EP2778247A1 - Tôle d'acier pour un formage par pressage à chaud, élément de formage par pressage à chaud et procédé de fabrication associé - Google Patents

Tôle d'acier pour un formage par pressage à chaud, élément de formage par pressage à chaud et procédé de fabrication associé Download PDF

Info

Publication number
EP2778247A1
EP2778247A1 EP12847953.2A EP12847953A EP2778247A1 EP 2778247 A1 EP2778247 A1 EP 2778247A1 EP 12847953 A EP12847953 A EP 12847953A EP 2778247 A1 EP2778247 A1 EP 2778247A1
Authority
EP
European Patent Office
Prior art keywords
steel sheet
warm
press forming
less
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12847953.2A
Other languages
German (de)
English (en)
Other versions
EP2778247A4 (fr
Inventor
Jin-Keun Oh
Kyoo-Young Lee
Yeol-Rae Cho
Eul-Yong Choi
Ki-Soo Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of EP2778247A1 publication Critical patent/EP2778247A1/fr
Publication of EP2778247A4 publication Critical patent/EP2778247A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/04Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment

Definitions

  • the present disclosure relates to a steel sheet for automobile structural members or reinforcement members, and more particularly, to a steel sheet that may be increased in strength, elongation, shock-absorbing ability, and plating corrosion resistance after a warm press forming process.
  • the present disclosure relates to a warm-pressed member formed of the steel sheet, and methods of manufacturing the steel sheet and the warm-pressed member.
  • Automobiles are increasingly required to have high fuel efficiency and crashworthiness in order to protect both the environment and automobile passengers.
  • a great deal of research has been conducted to develop lightweight and crashworthy automobiles using high-strength chassis.
  • oxide scale may have to be removed from the surfaces of the steel sheet after the heat treatment if the steel sheet is not a plated steel sheet, and high costs may be incurred in heating the steel sheet to a high temperature.
  • plating materials may be evaporated or fused to cause a decrease in productivity. Since the melting point of zinc (Zn) is 500°C or less and the melting point of aluminum (Al) is lower than 700°C, if a steel sheet plated with zinc (Zn) or aluminum (Al) is heat-treated at high temperature as described above, the zinc (Zn) or aluminum (Al) may be partially melted and thus may not properly function as a plating material. In addition, the zinc (Zn) or aluminum (Al) may be fused to dies or forming machines to deteriorate the formability of the steel sheet.
  • the strength of a steel sheet is increased through such a high-temperature forming process, the elongation of the steel sheet is reduced to lower than 10% because 90% or more of the microstructure of the steel sheet is formed by martensite, and thus the steel sheet may not have sufficient crashworthiness. Therefore, the steel sheet may only be used to manufacture limited kinds of automotive components.
  • An aspect of the present disclosure may provide a steel sheet for warm press forming having high strength, good elongation, and thus improved crashworthiness after being warm pressed, and a member formed by warm-pressing the steel sheet.
  • An aspect of the present disclosure may also provide a plated steel sheet for warm press forming that can have good corrosion resistance even after a heat treatment such as a heat treatment of a warm press forming process, and a warm-pressed member.
  • a steel sheet for warm press forming may include, by weight%, C: 0.01% to 0.5%, Si: 3.0% or less (excluding 0%), Mn: 3% to 15%, P: 0.0001% to 0.1%, S: 0.0001% to 0.03%, Al: 3.0% or less (excluding 0%), N: 0.03% or less (excluding 0%), and the balance of Fe and inevitable impurities.
  • a method of manufacturing a steel sheet for warm press forming may include: heating a steel slab to a temperature within a temperature range of 1000°C to 1400°C, the steel slab including the above-mentioned composition of the steel sheet; forming a hot-rolled steel sheet by performing a hot rolling process on the steel slab and then a finish-rolling process on the steel slab at a temperature within a temperature range of Ar3 to 1000°C; and coiling the hot-rolled steel sheet at a temperature higher than Ms but equal to or lower than 800°C.
  • a warm-pressed member may include the above-mentioned composition of the steel sheet, wherein after a warm press forming process and a cooling process, the warm-pressed member may have a microstructure formed by: 3 volume% to 50 volume% of retained austenite; and at least one of ferrite, martensite, tempered martensite, and bainite as a remainder.
  • a method of manufacturing a member by warm press forming may include: performing a warm press forming process on a steel sheet including the above-mentioned composition of the steel sheet; and cooling the steel sheet, wherein the warm press forming process may include a heat treatment process including: heating the steel sheet to a temperature within a temperature range of Ac1 to Ac3 at a heating rate of 1°C/sec to 1000°C/sec; and maintaining the steel sheet at the temperature within the temperature range for 1 second to 10000 seconds.
  • the present disclosure relates a method of manufacturing an ultra-high-strength steel sheet that can be used for manufacturing structural members, reinforcement members, and shock-absorbing members of automobiles, and a member formed by warm-pressing the steel sheet.
  • a steel sheet having a ultra-high tensile strength of 1000 MPa or greater and good elongation after a heat treatment of a warm press forming process can be manufactured, and a heat-treatment member formed of the steel sheet can be provided. That is, according to the present disclosure, the application of a heat treatment type ultra-high-strength steel sheet can be extended to impact members.
  • the term “warm press forming” refers to forming a steel sheet to have a certain shape after heat-treating the steel sheet at a temperature equal to or lower than the austenite single phase region. That is, the term “warm press forming” is contrasted with the term “hot press forming” referring to forming a steel sheet into a certain shape after heat-treating the steel sheet at a temperature higher than the austenite single phase region.
  • the warm press forming includes a heat treatment process and a forming process and may be performed in the order of a heat treatment process and a forming process or the order of a forming process and a heat treatment process.
  • the inventors have found that when a member (component) is manufactured through a warm press forming process, the elongation of the member can be improved by properly adjusting the composition, microstructure, and heat treatment temperature of the member, and have invented the present invention based on the knowledge.
  • a steel sheet is heated to a temperature higher than the austenite single phase region so as to form martensite as a main microstructure phase of the steel sheet while suppressing the formation of ferrite, and then the steel sheet is formed to have a desired shape and rapidly cooled to a temperature lower than a Mf (martensite finishing point), so as to form a high-strength member having martensite as a main microstructure phase.
  • a Mf martensite finishing point
  • a steel sheet is heat-treated at a temperature lower than the austenite single phase region and is subjected to a forming process and a cooling process.
  • the warm press forming method of the present disclosure is proposed based on the knowledge that if a steel sheet is heated and maintained at a temperature lower than the austenite single phase region, elements such as C and Mn are concentrated in austenite formed in grains or grain boundaries, and thus the austenite can be stable at room temperature after the forming process and the cooling process.
  • Carbon (C) is an element for increasing the strength of the steel sheet, and the concentration of carbon (C) is properly adjusted to ensure the formation of retained austenite in the steel sheet. If the concentration of carbon (C) is less than 0.01%, the strength of the steel sheet may not be sufficient, and it may be difficult to maintain 3 volume% or more of retained austenite in the steel sheet during a warm press forming process. Therefore, 0.01% or more (preferably, 0.05% or more) of carbon (C) is included in the steel sheet. If the concentration of carbon (C) is greater than 0.5%, it may be difficult to cold-roll the steel sheet after the steel sheet is hot-rolled, and due to excessively high strength of the steel sheet, it may be difficult to obtain a desired elongation of the steel sheet. In addition, the weldability of the steel sheet may be lowered. Therefore, 0.5% or less (preferably, 0.4% or less, and more preferably, 0.3% or less) of carbon (C) is included in the steel sheet.
  • Silicon (Si) functions as a deoxidizer during a steel making process and suppresses the formation of carbides during a heat treatment process. If the concentration of silicon (Si) is greater than 3%, it may be difficult to plate the steel sheet. Thus, the concentration of silicon (Si) in the steel sheet may be 3% or less (preferably, 2.5% or less, and more preferably, 2% or less).
  • Aluminum (Al) removes oxides during a steel making process, and thus a clean steel sheet may be obtained.
  • aluminum (Al) suppresses the formation of carbides during a heat treatment process. If the concentration of aluminum (Al) is high, a two-phase region is extended, and thus the temperature range of the annealing process is widened. However, if the concentration of aluminum (Al) is greater than 3%, it may be difficult to plate the steel sheet, and the manufacturing cost of the steel sheet may be increased. Therefore, the concentration of aluminum (Al) in the steel sheet is set to be 3% or less (preferably, 2.5% or less, and more preferably, 2.0% or less.
  • Manganese (Mn) has an important function in the embodiment of the present disclosure.
  • Manganese (Mn) functions as a solid solution strengthening element and lowers the Ms (martensite start point) temperature for improving the stability of austenite at room temperature.
  • manganese (Mn) lowers the Ac1 and Ac3 temperatures, manganese (Mn) has an important function in a warm press forming process of the embodiment of the present disclosure.
  • manganese (Mn) diffuses into austenite during a heat treatment performed at a temperature within the range of Ac1 to Ac3 in a warm press forming process, and thus the stability of the austenite may be further improved at room temperature.
  • the concentration of manganese (Mn) in the steel sheet may be 3% or greater (preferably, 4% or greater, and more preferably, 5% or greater).
  • the concentration of manganese (Mn) in the steel sheet may be 15% or less (preferably, 13% or less, and more preferably 11% or less).
  • phosphorus (P) suppresses the formation of carbides when martensite is heat-treated.
  • the upper limit of the concentration of phosphorus (P) may be set to be 0.1%.
  • the lower limit of the concentration of phosphorus (P) may be set to be 0.0001%.
  • Sulfur (S) exists in the steel sheet as an impurity lowering the ductility and weldability of the steel sheet. Such effects are not large if the concentration of sulfur (S) is 0.03% or less, the upper limit of the concentration of sulfur (S) is set to be 0.03%. Since manufacturing costs increase to maintain the concentration of sulfur (S) at a level lower than 0.0001%, the lower limit of the concentration of sulfur (S) is set to be 0.0001%.
  • Nitrogen (N) exists in the steel sheet as an impurity.
  • nitrogen (N) forms nitrides which improve resistance to delayed fractures caused by hydrogen. If the concentration of nitrogen (N) is greater than 0.03%, a steel slab may become sensitive to cracks during a continuous casting process, and pores may be easily formed in the steel slab. Therefore, the upper limit of the concentration of nitrogen (N) is set to be 0.03% (preferably 0.02%, and more preferably, 0.01%).
  • the steel sheet of the embodiment of the present disclosure may further include: at least one of chromium (Cr), molybdenum (Mo), and tungsten (W) as an element improving hardenability; at least one of titanium (Ti), niobium (Nb), zirconium (Zr), and vanadium (V) as a precipitation strengthening element; at least one of copper (Cu) and nickel (Ni) as an element improving strength; boron (B) as an element improving grain boundary strengthening and hardenability; and at least one of antimony (Sb) and tin (Sn) as an element improving plating characteristics.
  • Chromium (Cr), molybdenum (Mo), and tungsten (W) improve hardenability and precipitation strengthening, and thus increase the strength of the steel sheet. If the concentration of chromium (Cr), molybdenum (Mo), or tungsten (W) is lower than 0.001%, sufficient hardenability and precipitation strengthening may not be obtained, and if the concentration of chromium (Cr), molybdenum (Mo), or tungsten (W) is greater than 2.0%, such effects may not be further obtained although manufacturing costs increase. Therefore, the upper limit of the concentration of chromium (Cr), molybdenum (Mo), or tungsten (W) is set to be 2.0%.
  • Titanium (Ti), niobium (Nb), and vanadium (V) are effective in improving the strength, grain refinement, and heat-treatment characteristics of the steel sheet. If the concentration of titanium (Ti), niobium (Nb), or vanadium (V) is lower than 0.001%, such effects may not be obtained, and if the concentration of titanium (Ti), niobium (Nb), or vanadium (V) is greater than 0.4%, manufacturing costs increase. Therefore, the concentration of titanium (Ti), niobium (Nb), or vanadium (V) may be set to be within 0.001% to 0.4%.
  • Copper (Cu) forms a fine Cu precipitate to improve the strength of the steel sheet. If the concentration of copper (Cu) is lower than 0.005%, the strength of the steel sheet may not be sufficiently increased, and if the concentration of copper (Cu) is greater than 2.0%, the processability of the steel sheet may be deteriorated. Therefore, it may be preferable that the concentration of copper (Cu) be set to be within 0.005% to 2.0%.
  • Nickel (Ni) improves the strength and heat-treatment characteristics of the steel sheet. However, if the concentration of nickel (Ni) is less than 0.005%, such effects may not be obtained, and if the concentration of nickel (Ni) is greater than 2.0%, manufacturing costs increase. Therefore, the concentration of nickel (Ni) may be set to be within 0.005% to 2.0%.
  • Boron (B) improves the hardenability of the steel sheet, and although a small amount of boron (B) is added to the steel sheet, the strength of the steel sheet may be markedly increased through a heat treatment.
  • boron (B) enhances grain boundaries and thus suppresses grain boundary embrittlement of the steel sheet having a large amount of manganese (Mn).
  • Mn manganese
  • the concentration of boron (B) in the steel sheet is less than 0.0001%, such effects may not be obtained.
  • the concentration of boron (B) is greater than 0.01%, such effects may not be further obtained, and the high-temperature processability of the steel sheet may be deteriorated. Therefore, the upper limit of the concentration of boron (B) may be set to be 0.01%.
  • Antimony (Sb) and tin (Sn) may be concentrated on the surface and grain boundaries of the steel sheet.
  • antimony (Sb) and tin (Sn) may prevent the manganese (Mn) included in the steel sheet in a high concentration from concentrating on the surface of the steel sheet and generating oxides during an annealing process of the steel sheet. Therefore, the steel sheet may be easily plated in a plating process.
  • concentration of antimony (Sb) or tin (Sn) in the steel sheet is less than 0.0001%, such effects may not be obtained.
  • the concentration of antimony (Sb) or tin (Sn) is greater than 1.0%, the high-temperature processability of the steel sheet may be deteriorated. Therefore, the upper limit of the concentration of the antimony (Sb) or tin (Sn) may be set to be 1.0%.
  • the steel sheet may include iron (Fe) and inevitable impurities as the remainder of constituents.
  • the steel sheet may further include other elements as well as the above-mentioned elements.
  • the steel sheet for warm press forming may be one of a hot-rolled steel sheet, a cold-rolled steel sheet, and a plated steel sheet.
  • the steel sheet of the present disclosure is not limited but may be any kind of steel sheet.
  • the plated steel sheet may be a Zn-based plated steel sheet or an Al-based plated steel sheet.
  • the steel sheet for warm press forming may have a main microstructure formed by 30 volume% or more of martensite, bainite, or a combination thereof. If the steel sheet has a main microstructure formed by less than 30 volume% of martensite, bainite, or a combination thereof, austenite may not be sufficiently formed in the steel sheet during a heat treatment of a warm press forming process, and the strength of the steel sheet may not be sufficiently high.
  • a steel slab including the above-described composition is heated to 1000°C to 1400°C, and is hot-rolled. If the heating temperature of the steel slab is lower than 1000°C, the microstructure of the steel slab formed after a continuous casting process may not be sufficiently homogenized, and if the heating temperature of the steel slab is higher than 1400°C, manufacturing costs may be increased.
  • the steel slab is subjected to a finish hot rolling process at a temperature within a temperature range of Ar3 to 1000°C to form a hot-rolled steel sheet.
  • a finish hot rolling process at a temperature within a temperature range of Ar3 to 1000°C to form a hot-rolled steel sheet.
  • the process temperature of the finish hot rolling process is lower than Ar3, two-phase rolling may occur to cause a mixed grain size distribution and lower processability.
  • the process temperature of the finish hot rolling process is greater than 1000°C, the grains of the steel slab may be coarsened, and a large amount of oxide scale may be generated.
  • the hot-rolled steel sheet is coiled at a temperature higher than Ms but equal to or lower than 800°C. If the hot-rolled steel sheet is coiled at a temperature equal to or lower than Ms, a large load may be applied to a hot-rolling coiler, and if the hot-rolled steel sheet is coiled at a temperature higher than 800°C, the thickness of an oxide layer of the hot-rolled steel sheet may be increased.
  • the hot-rolled steel sheet manufactured as described above may be used in a warm press forming process or may be additionally treated through a pickling process. Furthermore, after the hot-rolled steel sheet is pickled, the steel sheet may be plated with a Zn-based material or an Al-based material, and then the plated steel sheet may be used in a warm press forming process.
  • the hot-rolled steel sheet may be subjected to a pickling process and a cold rolling process to produce a cold-rolled steel sheet.
  • the pickling process may be performed according to a general method, and the reduction ratio of the cold rolling process is not limited.
  • the reduction ratio of the cold rolling process may be selected from general values used in the related art.
  • the hot-rolled steel sheet may be batch-annealed before the hot-rolled steel sheet is cold-rolled. Since the hot-rolled steel sheet manufactured as described above has a high degree of strength, the hot-rolled steel sheet may be batch-annealed to reduce the strength thereof and thus to reduce the load of the cold rolling process. That is, the cold rolling processability of the hot-rolled steel sheet may be improved. It may be preferable that the batch annealing be performed within the temperature range of Ac1 to Ac3. If the process temperature of the batch annealing is lower than Ac1, the strength of the hot-rolled steel sheet may not be sufficiently lowered.
  • the process temperature of the batch annealing is higher than Ac3
  • manufacturing costs may be increased, and a large amount of martensite may be formed in the hot-rolled steel sheet when the hot-rolled steel sheet is slowly cooled after the batch annealing.
  • the strength of the hot-rolled steel sheet may not be sufficiently lowered.
  • the hot-rolled steel sheet may be cold-rolled to produce a cold-rolled steel sheet.
  • the cold-rolled steel sheet may be treated through a continuous annealing process to produce an annealed steel sheet.
  • Process conditions of the continuous annealing process are not limited.
  • the continuous annealing process may be performed at a temperature within the temperature range of 700°C to 900°C. If the process temperature of the continuous annealing process is lower than 700°C, the steel sheet may not be sufficiently recrystallized. If the process temperature of the continuous annealing process is greater than 900°C, manufacturing costs may be increased, and processability may be lowered.
  • the annealed steel sheet may be plated through a Zn-Ni electroplating process to produce a Zn-Ni electroplated steel sheet.
  • the cold-rolled steel sheet may be plated with a Zn-based material or an Al-based material so as to improve the corrosion resistance and thermal resistance of the cold-rolled steel sheet.
  • Heat-treatment and Zn-plating conditions for the cold-rolled steel sheet are not limited.
  • the cold-rolled steel sheet may be hot-dip galvanized to produce a product known as a GI (galvanized iron) sheet or may be hot-dip galvannealed to produce a product known as a GA (galvannealed) steel sheet.
  • heat-treatment and Al-plating conditions for the cold-rolled steel sheet are not limited. For example, conditions generally used in the related art may be used.
  • the warm-pressed member includes the above-described composition of the steel sheet for warm press forming.
  • the microstructure of the warm-pressed member may include: 3 volume% to 50 volume% of retained austenite; and at least one of ferrite, martensite, tempered martensite, and bainite as a remainder.
  • the warm-pressed member may not have an ultra high degree of strength and a high degree of elongation desired in the embodiment of the present disclosure.
  • the volume fraction of retained austenite is higher than 50%, it may be difficult to produce the warm-pressed member because large amounts of C and Mn have to be included in the warm-pressed member.
  • the microstructure of the warm press forming may include at least of ferrite, martensite, tempered martensite, and bainite.
  • Ferrite may be formed in the warm-pressed member during a heat treatment of a warm press forming process (described later) or may be partially formed before the heat treatment.
  • the fraction of ferrite in the warm-pressed member may be 30% or less. If the fraction of ferrite is greater than 30%, the warm-pressed member may not have sufficient strength.
  • Martensite may be formed in the warm-pressed member during a heat treatment of a warm press forming process or may be partially formed before the heat treatment. At this time, carbides may be partially formed in the martensite.
  • the fraction of martensite in the warm-pressed member may be within the range of 50% to 95%. If the fraction of martensite is lower than 50%, the warm-pressed member may not have sufficient strength, and if the fraction of martensite is greater than 95%, retained austenite may not be sufficient included in the warm-pressed member.
  • a warm press forming method is used to form a member having a high degree of elongation.
  • the inventors have researched into a method of manufacturing a member having desired properties through a warm press forming process based on the knowledge that a desired degree of thermal resistance of a plating layer can be guaranteed if a heat treatment is performed at a temperature lower than Ac3.
  • a steel sheet having the above-mentioned composition is heat-treated at a temperature lower than Ac3, the steel sheet can have retained austenite.
  • a steel sheet including manganese (Mn) is properly subjected to a hot rolling process, and/or a cold rolling process, and an annealing process, the steel sheet can have a microstructure of 5 ⁇ m or less before a heat treatment.
  • a steel sheet includes sufficient amounts of martensite and/or bainite before a heat treatment, nanosized lath grains of the martensite and/or bainite are converted into austenite or manganese (Mn) and carbon (C) stabilize the austenite during a heat treatment of a warm press forming process to form a stable austenite structure even at room temperature.
  • the main microstructure of a steel sheet for warm press forming be formed by 30% or more of martensite, bainite, or a combination thereof. If the fraction of martensite, bainite, or a combination thereof in a steel sheet is low, a sufficient amount of austenite may not be formed in the steel sheet during a heat treatment of a warm press forming process, and the steel sheet may not have a desired degree of strength.
  • a member manufactured based on the above-mentioned knowledge has 3 volume% or more of retained austenite and thus good elongation.
  • a steel sheet manufactured as described above is subjected to a warm press forming process.
  • a forming process may be performed after or before a heat treatment.
  • the heat treatment of the warm press forming process may be performed by heating the steel sheet to a temperature within a temperature range of Ac1 to Ac3 with a heating rate of 1°C/sec to 1000°C/sec. Then, the steel sheet is maintained at the temperature within the temperature range for 1 second to 10000 seconds.
  • the lower limit of the heating rate may be set to be 1°C/sec.
  • the heating rate is greater than 1000°C/sec, the effect of the heat treatment is not increased but an excessive amount of heating equipment may be required. Therefore, the upper limit of the heating rate may be set to be 1000°C/sec.
  • the temperature range of Ac1 to Ac3 is important to guarantee the formation of retained austenite. If the heat treatment is performed at a temperature lower than Ac1, austenite may not be formed in grains or grain boundaries of martensite or bainite, and thus retained austenite may not be obtained. Therefore, the heat treatment may be performed at a temperature equal to or greater than Ac1 (preferably, Ac1 + 10°C and more preferably, Ac1 + 20°C). If the heat treatment is performed at a temperature greater than Ac3, carbon (C) and manganese (Mn) may not be sufficiently concentrated on austenite, and thus the stability of retained austenite may be low.
  • Ac1 preferably, Ac1 + 10°C and more preferably, Ac1 + 20°C
  • the upper limit of the temperature range of the heat treatment may be set to be Ac3 (preferably, Ac3 - 10°C, and more preferably, Ac3 - 20°C).
  • the upper limit of the period of time may be set to 10000 seconds.
  • the cooling rate is not limited. For example, it may be preferable that the cooling rate range from 1°C/sec to 1000°C/sec. If the cooling rate is lower than 1°C/sec productivity may be lowered, and additional equipment may be used to control the cooling rate. Therefore, manufacturing costs may be increased. If the cooling rate is greater than 1000°C/sec, additional equipment may be used to rapidly cool the steel sheet, and the microstructure of a warm-pressed member formed of the steel sheet may not be appropriate.
  • Steel slabs having compositions as shown in Table 1 were produced by a vacuum melting process, and the steel slabs were reheated in a heating furnace at 1200°C for 1 hour and were hot-rolled.
  • the hot rolling of the steel slabs were finished at 900°C, and the hot-rolled steel slabs (hot-rolled steel sheets) were cooled at 680°C in a furnace.
  • a warm press forming process was performed on the hot-rolled steel sheets under simulated conditions.
  • the hot-rolled steel sheets were pickled and then a cold rolling process was performed on the pickled hot-rolled steel sheets with a cold rolling reduction ratio of 50% so as to produce cold-rolled steel sheets.
  • steel sheets M and N were treated through a batch annealing process after the cold rolling process.
  • the steel sheets M and N were heated at a heating rate of 30°C/h and maintained at 600°C for 10 hours. Thereafter, the steel sheets M and N were cooled at a cooling rate of 30°C/h.
  • a continuous annealing process was performed on the other steel sheets instead of the batch annealing process. The continuous annealing process was performed at 780°C.
  • the picked hot-rolled steel sheets and the cold-rolled steel sheets were plated through a zinc (Zn) or aluminum (Al) plating process so as to produce plated steel sheets.
  • the steel sheets were annealed at 780°C and then were dipped in a zinc (Zn) or Aluminum (Al) plating bath.
  • the pickled hot-rolled steel sheets, the cold-rolled steel sheets, and the plated steel sheets were treated under simulated heat treatment conditions of the warm press forming process.
  • the heat treatment conditions are shown in Table 2 below.
  • the heating rate of the heat treatment was 3°C/sec.
  • Tension test specimens of the steel sheets processed through the warm press forming process under simulated conditions were prepared according to JIS Z 2201 #5, and mechanical properties of the tension test specimens were measured.
  • the fraction of retained austenite in each of the steel sheets was measured by an X-ray diffraction test.
  • the fraction of retained austenite were calculated by a 5 peak method expressed in Equation 1 using the areas of austenite (200), (220), and (311) peaks and the areas of ferrite (200) and (211) peaks obtained in the X-ray diffraction test.
  • V ⁇ refers to an austenite fraction
  • I ⁇ refers to a ferrite peak area
  • I ⁇ refers to an austenite peak area.
  • I r KRD 1 / 2.19 I ⁇ 200 / I r 200 + 1 + 1 / 1.35 I ⁇ 220 / I r 200 + 1 + 1 / 1.5 I ⁇ 200 / I r 311 + 1 + 1 / 1.12 I ⁇ 211 / I r 200 + 1 + 1 / 0.7 I ⁇ 211 / I r 220 + 1 + 1 / 0.78 I ⁇ 211 / I r 311 + 1 6
  • Products produced using steel sheets A to P having compositions according to the present disclosure have retained austenite fractions of 3% or greater and good elongation.
  • products produced using comparative steel sheets Q and R have retained austenite fractions of less than 3% regardless of heat treatment conditions and have poor elongation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
EP12847953.2A 2011-11-07 2012-11-05 Tôle d'acier pour un formage par pressage à chaud, élément de formage par pressage à chaud et procédé de fabrication associé Withdrawn EP2778247A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110115331A KR101382981B1 (ko) 2011-11-07 2011-11-07 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
PCT/KR2012/009244 WO2013069937A1 (fr) 2011-11-07 2012-11-05 Tôle d'acier pour un formage par pressage à chaud, élément de formage par pressage à chaud et procédé de fabrication associé

Publications (2)

Publication Number Publication Date
EP2778247A1 true EP2778247A1 (fr) 2014-09-17
EP2778247A4 EP2778247A4 (fr) 2015-08-12

Family

ID=48290247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12847953.2A Withdrawn EP2778247A4 (fr) 2011-11-07 2012-11-05 Tôle d'acier pour un formage par pressage à chaud, élément de formage par pressage à chaud et procédé de fabrication associé

Country Status (6)

Country Link
US (2) US20140308156A1 (fr)
EP (1) EP2778247A4 (fr)
JP (1) JP6043801B2 (fr)
KR (1) KR101382981B1 (fr)
CN (1) CN103917681B (fr)
WO (1) WO2013069937A1 (fr)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044765A1 (fr) * 2014-09-19 2016-03-24 Scoperta, Inc. Projection thermique lisible
WO2017013193A1 (fr) * 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Acier léger deformable de construction présentant des propriétés mécaniques améliorées et procédé de fabrication de produit semi-fini à partir de cet acier
EP3181715A4 (fr) * 2014-10-24 2017-07-05 JFE Steel Corporation Élément de haute résistance formé à chaud à la presse et son procédé de fabrication
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
EP3093359A4 (fr) * 2014-01-06 2017-08-23 Nippon Steel & Sumitomo Metal Corporation Élément formé à chaud et son procédé de fabrication
WO2017157770A1 (fr) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Procédé de fabrication d'une pièce en acier façonnée à chaud et pièce en acier façonnée à chaud
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
WO2018050634A1 (fr) * 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Procédé pour la fabrication d'une pièce façonnée à partir d'un produit plat en acier à teneur moyenne en manganèse et pièce correspondante
EP3372703A4 (fr) * 2015-11-02 2018-09-12 Posco Plaque d'acier à ultra haute résistance présentant une formabilité et aptitude à l'expansion de trou excellentes, et son procédé de fabrication
US10100388B2 (en) 2011-12-30 2018-10-16 Scoperta, Inc. Coating compositions
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
EP3395979A4 (fr) * 2015-12-24 2018-10-31 Posco Tôle d'acier à base d'austénite plaquée d'aluminium à l'état fondu ayant d'excellentes propriétés de plaquage et de soudabilité et son procédé de fabrication
EP3395978A4 (fr) * 2015-12-23 2019-01-02 Posco Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
WO2019020169A1 (fr) 2017-07-25 2019-01-31 Thyssenkrupp Steel Europe Ag Pièce en tôle fabriquée par formage à chaud d'un produit plat en acier et procédé pour sa fabrication
EP3438316A4 (fr) * 2016-03-29 2019-03-06 JFE Steel Corporation Tôle d'acier pour pressage à chaud et son procédé de production, et élément de presse à chaud et son procédé de production
EP3473742A4 (fr) * 2016-06-21 2019-05-15 Posco Tôle d'acier à ductilité élevée et très haute résistance ayant une excellente limite élastique et procédé pour la fabriquer
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
RU2696789C1 (ru) * 2018-12-17 2019-08-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами
DE102018102974A1 (de) 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus manganhaltigem Stahl und ein warmumgeformtes Stahlbauteil
WO2019155014A1 (fr) * 2018-02-08 2019-08-15 Tata Steel Ijmuiden B.V. Procédé de façonnage d'un article à partir d'une ébauche d'acier revêtue de zinc ou d'alliage de zinc
EP3561118A4 (fr) * 2016-12-20 2019-10-30 Posco Tôle d'acier de résistance élevée ayant d'excellentes caractéristiques d'allongement à haute température, élément pressé à chaud, et procédés de fabrication pour ladite tôle et ledit élément
US10465267B2 (en) 2014-07-24 2019-11-05 Scoperta, Inc. Hardfacing alloys resistant to hot tearing and cracking
US10465269B2 (en) 2014-07-24 2019-11-05 Scoperta, Inc. Impact resistant hardfacing and alloys and methods for making the same
EP3536818A4 (fr) * 2016-11-07 2019-11-20 Posco Tôle d'acier à ultra-haute résistance ayant un excellent rapport d'élasticité et son procédé de fabrication
RU2709560C2 (ru) * 2015-08-05 2019-12-18 Зальцгиттер Флахшталь Гмбх Высокопрочная марганцевая сталь, содержащая алюминий, способ производства листового стального продукта из указанной стали и листовой стальной продукт, полученный в соответствии с этим способом
US10774405B2 (en) 2014-01-06 2020-09-15 Nippon Steel Corporation Steel and method of manufacturing the same
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
US10858718B2 (en) 2016-03-29 2020-12-08 Jfe Steel Corporation Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
WO2021084377A1 (fr) * 2019-10-30 2021-05-06 Arcelormittal Procédé d'emboutissage à chaud
WO2021084302A1 (fr) * 2019-10-30 2021-05-06 Arcelormittal Procédé d'emboutissage à chaud
DE102020204356A1 (de) 2020-04-03 2021-10-07 Thyssenkrupp Steel Europe Ag Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung
US11248275B2 (en) 2016-01-29 2022-02-15 Jfe Steel Corporation Warm-workable high-strength steel sheet and method for manufacturing the same
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962543B2 (ja) * 2012-07-23 2016-08-03 Jfeスチール株式会社 高強度鋼板の製造方法
JP6023563B2 (ja) * 2012-11-19 2016-11-09 アイシン精機株式会社 ロール成形方法およびロール成形装置
EP3255170B1 (fr) 2013-08-14 2021-03-31 Posco Tôle d'acier avec ultra-haute résistance et son procédé de fabrication
KR101518599B1 (ko) 2013-10-23 2015-05-07 주식회사 포스코 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
KR101518606B1 (ko) * 2013-10-31 2015-05-07 주식회사 포스코 표면품질이 우수한 고강도 고연신 용융아연도금강판 및 이의 제조방법
WO2016001703A1 (fr) * 2014-07-03 2016-01-07 Arcelormittal Procédé de fabrication d'une tôle d'acier à haute résistance et tôle obtenue par le procédé
KR101639919B1 (ko) * 2014-12-24 2016-07-15 주식회사 포스코 항복강도 및 성형성이 우수한 열연강판 및 그 제조방법
KR101677351B1 (ko) * 2014-12-26 2016-11-18 주식회사 포스코 재질 편차가 적고, 조관성 및 내식성이 우수한 열간 프레스 성형용 열연강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
CN104846274B (zh) * 2015-02-16 2017-07-28 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件
CN104726762B (zh) * 2015-02-16 2017-04-12 大连理工大学 一种无硼中锰钢温热成形方法
CN105986175B (zh) * 2015-03-02 2018-01-16 中国钢铁股份有限公司 高强度高延展性钢材的制造方法
BR112017024231A2 (pt) 2015-05-21 2018-07-17 Ak Steel Properties Inc aços avançados de alta resistência de terceira geração de alto teor de manganês
JP6222198B2 (ja) * 2015-10-19 2017-11-01 Jfeスチール株式会社 ホットプレス部材およびその製造方法
JP6168118B2 (ja) * 2015-10-19 2017-07-26 Jfeスチール株式会社 ホットプレス部材およびその製造方法
KR101677398B1 (ko) 2015-11-30 2016-11-18 주식회사 포스코 열간성형용 강재 및 이를 이용한 부재 제조방법
SE539519C2 (en) 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
KR101696121B1 (ko) 2015-12-23 2017-01-13 주식회사 포스코 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
KR101746996B1 (ko) * 2015-12-24 2017-06-28 주식회사 포스코 도금 밀착성이 우수한 고망간 용융 알루미늄계 도금강판
US11414720B2 (en) 2016-01-29 2022-08-16 Jfe Steel Corporation High-strength steel sheet for warm working and method for manufacturing the same
JP6443375B2 (ja) * 2016-03-29 2018-12-26 Jfeスチール株式会社 ホットプレス部材およびその製造方法
JP6508176B2 (ja) * 2016-03-29 2019-05-08 Jfeスチール株式会社 ホットプレス部材およびその製造方法
KR20170119876A (ko) * 2016-04-20 2017-10-30 현대제철 주식회사 냉연 강판 및 이의 제조방법
KR101819343B1 (ko) * 2016-07-01 2018-01-17 주식회사 포스코 신선가공성이 우수한 선재 및 그 제조방법
CN106244918B (zh) 2016-07-27 2018-04-27 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法
US20180119245A1 (en) * 2016-10-03 2018-05-03 Ak Steel Properties, Inc. High elongation press hardened steel and manufacture of the same
KR101839235B1 (ko) 2016-10-24 2018-03-16 주식회사 포스코 구멍확장성 및 항복비가 우수한 초고강도 강판 및 그 제조방법
DE102017124724B4 (de) 2016-10-25 2022-01-05 Koki Technik Transmission Systems Gmbh Verfahren zur Herstellung einer Schaltgabel
KR101819380B1 (ko) 2016-10-25 2018-01-17 주식회사 포스코 저온인성이 우수한 고강도 고망간강 및 그 제조방법
CN106591717B (zh) * 2016-12-01 2019-02-22 首钢集团有限公司 一种改善中高锰钢可镀性的方法
KR101858851B1 (ko) 2016-12-16 2018-05-17 주식회사 포스코 강도 및 연성이 우수한 선재 및 그 제조방법
KR102030815B1 (ko) 2016-12-28 2019-10-11 연세대학교 산학협력단 온간성형용 고강도 중망간강 성형부재와 그 제조방법
WO2018124654A1 (fr) * 2016-12-28 2018-07-05 연세대학교 산학협력단 Acier au manganèse moyen à haute résistance pour estampage à chaud et son procédé de fabrication
KR101985777B1 (ko) * 2016-12-28 2019-06-04 연세대학교 산학협력단 초소성을 갖는 중망간강과 그 제조 방법
EP3589770B1 (fr) 2017-03-01 2022-04-06 Ak Steel Properties, Inc. Acier trempé à la presse à résistance extrêmement élevée
EP3625835B1 (fr) 2017-05-18 2023-12-20 ThyssenKrupp Steel Europe AG Boîtier d'accumulateur
KR101940919B1 (ko) * 2017-08-08 2019-01-22 주식회사 포스코 우수한 강도와 연신율을 갖는 열연강판 및 제조방법
GB201713741D0 (en) * 2017-08-25 2017-10-11 Imp Innovations Ltd Fast warm stamping method for metal sheets
CN107815612A (zh) * 2017-11-02 2018-03-20 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢材、热冲压成形工艺及成形构件
KR102020411B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 가공성이 우수한 고강도 강판 및 이의 제조방법
DE102018104829A1 (de) * 2018-03-02 2019-09-05 Voestalpine Automotive Components Linz Gmbh Verfahren zur Schweißvorbehandlung beschichteter Stahlbleche
JP7230415B2 (ja) * 2018-07-20 2023-03-01 日本製鉄株式会社 鋼材およびその製造方法
JP7277711B2 (ja) * 2019-02-14 2023-05-19 日本製鉄株式会社 耐摩耗厚鋼板
KR102279900B1 (ko) * 2019-09-03 2021-07-22 주식회사 포스코 열간 성형용 강판, 열간 성형 부재 및 그 제조방법
JP7253479B2 (ja) * 2019-10-15 2023-04-06 株式会社神戸製鋼所 高強度鋼板
CN114309069B (zh) * 2022-01-07 2023-12-01 太原科技大学 中锰钢的亚温成形方法及其制备的中锰钢和应用

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020617B2 (ja) * 1990-12-28 2000-03-15 川崎製鉄株式会社 曲げ加工性、衝撃特性の良好な超強度冷延鋼板及びその製造方法
US7078512B2 (en) * 1998-05-01 2006-07-18 Schering-Plough Animal Health Corporation Nucleic acid encoding feline CD86
FR2780984B1 (fr) 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
JP2002143935A (ja) * 2000-11-13 2002-05-21 Sumitomo Metal Ind Ltd 金属板の温間プレス方法
WO2002055751A1 (fr) * 2000-12-29 2002-07-18 Nippon Steel Corporation Plaque d'acier a placage en zinc moule a haute resistance possedant une excellente adhesion en depot et parfaitement adaptee au formage a la presse et procede de fabrication associe
JP3857939B2 (ja) * 2001-08-20 2006-12-13 株式会社神戸製鋼所 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法
EP1439240B2 (fr) * 2001-10-23 2018-10-03 Nippon Steel & Sumitomo Metal Corporation Procede de travail a la presse à chaud pour former produit en acier plaque
TW200604352A (en) * 2004-03-31 2006-02-01 Jfe Steel Corp High-rigidity high-strength thin steel sheet and method for producing same
KR100711445B1 (ko) * 2005-12-19 2007-04-24 주식회사 포스코 도금밀착성 및 충격특성이 우수한 열간성형 가공용 합금화용융아연도금강판의 제조방법, 이 강판을 이용한열간성형부품의 제조방법
CN101316942A (zh) * 2005-12-01 2008-12-03 Posco公司 用于热压成形的具有优良的热处理和冲击性质的钢板,由该钢板制造的热压部件及其制造方法
WO2007064172A1 (fr) * 2005-12-01 2007-06-07 Posco Tole d'acier pour formage a la presse a chaud qui presente d'excellentes proprietes de traitement a chaud et de resilience, elements presses a chaud faits de cette tole et procede de fabrication de ceux-ci
KR100711358B1 (ko) * 2005-12-09 2007-04-27 주식회사 포스코 성형성, 소부경화성 및 도금특성이 우수한 고강도 냉연강판및 용융아연도금강판, 그리고 이들의 제조방법
JP5042232B2 (ja) * 2005-12-09 2012-10-03 ポスコ 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
JP5008896B2 (ja) * 2006-05-17 2012-08-22 日産自動車株式会社 温間プレス成形高強度部材及びその製造方法
US8177924B2 (en) * 2006-06-01 2012-05-15 Honda Motor Co., Ltd. High-strength steel sheet and process for producing the same
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5151246B2 (ja) * 2007-05-24 2013-02-27 Jfeスチール株式会社 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP5391542B2 (ja) * 2007-10-10 2014-01-15 Jfeスチール株式会社 変形性能に優れた引張強度が750MPaを超える高強度鋼およびその製造方法
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR101008117B1 (ko) * 2008-05-19 2011-01-13 주식회사 포스코 표면특성이 우수한 고가공용 고강도 박강판 및용융아연도금강판과 그 제조방법
KR101027250B1 (ko) * 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
KR101060782B1 (ko) * 2009-06-22 2011-08-30 주식회사 포스코 내충돌특성이 우수한 열간성형 가공용 강판 및 그 제조방법과 고강도 자동차용 구조부재 및 그 제조방법
KR101143151B1 (ko) * 2009-07-30 2012-05-08 주식회사 포스코 연신율이 우수한 고강도 박강판 및 그 제조방법
KR20110062899A (ko) * 2009-12-04 2011-06-10 주식회사 포스코 냉간압연성 및 도금성이 우수한 열간성형 가공용 강판 및 그 제조방법과 고강도 자동차용 구조부재 및 그 제조방법
JP5895437B2 (ja) * 2010-10-22 2016-03-30 Jfeスチール株式会社 成形性および強度上昇能に優れた温間成形用薄鋼板およびそれを用いた温間成形方法

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085102B2 (en) 2011-12-30 2021-08-10 Oerlikon Metco (Us) Inc. Coating compositions
US10100388B2 (en) 2011-12-30 2018-10-16 Scoperta, Inc. Coating compositions
US9738959B2 (en) 2012-10-11 2017-08-22 Scoperta, Inc. Non-magnetic metal alloy compositions and applications
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US10774405B2 (en) 2014-01-06 2020-09-15 Nippon Steel Corporation Steel and method of manufacturing the same
EP3093359A4 (fr) * 2014-01-06 2017-08-23 Nippon Steel & Sumitomo Metal Corporation Élément formé à chaud et son procédé de fabrication
US10266911B2 (en) 2014-01-06 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Hot-formed member and manufacturing method of same
US11111912B2 (en) 2014-06-09 2021-09-07 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US11130205B2 (en) 2014-06-09 2021-09-28 Oerlikon Metco (Us) Inc. Crack resistant hardfacing alloys
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
US10465269B2 (en) 2014-07-24 2019-11-05 Scoperta, Inc. Impact resistant hardfacing and alloys and methods for making the same
US10465267B2 (en) 2014-07-24 2019-11-05 Scoperta, Inc. Hardfacing alloys resistant to hot tearing and cracking
WO2016044765A1 (fr) * 2014-09-19 2016-03-24 Scoperta, Inc. Projection thermique lisible
US10392677B2 (en) 2014-10-24 2019-08-27 Jfe Steel Corporation High-strength hot-pressed part and method for manufacturing the same
EP3181715A4 (fr) * 2014-10-24 2017-07-05 JFE Steel Corporation Élément de haute résistance formé à chaud à la presse et son procédé de fabrication
US10329647B2 (en) 2014-12-16 2019-06-25 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
RU2691436C1 (ru) * 2015-07-22 2019-06-13 Зальцгиттер Флахшталь Гмбх Формуемая легковесная сталь с улучшенными механическими свойствами и способ производства полуфабрикатов из указанной стали
WO2017013193A1 (fr) * 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Acier léger deformable de construction présentant des propriétés mécaniques améliorées et procédé de fabrication de produit semi-fini à partir de cet acier
RU2709560C2 (ru) * 2015-08-05 2019-12-18 Зальцгиттер Флахшталь Гмбх Высокопрочная марганцевая сталь, содержащая алюминий, способ производства листового стального продукта из указанной стали и листовой стальной продукт, полученный в соответствии с этим способом
US11253957B2 (en) 2015-09-04 2022-02-22 Oerlikon Metco (Us) Inc. Chromium free and low-chromium wear resistant alloys
US10105796B2 (en) 2015-09-04 2018-10-23 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
US10851444B2 (en) 2015-09-08 2020-12-01 Oerlikon Metco (Us) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
US11203795B2 (en) 2015-11-02 2021-12-21 Posco Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
EP3372703A4 (fr) * 2015-11-02 2018-09-12 Posco Plaque d'acier à ultra haute résistance présentant une formabilité et aptitude à l'expansion de trou excellentes, et son procédé de fabrication
US10954588B2 (en) 2015-11-10 2021-03-23 Oerlikon Metco (Us) Inc. Oxidation controlled twin wire arc spray materials
EP3395978A4 (fr) * 2015-12-23 2019-01-02 Posco Tôle d'acier à haute teneur en manganèse ayant une excellente propriété d'amortissement des vibrations et procédé de fabrication s'y rapportant
US11420419B2 (en) 2015-12-24 2022-08-23 Posco Austenite-based molten aluminum-plated steel sheet having excellent properties of plating and weldability
EP3395979A4 (fr) * 2015-12-24 2018-10-31 Posco Tôle d'acier à base d'austénite plaquée d'aluminium à l'état fondu ayant d'excellentes propriétés de plaquage et de soudabilité et son procédé de fabrication
US11248275B2 (en) 2016-01-29 2022-02-15 Jfe Steel Corporation Warm-workable high-strength steel sheet and method for manufacturing the same
WO2017157770A1 (fr) * 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Procédé de fabrication d'une pièce en acier façonnée à chaud et pièce en acier façonnée à chaud
US11279996B2 (en) 2016-03-22 2022-03-22 Oerlikon Metco (Us) Inc. Fully readable thermal spray coating
EP3438316A4 (fr) * 2016-03-29 2019-03-06 JFE Steel Corporation Tôle d'acier pour pressage à chaud et son procédé de production, et élément de presse à chaud et son procédé de production
US10858718B2 (en) 2016-03-29 2020-12-08 Jfe Steel Corporation Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
EP3564401A1 (fr) * 2016-03-29 2019-11-06 JFE Steel Corporation Pièce de formage par compression à chaud et son procédé de fabrication
US11293075B2 (en) 2016-03-29 2022-04-05 Jfe Steel Corporation Hot-press forming part and method of manufacturing same
US10752968B2 (en) 2016-06-21 2020-08-25 Posco Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
EP3473742A4 (fr) * 2016-06-21 2019-05-15 Posco Tôle d'acier à ductilité élevée et très haute résistance ayant une excellente limite élastique et procédé pour la fabriquer
US11214846B2 (en) 2016-09-16 2022-01-04 Salzgitter Flachstahl Gmbh Method for producing a shaped component from a medium-manganese flat steel product and such a component
WO2018050634A1 (fr) * 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Procédé pour la fabrication d'une pièce façonnée à partir d'un produit plat en acier à teneur moyenne en manganèse et pièce correspondante
EP3536818A4 (fr) * 2016-11-07 2019-11-20 Posco Tôle d'acier à ultra-haute résistance ayant un excellent rapport d'élasticité et son procédé de fabrication
US11680305B2 (en) 2016-12-20 2023-06-20 Posco Co., Ltd High strength steel sheet having excellent high-temperature elongation characteristic, warm-pressed member, and manufacturing methods for the same
EP3561118A4 (fr) * 2016-12-20 2019-10-30 Posco Tôle d'acier de résistance élevée ayant d'excellentes caractéristiques d'allongement à haute température, élément pressé à chaud, et procédés de fabrication pour ladite tôle et ledit élément
CN110944765B (zh) * 2017-07-25 2022-02-25 蒂森克虏伯钢铁欧洲股份公司 通过热成型扁钢产品生产的金属板构件及其生产方法
EP3658307B1 (fr) 2017-07-25 2021-09-29 ThyssenKrupp Steel Europe AG Pièce en tôle fabriquée par formage à chaud d'un produit plat en acier et procédé pour sa fabrication
CN110944765A (zh) * 2017-07-25 2020-03-31 蒂森克虏伯钢铁欧洲股份公司 通过热成型扁钢产品生产的金属板构件及其生产方法
WO2019020169A1 (fr) 2017-07-25 2019-01-31 Thyssenkrupp Steel Europe Ag Pièce en tôle fabriquée par formage à chaud d'un produit plat en acier et procédé pour sa fabrication
US11519044B2 (en) 2018-02-08 2022-12-06 Tata Steel Ijmuiden B.V. Method of shaping an article from a zinc or zinc alloy coated steel blank
WO2019155014A1 (fr) * 2018-02-08 2019-08-15 Tata Steel Ijmuiden B.V. Procédé de façonnage d'un article à partir d'une ébauche d'acier revêtue de zinc ou d'alliage de zinc
DE102018102974A1 (de) 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus manganhaltigem Stahl und ein warmumgeformtes Stahlbauteil
WO2019154753A1 (fr) 2018-02-09 2019-08-15 Salzgitter Flachstahl Gmbh Procédé de fabrication d'un élément structural par formage à chaud d'un produit primaire en acier manganésifère et élément structural formé à chaud
US11939646B2 (en) 2018-10-26 2024-03-26 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
RU2696789C1 (ru) * 2018-12-17 2019-08-06 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ получения листов высокомарганцевой стали с улучшенными механическими свойствами
WO2021084376A1 (fr) * 2019-10-30 2021-05-06 Arcelormittal Procédé de durcissement à la presse
WO2021084377A1 (fr) * 2019-10-30 2021-05-06 Arcelormittal Procédé d'emboutissage à chaud
WO2021084303A1 (fr) * 2019-10-30 2021-05-06 Arcelormittal Procédé d'emboutissage à chaud
WO2021084302A1 (fr) * 2019-10-30 2021-05-06 Arcelormittal Procédé d'emboutissage à chaud
DE102020204356A1 (de) 2020-04-03 2021-10-07 Thyssenkrupp Steel Europe Ag Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
EP2778247A4 (fr) 2015-08-12
WO2013069937A1 (fr) 2013-05-16
JP6043801B2 (ja) 2016-12-14
KR101382981B1 (ko) 2014-04-09
KR20130050138A (ko) 2013-05-15
CN103917681B (zh) 2016-07-06
US20140308156A1 (en) 2014-10-16
CN103917681A (zh) 2014-07-09
JP2015503023A (ja) 2015-01-29
US20180023171A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US20180023171A1 (en) Steel sheet for warm press forming, warm-pressed member, and manufacturing methods thereof
EP3372703B1 (fr) Plaque d'acier à ultra haute résistance présentant une formabilité et aptitude à l'expansion de trou excellentes, et son procédé de fabrication
EP3144406B1 (fr) Feuille d'acier laminé à froid de résistance élévée présentant une excellente ductilité, feuille d'acier galvanisé à chaud et son procédé de fabrication
KR101613806B1 (ko) 가공성이 우수한 고강도 강판의 제조 방법
JP5042232B2 (ja) 成形性及びメッキ特性に優れた高強度冷延鋼板、これを用いた亜鉛系メッキ鋼板及びその製造方法
EP3473742B1 (fr) Tôle d'acier à ductilité élevée et très haute résistance ayant une excellente limite élastique et procédé pour la fabriquer
EP2660345A2 (fr) Tôle d'acier présentant une ductilité améliorée pour élément de moulage, élément de moulage et son procédé de fabrication
KR20180063303A (ko) 핫 프레스 부재 및 그의 제조 방법
EP3034641A1 (fr) Tôle d'acier à ultra-haute résistance et son procédé de fabrication
JP5860333B2 (ja) 加工性に優れた高降伏比高強度冷延鋼板
EP3438315A1 (fr) Tôle d'acier laminée à froid à résistance élevée ayant d'excellentes limite d'élasticité et ductilité, plaque d'acier revêtue et son procédé de fabrication
US20190218639A1 (en) Twip steel sheet having an austenitic matrix
US11655518B2 (en) Steel material for taylor welded blank and method for manufacturing hot-stamped part using same steel
WO2011125738A1 (fr) Tôle d'acier galvanisée à chaud par trempage et tôle d'acier allié galvanisée à chaud par trempage, chacune ayant une excellente aptitude au traitement, un rapport d'élasticité élevé et une résistance élevée
EP2767604A1 (fr) Plaque d'acier laminée à froid à haute résistance ayant une excellente aptitude à l'emboutissage profond et une excellente uniformité de matière en bobine et son procédé de fabrication
KR102153194B1 (ko) 액상금속취화(lme) 균열 저항성이 우수한 초고강도 고연성 냉연강판, 도금강판 및 이들의 제조방법
KR101439613B1 (ko) 굽힘 가공성과 연신율이 우수한 고강도 고망간 강판 및 그 제조방법
KR20190075589A (ko) 고항복비형 고강도 강판 및 이의 제조방법
US11414721B2 (en) Method for the manufacture of TWIP steel sheet having an austenitic matrix
JP6221424B2 (ja) 冷延鋼板およびその製造方法
KR102468051B1 (ko) 연성이 우수한 초고강도 강판 및 그 제조방법
JP5397141B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
US10941468B2 (en) High tensile strength steel having excellent bendability and stretch-flangeability and manufacturing method thereof
EP3730651B1 (fr) Tôle d'acier à haute résistance de type à rapport de rendement élevé et son procédé de fabrication
JP5151227B2 (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHOI, EUL-YONG

Inventor name: CHO, YEOL-RAE

Inventor name: OH, JIN-KEUN

Inventor name: LEE, KYOO-YOUNG

Inventor name: KIM, KI-SOO

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150713

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/58 20060101ALI20150707BHEP

Ipc: C22C 38/60 20060101ALI20150707BHEP

Ipc: C21D 8/02 20060101ALI20150707BHEP

Ipc: C21D 6/00 20060101ALI20150707BHEP

Ipc: C22C 38/14 20060101ALI20150707BHEP

Ipc: C23C 2/12 20060101ALI20150707BHEP

Ipc: C22C 38/12 20060101ALI20150707BHEP

Ipc: B21B 15/00 20060101ALI20150707BHEP

Ipc: C23C 2/06 20060101ALI20150707BHEP

Ipc: C22C 38/02 20060101ALI20150707BHEP

Ipc: B21B 1/04 20060101ALI20150707BHEP

Ipc: C22C 38/08 20060101ALI20150707BHEP

Ipc: C23C 2/02 20060101ALI20150707BHEP

Ipc: C22C 38/00 20060101ALI20150707BHEP

Ipc: C22C 38/18 20060101ALI20150707BHEP

Ipc: C22C 38/06 20060101ALI20150707BHEP

Ipc: C22C 38/04 20060101AFI20150707BHEP

Ipc: C21D 9/46 20060101ALI20150707BHEP

Ipc: C22C 38/38 20060101ALI20150707BHEP

Ipc: C22C 38/16 20060101ALI20150707BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180531

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190827