4a,G4b) gesehen mindestens zwei benachbart zueinander angeordnete Abschnitte (LA1-LA6,LAa'-LAc",LAx-LAz) vorhanden sind, von denen bei dem jeweils näher zum zugeordneten Speiseanschluss (5,15,25',25",35,45',45") angeordneten Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) der wirksame Düsenöffnungsquerschnitt der dort jeweils vorhandenen mindestens einen Düsenöffnung (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) kleiner ist als der wirksame Düsenöffnungsquerschnitt der mindestens einen Düsenöffnung (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c), die in demjenigen Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) vorhanden ist, der weiter entfernt vom betreffenden Speiseanschluss (5,15,25',25",35,45',45") angeordnet ist.
  4. Düseneinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) in Längsrichtung der Düseneinrichtung (1,11,21,31,41) verteilt nebeneinander angeordnete sind und dass die Düsenöffnung (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c), die sich im in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4,G4a,G4b) gesehen näher zum zugeordneten Speiseanschluss (5,15,25',25",35,45',45") angeordneten Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) befindet, kleiner ist als die Düsenöffnung, (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c), die sich im weiter entfernt vom betreffenden Speiseanschluss (5,15,25',25",35,45',45") angeordneten Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) befindet.
  5. Düseneinrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) in Längsrichtung der Düseneinrichtüng (1,11,21,31,41) verteilt nebeneinander angeordnet sind und dass in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4,G4a,G4b) gesehen mit zunehmender Entfernung vom zugeordneten Speiseanschluss (5,15,25',25",35,45',45") der Abstand benachbarter Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) kleiner wird.
  6. Düseneinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4,G4a,G4b) gemessene Länge der Abschnitte (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) gleich ist und im in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4,G4a,G4b) gesehen näher zum zugeordneten Speiseanschluss (5,15,25',25",35,45',45") angeordneten Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) weniger Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) vorhanden sind als in dem Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41), der weiter entfernt vom betreffenden Speiseanschluss (5,15,25',25",35,45',45") ist.
  7. Düseneinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die in den Abschnitten (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) vorgesehenen Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) gleich groß sind.
  8. Düseneinrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass bei mindestens zwei benachbarten Abschnitten (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) die im Bereich des einen Abschnitts ausgebrachten Gasstrahlen anders ausgerichtet sind als die im benachbarten Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) ausgebrachten Gasstrahlen.
  9. Düseneinrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass in mindestens einem Abschnitt (LA1-LA6,LAa'-LAc",LAx-LAz) der Düseneinrichtung (1,11,21,31,41) die Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) in zwei oder mehr Reihen angeordnet sind, die sich in Strömungsrichtung des durch die Düseneinrichtung (1,11,21,31,41) strömenden Gases (G1,G2,G3a,G3b,G4,G4a,G4b) gesehen erstrecken.
  10. Düseneinrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die aus den Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) der einen Reihe austretenden Gasstrahlen anders ausgerichtet sind als die Gasstrahlen, die aus den Düsenöffnungen (6a-6k,16-16d",26a'-26c",36a'-36c",46a-46c) der anderen Reihe austreten.
  11. Düseneinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Speiseanschluss (5,15,25',25",35,45',45") in Bezug auf die Länge des Versorgungsrohrs (2,12,22,32,42) mittig angeordnet ist.
  12. Düseneinrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass an jedem Ende des Versorgungsrohrs (2,12,22,32,42) ein Speiseanschluss (5,15,25',25",35,45',45") vorgesehen ist.
  13. Düseneinrichtung nach einem der voransteheriden Ansprüche, dadurch gekennzeichnet, dass sich die Düsenöffnungen (36a' - 36c") im Querschnitt gesehen jeweils ausgehend vom Innenraum (37) des Versorgungsrohrs (32) in Richtung von dessen Außenfläche (38) konisch verengen.
  14. Ofen zum Wärmebehandeln eines Stahlflachprodukts, mit mindestens einer Ofenzone, die das jeweils zu behandelnde Stahlflachprodukt in einem Förderweg unter einer bestimmt zusammengesetzten Zonenatmosphäre durchläuft, wobei in der Ofenzone eine Düseneinrichtung (1,11,21,31,41) vorgesehen ist, die über mindestens einen Speiseanschluss (5,15,25',25",35,45',45") an eine Gasversorgung angeschlossen ist, welche ein Gas (G1,G2,G3a,G3b,G4,G4a,G4b), das die Zonenatmosphäre bildet, in die Düseneinrichtung (1,11,21,31,41). einspeist, dadurch gekennzeichnet, dass die Düseneinrichtung (1,11,21,31,41) gemäß einem der Ansprüche 1 bis 13 ausgebildet und quer zum Förderweg des Stahlflachprodukts in dem Ofen angeordnet ist.
  15. Ofen nach Anspruch 14, dadurch gekennzeichnet, dass er indirekt beheizt ist.
  16. Ofen nach einem der Ansprüche 14 oder 15, dadurch gekennzeichnet, dass die Gasversorgung eine Mischeinrichtung zum Vormischen und optionalen Befeuchten des Gases (G1,G2,G3a,G3b,G4,G4a,G4b) umfasst.
  17. Ofen nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass der Ofen mehrere aneinander anschließende Ofenzonen umfasst, die das jeweils zu behandelnde Stahlflachprodukt nacheinander durchläuft und denen jeweils mindestens eine gemäß einem der Ansprüche 1 bis 13 ausgebildete Düseneinrichtung (1,11,21,31,41) zugeordnet ist.
EP12812574.7A 2011-12-21 2012-12-17 Düseneinrichtung für einen ofen zum wärmebehandeln eines stahlflachprodukts und mit einer solchen düseneinrichtung ausgestatteter ofen Not-in-force EP2795218B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011056823A DE102011056823A1 (de) 2011-12-21 2011-12-21 Düseneinrichtung für einen Ofen zum Wärmebehandeln eines Stahlflachprodukts und mit einer solchen Düseneinrichtung ausgestatteter Ofen
PCT/EP2012/075770 WO2013092479A1 (de) 2011-12-21 2012-12-17 Düseneinrichtung für einen ofen zum wärmebehandeln eines stahlflachprodukts und mit einer solchen düseneinrichtung ausgestatteter ofen

Publications (2)

Publication Number Publication Date
EP2795218A1 EP2795218A1 (de) 2014-10-29
EP2795218B1 true EP2795218B1 (de) 2016-04-27

Family

ID=47520925

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12812574.7A Not-in-force EP2795218B1 (de) 2011-12-21 2012-12-17 Düseneinrichtung für einen ofen zum wärmebehandeln eines stahlflachprodukts und mit einer solchen düseneinrichtung ausgestatteter ofen

Country Status (9)

Country Link
US (1) US20140342297A1 (de)
EP (1) EP2795218B1 (de)
JP (1) JP6282981B2 (de)
KR (1) KR20140103181A (de)
CN (1) CN104040276B (de)
CA (1) CA2856462C (de)
DE (1) DE102011056823A1 (de)
ES (1) ES2584065T3 (de)
WO (1) WO2013092479A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106135A1 (de) 2014-04-30 2015-11-05 Thyssenkrupp Ag Düseneinrichtung und Verfahren zur Behandlung eines Stahlflachproduktes
DE102016000390A1 (de) 2016-01-14 2017-07-20 Dürr Systems Ag Lochplatte mit vergrößertem Lochabstand in einem oder beiden Randbereichen einer Düsenreihe
DE102016000356A1 (de) 2016-01-14 2017-07-20 Dürr Systems Ag Lochplatte mit reduziertem Durchmesser in einem oder beiden Randbereichen einer Düsenreihe
DE102016103079A1 (de) * 2016-02-22 2017-08-24 Loi Thermprocess Gmbh Einrichtung und Verfahren zur Wärmebehandlung eines Flacherzeugnisses
CN107297286B (zh) * 2017-07-26 2020-05-22 河海大学 多孔等流灌水管
CN111940255A (zh) * 2019-05-15 2020-11-17 宝山钢铁股份有限公司 一种带钢涂层烘干装置及方法
CN111774402B (zh) * 2020-06-24 2021-12-28 天津市丽碧朗环保科技有限公司 一种工业有机固体废物处理方法
KR102644613B1 (ko) * 2021-12-29 2024-03-11 계명대학교 산학협력단 식품 조리 장치
KR102508123B1 (ko) * 2022-10-28 2023-03-10 (주)삼양세라텍 열처리 장치

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25626E (en) * 1964-07-28 Air-heating gas burner
GB670337A (en) * 1949-01-04 1952-04-16 Main Water Heaters Ltd Improvements in or relating to multi-jet gas burners and their manufacture
US3050123A (en) * 1958-10-07 1962-08-21 Cities Service Res & Dev Co Gas fired oil-well burner
US3285317A (en) * 1963-10-09 1966-11-15 C A Olsen Mfg Company Multi-port gas burner
US3386431A (en) * 1966-08-09 1968-06-04 Robertshaw Controls Co Burner construction and method and apparatus for making the same and the like
US3768131A (en) * 1970-05-15 1973-10-30 Robertshaw Controls Co Burner construction and method of making the same or the like
DE3503089A1 (de) * 1985-01-30 1986-07-31 Carl Prof. Dr.-Ing. 5100 Aachen Kramer Vorrichtung zur gleichmaessigen beaufschlagung einer planen flaeche mit einem gas
JPS62110254U (de) * 1985-12-28 1987-07-14
US4805587A (en) * 1988-03-18 1989-02-21 Universal Enterprises, Inc. Gas grill
US5023113A (en) 1988-08-29 1991-06-11 Armco Steel Company, L.P. Hot dip aluminum coated chromium alloy steel
JPH02285057A (ja) 1989-04-27 1990-11-22 Sumitomo Metal Ind Ltd 溶融亜鉛めっき用鋼板の連続焼鈍方法
US5447754A (en) 1994-04-19 1995-09-05 Armco Inc. Aluminized steel alloys containing chromium and method for producing same
JPH09287880A (ja) * 1996-04-22 1997-11-04 Tokai Konetsu Kogyo Co Ltd ガス雰囲気炉
DE19957987A1 (de) * 1999-11-27 2001-05-31 Rheinkalk Gmbh & Co Kg Rostplatte für feste und bewegliche Roste
JP4123690B2 (ja) * 2000-06-20 2008-07-23 住友金属工業株式会社 連続焼鈍炉内への雰囲気ガス供給方法
US6668590B2 (en) * 2001-10-23 2003-12-30 Glasstech, Inc. Forced convection heating furnace and method for heating glass sheets
CN1490585A (zh) * 2002-10-16 2004-04-21 光洋热***株式会社 连续加热处理炉
JP2004207225A (ja) * 2002-12-11 2004-07-22 Nec Plasma Display Corp プラズマディスプレイパネルの焼成炉及びプラズマディスプレイパネルの製造方法
KR100551522B1 (ko) * 2002-12-11 2006-02-13 파이오니아 가부시키가이샤 플라즈마 디스플레이 패널의 소성로 및 플라즈마디스플레이 패널의 제조 방법
JP4426886B2 (ja) * 2004-03-23 2010-03-03 新日本製鐵株式会社 連続式溶融めっきラインにおける焼鈍設備
EP2010690B1 (de) 2006-04-26 2010-02-24 ThyssenKrupp Steel Europe AG Verfahren zum schmelztauchbeschichten eines stahlflachproduktes aus höherfestem stahl
FR2920439B1 (fr) 2007-09-03 2009-11-13 Siemens Vai Metals Tech Sas Procede et dispositif d'oxydation/reduction controlee de la surface d'une bande d'acier en defilement continu dans un four a tubes radiants en vue de sa galvanisation
JP2010038531A (ja) * 2008-07-10 2010-02-18 Ihi Corp 熱処理装置
JP5444729B2 (ja) * 2009-01-27 2014-03-19 Jfeスチール株式会社 溶融亜鉛メッキ鋼板の製造方法および連続溶融亜鉛メッキ装置
CN102066862B (zh) * 2009-05-28 2013-02-27 松下电器产业株式会社 烧成装置
JP5581615B2 (ja) * 2009-06-26 2014-09-03 Jfeスチール株式会社 鋼板の製造方法および製造設備
JP5582819B2 (ja) * 2010-02-24 2014-09-03 東京エレクトロン株式会社 処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2584065T3 (es) 2016-09-23
JP6282981B2 (ja) 2018-02-21
US20140342297A1 (en) 2014-11-20
EP2795218A1 (de) 2014-10-29
CN104040276A (zh) 2014-09-10
DE102011056823A1 (de) 2013-06-27
CA2856462C (en) 2020-01-14
KR20140103181A (ko) 2014-08-25
CN104040276B (zh) 2016-09-07
CA2856462A1 (en) 2013-06-27
JP2015506412A (ja) 2015-03-02
WO2013092479A1 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
EP2795218B1 (de) Düseneinrichtung für einen ofen zum wärmebehandeln eines stahlflachprodukts und mit einer solchen düseneinrichtung ausgestatteter ofen
EP2824216B1 (de) Verfahren zur Herstellung eines durch Schmelztauchbeschichten mit einer metallischen Schutzschicht versehenen Stahlflachprodukts und Durchlaufofen für eine Schmelztauchbeschichtungsanlage
EP2732062B1 (de) Verfahren zur herstellung eines durch schmelztauchbeschichten mit einer metallischen schutzschicht versehenen stahlflachprodukts
EP2010690B1 (de) Verfahren zum schmelztauchbeschichten eines stahlflachproduktes aus höherfestem stahl
EP3172345B1 (de) Verfahren zum aufheizen von stahlblechen
EP1816219A1 (de) Verfahren zur Wärmebehandlung von Stahlbändern mittels direkter Flammenbeheizung
EP3221477B1 (de) Verfahren zur herstellung eines aufgestickten verpackungsstahls
EP2707516A1 (de) Vorrichtung und verfahren zum im durchlauf erfolgenden behandeln eines stahlflachprodukts
EP1830147B1 (de) Mehrkammer-Durchlaufofen mit Schutzgasbetrieb und Verfahren zum oxidfreien Erwärmen von verzinkten Werkstücken
AT509596B1 (de) Verfahren zum erwärmen eines formbauteils für ein anschliessendes presshärten sowie durchlaufofen zum bereichsweisen erwärmen eines auf eine vorgegebene temperatur vorgewärmten formbauteils auf eine höhere temperatur
EP3511430A1 (de) Verfahren für eine kontinuierliche wärmebehandlung eines stahlbands, und anlage zum schmelztauchbeschichten eines stahlbands
DE60130823T2 (de) Verbesserungen beim Vorwärmen von Metallbändern, insbesondere in Verzinkungs- oder Glühanlagen
DE3033501A1 (de) Verfahren zur direkten waermebehandlung von stabdraht aus austenitischem, rostfreiem stahl
DE69107931T2 (de) Anlage zum kontinuierlichen Glühen mit einem Aufkohlungs- oder Nitrierofen.
DE19950502C1 (de) Verfahren zum Herstellen eines Warmbandes
AT397815B (de) Verfahren zum verzinken eines bandes sowie anlage zur durchführung des verfahrens
DE102016011047A1 (de) Flexible Wärmebehandlungsanlage für metallisches Band in horizontaler Bauweise
EP0564437B1 (de) Verfahren zum Verzinken eines Bandes sowie Anlage zur Durchführung des Verfahrens
DE69215015T2 (de) Verfahren und Ofen zum Schwärzen von rostfreien Stahlbändern
EP0355520A2 (de) Verfahren zur Wärmebehandlung von Werkstücken
DE3039424C2 (de) Brennerbeheizter Durchlaufofen
AT500686B1 (de) Verfahren zur wärmebehandlung eines metallbandes vor einer metallischen beschichtung
DE10322665A1 (de) Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MACHALITZA, KARSTEN

Inventor name: BLUMENAU, MARC

Inventor name: SCHOENENBERG, RUDOLF

Inventor name: NORDEN, MARTIN

Inventor name: HUELSTRUNG, JOACHIM

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20160219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 795278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006959

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2584065

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006959

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201222

Year of fee payment: 9

Ref country code: DE

Payment date: 20201211

Year of fee payment: 9

Ref country code: GB

Payment date: 20201223

Year of fee payment: 9

Ref country code: FR

Payment date: 20201223

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20201223

Year of fee payment: 9

Ref country code: NL

Payment date: 20201221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201224

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210223

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012006959

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 795278

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211217

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211217

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211218