EP2789901A2 - Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung - Google Patents

Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung Download PDF

Info

Publication number
EP2789901A2
EP2789901A2 EP14160768.9A EP14160768A EP2789901A2 EP 2789901 A2 EP2789901 A2 EP 2789901A2 EP 14160768 A EP14160768 A EP 14160768A EP 2789901 A2 EP2789901 A2 EP 2789901A2
Authority
EP
European Patent Office
Prior art keywords
light
primary optics
optics
distribution
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14160768.9A
Other languages
English (en)
French (fr)
Other versions
EP2789901A3 (de
EP2789901B1 (de
Inventor
Matthias Brendle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Automotive Lighting Reutlingen Germany GmbH
Original Assignee
Automotive Lighting Reutlingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Lighting Reutlingen GmbH filed Critical Automotive Lighting Reutlingen GmbH
Publication of EP2789901A2 publication Critical patent/EP2789901A2/de
Publication of EP2789901A3 publication Critical patent/EP2789901A3/de
Application granted granted Critical
Publication of EP2789901B1 publication Critical patent/EP2789901B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/285Refractors, transparent cover plates, light guides or filters not provided in groups F21S41/24 - F21S41/2805
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/29Attachment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/334Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
    • F21S41/336Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors with discontinuity at the junction between adjacent areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings

Definitions

  • the present invention relates to a light module of a motor vehicle lighting device.
  • the light module comprises at least two light sources for emitting light and at least two primary optics for bundling at least part of the emitted light. At least one light source is assigned to one of the primary optics.
  • the light module comprises a common secondary optics for shaping a plurality of adjoining or slightly overlapping light distributions from the light bundles generated by at least some of the primary optics.
  • the invention also relates to a motor vehicle lighting device with such a light module.
  • a matrix high beam module includes a light source having a plurality of semiconductor light sources (LEDs) arranged in rows and / or columns, wherein a plurality of LEDs are activated to produce the desired high beam distribution.
  • the individual LEDs can be controlled individually so that individual LEDs are specifically deactivated be able to hide specific areas of the resulting high beam distribution targeted.
  • areas of the high-beam distribution in which other road users are located can be omitted.
  • this enables a particularly good illumination of the roadway area in front of the motor vehicle by means of the high beam distribution, and on the other hand it prevents dazzling of the preceding and / or oncoming road users.
  • Suitable secondary optics are both reflectors and lenses or lens systems.
  • a secondary optic is characterized in that it projects one or more light source images from a real intermediate image plane to generate the desired light distribution of the light module on the roadway in front of the motor vehicle.
  • primary optics are, for example, collecting lenses, conical optical fibers, disc-shaped light guides or reflectors that can be arranged individually or in several rows and / or columns array- or matrix-like side by side and / or one above the other.
  • the primary optics usually comprise arrays of lenses, light guides or reflectors combined into arrays.
  • the light exit surface of the primary optics or the light exit surfaces of the individual primary optics elements of an optical array lies or lie approximately in the so-called Petzval surface of the secondary optics, so that the through the primary optics elements generated individual light source images by means of refraction and / or reflection can be sharply demarcated against each other.
  • Petzval area is a surface whose points are imaged by the secondary optics as equal as possible and in the desired manner on a far away in the direction of travel or emission direction image surface. These object points can be mapped as lines or rectangles or the like instead of points.
  • the light distributions in the intermediate image with respect to their shape and light intensity distribution can be influenced only slightly in the prior art.
  • the light exit surfaces are arranged directly in the Petzval products the secondary optics, generate light distributions with a substantially uniform luminance.
  • the further light shaping for example the vertical shaping of the light distributions, must be carried out by secondary optics, which have a pronounced astigmatism. All light distributions in the intermediate image are distorted in the same way by the subsequent secondary optics.
  • Most matrix light distributions have several equally broad stripe-shaped light distributions in the center. In addition, however, it is expedient to supplement these central light distributions, at least to the sides, by one or more wide light distributions, which extend softly towards the edge of the roadway.
  • the primary optics which generates the intermediate image of the side illumination, together with the light source associated with it, would have to be set back in the opposite direction of the light emission direction, far behind the remaining light sources and lenses which form an intermediate light distribution in the center of the matrix light distribution.
  • a projection system for a motor vehicle lighting device in which a low beam light distribution with a substantially horizontal Patoscuro limit by a partial high beam distribution, which illuminates a range above the light-dark boundary, is supplemented.
  • the resulting high beam distribution of the overall system is generated by a superposition of the low beam distribution and the partial high beam distribution.
  • the partial high beam distribution is generated by means of a light source and a concave mirror in an intermediate image plane of the projection system. With a deflecting mirror, the high-beam beam path is then directed through the secondary optics designed as a projection lens and projected onto the road ahead of the motor vehicle.
  • the present invention has the object, to design a lighting module of the type mentioned and further, that of one or more primary optics in the intermediate image plane, an additional secondary light distribution with large lateral expansion and dynamic Luminance gradient, in particular a decrease in luminance to the outer edge of the resulting total light distribution out, and further one, in particular in the region of the transitions between the individual light distributions, as homogeneously illuminated resulting total light distribution of the light module can be realized.
  • At least one of the light sources for generating light to realize a main light distribution and at least one other of the light sources for generating light for implementing a secondary light distribution is configured and that the at least one
  • the primary optics associated with the light source for generating the light for the secondary light distribution is designed in several parts, wherein at least one first of the partial primary optics is arranged next to the at least one primary optics associated with the light for the main light distribution.
  • the resulting total light distribution of the light module is generated by a superposition or supplement of the main light distribution and the secondary light distribution.
  • the secondary optics project preferably images of the at least one light source for generating light for the secondary light distribution on the road ahead of the vehicle, which is equipped with the light module.
  • the secondary optics preferably form intermediate light distributions, which are produced on light exit surfaces of the primary optics elements and are not images of the light sources for generating light for the main light distribution, on the roadway from the vehicle.
  • the secondary optics thus depicts the illuminated light exit surface on the roadway.
  • the light for the main light distribution serves, for example, to illuminate a center of the resulting total light distribution. Using the example of a high beam distribution, this light could, for example.
  • the light for the secondary light distribution serves, for example, for the illumination of at least one lateral region of the total light distribution.
  • the light could, for example, be used to illuminate lateral areas of a relatively broadly scattering basic light distribution. Both light distributions together result in an optimized total light distribution, for example in the form of a high beam.
  • the primary optics associated with the light source for generating the light for the secondary light distribution is designed such that it generates an image of the light source in the intermediate image plane of the light module.
  • the primary optics associated with the light source for generating the light for the main light distribution is configured in such a way that it does not produce an image of the light source in the intermediate image plane of the light module, but only an illuminated light exit surface of the primary optics.
  • the secondary optics project the images of the light source for the secondary light distribution on the road ahead of the vehicle and forms the illuminated light exit surfaces for the main light distribution on the road ahead of the vehicle.
  • the intermediate image of the secondary light distribution connects as completely as possible to the intermediate light distribution of the main light distribution generated by the other primary optics.
  • the primary optics for the realization of the secondary light distribution is constructed so that the light source for the Main light distribution and the light source for the secondary light distribution in a plane, in particular on a common circuit board, can be arranged.
  • both the light source for generating the main light distribution and the light source for generating the secondary light distribution may have a plurality of light emitters, for example a plurality of semiconductor light sources, in particular LEDs.
  • the light emitters of a light source can be arranged in a matrix-like manner in a plurality of columns and / or rows and together form a light source array.
  • the main light distribution comprises a plurality of strip-shaped partial light distributions with a substantially vertical longitudinal extent. It is particularly preferred if the strip-shaped partial light distributions of the main light distribution are designed to be similar in terms of expansion and luminance distribution.
  • the secondary light distribution serves, for example, to illuminate an outer edge region of the overall light distribution of the light module to improve the side illumination.
  • the secondary light distribution comprises at least one lateral illumination adjoining a central main light distribution laterally. It is conceivable to provide one or more side illumination areas on one or both sides of the main light distribution.
  • the side illumination preferably has no strip-shaped subdivision and is preferably wider than a single strip of the strip-shaped sub-light distribution.
  • the side illumination preferably has a luminance drop toward the outer edge of the overall light distribution.
  • the primary optics for the secondary light distribution is designed in several parts, wherein the part primary optics of the primary optics can be designed as desired.
  • the primary optic includes For example, a deflection mirror as a first partial primary optics and a concave mirror as a second partial primary optics.
  • the light emitted by the light source for the secondary light distribution impinges on the concave mirror, is bundled by this and directed in the direction of the deflection mirror, where an image of the light source is generated.
  • the deflecting mirror directs the image to the secondary optics, which it projects onto the road ahead of the motor vehicle.
  • the multipart design of the primary optics for the secondary light distribution advantageously results in additional degrees of freedom with respect to the arrangement and orientation of the light source for the secondary light distribution and with respect to the arrangement and design of the light source image generated by the primary optics for the secondary light distribution in the intermediate image plane of the light module.
  • This in turn allows the arrangement of the light source for the secondary light distribution in a common plane, preferably on a common circuit board, with the at least one light source for the main light distribution.
  • a desired resulting overall light distribution of the light module in particular a desired secondary light distribution with large horizontal and / or vertical extension and dynamic luminance gradient, particularly preferably with a luminance drop toward the outer edge, will be realized.
  • a first part of the primary optics of the secondary light distribution for example of the deflection mirror, in the immediate vicinity of the primary optics for the main light distribution or to the intermediate light distribution or distributions generated thereby, it is possible for the intermediate image of the secondary light distribution to be as completely as possible to the intermediate light distributions connects the light exit surfaces of the primary optics for the main light distribution and thus in particular in the region of the transitions between the individual partial light distributions and between the main and secondary light distributions, a particularly homogeneously illuminated resulting total light distribution of the light module can be generated. In particular, no dark areas, shadows, lines or the like are arranged in the transitions between the light distributions.
  • the first part of the primary optics for example the deflection mirror, is preferably arranged in the Petzval surface of the secondary optics and directly adjoins primary optics for the main light distribution or at its light exit surfaces.
  • the other part of the primary optics of the secondary light distribution for example the concave mirror, is arranged between the secondary optics of the light module and its Petzval surface.
  • the concave mirror may at least partially have an elliptical profile.
  • the secondary optics is preferably focused on the light exit surfaces of the primary optics or on a centroid of the surfaces.
  • the secondary optics are particularly preferably focused on the light exit surfaces of the primary optics, which are assigned to the light source for the main light distribution, or focused on their centroid.
  • the primary optics for the main light distribution is preferably designed as a collecting lens array.
  • the light exit surfaces of the individual converging lenses are illuminated during operation of the light module, wherein no light source images are generated on the exit surfaces.
  • the illuminated areas are imaged by the secondary optics on the road.
  • the total light distribution produced by the light module according to the invention is thus generated on the one hand by projection of light source images (the light sources for the secondary light distribution) and on the other by imaging of illuminated light exit surfaces (the primary optics associated with the light sources for the main light distribution).
  • the combination of these two types of imaging in the resulting total light distribution enables a total light distribution which is particularly homogeneously illuminated in the center, the side areas of which have a desired broad dimension and a desired dynamic light intensity profile.
  • the concave mirror offers great freedom in relation to the relative position of the light source for the secondary light distribution and the light distribution generated therefrom (the intermediate image). This makes it possible to inexpensively arrange and contact all the light sources of the light module in a common plane, in particular on a common printed circuit board.
  • the deflection mirror automatically limits the dimensions of the secondary light distribution. If the deflection mirror physically directly and completely connects to the primary optics for the main light distribution or to the light exit surface of this primary optics and if the entire mirror surface of the deflecting mirror is illuminated (and the entire reflected light then also falls through the secondary optics), then automatically close the of The secondary optics designed light distributions for the secondary light distribution and the main light distribution directly and completely to each other.
  • the optical system for generating the intermediate image (light source image) for the secondary light distribution does not increase the overall length of the light module according to the invention.
  • the present invention relates to a light module for use in a motor vehicle lighting device, in particular in a motor vehicle headlight.
  • the light module can also be used in a motor vehicle light, such as a daytime running lamp, a fog light or similar.
  • the lighting device comprises a housing, which is preferably made of plastic and in which the light module is arranged.
  • the light module can be arranged fixed or movable, in particular pivotable about a vertical and / or horizontal pivot axis, in the housing of the illumination device.
  • the housing has a light exit opening which is closed by a transparent cover plate and through which the light generated by the light module can exit and reach the road ahead of the motor vehicle.
  • the cover is preferably made of plastic.
  • FIG. 1 is a light module according to the invention according to a preferred embodiment in its entirety by the reference numeral 1 designates.
  • the light module 1 comprises at least two light sources for emitting light.
  • the light module 1 comprises a first light source 2, which emits light to realize a main light distribution.
  • the light source 2 comprises in the illustrated embodiment, a plurality of juxtaposed semiconductor light sources, in particular LEDs.
  • the juxtaposed LEDs of the light source 2 are also referred to as an LED array. It is conceivable that the light source 2 not only has a row of LEDs, but that the LEDs of the light source 2 are arranged in a matrix-like manner in a plurality of rows and columns.
  • the light module 1 in the illustrated embodiment comprises two light sources 3, 4, which emit light for the realization of a secondary light distribution.
  • the light sources 3, 4 may comprise one or more semiconductor light sources, in particular LEDs. Several LEDs can be arranged side by side or in a matrix next to one another and one above the other in a row.
  • the light module 1 according to the invention could also have only one of the light sources 3, 4 or more than the two illustrated light sources 3, 4.
  • the light sources 2, 3, 4 of the light module 1 are arranged on a printed circuit board 5.
  • the light sources 2, 3, 4 are at least indirectly attached via the circuit board 5 on a heat sink 6, which the resulting during operation of the light sources 2, 3, 4 Dissipates heat and gives off to the environment. This ensures overheating of the LEDs of the light sources 2, 3, 4 and proper operation in a designated temperature window.
  • the light sources 2, 3, 4 are primary optics 8; 15, 16; Assigned 17, 18, which focus the light emitted by the light sources 2, 3, 4 light and direct to a secondary optics 7, which projects the light beams to realize the resulting total light distribution of the light module 1 on the road ahead of the motor vehicle.
  • the primary optics 8 comprises in this embodiment a collecting lens array having a plurality of juxtaposed collecting lenses in a row.
  • the primary optics 8 can also comprise a plurality of primary optics elements arranged in a matrix-like manner in a plurality of rows and columns, for example in the form of converging lenses. Each of the converging lenses is associated with at least one of the LEDs of the light source 2.
  • the converging lenses focus the light emitted by the LEDs of the light source 2 so that a light exit surface 21 of the converging lenses is illuminated as uniformly and homogeneously as possible.
  • These illuminated surfaces are imaged by the secondary optics 7 to generate the main light distribution on the road ahead of the vehicle.
  • the primary optics 15, 16 and 17, 18 each produce an image of the light sources 3, 4, which is projected by the downstream secondary optics 7 for generating the secondary light distribution on the road ahead of the motor vehicle.
  • the secondary optics 7 thus forms from these intermediate light distributions and images of the light sources 3, 4 a plurality of preferably seamlessly adjoining or even slightly overlapping partial light distributions, which form the resulting total light distribution of the light module 1.
  • the secondary optics 7 may comprise a converging lens and / or a reflector. In the illustrated embodiment the secondary optics 7 is designed as a converging lens, which in FIG. 1 is shown only schematically.
  • the secondary optics 7 is preferably focused on the light exit surfaces 21 of the primary optics elements of the primary optics 8 or on a centroid of these light exit surfaces 21.
  • FIGS. 4 to 7 different possibilities for the design of the primary optics 8 for the main light distribution are shown, with a) a view from the front, b) a top view, c) a perspective view and d) a side view of the projection optics 8.
  • a primary optic 8 which comprises a plurality of juxtaposed plano-convex converging lenses, as they are, for example, in the light module 1 of FIG. 1 is used.
  • Secondary Optics 7 (in FIG. 4 not shown) focused on the centroid of the light exit surface 21 of the collecting lens array 8.
  • the corresponding focal plane of the projection optics 7 is designated by the reference numeral 9.
  • a focal point of the projection optics 7 (at the intersection between the lines AA and BB) is designated by the reference numeral 10.
  • the distance between the centers of two adjacent LEDs of the light source 2 and between the optical axes of two adjacent converging lenses of the primary optics 8 are designated as pitch T.
  • the light emitted by the LEDs of the light source 2 in a 180 ° half-light is focused into a light bundle 11.
  • the main emission direction of the LEDs which in the illustrated embodiment coincides with the optical axis of the collecting lenses, is designated by the reference numeral 12.
  • the light is focused by the converging lenses so that a particularly homogeneous illumination of the light exit surfaces 21 of the converging lenses is achieved.
  • FIG. 5 shows a primary optic 8, the several side by side having arranged reflectors.
  • the reflectors have in the illustrated embodiment, square cross-sections (see, the top view in FIG. 5b ).
  • the light exit surfaces 21 of the individual reflectors preferably line up without gaps and delimit the luminous surface with sharp, straight edges.
  • Each reflector of the primary optics 8 is associated with at least one LED of the light source 2. It is possible that a (perforated) heat shield 13 is arranged between the reflector array and the LEDs, which protects the back of the reflectors from radiation.
  • the main emission direction of the LEDs preferably coincides with the optical axis of the reflectors of the primary optics 8.
  • FIG. 4 made statements.
  • the primary optics 8 for the main light distribution comprises a plurality of juxtaposed light guides. These have in their longitudinal section (comprising the main emission direction of the LEDs; FIG. 6a ) has a conical shape with the cross-sectional area increasing from the light entrance side (facing the LEDs) toward the light exit side (away from the LEDs).
  • the optical fibers Preferably, have a square cross-section (transversely to the main emission direction of the LEDs; FIG. 6b ).
  • the light exit surfaces 21 of the individual light guides preferably line up without gaps and limit the luminous surface with sharp, straight edges.
  • Each optical fiber of the primary optics 8 is associated with at least one of the LEDs of the light source 2. Incidentally, the same applies to this embodiment with respect to the FIG. 4 made statements.
  • the primary optics 8 comprises a plurality of adjacently arranged optical waveguide disks.
  • the light exit surfaces 21 of Fiber optic disks follow the course of a Petzval surface 14 of the projection optics 7.
  • the division T is in Figure 7a the distance between the longitudinal axes of the light exit surfaces 21 of two adjacent optical waveguide disks of the primary optics 8 is designated.
  • the light emitted by the LEDs of the light source 2 is not only focused, but also deflected over a convex curved convex surface in a vertical section 21 '(see FIG. FIGS. 7c and 7d ).
  • the light exit surfaces 21 of the individual elements of the primary optic array 8 should be arranged in the focal plane 9 and on the Petzval materials 14 of the projection optics 7. That is, the secondary optics 7 is preferably focused on the light exit surfaces 21 of the primary optics 8 or their centroid.
  • the light module 1 shown there in addition to the light source 2 and the primary optics associated therewith 8 for generating the main light distribution and other primary optics, which are associated with the light sources 3, 4 for generating the secondary light distribution.
  • the primary optics associated with the light sources 3, 4 are made in several parts, in each case in two parts in the exemplary embodiment shown.
  • the light source 3 for the secondary light distribution for example, a first partial primary optics 15 and a second partial primary optics 16 are assigned.
  • the other light source 4 for the secondary light distribution a first partial primary optics 17 and a second partial primary optics 18 are assigned.
  • the two partial primary optics 15, 16 and 17, 18 are arranged at a distance from one another, they together fulfill the function of a conventional primary optics of a light module 1 designed as a projection system.
  • the embodiment shown is the Light source 3 associated first partial primary optics 15 designed as a deflection mirror and the second partial primary optics 16 as a concave mirror.
  • the same also applies to the partial primary optics 16, 18 assigned to the light source 4, the first partial primary optics 17 being designed as a deflecting mirror and the second partial primary optics 18 as a concave mirror.
  • the first partial primary optics 15, 17 are arranged laterally next to the light source 2 for generating the main light distribution or beside the primary optics 8 associated therewith or the light exit surfaces 21 of the primary optics elements.
  • the first partial primary optics 15, 17 adjoin the primary optics 8 or their outer light exit surfaces 21 directly and without gaps.
  • all the light sources 2, 3, 4 in a common plane, preferably even on the same circuit board 5, arranged and contacted.
  • the light sources 2, 3, 4 emit all light substantially in the same direction, that is, approximately in the direction of the secondary optics 7.
  • the main radiation directions of the individual run Light sources 2, 3, 4 and the individual light source elements (LEDs) of the light source 2 substantially parallel to each other.
  • the present invention it is possible to produce a resulting light distribution 1 of the light module 1 that is particularly homogeneously illuminated, since the surfaces forming the real intermediate image (the mirror surfaces of the deflection mirrors 15, 17) and the illuminated light exit surfaces 21 of the primary optics 8 closely side by side, preferably even arranged directly adjacent to each other. As a result, they can be projected by the secondary optics 7 as a uniformly homogeneously illuminated resulting total light distribution on the roadway in front of the motor vehicle.
  • “Homogeneously illuminated” in this context means, in particular, that the resulting total light distribution of the light module 1, in particular in the region of the transitions between the individual partial light distributions projected onto the carriageway by the secondary optics 7, has no undesired dark areas, shadows or dark lines.
  • a variation of the illuminance distribution within the resulting total light distribution is possible.
  • the light intensity distribution of the secondary light distribution decreases towards the outer edge of the total light distribution.
  • the light module 1 by the multi-part design of the primary optics 15, 16, and 17, 18 a particularly high flexibility and variability with respect to the possible arrangement and orientation of the light sources 3, 4 relative to the light source 2 and with respect to the luminous intensity distributions on the mirror surfaces of the Deflection mirror 15, 17, that is, on the imaged by the secondary optics 7 surfaces of the primary optics 15, 16 and 17, 18 in the intermediate image.
  • This makes it possible to arrange all the light sources 2, 3, 4 of the light module 1 in one plane, in particular on a common circuit board 5. Furthermore, this allows a particularly flexible design of the light intensity distribution of the secondary light distribution and thus the resulting total light distribution.
  • the different beam paths of the light module 1 off FIG. 1 are in the FIGS. 8 . 10 and 12 shown.
  • the corresponding light distributions on a screen are in the Figures 9 . 11 and 13 shown.
  • the measuring screen is arranged at a defined distance from the light module 1.
  • the optical axis of the light module 1 preferably passes through the center of the screen by the point HV at 0 ° horizontally and 0 ° vertically.
  • FIG. 8 shows the beam path when only the LEDs of the light source 2 are activated, wherein FIG. 8 the special case is shown in which two centrally located LEDs of the light source 2 are deactivated.
  • the two deactivated LEDs are in FIG. 8 designated by the reference numeral 19.
  • the region of the resulting light distribution illuminated by the two deactivated LEDs 19 normally, that is to say in the activated state, is in FIG. 9 designated by the reference numeral 20.
  • the two deactivated LEDs 19 of the light source 2 lead to a non-illuminated area 20 in the middle of the light distribution at about 0 ° horizontally with a width of about 2 ° horizontally.
  • the non-illuminated area 20 in the center of the resulting light distribution thus extends in the horizontal direction, ie approximately from -1 ° to + 1 °.
  • the height of the non-illuminated area 20 extends over the entire height of the resulting light distribution.
  • the varying horizontal positions of the other road users can be taken into account by deliberately deactivating those LEDs 19 which are responsible for the generation of the light to be expelled Area 20 are responsible for the corresponding position.
  • FIG. 10 the beam path of the light module 1 is shown, wherein only the light source 4 is activated to produce a part of the secondary light distribution.
  • the secondary light distribution of the light source 4 is a side illumination right next to the main light distribution according to FIG. 9 ,
  • the resulting light distribution of the side illumination on the right is in FIG. 11 shown.
  • an activation of the other light source 3 would cause the generation of another part of the secondary light distribution in the form of a left side illumination. It is conceivable to activate both light sources 3, 4 at the same time.
  • the shape and design, in particular the light intensity distribution, the resulting side illumination can be easily and effectively changed by changing the shape and / or orientation of the Concave mirror 18 and / or the deflection mirror 17 is changed. It is even conceivable to vary the shape and / or orientation of the concave mirror 18 and / or of the deflection mirror 17 during the operation of the light module 1 so as to be able to adaptively change the design and the shape of the resulting side illumination during the operation of the illumination device. As a result, it would be possible, for example, to react to current traffic or ambient conditions and to illuminate the lateral edge regions of the resulting overall light distribution more or less strongly depending on the situation.
  • FIG. 12 is the beam path of the light module 1 of the invention FIG. 1 shown, with all the light sources 2, 3, 4 are activated, including the two in FIGS. 8 and 9 still deactivated LEDs 19 and the light source 3.
  • the overall light distribution shown is, for example, a high beam (if the light distribution would be lowered so that the upper Patoscuro below the horizontal at about -1 ° would be vertical) a fog light or (with respect to a high beam intensity reduced) a daytime running light.
  • FIG. 2 a further embodiment of the light module 1 according to the invention is shown.
  • a light source 4 for generating a secondary light distribution and, correspondingly, only one primary optics 17, 18 associated with the light source 4 are provided.
  • the secondary optics 7 is formed as a faceted paraboloid.
  • the individual facets of the reflector 7 designed in this way preferably have different focal lengths and approximately identical cutting widths to the focal point 10 (cf. FIGS. 4b . 5b . 6b ) on.
  • FIG. 3 shows a beam path in the light module 1 from FIG. 2 , in which FIG. 3a the vertical beam path and FIG. 3b shows the horizontal beam path.
  • the concave mirror 18 increases in the vertical beam path the LED chip of the light source 4 with an edge length t at least to the height H of the mirror surface of the Umlenkkspeigels 17.
  • the magnification M results approximately from the ratio of the distances S2 / S1.
  • the concave mirror 18 concentrates in the horizontal beam path the light for the secondary light distribution on the deflection mirror 17 immediately adjacent to the adjacent primary optics array 8 for the main light distribution.
  • On the mirror surface of the Umlenkkspeigels 17 results in an image of the light source 4.
  • the deflecting mirror 17 directs the incident light to the secondary optics 7, which projects the light source image for generating the secondary light distribution on the road.
  • FIG. 14 shows a further embodiment of a light module 1 according to the invention, wherein the representation of the secondary optics 7 has been omitted.
  • the primary optics 8 for the main light distribution comprises an array of conical light guides whose light exit surfaces 21 from the LEDs of the light source 2 for the main light distribution (see FIG. FIG. 9 ) are illuminated evenly.
  • the intermediate light distributions on the light exit surfaces 21 of the light guide array 8 and the light source images on the mirror surfaces of the deflection mirrors 15, 17 are approximately in the shell-shaped Petzval surface 14, the so-called Petzval shell, the secondary optics 7.
  • the primary optics 8 comprises an array of conical reflectors which generate the intermediate light distributions (illuminated light exit surfaces 21) for the main light distribution.
  • the light exit surfaces 21 of the reflector array 8 ie, the front openings of the individual reflectors located in the light exit direction
  • the mirror surfaces of the deflection mirrors 15, 17 lie approximately in the Petzval shell 14 of the secondary optics 7.
  • the primary optics 8 comprises an array of converging lenses which generate the intermediate light distributions for the main light distribution.
  • the light exit surfaces 21 of the lens array 8 and the mirror surfaces of the deflection mirrors 15, 17 are approximately in a shell-shaped Petzval relations 14 of the secondary optics. 7
  • Petzval surface 14 is an area whose points are imaged by the secondary optics 7 as equal as possible and in the desired manner to a far away in the direction of travel or emission direction image surface. These object points can be mapped as lines or rectangles or the like instead of points in the same way.
  • infinitesimally small zones of the secondary optics 7 in a picture area located far in front of the light module 1 or the motor vehicle design predominantly the same sized and similarly oriented pictures of the intermediate light distributions located in the object-side Petzval area 14 of the secondary optics 7.
  • the individual intermediate light distributions can be offset from one another in the angular space (for example, blurring of the light distribution in the vertical and / or horizontal direction), in particular in the vertical direction.
  • the optical surfaces of the secondary optics 7 preferably have different refractive powers or curvatures in their vertical sections than in their horizontal sections.
  • the dimensions of the deflection mirror 15; 17 are preferably selected such that the light source 3; 4 for the secondary light distribution through the concave mirror 16; 18 and the deflection mirror 15; 17 is increased at least to a light source image of the size of the light exit surface 21 of the adjacent primary optics 8. To compensate for manufacturing and assembly tolerances, it is advisable to choose the magnification even slightly larger.
  • the primary optics 8 for the main light distribution have a height H and a square LED chip of the light source 3; 4 for the secondary light distribution has a side length t, the magnification of the concave mirror 16;
  • M H / t or greater.
  • the route S1 begins at the center of the light source 3; 4 for the secondary light distribution and propagates in the direction of the main emission of the light source 3; 4, with an LED especially perpendicular to the LED chip.
  • the distance S1 ends with the impact on the reflection surface of the concave mirror 16; 18.
  • the distance S2 begins and extends in the direction of the deflection mirror 15; 17, preferably on the center of the deflection mirror.
  • the deflection mirror 15; 17 for the secondary light distribution or its mirror surface on the one hand and the primary optics array 8 for the main light distribution or its light exit surfaces 21 on the other hand as precisely and immediately next to each other to position, so that the intermediate light distributions and the light source images of main and secondary light distribution after the projection by the secondary optics connect as seamlessly as possible in the resulting total light distribution.
  • This can be achieved, for example, by integrally forming both elements (deflecting mirrors 15, 17 and primary optics 8).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

Die Erfindung betrifft ein Lichtmodul (1) einer Kraftfahrzeugbeleuchtungseinrichtung. Das Lichtmodul (1) umfasst mindestens zwei Lichtquellen (2, 3, 4) zum Aussenden von Licht und mindestens zwei den Lichtquellen (2, 3, 4) zugeordnete Primäroptiken (8; 15, 16; 17, 18) zum Bündeln des ausgesandten Lichts. Ferner umfasst das Lichtmodul (1) eine gemeinsame Sekundäroptik (7) zum Abbilden der Lichtbündel auf einer Fahrbahn vor dem Kraftfahrzeug und zur Erzeugung einer resultierenden Gesamtlichtverteilung des Lichtmoduls (1). Um die Flexibilität und die Effizienz des Lichtmoduls (1) zu verbessern, wird vorgeschlagen, dass mindestens eine der Lichtquellen (2) zur Realisierung einer Hauptlichtverteilung und mindestens eine andere der Lichtquellen (3; 4) zur Realisierung einer Nebenlichtverteilung ausgestaltet ist und dass die der Lichtquelle (3; 4) zur Realisierung der Nebenlichtverteilung zugeordnete Primäroptik (15, 16; 17, 18) mehrteilig ausgebildet ist, wobei eine erste Teil-Primäroptik (15; 17) neben der der Lichtquelle (2) zur Realisierung der Hauptlichtverteilung zugeordneten Primäroptik (8) angeordnet ist.

Description

  • Die vorliegende Erfindung betrifft ein Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung. Das Lichtmodul umfasst mindestens zwei Lichtquellen zum Aussenden von Licht und mindestens zwei Primäroptiken zum Bündeln zumindest eines Teils des ausgesandten Lichts. Jeweils mindestens eine Lichtquelle ist einer der Primäroptiken zugeordnet. Ferner umfasst das Lichtmodul eine gemeinsame Sekundäroptik zur Formung von mehreren aneinander anschließenden oder leicht überlappenden Lichtverteilungen aus den von zumindest einigen der Primäroptiken erzeugten Lichtbündeln. Ferner betrifft die Erfindung auch eine Kraftfahrzeugbeleuchtungseinrichtung mit einem solchen Lichtmodul.
  • Aus dem Stand der Technik sind verschiedene Ansätze bekannt, um sogenannte Matrix-Fernlichtmodule zu realisieren. Ein Matrix-Fernlichtmodul umfasst eine Lichtquelle mit mehreren in Reihen und/oder Spalten angeordneten Halbleiterlichtquellen (LEDs), wobei mehrere LEDs aktiviert sind, um die gewünschte Fernlichtverteilung zu erzeugen. Die einzelnen LEDs sind einzeln ansteuerbar, so dass einzelne LEDs gezielt deaktiviert werden können, um bestimmte Bereiche der resultierenden Fernlichtverteilung gezielt ausblenden zu können. Dadurch können beispielsweise gezielt Bereiche der Fernlichtverteilung ausgespart werden, in denen sich andere Verkehrsteilnehmer befinden. Dies ermöglicht einerseits eine besonders gute Ausleuchtung des Fahrbahnbereichs vor dem Kraftfahrzeug mittels der Fernlichtverteilung, und andererseits verhindert es eine Blendung der vorausfahrenden und/oder entgegenkommenden Verkehrsteilnehmer. Zur Realisierung von Matrix-Fernlichtmodulen werden in der Regel Systeme mit einem reellen Zwischenbild verwendet, in denen mittels Primäroptiken mehrere unmittelbar aneinander grenzende Abbilder der LEDs erzeugt werden, die dann zur Bildung der resultierenden Fernlichtverteilung über eine im Strahlengang nachfolgende Sekundäroptik auf der Fahrbahn vor dem Kraftfahrzeug abgebildet werden. Diese Systeme werden aufgrund der projizierenden Eigenschaften der Sekundäroptik auch als Projektionssysteme bezeichnet.
  • Als Sekundäroptik eignen sich sowohl Reflektoren als auch Linsen bzw. Linsensysteme. Eine Sekundäroptik ist dadurch gekennzeichnet, dass sie eine oder mehrere Lichtquellenabbilder aus einer reellen Zwischenbild-Ebene zur Erzeugung der gewünschten Lichtverteilung des Lichtmoduls auf die Fahrbahn vor das Kraftfahrzeug projiziert. Als Primäroptik eignen sich bspw. Sammellinsen, konische Lichtleiter, scheibenförmige Lichtleiter oder Reflektoren, die einzeln oder in mehreren Reihen und/oder Spalten array- oder matrixartig neben- und/oder übereinander angeordnet sein können. Bei der Verwendung von Matrix-Halbleiterlichtquellen umfasst die Primäroptik in der Regel zu Arrays zusammengefasste Linsen, Lichtleiter oder Reflektoren. Die Lichtaustrittsfläche der Primäroptik bzw. die Lichtaustrittsflächen der einzelnen Primäroptik-Elemente eines Optikarrays liegt bzw. liegen näherungsweise in der sogenannten Petzvalfläche der Sekundäroptik, so dass die durch die Primäroptik-Elemente erzeugten einzelnen Lichtquellen-Abbilder mit Hilfe von Brechung und/oder Reflexion scharf gegeneinander abgegrenzt werden können. Als Petzvalfläche wird eine Fläche bezeichnet, deren Punkte von der Sekundäroptik möglichst gleich und in gewünschter Weise auf einer in Fahrrichtung bzw. Abstrahlrichtung weit entfernte Bildfläche abgebildet werden. Dabei können diese Objektpunkte statt als Punkte ebenso auch als Linien oder Rechtecke oder ähnliches abgebildet werden.
  • Je nach Art der verwendeten Primäroptik lassen sich beim Stand der Technik die Lichtverteilungen im Zwischenbild bezüglich ihrer Form und Lichtstärkeverteilung nur wenig beeinflussen. Insbesondere Sammellinsenarrays, deren Lichtaustrittsflächen direkt in der Petzvalfläche der Sekundäroptik angeordnet sind, erzeugen Lichtverteilungen mit weitgehend gleichmäßiger Leuchtdichte. In diesem Fall muss die weitere Lichtformung, beispielsweise die vertikale Formung der Lichtverteilungen, durch eine Sekundäroptik erfolgen, die einen ausgeprägten Astigmatismus aufweist. Dabei werden alle Lichtverteilungen im Zwischenbild durch die nachfolgende Sekundäroptik auf gleiche Weise verzerrt.
  • Die meisten Matrix-Lichtverteilungen weisen mehrere gleich breite streifenförmige Lichtverteilungen im Zentrum auf. Daneben ist es jedoch sinnvoll, diese zentralen Lichtverteilungen zumindest zu den Seiten hin durch eine oder mehrere breite, weich zum Fahrbahnrand hin auslaufende Lichtverteilungen zu ergänzen.
  • Wenn als Primäroptik die besonders einfachen und vorteilhaften Linsenarrays oder Reflektorarrays verwendet werden, ist es nicht ohne weiteres möglich, neben den weitgehend gleichmäßig ausgeleuchteten Lichtverteilungen im Zentrum unmittelbar daran seitlich anschließend eine oder mehrere breite, zum Rand hin weich auslaufende Lichtverteilungen im Zwischenbild zu erzeugen, mit denen die beschriebene Seitenausleuchtung realisiert werden kann. In diesem Fall müsste die Primäroptik-Linse, die das Zwischenbild der Seitenausleuchtung erzeugt, mitsamt der ihr zugeordneten Lichtquelle weit hinter die übrigen Lichtquellen und Linsen, die eine Zwischenlichtverteilung im Zentrum der Matrix-Lichtverteilung bilden, entgegen der Lichtabstrahlrichtung zurückversetzt werden. Damit wäre es allerdings nicht mehr möglich, die Lichtquellen für die beiden Lichtverteilungen (einerseits im Zentrum und andererseits am Seitenrand) in einer Ebene, vorzugsweise auf einer gemeinsamen Leiterplatte, anzuordnen, was den konstruktiven Aufwand und die Kosten zur Fertigung des Lichtmoduls deutlich erhöht. Außerdem wirkt sich das Zurücksetzen der Lichtquelle(n) für die Seitenausleuchtung ungünstig auf die Baulänge des Lichtmoduls aus.
  • Aus der US 2006/0120094 A1 ist ein Projektionssystem für eine Kraftfahrzeugbeleuchtungseinrichtung bekannt, bei dem eine Abblendlichtverteilung mit im Wesentlichen horizontaler Helldunkelgrenze durch eine Teil-Fernlichtverteilung, die einen Bereich oberhalb der Helldunkelgrenze ausleuchtet, ergänzt wird. Die resultierende Fernlichtverteilung des Gesamtsystems wird durch eine Überlagerung der Abblendlichtverteilung und der Teil-Fernlichtverteilung erzeugt. Die Teil-Fernlichtverteilung wird mit Hilfe einer Lichtquelle und eines Hohlspiegels in einer Zwischenbildebene des Projektionssystems erzeugt. Mit einem Umlenkspiegel wird der Fernlichtstrahlengang dann durch die als Projektionslinse ausgebildete Sekundäroptik gelenkt und durch diese auf die Fahrbahn vor das Kraftfahrzeug projiziert.
  • Ausgehend von dem beschriebenen Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Lichtmodul der eingangs genannten Art dahingehend auszugestalten und weiterzubilden, dass von einer oder mehreren Primäroptiken in der Zwischenbildebene eine zusätzliche Nebenlichtverteilung mit großer seitlicher Ausdehnung und dynamischem Leuchtdichteverlauf, insbesondere einem Leuchtdichteabfall zum äußeren Rand der resultierenden Gesamtlichtverteilung hin, und ferner eine, insbesondere im Bereich der Übergänge zwischen den Einzellichtverteilungen, möglichst homogen ausgeleuchtete resultierende Gesamtlichtverteilung des Lichtmoduls realisiert werden kann.
  • Zur Lösung dieser Aufgabe wird, ausgehend von dem Lichtmodul der eingangs genannten Art vorgeschlagen, dass mindestens eine der Lichtquellen zur Erzeugung von Licht zur Realisierung einer Hauptlichtverteilung und mindestens eine andere der Lichtquellen zur Erzeugung von Licht zur Realisierung einer Nebenlichtverteilung ausgestaltet ist und dass die mindestens eine der Lichtquelle zur Erzeugung des Lichts für die Nebenlichtverteilung zugeordnete Primäroptik mehrteilig ausgebildet ist, wobei mindestens eine erste der Teil-Primäroptiken neben der mindestens einen der Lichtquelle zur Erzeugung des Lichts für die Hauptlichtverteilung zugeordneten Primäroptik angeordnet ist.
  • Die resultierende Gesamtlichtverteilung des Lichtmoduls wird durch eine Überlagerung oder Ergänzung der Hauptlichtverteilung und der Nebenlichtverteilung erzeugt. Dabei projiziert die Sekundäroptik vorzugsweise Abbilder der mindestens einen Lichtquelle zur Erzeugung von Licht für die Nebenlichtverteilung auf die Fahrbahn vor das Fahrzeug, das mit dem Lichtmodul ausgestattet ist. Außerdem bildet die Sekundäroptik vorzugsweise Zwischenlichtverteilungen, die auf Lichtaustrittsflächen der Primäroptikelemente erzeugt werden und keine Abbilder der Lichtquellen zur Erzeugung von Licht für die Hauptlichtverteilung sind, auf der Fahrbahn von dem Fahrzeug ab. Die Sekundäroptik bildet also die ausgeleuchtete Lichtaustrittsfläche auf der Fahrbahn ab. Das Licht für die Hauptlichtverteilung dient bspw. zur Ausleuchtung eines Zentrums der resultierenden Gesamtlichtverteilung. Am Beispiel einer Fernlichtverteilung könnte dieses Licht bspw. zur Erzeugung eines Fernlichtspots genutzt werden. Das Licht für die Nebenlichtverteilung dient bspw. für die Ausleuchtung mindestens eines seitlichen Bereichs der Gesamtlichtverteilung. Am Beispiel des Fernlichts könnte das Licht bspw. zur Ausleuchtung seitlicher Bereiche einer relativ breit streuenden Grundlichtverteilung genutzt werden. Beide Lichtverteilungen zusammen ergeben eine optimierte Gesamtlichtverteilung, bspw. in Form eines Fernlichts.
  • Bei dem Lichtmodul ist die der Lichtquelle zur Erzeugung des Lichts für die Nebenlichtverteilung zugeordnete Primäroptik derart ausgestaltet, dass sie in der Zwischenbildebene des Lichtmoduls ein Abbild der Lichtquelle erzeugt. Die der Lichtquelle zur Erzeugung des Lichts für die Hauptlichtverteilung zugeordnete Primäroptik ist derart ausgestaltet, dass sie in der Zwischenbildebene des Lichtmoduls kein Abbild der Lichtquelle, sondern lediglich eine ausgeleuchtete Lichtaustrittsfläche der Primäroptik erzeugt. Die Sekundäroptik projiziert die Abbilder der Lichtquelle für die Nebenlichtverteilung auf die Fahrbahn vor das Fahrzeug und bildet die ausgeleuchteten Lichtaustrittsflächen für die Hauptlichtverteilung auf der Fahrbahn vor dem Fahrzeug ab.
  • Auf diese Weise kann unabhängig von der Ausgestaltung der den Lichtquellen zur Erzeugung des Lichts für die Hauptlichtverteilung zugeordneten Primäroptiken eine zusätzliche Nebenlichtverteilung mit großer Ausdehnung und dynamischem Leuchtdichteverlauf, insbesondere einem Leuchtdichteabfall zum Rand der resultierenden Gesamtlichtverteilung hin, realisiert werden. Dabei schließt das Zwischenbild der Nebenlichtverteilung möglichst lückenlos an die durch die andere Primäroptik erzeugte Zwischenlichtverteilung der Hauptlichtverteilung an. Ferner ist die Primäroptik zur Realisierung der Nebenlichtverteilung so aufgebaut, dass die Lichtquelle für die Hauptlichtverteilung sowie die Lichtquelle für die Nebenlichtverteilung in einer Ebene, insbesondere auf einer gemeinsamen Leiterplatte, angeordnet werden können. Obwohl hier von einer Lichtquelle gesprochen wird, kann sowohl die Lichtquelle zur Erzeugung der Hauptlichtverteilung als auch die Lichtquelle zur Erzeugung der Nebenlichtverteilung mehrere Lichtemitter, bspw. mehrere Halbleiterlichtquellen, insbesondere LEDs aufweisen. Die Lichtemitter einer Lichtquelle können in mehreren Spalten und/oder Reihen matrixartig angeordnet sein und bilden gemeinsam ein Lichtquellenarray.
  • Besonders bevorzugt umfasst die Hauptlichtverteilung mehrere streifenförmige Teil-Lichtverteilungen mit im Wesentlichen vertikaler Längserstreckung. Besonders bevorzugt ist, wenn die streifenförmigen Teil-Lichtverteilungen der Hauptlichtverteilung gleichartig bzgl. Ausdehnung und Leuchtdichteverteilung ausgestaltet sind. Die Nebenlichtverteilung dient beispielsweise zur Ausleuchtung eines äußeren Randbereichs der Gesamtlichtverteilung des Lichtmoduls zur Verbesserung der Seitenausleuchtung. Insbesondere umfasst die Nebenlichtverteilung mindestens eine sich an eine zentrale Hauptlichtverteilung seitlich anschließende Seitenausleuchtung. Es ist denkbar eine oder mehrere Seitenausleuchtungsbereiche auf einer oder beiden Seiten der Hauptlichtverteilung vorzusehen. Die Seitenausleuchtung weist vorzugsweise keine streifenförmige Unterteilung auf und ist vorzugsweise breiter als ein einzelner Streifen der streifenförmigen Teil-Lichtverteilung. Ferner weist die Seitenausleuchtung vorzugsweise einen Leuchtdichteabfall zum äußeren Rand der Gesamtlichtverteilung hin auf.
  • Die Primäroptik für die Nebenlichtverteilung ist mehrteilig ausgebildet, wobei die Teil-Primäroptiken der Primäroptik beliebig ausgebildet sein können. Die Primäroptik umfasst beispielsweise einen Umlenkspiegel als erste Teil-Primäroptik und einen Hohlspiegel als zweite Teil-Primäroptik. Das von der Lichtquelle für die Nebenlichtverteilung ausgesandte Licht trifft auf den Hohlspiegel, wird von diesem gebündelt und in Richtung auf den Umlenkspiegel gelenkt, wo ein Abbild der Lichtquelle generiert wird. Der Umlenkspiegel lenkt das Abbild auf die Sekundäroptik, die es auf die Fahrbahn vor das Kraftfahrzeug projiziert. Durch die mehrteilige Ausgestaltung der Primäroptik für die Nebenlichtverteilung ergeben sich vorteilhafterweise zusätzliche Freiheitsgrade bezüglich der Anordnung und Ausrichtung der Lichtquelle für die Nebenlichtverteilung sowie bezüglich der Anordnung und Ausgestaltung des durch die Primäroptik für die Nebenlichtverteilung in der Zwischenbildebene des Lichtmoduls erzeugten Lichtquellenabbilds. Dies wiederum erlaubt die Anordnung der Lichtquelle für die Nebenlichtverteilung in einer gemeinsamen Ebene, vorzugsweise auf einer gemeinsamen Leiterplatte, mit der mindestens einen Lichtquelle für die Hauptlichtverteilung. Außerdem kann mit einem relativ geringen Aufwand durch einfache Variation der optischen Eigenschaften der Teil-Primäroptiken eine gewünschte resultierende Gesamtlichtverteilung des Lichtmoduls, insbesondere eine gewünschte Nebenlichtverteilung mit großer horizontaler und/oder vertikaler Ausdehnung und dynamischem Leuchtdichteverlauf, besonderes bevorzugt mit einem Leuchtdichteabfall zum äußeren Rand hin, realisiert werden.
  • Durch die Anordnung eines ersten Teils der Primäroptik der Nebenlichtverteilung, beispielsweise des Umlenkspiegels, in unmittelbarer Nähe zu der Primäroptik für die Hauptlichtverteilung bzw. zu dem oder den durch diese erzeugten Zwischenlichtverteilungen, ist es möglich, dass das Zwischenbild der Nebenlichtverteilung möglichst lückenlos an die Zwischenlichtverteilungen auf den Lichtaustrittsflächen der Primäroptiken für die Hauptlichtverteilung anschließt und so insbesondere im Bereich der Übergänge zwischen den einzelnen Teil-Lichtverteilungen sowie zwischen den Haupt- und Nebenlichtverteilungen eine besonders homogen ausgeleuchtete resultierende Gesamtlichtverteilung des Lichtmoduls erzeugt werden kann. So sind in den Übergängen zwischen den Lichtverteilungen insbesondere keine dunklen Bereich, Schatten, Linien oder ähnliches angeordnet. Der erste Teil der Primäroptik, beispielsweise der Umlenkspiegel, ist vorzugsweise in der Petzvalfläche der Sekundäroptik angeordnet und schließt unmittelbar an Primäroptik für die Hauptlichtverteilung bzw. an deren Lichtaustrittsflächen an.
  • Der andere Teil der Primäroptik der Nebenlichtverteilung, beispielsweise der Hohlspiegel, ist zwischen der Sekundäroptik des Lichtmoduls und deren Petzvalfläche angeordnet. Der Hohlspiegel kann zumindest teilweise ein elliptisches Profil aufweisen.
  • Die Sekundäroptik ist vorzugsweise auf die Lichtaustrittsflächen der Primäroptiken bzw. auf einen Flächenschwerpunkt der Flächen fokussiert. Besonders bevorzugt ist die Sekundäroptik auf die Lichtaustrittsflächen der Primäroptiken, die der Lichtquelle für die Hauptlichtverteilung zugeordnet sind, bzw. auf deren Flächenschwerpunkt fokussiert. Die Primäroptik für die Hauptlichtverteilung ist vorzugsweise als ein Sammellinsenarray ausgebildet. Die Lichtaustrittsflächen der einzelnen Sammellinsen werden während des Betriebs des Lichtmoduls ausgeleuchtet, wobei auf den Austrittsflächen keine Lichtquellenabbilder generiert werden. Die ausgeleuchteten Flächen werden durch die Sekundäroptik auf der Fahrbahn abgebildet. Die von dem erfindungsgemäßen Lichtmodul erzeugte Gesamtlichtverteilung wird also zum einen durch Projektion von Lichtquellenabbildern (der Lichtquellen für die Nebenlichtverteilung) und zum anderen durch Abbilden von beleuchteten Lichtaustrittsflächen (der den Lichtquellen für die Hauptlichtverteilung zugeordneten Primäroptiken) erzeugt. Die Kombination dieser beiden Abbildungsarten bei der resultierenden Gesamtlichtverteilung ermöglicht eine insbesondere im Zentrum besonders homogen ausgeleuchtete Gesamtlichtverteilung, deren Seitenbereiche eine gewünschte breite Abmessung und einen gewünschten dynamischen Lichtstärkeverlauf aufweisen.
  • Das erfindungsgemäße Lichtmodul hat unter anderem die nachfolgenden Vorteile:
    • Der Hohlspiegel bietet umfangreiche Möglichkeiten der Strahlformung, bspw. durch die Form und Ausrichtung des Hohlspiegels, so dass der Leuchtdichteverlauf des Zwischenbildes (auf dem Umlenkspiegel) sehr weitgehend geformt werden kann, wodurch sich eine hohe Flexibilität bei der Ausgestaltung der Nebenlichtverteilung ergibt.
  • Außerdem bietet der Hohlspiegel große Freiheiten in Bezug auf die relative Position der Lichtquelle für die Nebenlichtverteilung und der daraus erzeugten Lichtverteilung (dem Zwischenbild). Dadurch ist es möglich, alle Lichtquellen des Lichtmoduls kostengünstig in einer gemeinsamen Ebene, insbesondere auf einer gemeinsamen Leiterplatte, anzuordnen und zu kontaktieren.
  • Der Umlenkspiegel begrenzt automatisch die Abmessungen der Nebenlichtverteilung. Wenn der Umlenkspiegel körperlich unmittelbar und lückenlos an die Primäroptik für die Hauptlichtverteilung bzw. an die Lichtaustrittsfläche dieser Primäroptik anschließt und wenn die gesamte Spiegelfläche des Umlenkspiegels ausgeleuchtet wird (und das gesamte reflektierte Licht anschließend auch durch die Sekundäroptik fällt), so schließen automatisch auch die von der Sekundäroptik entworfenen Lichtverteilungen für die Nebenlichtverteilung und die Hauptlichtverteilung unmittelbar und lückenlos aneinander an. Die Form, insbesondere die Abmessungen und der Verlauf des äußeren Umfangs der Umlenkfläche, definiert somit die Abmessungen und Form des abzubildenden Zwischenbildes und damit die Ausgestaltung der Nebenlichtverteilung bzw. eines Teils davon.
  • Das optische System zur Erzeugung des Zwischenbilds (Lichtquellenabbilds) für die Nebenlichtverteilung vergrößert die Baulänge des erfindungsgemäßen Lichtmoduls nicht.
  • Weitere Merkmale und Vorteile der vorliegenden Erfindung werden nachfolgend unter Bezugnahme auf die Figuren näher erläutert. Dabei können die in den Figuren gezeigten und nachfolgend näher erläuterten Merkmale und Vorteile auch beliebig miteinander kombiniert werden, ohne dass dies ausdrücklich in den Figuren gezeigt oder in der nachfolgenden Beschreibung erläutert ist. Es zeigen:
  • Figur 1
    ein erfindungsgemäßes Lichtmodul gemäß einer ersten bevorzugten Ausführungsform;
    Figur 2
    ein erfindungsgemäßes Lichtmodul gemäß einer zweiten bevorzugten Ausführungsform;
    Figur 3
    einen schematischen Strahlengang in dem Lichtmodul gemäß Figur 2 in einer Seitenansicht und in einer Draufsicht;
    Figur 4
    ein Lichtquellenarray in Kombination mit einem Primäroptikarray zur Erzeugung einer Hauptlichtverteilung des erfindungsgemäßen Lichtmoduls gemäß einer ersten bevorzugten Ausführungsform;
    Figur 5
    ein Lichtquellenarray in Kombination mit einem Primäroptikarray zur Erzeugung einer Hauptlichtverteilung des erfindungsgemäßen Lichtmoduls gemäß einer zweiten bevorzugten Ausführungsform;
    Figur 6
    ein Lichtquellenarray in Kombination mit einem Primäroptikarray zur Erzeugung einer Hauptlichtverteilung des erfindungsgemäßen Lichtmoduls gemäß einer dritten bevorzugten Ausführungsform;
    Figur 7
    ein Lichtquellenarray in Kombination mit einem Primäroptikarray zur Erzeugung einer Hauptlichtverteilung des erfindungsgemäßen Lichtmoduls gemäß einer vierten bevorzugten Ausführungsform;
    Figur 8
    einen Strahlengang in einem erfindungsgemäßen Lichtmodul bei der Erzeugung einer Hauptlichtverteilung;
    Figur 9
    eine durch das Lichtmodul aus Figur 8 erzeugte Hauptlichtverteilung auf einem in einem Abstand zu dem Lichtmodul angeordneten Messschirm;
    Figur 10
    einen Strahlengang in einem erfindungsgemäßen Lichtmodul bei der Erzeugung einer Nebenlichtverteilung;
    Figur 11
    eine durch das Lichtmodul aus Figur 10 erzeugte Nebenlichtverteilung auf einem in einem Abstand zu dem Lichtmodul angeordneten Messschirm;
    Figur 12
    einen Strahlengang in einem erfindungsgemäßen Lichtmodul bei der Erzeugung einer resultierenden Gesamtlichtverteilung;
    Figur 13
    die durch das Lichtmodul aus Figur 12 erzeugte resultierende Gesamtlichtverteilung auf einem in einem Abstand zu dem Lichtmodul angeordneten Messschirm;
    Figur 14
    einen Teil eines erfindungsgemäßen Lichtmoduls gemäß einer weiteren bevorzugten Ausführungsform einschließlich des Strahlengangs zur Erzeugung der Hauptlichtverteilung sowie der Nebenlichtverteilung;
    Figur 15
    einen Teil eines erfindungsgemäßen Lichtmoduls gemäß einer weiteren bevorzugten Ausführungsform einschließlich des Strahlengangs zur Erzeugung der Hauptlichtverteilung sowie der Nebenlichtverteilung; und
    Figur 16
    einen Teil des erfindungsgemäßen Lichtmoduls aus Figur 1 einschließlich des Strahlengangs zur Erzeugung der Hauptlichtverteilung sowie der Nebenlichtverteilung.
  • Die vorliegende Erfindung betrifft ein Lichtmodul zum Einsatz in einer Kraftfahrzeugbeleuchtungseinrichtung, insbesondere in einem Kraftfahrzeugscheinwerfer. Das Lichtmodul kann aber auch in einer Kraftfahrzeugleuchte eingesetzt werden, bspw. einer Tagfahrleuchte, einer Nebelleuchte o.ä. Die Beleuchtungseinrichtung umfasst ein Gehäuse, das vorzugsweise aus Kunststoff gefertigt ist und in dem das Lichtmodul angeordnet ist. Das Lichtmodul kann fest oder beweglich, insbesondere um eine vertikale und/oder horizontale Schwenkachse verschwenkbar, in dem Gehäuse der Beleuchtungseinrichtung angeordnet sein. Das Gehäuse weist eine Lichtaustrittsöffnung auf, die durch eine transparente Abdeckscheibe verschlossen ist und durch die das von dem Lichtmodul erzeugte Licht austreten und auf die Fahrbahn vor das Kraftfahrzeug gelangen kann. Die Abdeckscheibe besteht vorzugsweise aus Kunststoff. Sie kann zumindest bereichsweise mit optisch wirksamen Streuelementen versehen sein (sogenannte Streuscheibe) oder aber ohne solche Streuelemente ausgebildet sein (sogenannte klare Scheibe). Die Ausgestaltung solcher Kraftfahrzeugbeleuchtungseinrichtungen ist aus dem Stand der Technik hinlänglich bekannt und wird deshalb in den Figuren nicht näher dargestellt und hier nicht näher erläutert.
  • In Figur 1 ist ein erfindungsgemäßes Lichtmodul gemäß einer bevorzugten Ausführungsform in seiner Gesamtheit mit dem Bezugszeichen 1 bezeichnet. Das Lichtmodul 1 umfasst mindestens zwei Lichtquellen zum Aussenden von Licht. In dem dargestellten Ausführungsbeispiel umfasst das Lichtmodul 1 eine erste Lichtquelle 2, die Licht zur Realisierung einer Hauptlichtverteilung aussendet. Die Lichtquelle 2 umfasst in dem dargestellten Ausführungsbeispiel mehrere, nebeneinander angeordnete Halbleiterlichtquellen, insbesondere LEDs. Die nebeneinander angeordneten LEDs der Lichtquelle 2 werden auch als ein LED-Array bezeichnet. Es ist denkbar, dass die Lichtquelle 2 nicht nur eine Reihe von LEDs aufweist, sondern dass die LEDs der Lichtquelle 2 in mehreren Reihen und Spalten matrixartig angeordnet sind.
  • Ferner umfasst das Lichtmodul 1 in dem dargestellten Ausführungsbeispiel zwei Lichtquellen 3, 4, die Licht zur Realisierung einer Nebenlichtverteilung aussenden. Die Lichtquellen 3, 4 können eine oder mehrere Halbleiterlichtquellen, insbesondere LEDs aufweisen. Mehrere LEDs können in einer Reihe nebeneinander oder matrixartig nebeneinander und übereinander angeordnet sein. Selbstverständlich könnte das erfindungsgemäße Lichtmodul 1 auch nur eine der Lichtquellen 3, 4 oder mehr als die beiden dargestellten Lichtquellen 3, 4 aufweisen. Die Lichtquellen 2, 3, 4 des Lichtmoduls 1 sind auf einer Leiterplatte 5 angeordnet. Die Lichtquellen 2, 3, 4 sind zumindest mittelbar über die Leiterplatte 5 auf einem Kühlkörper 6 befestigt, der die während des Betriebs der Lichtquellen 2, 3, 4 entstehende Wärme abführt und an die Umgebung abgibt. Dadurch wird eine Überhitzung der LEDs der Lichtquellen 2, 3, 4 und ein ordnungsgemäßer Betrieb in einem vorgesehenen Temperaturfenster sichergestellt.
  • Den Lichtquellen 2, 3, 4 sind Primäroptiken 8; 15, 16; 17, 18 zugeordnet, die das von den Lichtquellen 2, 3, 4 ausgesandte Licht bündeln und auf eine Sekundäroptik 7 lenken, welche die Lichtbündel zur Realisierung der resultierenden Gesamtlichtverteilung des Lichtmoduls 1 auf die Fahrbahn vor das Kraftfahrzeug projiziert. Die Primäroptik 8 umfasst in diesem Ausführungsbeispiel ein Sammellinsenarray mit mehreren in einer Reihe nebeneinander angeordneten Sammellinsen. Selbstverständlich kann die Primäroptik 8 auch mehrere in mehreren Reihen und Spalten matrixartig angeordnete Primäroptikelemente, bspw. in Form von Sammellinsen, umfassen. Jeder der Sammellinsen ist mindestens eines der LEDs der Lichtquelle 2 zugeordnet. Die Sammellinsen bündeln das von den LEDs der Lichtquelle 2 ausgesandte Licht so dass eine Lichtaustrittsfläche 21 der Sammellinsen möglichst gleichmäßig und homogen ausgeleuchtet wird. Diese ausgeleuchteten Flächen (sog. Zwischenlichtverteilungen) werden von der Sekundäroptik 7 zur Erzeugung der Hauptlichtverteilung auf der Fahrbahn vor dem Fahrzeug abgebildet. Die Primäroptiken 15, 16 und 17, 18 erzeugen jeweils ein Abbild der Lichtquellen 3, 4, das von der nachgeschalteten Sekundäroptik 7 zur Erzeugung der Nebenlichtverteilung auf die Fahrbahn vor das Kraftfahrzeug projiziert wird.
  • Die Sekundäroptik 7 formt somit aus diesen Zwischenlichtverteilungen und Abbildern der Lichtquellen 3, 4 mehrere vorzugsweise lückenlos aneinander anschließende oder sogar leicht überlappende Teil-Lichtverteilungen, welche die resultierende Gesamtlichtverteilung des Lichtmoduls 1 bilden. Die Sekundäroptik 7 kann eine Sammellinse und/oder einen Reflektor umfassen. In dem dargestellten Ausführungsbeispiel ist die Sekundäroptik 7 als eine Sammellinse ausgebildet, die in Figur 1 lediglich schematisch dargestellt ist. Die Sekundäroptik 7 ist vorzugsweise auf die Lichtaustrittsflächen 21 der Primäroptikelemente der Primäroptik 8 fokussiert bzw. auf einen Flächenschwerpunkt dieser Lichtaustrittsflächen 21.
  • In den Figuren 4 bis 7 sind verschiedene Möglichkeiten zur Ausgestaltung der Primäroptik 8 für die Hauptlichtverteilung dargestellt, wobei jeweils a) eine Ansicht von vorne, b) eine Draufsicht, c) eine perspektivische Ansicht und d) eine Seitenansicht der Projektionsoptik 8 zeigt.
  • In dem Ausführungsbeispiel aus Figur 4 ist eine Primäroptik 8 gezeigt, die mehrere nebeneinander angeordnete plankonvexe Sammellinsen umfasst, wie sie bspw. in dem Lichtmodul 1 der Figur 1 eingesetzt wird. Die Sekundäroptik 7 (in Figur 4 nicht dargestellt) fokussiert auf den Flächenschwerpunkt der Lichtaustrittsfläche 21 des Sammellinsenarrays 8. Die entsprechende Fokusebene der Projektionsoptik 7 ist mit dem Bezugszeichen 9 bezeichnet. Ein Brennpunkt der Projektionsoptik 7 (im Schnittpunkt zwischen den Linien AA und BB) ist mit dem Bezugszeichen 10 bezeichnet. Der Abstand zwischen den Mittelpunkten zweier benachbarter LEDs der Lichtquelle 2 bzw. zwischen den optischen Achsen zweier benachbarter Sammellinsen der Primäroptik 8 sind als Teilung T bezeichnet. Durch die Sammellinsen der Primäroptik 8 wird das von den LEDs der Lichtquelle 2 in einem 180°-Halbraum ausgesandte Licht zu einem Lichtbündel 11 gebündelt. Die Hauptabstrahlrichtung der LEDs, die in dem dargestellten Ausführungsbeispiel mit der optischen Achse der Sammellinsen übereinstimmt, ist mit dem Bezugszeichen 12 bezeichnet. Das Licht wird durch die Sammellinsen so gebündelt, dass eine besonders homogene Ausleuchtung der Lichtaustrittsflächen 21 der Sammellinsen erreicht wird.
  • Figur 5 zeigt eine Primäroptik 8, die mehrere nebeneinander angeordnete Reflektoren aufweist. Die Reflektoren haben in dem dargestellten Ausführungsbeispiel quadratische Querschnitte (vergl. die Draufsicht in Figur 5b). Die Lichtaustrittsflächen 21 der einzelnen Reflektoren reihen sich vorzugsweise lückenlos aneinander und begrenzen die leuchtende Fläche mit scharfen, geraden Kanten. Jedem Reflektor der Primäroptik 8 ist mindestens eine LED der Lichtquelle 2 zugeordnet. Es ist möglich, dass zwischen dem Reflektorarray und den LEDs ein (durchbrochenes) Wärmeschutzblech 13 angeordnet ist, das die Rückseite der Reflektoren vor Strahlung schützt. Auch bei diesem Ausführungsbeispiel stimmt vorzugsweise die Hauptabstrahlrichtung der LEDs überein mit der optischen Achse der Reflektoren der Primäroptik 8. Im Übrigen gelten auch für dieses Ausführungsbeispiel die bezüglich Figur 4 gemachten Ausführungen.
  • Bei dem Ausführungsbeispiel aus Figur 6 umfasst die Primäroptik 8 für die Hauptlichtverteilung mehrere nebeneinander angeordnete Lichtleiter. Diese haben in ihrem Längsschnitt (umfassend die Hauptabstrahlrichtung der LEDs; vgl. Figur 6a) eine konische Form mit von der Lichteintrittsseite (den LEDs zugewandt) zu der Lichtaustrittsseite (von den LEDs abgewandt) hin zunehmender Querschnittsfläche auf. Vorzugsweise haben die Lichtleiter einen quadratischen Querschnitt (quer zur Hauptabstrahlrichtung der LEDs; vgl. Figur 6b). Die Lichtaustrittsflächen 21 der einzelnen Lichtleiter reihen sich vorzugsweise lückenlos aneinander und begrenzen die leuchtende Fläche mit scharfen, geraden Kanten. Jedem Lichtleiter der Primäroptik 8 ist mindestens eine der LEDs der Lichtquelle 2 zugeordnet. Im Übrigen gelten auch für diese Ausführungsform die bereits bezüglich der Figur 4 gemachten Ausführungen.
  • Bei dem Ausführungsbeispiel aus Figur 7 umfasst die Primäroptik 8 mehrere nebeneinander angeordnete Lichtleiterscheiben. Die Lichtaustrittsflächen 21 der Lichtleiterscheiben folgen dem Verlauf einer Petzvalfläche 14 der Projektionsoptik 7. Mit der Teilung T ist in Figur 7a der Abstand der Längsachsen der Lichtaustrittsflächen 21 zweier benachbarter Lichtleiterscheiben der Primäroptik 8 bezeichnet. Bei dieser Ausführungsform wird das von den LEDs der Lichtquelle 2 ausgesandte Licht nicht nur gebündelt, sondern auch über eine in einem vertikalen Schnitt konvex gebogene Reflexionsfläche 21' umgelenkt (vergl. Figuren 7c und 7d).
  • Aus den Figuren 4 bis 7 und der dazugehörigen Beschreibung wird klar, dass immer die Lichtaustrittsflächen 21 der Einzelelemente des Primäroptikarrays 8 in der Fokusebene 9 bzw. auf der Petzvalfläche 14 der Projektionsoptik 7 angeordnet sein sollten. Das heißt, die Sekundäroptik 7 ist vorzugsweise auf die Lichtaustrittsflächen 21 der Primäroptik 8 bzw. deren Flächenschwerpunkt fokussiert.
  • Zurückkommend auf Figur 1 weist das dort gezeigte Lichtmodul 1 neben der Lichtquelle 2 und der dieser zugeordneten Primäroptik 8 zur Erzeugung der Hauptlichtverteilung auch weitere Primäroptiken auf, die den Lichtquellen 3, 4 zur Erzeugung der Nebenlichtverteilung zugeordnet sind. Dabei ist vorgesehen, dass die den Lichtquellen 3, 4 zugeordneten Primäroptiken mehrteilig, in dem dargestellten Ausführungsbeispiel jeweils zweiteilig, ausgebildet sind. So sind der Lichtquelle 3 für die Nebenlichtverteilung beispielsweise eine erste Teil-Primäroptik 15 sowie eine zweite Teil-Primäroptik 16 zugeordnet. Ebenso sind der anderen Lichtquelle 4 für die Nebenlichtverteilung eine erste Teil-Primäroptik 17 und eine zweite Teil-Primäroptik 18 zugeordnet. Die beiden Teil-Primäroptiken 15, 16 bzw. 17, 18 sind zwar beabstandet zueinander angeordnet, erfüllen aber gemeinsam die Funktion einer herkömmlichen Primäroptik eines als Projektionssystem ausgebildeten Lichtmoduls 1.
  • In dem in Figur 1 gezeigten Ausführungsbeispiel ist die der Lichtquelle 3 zugeordnete erste Teil-Primäroptik 15 als ein Umlenkspiegel ausgebildet und die zweite Teil-Primäroptik 16 als ein Hohlspiegel. Entsprechendes gilt auch für die der Lichtquelle 4 zugeordneten Teil-Primäroptiken 16, 18, wobei die erste Teil-Primäroptik 17 als ein Umlenkspiegel und die zweite Teil-Primäroptik 18 als ein Hohlspiegel ausgebildet ist. Die ersten Teil-Primäroptiken 15, 17 sind seitlich neben der Lichtquelle 2 zur Erzeugung der Hauptlichtverteilung bzw. neben der dieser zugeordneten Primäroptik 8 bzw. den Lichtaustrittsflächen 21 der Primäroptikelemente angeordnet. Vorzugsweise grenzen die ersten Teil-Primäroptiken 15, 17 unmittelbar und lückenlos an die Primäroptik 8 bzw. an deren äußere Lichtaustrittsflächen 21 an. Dadurch ist es auf relativ einfache Weise möglich, eine besonders homogen ausgeleuchtete resultierende Gesamtlichtverteilung des Lichtmoduls 1 zu realisieren, da die Abbilder der Lichtquellen 3, 4 auf den Umlenkspiegeln 15, 17 sowie die ausgeleuchteten Lichtaustrittsflächen 21 der Einzelelemente der Primäroptik 8 dicht nebeneinander, vorzugsweise sogar lückenlos aneinander grenzend angeordnet sind, so dass die beleuchteten Lichtaustrittsflächen 21 des Primäroptikarrays 8 bzw. die _Lichtquellenabbilder auf den Spiegelflächen der Umlenkspiegel 15, 17 durch die Sekundäroptik 7 zu der, insbesondere im Bereich der Übergänge zwischen den Teil-Lichtverteilungen, homogen ausgeleuchteten Gesamtlichtverteilung auf die Fahrbahn vor das Kraftfahrzeug projiziert werden.
  • Bei dem in Figur 1 gezeigten Ausführungsbeispiel sind alle Lichtquellen 2, 3, 4 in einer gemeinsamen Ebene, vorzugsweise sogar auf der gleichen Leiterplatte 5, angeordnet und kontaktiert. Dadurch ist eine besonders einfache und kostengünstige Montage und Kontaktierung der Lichtquellen 2, 3, 4 möglich. Ferner strahlen die Lichtquellen 2, 3, 4 alle Licht im Wesentlichen in die gleiche Richtung, das heißt in etwa in Richtung der Sekundäroptik 7, ab. Mit anderen Worten verlaufen die Hauptabstrahlrichtungen der einzelnen Lichtquellen 2, 3, 4 bzw. der einzelnen Lichtquellenelemente (LEDs) der Lichtquelle 2 im Wesentlichen parallel zueinander.
  • Mit der vorliegenden Erfindung ist es möglich, eine besonders homogen ausgeleuchtete resultierende Gesamtlichtverteilung des Lichtmoduls 1 zu erzeugen, da die das reelle Zwischenbild bildenden Flächen (die Spiegelflächen der Umlenkspiegel 15, 17) und die ausgeleuchteten Lichtaustrittsflächen 21 der Primäroptikelemente der Primäroptik 8 dicht nebeneinander, vorzugsweise sogar unmittelbar aneinander grenzend angeordnet sind. Dadurch können sie von der Sekundäroptik 7 als einheitliche homogen ausgeleuchtete resultierende Gesamtlichtverteilung auf die Fahrbahn vor das Kraftfahrzeug projiziert werden. "Homogen ausgeleuchtet" bedeutet in diesem Zusammenhang insbesondere, dass die resultierende Gesamtlichtverteilung des Lichtmoduls 1, insbesondere im Bereich der Übergänge zwischen den durch die Sekundäroptik 7 auf die Fahrbahn projizierten einzelnen Teil-Lichtverteilungen, keine unerwünschten dunklen Bereiche, Schatten oder dunkle Linien aufweist. Eine Variation der Beleuchtungsstärkeverteilung innerhalb der resultierenden Gesamtlichtverteilung ist jedoch möglich. Insbesondere ist es denkbar, dass die Lichtstärkeverteilung der Nebenlichtverteilung zum äußeren Rand der Gesamtlichtverteilung hin abnimmt. Wichtig ist jedoch, dass zwischen den einzelnen, durch die Sekundäroptik 7 abgebildeten Teil-Lichtverteilungen, welche die resultierende Gesamtlichtverteilung bilden, keine unerwünschten dunklen Bereiche, Schatten oder dunkle Linien vorhanden sind.
  • Zudem bietet das erfindungsgemäße Lichtmodul 1 durch die mehrteilige Ausgestaltung der Primäroptiken 15, 16, bzw. 17, 18 eine besonders hohe Flexibilität und Variabilität bezüglich der möglichen Anordnung und Ausrichtung der Lichtquellen 3, 4 relativ zu der Lichtquelle 2 und bezüglich der Lichtstärkeverteilungen auf den Spiegelflächen der Umlenkspiegel 15, 17, das heißt auf den durch die Sekundäroptik 7 abgebildeten Flächen der Primäroptiken 15, 16 bzw. 17, 18 im Zwischenbild. Dadurch ist es möglich, sämtliche Lichtquellen 2, 3, 4 des Lichtmoduls 1 in einer Ebene, insbesondere auf einer gemeinsamen Leiterplatte 5, anzuordnen. Ferner erlaubt dies eine besonders flexible Ausgestaltung der Lichtstärkenverteilung der Nebenlichtverteilung und damit der resultierenden Gesamtlichtverteilung.
  • Die verschiedenen Strahlengänge des Lichtmoduls 1 aus Figur 1 sind in den Figuren 8, 10 und 12 dargestellt. Die entsprechenden Lichtverteilungen auf einem Messschirm sind in den Figuren 9, 11 und 13 dargestellt. Der Messschirm ist in einer definierten Entfernung von dem Lichtmodul 1 angeordnet. Die optische Achse des Lichtmoduls 1 verläuft vorzugsweise durch den Mittelpunkt des Messschirms durch den Punkt HV bei 0° horizontal und 0° vertikal.
  • Figur 8 zeigt den Strahlengang, wenn lediglich die LEDs der Lichtquelle 2 aktiviert sind, wobei in Figur 8 der Sonderfall gezeigt ist, bei dem zwei mittig angeordnete LEDs der Lichtquelle 2 deaktiviert sind. Die beiden deaktivierten LEDs sind in Figur 8 mit dem Bezugszeichen 19 bezeichnet. Der von den beiden deaktivierten LEDs 19 normalerweise, das heißt, im aktivierten Zustand, ausgeleuchtete Bereich der resultierenden Lichtverteilung ist in Figur 9 mit dem Bezugszeichen 20 bezeichnet. Die beiden deaktivierten LEDs 19 der Lichtquelle 2 führen zu einem nicht ausgeleuchteten Bereich 20 in der Mitte der Lichtverteilung bei etwa 0° horizontal mit einer Breite von etwa 2° horizontal. Der nicht ausgeleuchtete Bereich 20 im Zentrum der resultierenden Lichtverteilung erstreckt sich in horizontaler Richtung also in etwa von -1° bis +1°. Die Höhe des nicht ausgeleuchteten Bereichs 20 erstreckt sich über die gesamte Höhe der resultierenden Lichtverteilung. Dadurch können bspw. bei einem Matrix-Fernlichtmodul gezielt einzelne LEDs der Lichtquelle 2 deaktiviert werden, um einen Bereich vor dem Kraftfahrzeug, wo sich vorausfahrende und/oder entgegenkommende Verkehrsteilnehmer befinden, aus der resultierenden Lichtverteilung auszublenden. Den variierenden horizontalen Positionen der anderen Verkehrsteilnehmer (bspw. durch Vorbeifahren oder Passieren des Kraftfahrzeugs) und damit des von der resultierenden Lichtverteilung ausgesparten Bereichs 20 kann dadurch Rechnung getragen werden, dass gezielt diejenigen LEDs 19 deaktiviert werden, die für die Erzeugung des Lichts für den auszusparenden Bereich 20 an der entsprechenden Position verantwortlich sind. Alternativ wäre es auch denkbar, stets die gleichen LEDs 19 zu deaktivieren und das gesamte Lichtmodul 1 oder lediglich Teile davon in horizontaler Richtung relativ zu einem Gehäuse der Beleuchtungseinrichtung zu bewegen, bspw. um eine vertikale Achse zu verschwenken, um den nicht ausgeleuchteten Bereich 20 der resultierenden Lichtverteilung in Deckung mit den anderen Verkehrsteilnehmern zu bringen, die aus der resultierenden Gesamtlichtverteilung ausgeblendet werden sollen.
  • In Figur 10 ist der Strahlengang des Lichtmoduls 1 gezeigt, wobei lediglich die Lichtquelle 4 zur Erzeugung eines Teils der Nebenlichtverteilung aktiviert ist. Die Nebenlichtverteilung der Lichtquelle 4 ist eine Seitenausleuchtung rechts neben der Hauptlichtverteilung gemäß Figur 9. Die resultierende Lichtverteilung der Seitenausleuchtung rechts ist in Figur 11 gezeigt. In entsprechender Weise würde eine Aktivierung der anderen Lichtquelle 3 zur Erzeugung eines anderen Teils der Nebenlichtverteilung in Form einer Seitenausleuchtung links bewirken. Es ist denkbar, beide Lichtquellen 3, 4 gleichzeitig zu aktivieren.
  • Die Form und Ausgestaltung, insbesondere die Lichtstärkeverteilung, der resultierenden Seitenausleuchtung (vgl. Figur 11) kann auf einfache und effektive Weise dadurch geändert werden, dass die Form und/oder Ausrichtung des Hohlspiegels 18 und/oder des Umlenkspiegels 17 verändert wird. Es ist sogar denkbar, die Form und/oder Ausrichtung des Hohlspiegels 18 und/der des Umlenkspiegels 17 während des Betriebs des Lichtmoduls 1 zu variieren, um so die Ausgestaltung und die Form der resultierenden Seitenausleuchtung während des Betriebs der Beleuchtungseinrichtung adaptiv verändern zu können. Dadurch wäre es beispielsweise möglich, auf aktuelle Verkehrs- oder Umgebungsbedingungen zu reagieren und die seitlichen Randbereiche der resultierenden Gesamtlichtverteilung situationsabhängig mehr oder weniger stark auszuleuchten.
  • In Figur 12 ist der Strahlengang des erfindungsgemäßen Lichtmoduls 1 aus Figur 1 gezeigt, wobei sämtliche Lichtquellen 2, 3, 4 aktiviert sind, also auch die beiden in Figur 8 und 9 noch deaktivierten LEDs 19 sowie die Lichtquelle 3. Dabei ergibt sich eine besonders homogen ausgeleuchtete resultierende Gesamtlichtverteilung des Lichtmoduls 1, die in Figur 13 dargestellt ist. Die dargestellte Gesamtlichtverteilung ist beispielsweise ein Fernlicht, (wenn die Lichtverteilung so weit abgesenkt würde, dass die obere Helldunkelgrenze unterhalb der Horizontalen bei etwa -1° vertikal verlaufen würde) ein Nebellicht oder (bei gegenüber einem Fernlicht verminderter Intensität) ein Tagfahrlicht.
  • In Figur 2 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Lichtmoduls 1 dargestellt. Im Unterschied zu dem Lichtmodul 1 aus Figur 1 ist dabei lediglich eine Lichtquelle 4 zur Erzeugung einer Nebenlichtverteilung und dementsprechend auch nur eine der Lichtquelle 4 zugeordnete Primäroptik 17, 18 vorgesehen. Außerdem ist die Sekundäroptik 7 als ein facettiertes Paraboloid ausgebildet. Die einzelnen Facetten des derart ausgestalteten Reflektors 7 weisen vorzugsweise unterschiedliche Brennweiten und näherungsweise gleiche Schnittweiten zum Brennpunkt 10 (vgl. Figuren 4b, 5b, 6b) auf.
  • Figur 3 zeigt einen Strahlengang in dem Lichtmodul 1 aus Figur 2, wobei Figur 3a den vertikalen Strahlverlauf und Figur 3b den horizontalen Strahlverlauf zeigt. Es ist deutlich zu erkennen, dass der Hohlspiegel 18 beim vertikalen Strahlverlauf den LED-Chip der Lichtquelle 4 mit einer Kantenlänge t mindestens auf die Höhe H der Spiegelfläche des Umlenkspeigels 17 vergrößert. Der Abbildungsmaßstab M ergibt sich ungefähr aus dem Verhältnis der Strecken S2/S1. Der Hohlspiegel 18 konzentriert im horizontalen Strahlverlauf das Licht für die Nebenlichtverteilung auf den Umlenkspiegel 17 unmittelbar neben dem benachbarten Primäroptikarray 8 für die Hauptlichtverteilung. Auf der Spiegelfläche des Umlenkspeigels 17 ergibt sich ein Abbild der Lichtquelle 4. Der Umlenkspiegel 17 lenkt das einfallende Licht auf die Sekundäroptik 7, die das Lichtquellenabbild zur Erzeugung der Nebenlichtverteilung auf die Fahrbahn projiziert.
  • Figur 14 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Lichtmoduls 1, wobei auf die Darstellung der Sekundäroptik 7 verzichtet wurde. Die Primäroptik 8 für die Hauptlichtverteilung umfasst ein Array aus konischen Lichtleitern, deren Lichtaustrittsflächen 21 von den LEDs der Lichtquelle 2 für die Hauptlichtverteilung (vergl. Figur 9) gleichmäßig ausgeleuchtet werden. Die Zwischenlichtverteilungen auf den Lichtaustrittsflächen 21 des Lichtleiterarrays 8 und die Lichtquellenabbilder auf den Spiegelflächen der Umlenkspiegel 15, 17 liegen näherungsweise in der schalenförmig ausgebildeten Petzvalfläche 14, der sog. Petzvalschale, der Sekundäroptik 7.
  • Bei dem Ausführungsbeispiel aus Figur 15 umfasst die Primäroptik 8 für die Hauptlichtverteilung ein Array aus konischen Reflektoren, welche die Zwischenlichtverteilungen (ausgeleuchtete Lichtaustrittsflächen 21) für die Hauptlichtverteilung erzeugen. Die Lichtaustrittsflächen 21 des Reflektorarrays 8 (d.h. die in Lichtaustrittsrichtung befindlichen vorderen Öffnungen der Einzel-Reflektoren) und die Spiegelflächen der Umlenkspiegel 15, 17 liegen näherungsweise in der Petzvalschale 14 der Sekundäroptik 7.
  • Bei dem Ausführungsbeispiel aus Figur 16 umfasst die Primäroptik 8 für die Hauptlichtverteilung ein Array aus Sammellinsen, welche die Zwischenlichtverteilungen für die Hauptlichtverteilung erzeugen. Die Lichtaustrittsflächen 21 des Linsenarrays 8 und die Spiegelflächen der Umlenkspiegel 15, 17 liegen näherungsweise in einer schalenförmigen Petzvalfläche 14 der Sekundäroptik 7.
  • Als Petzvalfläche 14 wird eine Fläche bezeichnet, deren Punkte von der Sekundäroptik 7 möglichst gleich und in gewünschter Weise auf eine in Fahrtrichtung bzw. Abstrahlrichtung weit entfernte Bildfläche abgebildet werden. Dabei können diese Objektpunkte statt als Punkte in gleicher Weise auch als Linien oder Rechtecke oder ähnliches abgebildet werden. Insbesondere entwerfen infinitesimal kleine Zonen der Sekundäroptik 7 in einer weit vor dem Lichtmodul 1 bzw. dem Kraftfahrzeug gelegenen Bildfläche überwiegend gleich große und gleich orientierte Bilder der Zwischenlichtverteilungen, die sich in der objektseitigen Petzvalfläche 14 der Sekundäroptik 7 befinden. Die einzelnen Zwischenlichtverteilungen können im Winkelraum gegeneinander verschoben sein (zum Beispiel Verwischen der Lichtverteilung in vertikaler und/oder horizontaler Richtung), insbesondere in vertikaler Richtung. Damit können beispielsweise aus quadratischen Zwischenlichtverteilungen mit gleichmäßiger Leuchtdichte streifenförmige, sich vertikal erstreckende Teil-Lichtverteilungen erzeugt werden, die weich nach oben und unten hin auslaufen. Dabei weisen die optischen Flächen der Sekundäroptik 7 (Sammellinse oder Paraboloid) vorzugsweise in ihren Vertikalschnitten andere Brechkräfte bzw. Krümmungen auf als in ihren Horizontalschnitten.
  • Lichtstrahlen, die aus dem Hohlspiegel 16; 18 kommend den Umlenkspiegel 15; 17 verfehlen, treten nicht durch die Sekundäroptik 7 und sind somit auch nicht Teil der resultierenden Gesamtlichtverteilung vor dem Kraftfahrzeug. Der Umlenkspiegel 15; 17 begrenzt also die Nebenlichtverteilung an den Rändern. Damit ist es möglich, mit dem Hohlspiegel 16; 18 zunächst eine größere Lichtverteilung als Zwischenbild zu erzeugen und diese dann durch die Ränder des Umlenkspiegels 15; 17 zu begrenzen. Auf diese Weise können Lagetoleranzen im optischen System kompensiert werden, so dass sichergestellt ist, dass die Nebenlichtverteilung immer lückenlos an die Hauptlichtverteilung anschließt.
  • Die Abmessungen des Umlenkspiegels 15; 17 sind vorzugsweise derart gewählt, dass die Lichtquelle 3; 4 für die Nebenlichtverteilung durch den Hohlspiegel 16; 18 und den Umlenkspiegel 15; 17 mindestens auf ein Lichtquellenabbild der Größe der Lichtaustrittsfläche 21 der benachbarten Primäroptik 8 vergrößert wird. Zum Ausgleich von Fertigungs- und Montagetoleranzen ist es empfehlenswert, den Abbildungsmaßstab sogar etwas größer zu wählen.
  • Wenn die Primäroptik 8 für die Hauptlichtverteilung eine Höhe H und ein quadratischer LED-Chip der Lichtquelle 3; 4 für die Nebenlichtverteilung eine Seitenlänge t aufweist, kann der Abbildungsmaßstab des Hohlspiegels 16; 18 beispielsweise zu M = H / t oder größer gewählt werden. Insbesondere gilt bezugnehmend auf Figur 3 und die dazu gehörige Beschreibung folgende Beziehung: M = 1 1 , 5 x H / t = 1 1 , 5 x S 2 / S 1
    Figure imgb0001
  • Die Strecke S1 beginnt im Mittelpunkt der Lichtquelle 3; 4 für die Nebenlichtverteilung und propagiert in Richtung der Hauptabstrahlrichtung der Lichtquelle 3; 4, bei einer LED insbesondere lotrecht auf dem LED-Chip. Die Strecke S1 endet mit dem Auftreffen auf die Reflexionsfläche des Hohlspiegels 16; 18. An diesem Punkt beginnt die Strecke S2 und erstreckt sich in Richtung des Umlenkspiegels 15; 17, vorzugsweise auf den Mittelpunkt des Umlenkspiegels.
  • Es ist vorteilhaft, den Umlenkspiegel 15; 17 für die Nebenlichtverteilung bzw. dessen Spiegelfläche einerseits und das Primäroptikarray 8 für die Hauptlichtverteilung bzw. dessen Lichtaustrittsflächen 21 andererseits möglichst präzise und unmittelbar nebeneinander zu positionieren, damit auch die Zwischenlichtverteilungen bzw. die Lichtquellenabbilder von Haupt- und Nebenlichtverteilung nach der Projektion durch die Sekundäroptik 7 in der resultierenden Gesamtlichtverteilung möglichst lückenlos aneinander anschließen. Dies kann beispielsweise dadurch erreicht werden, dass beide Elemente (Umlenkspiegel 15; 17 und Primäroptik 8) einstückig ausgebildet sind.

Claims (14)

  1. Lichtmodul (1) einer Kraftfahrzeugbeleuchtungseinrichtung, das Lichtmodul (1) umfassend mindestens zwei Lichtquellen (2, 3, 4) zum Aussenden von Licht und mindestens zwei den Lichtquellen zugeordnete Primäroptiken (8; 15, 16; 17, 18) zum Bündeln zumindest eines Teils des ausgesandten Lichts, wobei jeweils mindestens eine Lichtquelle (2, 3, 4) einer der Primäroptiken (8; 15, 16; 17, 18) zugeordnet ist, und ferner umfassend eine gemeinsame Sekundäroptik (7) zur Formung von mehreren aneinander anschließenden oder leicht überlappenden Lichtverteilungen aus den von zumindest einigen der Primäroptiken (8; 15,16; 17, 18) erzeugten Lichtbündeln, dadurch gekennzeichnet, dass mindestens eine der Lichtquellen (2) zur Erzeugung von Licht zur Realisierung einer Hauptlichtverteilung und mindestens eine andere der Lichtquellen (3; 4) zur Erzeugung von Licht zur Realisierung einer Nebenlichtverteilung ausgestaltet ist, wobei die Hauptlichtverteilung zur Ausleuchtung eines Zentrums einer resultierenden Gesamtlichtverteilung des Lichtmoduls (1) und die Nebenlichtverteilung zur Ausleuchtung mindestens eines seitlichen Bereichs neben der Gesamtlichtverteilung dient, und dass die mindestens eine der Lichtquelle (3; 4) zur Erzeugung des Lichts für die Nebenlichtverteilung zugeordnete Primäroptik (15, 16; 17, 18) mehrteilig ausgebildet ist, wobei mindestens eine erste der Teil-Primäroptiken (15; 17) neben der mindestens einen der Lichtquelle (2) zur Erzeugung des Lichts für die Hauptlichtverteilung zugeordneten Primäroptik (8) angeordnet ist.
  2. Lichtmodul(1) nach Anspruch 1, dadurch gekennzeichnet, dass die Primäroptiken (8; 15, 16; 17, 18) derart ausgebildet und angeordnet sind, dass von den Primäroptiken (8; 15, 16; 17, 18) auf deren Lichtaustrittsflächen (21; 15, 17) erzeugte Zwischenlichtverteilungen, die von der Sekundäroptik (7) zur Erzeugung einer resultierenden Gesamtleichtverteilung des Lichtmoduls (1) vor das Kraftfahrzeug projiziert werden, nebeneinander liegen.
  3. Lichtmodul (1) nach Anspruch 2, dadurch gekennzeichnet, dass die Zwischenlichtverteilungen lückenlos aneinander grenzen.
  4. Lichtmodul (1) nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Zwischenlichtverteilungen zumindest teilweise in einer Fokusebene (9) der Sekundäroptik (7) liegen.
  5. Lichtmodul (1) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Zwischenlichtverteilungen zumindest teilweise in einer Petzvalfläche (14) der Sekundäroptik (7) liegen.
  6. Lichtmodul (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die mindestens eine andere der Teil-Primäroptiken (16; 18) in der Nähe der mindestens einen Lichtquelle (3; 4) zur Erzeugung der Nebenlichtverteilung angeordnet ist und derart ausgestaltet ist, dass sie das von dieser Lichtquelle (3; 4) ausgesandte Licht auf die mindestens eine erste der Teil-Primäroptiken (15; 17) umlenkt.
  7. Lichtmodul (1) nach Anspruch 6, dadurch gekennzeichnet, dass die mindestens eine andere der Teil-Primäroptiken (16; 18) als ein Hohlspiegel ausgebildet ist.
  8. Lichtmodul (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens eine erste der Teil-Primäroptiken (15; 17) als ein Umlenkspiegel ausgebildet und derart ausgestaltet ist, dass sie das von der mindestens einen anderen der Teil-Primäroptiken (16; 18) umgelenkte Licht in Richtung der Sekundäroptik (7) umlenkt.
  9. Lichtmodul (1) nach Anspruch 8, dadurch gekennzeichnet, dass die Form und/oder die Ausrichtung des Umlenkspiegels (15; 17) während des Betriebs des Lichtmoduls (1) variierbar ist.
  10. Lichtmodul (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Lichtquellen (2, 3, 4) alle in einer Ebene, insbesondere auf einer gemeinsamen Leiterplatte (5), angeordnet sind.
  11. Lichtmodul (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die mindestens eine erste der Teil-Primäroptiken (15; 17) unmittelbar und lückenlos an die mindestens eine der Lichtquelle (2) zur Erzeugung des Lichts für die Hauptlichtverteilung zugeordnete Primäroptik (8) anschließt.
  12. Lichtmodul (1) nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass die mindestens eine andere der Teil-Primäroptiken (16; 18) derart ausgestaltet und in dem Lichtmodul (1) angeordnet ist, dass das von der mindestens einen anderen der Teil-Primäroptiken (16; 18) auf den Umlenkspiegel (15; 17) umgelenkte Licht die gesamte reflektierende Fläche des Umlenkspiegels (15; 17) ausleuchtet.
  13. Lichtmodul (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass auf zwei gegenüberliegenden Seiten neben der mindestens einen der Lichtquelle (2) zur Erzeugung des Lichts für die Hauptlichtverteilung zugeordneten Primäroptik (8) jeweils mindestens eine erste der Teil-Primäroptiken (15; 17) angeordnet ist.
  14. Kraftfahrzeugbeleuchtungseinrichtung mit einem Lichtmodul (1) nach einem der vorangehenden Ansprüche.
EP14160768.9A 2013-04-11 2014-03-19 Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung Active EP2789901B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013206489.6A DE102013206489A1 (de) 2013-04-11 2013-04-11 Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung

Publications (3)

Publication Number Publication Date
EP2789901A2 true EP2789901A2 (de) 2014-10-15
EP2789901A3 EP2789901A3 (de) 2016-09-07
EP2789901B1 EP2789901B1 (de) 2020-05-06

Family

ID=50289567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14160768.9A Active EP2789901B1 (de) 2013-04-11 2014-03-19 Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung

Country Status (4)

Country Link
US (1) US9528672B2 (de)
EP (1) EP2789901B1 (de)
CN (1) CN104100903B (de)
DE (1) DE102013206489A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066041A (zh) * 2015-08-14 2015-11-18 安徽江淮汽车股份有限公司 一种侧转向信号灯
EP3159597A1 (de) * 2015-10-21 2017-04-26 Stanley Electric Co., Ltd. Fahrzeuglampe
DE102016013510A1 (de) 2016-04-18 2017-10-19 Kastriot Merlaku Scheinwerfer-System für Fahrzeuge aller Art, mit mindestens einem Leuchtmittel und eine Kamera für die Fahrbahn-Erfassung
EP3351849A1 (de) * 2016-12-23 2018-07-25 Automotive Lighting Reutlingen GmbH Led-modul und beleuchtungseinrichtung für ein kraftfahrzeug mit mehreren solcher led-module

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101529166B1 (ko) * 2013-08-06 2015-06-16 현대모비스 주식회사 차량용 램프
DE102014009592A1 (de) * 2014-06-27 2015-12-31 Audi Ag Scheinwerfervorrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben einer Scheinwerfervorrichtung
CN108291701A (zh) * 2015-11-20 2018-07-17 株式会社小糸制作所 灯具单元
FR3051160B1 (fr) * 2016-05-11 2018-05-25 Peugeot Citroen Automobiles Sa Systeme d'eclairage pour vehicule automobile
FR3056693B1 (fr) * 2016-09-29 2020-06-19 Valeo Vision Dispositif d'eclairage en bandes pour projecteur de vehicule automobile
DE102017117392A1 (de) * 2017-08-01 2019-02-07 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für Fahrzeuge
JP6571734B2 (ja) * 2017-09-04 2019-09-04 トヨタ自動車株式会社 車両用照明装置
JP6589955B2 (ja) * 2017-09-22 2019-10-16 日亜化学工業株式会社 発光モジュール及び車載用灯具
FR3074257B1 (fr) * 2017-11-27 2020-11-13 Valeo Vision Module lumineux pour l’eclairage et/ou la signalisation d’un vehicule automobile
DE102018110793A1 (de) * 2018-05-04 2019-11-07 HELLA GmbH & Co. KGaA Projektionsscheinwerfer
DE102019108233A1 (de) * 2019-03-29 2020-10-01 Automotive Lighting Reutlingen Gmbh Lichtmodul für einen Kraftfahrzeugscheinwerfer mit n in einer Reihe nebeneinander angeordneten Teillichtmodulen
DE102020210548A1 (de) 2020-08-20 2022-02-24 Volkswagen Aktiengesellschaft Fahrzeugscheinwerfer mit Kompensation von Inhomogenitäten in der Lichtverteilung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120094A1 (en) 2004-12-07 2006-06-08 Koito Manufacturing Co., Ltd. Vehicular illumination lamp

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232602A (ja) * 1988-03-11 1989-09-18 Koito Mfg Co Ltd 自動車用前照灯
JP4771055B2 (ja) * 2005-06-16 2011-09-14 スタンレー電気株式会社 車両用灯具及びそのled光源
JP4529946B2 (ja) * 2006-06-01 2010-08-25 市光工業株式会社 車両用灯具
JP2008123753A (ja) * 2006-11-09 2008-05-29 Koito Mfg Co Ltd 車両用灯具ユニット
JP2008153108A (ja) * 2006-12-19 2008-07-03 Ichikoh Ind Ltd 車両用灯具
FR2917811B1 (fr) * 2007-06-25 2009-10-02 Valeo Vision Sa Module d'eclairage pour projecteur de vehicule automobile
JP5069985B2 (ja) * 2007-09-13 2012-11-07 株式会社小糸製作所 車両用前照灯の灯具ユニットおよび車両用前照灯
JP5407097B2 (ja) * 2008-02-15 2014-02-05 スタンレー電気株式会社 車両用灯具
JP2009277482A (ja) * 2008-05-14 2009-11-26 Ichikoh Ind Ltd 車両用灯具
JP5388546B2 (ja) * 2008-11-10 2014-01-15 株式会社小糸製作所 灯具ユニット
DE102009008631B4 (de) 2009-02-12 2016-11-03 Automotive Lighting Reutlingen Gmbh Projektionsmodul für einen Kraftfahrzeugscheinwerfer
DE102010041096B4 (de) * 2010-09-21 2024-05-08 Osram Gmbh Leuchtvorrichtung
DE102011004569A1 (de) * 2011-02-23 2012-08-23 Automotive Lighting Reutlingen Gmbh Zum Einbau in einem Kraftfahrzeug vorgesehene Beleuchtungseinrichtung
FR2984458B1 (fr) * 2011-12-19 2018-03-09 Valeo Vision Module d'eclairage generateur d'un entrelacement de bandes lumineuses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060120094A1 (en) 2004-12-07 2006-06-08 Koito Manufacturing Co., Ltd. Vehicular illumination lamp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066041A (zh) * 2015-08-14 2015-11-18 安徽江淮汽车股份有限公司 一种侧转向信号灯
EP3159597A1 (de) * 2015-10-21 2017-04-26 Stanley Electric Co., Ltd. Fahrzeuglampe
JP2017079173A (ja) * 2015-10-21 2017-04-27 スタンレー電気株式会社 車両用灯具
US9903552B2 (en) 2015-10-21 2018-02-27 Stanley Electric Co., Ltd. Vehicular lamp
DE102016013510A1 (de) 2016-04-18 2017-10-19 Kastriot Merlaku Scheinwerfer-System für Fahrzeuge aller Art, mit mindestens einem Leuchtmittel und eine Kamera für die Fahrbahn-Erfassung
DE102016013510B4 (de) 2016-04-18 2019-03-14 Kastriot Merlaku Scheinwerfer-System für Fahrzeuge aller Art, mit mindestens einem Leuchtmittel und eine Kamera für die Fahrbahn-Erfassung
EP3351849A1 (de) * 2016-12-23 2018-07-25 Automotive Lighting Reutlingen GmbH Led-modul und beleuchtungseinrichtung für ein kraftfahrzeug mit mehreren solcher led-module
US10323816B2 (en) 2016-12-23 2019-06-18 Automotive Lighting Reutlingen Gmbh LED module and lighting device for a motor vehicle with several such LED modules

Also Published As

Publication number Publication date
EP2789901A3 (de) 2016-09-07
CN104100903A (zh) 2014-10-15
US9528672B2 (en) 2016-12-27
EP2789901B1 (de) 2020-05-06
CN104100903B (zh) 2018-08-28
US20140307458A1 (en) 2014-10-16
DE102013206489A1 (de) 2014-10-30

Similar Documents

Publication Publication Date Title
EP2789901B1 (de) Lichtmodul einer Kraftfahrzeugbeleuchtungseinrichtung
EP2910847B1 (de) Lichtmodul eines Kraftfahrzeugscheinwerfers und Scheinwerfer mit einem solchen Lichtmodul
EP2799761B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2799762B1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer
EP3351849B1 (de) Led-modul und beleuchtungseinrichtung für ein kraftfahrzeug mit mehreren solcher led-module
DE102009053581B3 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
EP2505910B1 (de) Kraftfahrzeugscheinwerfer mit einer halbleiterlichtquelle
DE102014205994B4 (de) Lichtmodul mit Halbleiterlichtquelle und Vorsatzoptik und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
DE102014200368B4 (de) Teilfernlicht-Projektionslichtmodul für einen Kraftfahrzeugscheinwerfer
EP2719940B1 (de) Lichtmodul
EP3080513B1 (de) Kraftfahrzeugbeleuchtungseinrichtung
WO2011154470A1 (de) Vorsatzoptik aus transparentem material zum bündeln von licht, linsenarray mit mindestens einer solchen vorsatzoptik und lichtmodul mit einem solchen linsenarray
DE202011103703U1 (de) Lichtmodul eines Kraftfahrzeugs zur Erzeugung einer Sportverteilung einer Fernlicht-Lichtverteilung und Kraftfahrzeugscheinwerfer mit einem solchen Modul
EP2834555B1 (de) Beleuchtungsvorrichtung für ein kraftfahrzeug
DE102013205487A1 (de) Kraftfahrzeugleuchte für dynamische Leuchtenfunktionen
EP3301350B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer
EP2602539A1 (de) Lichtmodul für eine Beleuchtungseinrichtung eines Kraftfahrzeugs
EP3510320A1 (de) Fahrzeugscheinwerfer
EP2523022A1 (de) Lichtmodul für einen Kraftfahrzeugscheinwerfer zur Erzeugung einer variablen Lichtverteilung und Kraftfahrzeugscheinwerfer mit einem solchen Lichtmodul
EP2863108B1 (de) LED-Modul eines Kraftfahrzeugscheinwerfers
WO2016062520A1 (de) Lichtmodul einer beleuchtungseinrichtung und beleuchtungseinrichtung mit einem solchen lichtmodul
DE102013215359B3 (de) Mechanikfreies Kurvenlichtmodul
EP2500630B1 (de) Transparente Optik bzw. Linse einer KFZ-Beleuchtungseinrichtung
DE102017115899A1 (de) Kraftfahrzeugleuchte und Kraftfahrzeugscheinwerfer mit einer solchen Leuchte
DE102012215124B4 (de) Beleuchtungseinrichtung mit mehreren Lichtquellen und Lichtleitkörpern sowie einem Reflektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140319

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20160728BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

R17P Request for examination filed (corrected)

Effective date: 20170103

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014014115

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041143000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/33 20180101ALI20191010BHEP

Ipc: F21S 41/24 20180101ALI20191010BHEP

Ipc: F21S 41/32 20180101ALI20191010BHEP

Ipc: F21S 41/147 20180101ALI20191010BHEP

Ipc: F21S 41/143 20180101AFI20191010BHEP

Ipc: F21S 41/663 20180101ALI20191010BHEP

Ipc: F21S 41/36 20180101ALI20191010BHEP

Ipc: F21S 41/43 20180101ALI20191010BHEP

Ipc: F21S 41/29 20180101ALI20191010BHEP

Ipc: F21S 41/20 20180101ALI20191010BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1267323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014115

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014115

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210319

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1267323

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230222

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230221

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200506