EP2735066B1 - Vorrichtung und verfahren zum schutz eines verbrauchers - Google Patents

Vorrichtung und verfahren zum schutz eines verbrauchers Download PDF

Info

Publication number
EP2735066B1
EP2735066B1 EP11757860.9A EP11757860A EP2735066B1 EP 2735066 B1 EP2735066 B1 EP 2735066B1 EP 11757860 A EP11757860 A EP 11757860A EP 2735066 B1 EP2735066 B1 EP 2735066B1
Authority
EP
European Patent Office
Prior art keywords
temperature
measuring element
measuring
unit
measuring unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11757860.9A
Other languages
English (en)
French (fr)
Other versions
EP2735066A1 (de
Inventor
Klaus Behringer
Martin Maier
Klaus Pfitzner
Bernhard Rösch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2735066A1 publication Critical patent/EP2735066A1/de
Application granted granted Critical
Publication of EP2735066B1 publication Critical patent/EP2735066B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • H02H5/047Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature using a temperature responsive switch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0852Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load directly responsive to abnormal temperature by using a temperature sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current

Definitions

  • the invention relates to a device and a method for protecting a consumer from an overload, in particular a thermal overload.
  • an electric motor for example, asynchronous motor
  • a thermal overload on the load is caused for example by a mechanical overload on an electric motor or by a failure of a current path (phase) of the electric motor. This leads to an undesirable temperature development at the consumer, which can ultimately lead to damage to the consumer.
  • a pending thermal overload of an electrical load devices are usually in the current path, via which the consumer is supplied with electrical energy, integrated, so that by means of these devices, a pending thermal overload of the consumer can be detected.
  • a single-phase but also a multi-phase monitoring can take place, i. It is possible to monitor a single current path (one phase) as well as several current paths (several phases) of the consumer.
  • the corresponding devices each have a current path to be monitored, via which the energy supply occurring via the current path is conducted.
  • the electrical energy of the consumer is thus passed through the device by means of the current path.
  • a monitoring device of the device By means of a monitoring device of the device, the current flow of the current path is monitored, so that a pending overload of the consumer can be detected.
  • Such devices are, for example, overload relays or circuit breakers.
  • a circuit breaker indicates a downstream consumer in addition to a contactor against a thermal overload by an A-trigger also a short-circuit protection by an N-trigger on.
  • an overload protection for a consumer e.g., motors, lines, transformers and generators.
  • a pending thermal overload of a consumer In the case of a pending thermal overload of a consumer, the individual current paths (phases) of the consumer result in an increased current increase.
  • a device upstream of the consumer for monitoring a thermal overload of the consumer can consequently detect and evaluate this increased current increase by monitoring its current path.
  • different measurement principles can be applied.
  • the determination of a pending overload can thus be carried out by means of different monitoring devices of the device.
  • Monitoring devices for detecting an overload of a consumer include in particular each to be monitored phase of the consumer to the corresponding current path a bimetallic actuator, a current transformer or a shunt.
  • the current path to be monitored is coupled with a bimetallic release such that the current increase leads to heating of the bimetallic release and finally to a spatial deflection of a part of the bimetallic release. This deflection is detected and further evaluated.
  • a bimetallic actuator both direct currents and alternating currents can be detected.
  • the typical setting range of the bimetallic release is 1 to 1.6.
  • a disadvantage of the bimetallic release is that it generates a high power loss. The thermal memory and the galvanic separation between the individual current paths (phases) can be realized with little effort in the bimetallic release.
  • the respective current transformer determines the current flow of its current path, so that an evaluation unit can perform a further analysis of the current flow, and ultimately an upcoming one Can detect overload.
  • the disadvantage of this measurement method is that no DC currents can be detected.
  • the adjustment range is 1 to 10 and the power loss is low.
  • a thermal memory can not be replicated by the current transformer itself.
  • the shunt When monitoring by means of a shunt, the shunt is integrated in the current path, so that a voltage tap characterizing the current flow can take place via the latter. By means of a downstream analysis of the voltage applied to the shunt, a pending thermal overload can be determined. By means of a shunt measuring method, detection of AC / DC currents is possible. The adjustment range is usually 1 to 4. A disadvantage of the measurement method by means of a shunt is that no thermal memory is reproduced by the voltage tap on the shunt and the galvanic separation of the individual phases is possible only with great effort.
  • An object of the present invention is to provide a device and a method with which a determination of a pending overload of a consumer can take place.
  • both direct currents and alternating currents should be monitored by means of the device.
  • a simple electrical isolation of the monitoring device is to be made possible by the current path to be monitored.
  • a device for protecting a consumer having a first current path, which comprises two lines, and a monitoring device, for determining a pending overload of the consumer
  • the monitoring device comprises a first temperature measuring unit, an evaluation unit and a first measuring element, which establishes an electrically conductive connection between the two lines of the first current path
  • the first temperature measuring unit is galvanically isolated from the first measuring element is and comprises a first and a second temperature sensor, wherein the first and second temperature sensor of the first temperature measuring unit can simultaneously detect a respective temperature of the first measuring element and the evaluation based on the detected temperatures of the first temperature measuring unit can determine a pending overload on the consumer
  • a method according to Claim 12 ie by a method for protecting a consumer, wherein a device comprises a first current path, which comprises two lines, and a monitoring device, for determining a pending overload of the consumer, wherein the monitoring device comprises a first temperature measuring unit, an evaluation unit and
  • the flow path is in particular a part of a supply line of the energy supply of the consumer.
  • the supply line is also called main flow or phase.
  • a time-dependent motor current flows through the current path and thus through the first measuring element, which leads to a defined heating of the first measuring element (current-induced heating) in the first measuring element as a function of the current level and the current flow time.
  • the first measuring element has a characteristic heating behavior as a function of the present current level and current flow time.
  • the thermal state of the first measuring element is different from the state in the standard operation of the consumer.
  • the temperature at the first measuring element is not uniform over the entire body of the first measuring element. There are areas on the first measuring element, which at the same time have a higher or lower temperature than another area of the first measuring element. If, for example, the first measuring element has a uniform, closed rectangular shape, then the temperature is usually higher in the middle region of the longitudinal axis of the first measuring element than in the beginning and end regions of the longitudinal axis of the first measuring element. As a function of the current flow through the first measuring element, there is consequently a characteristic heating behavior of the first measuring element.
  • this current-related characteristic heating behavior of the first measuring element is detected, so that the evaluation unit can draw a conclusion about the state current flow on the first measuring element and ultimately on the current state of the consumer. It can thus be determined whether a proper operation is present at the consumer or an overload is pending.
  • an increase in the ambient temperature can likewise lead to an increase in temperature at the first measuring element, so that a determination of a pending overload based on a determination of only one temperature on the first measuring element would lead to a falsified analysis.
  • two temperatures are simultaneously determined by the first temperature measuring unit detected the first measuring element.
  • the measurement of the temperatures of the first measuring element takes place here at two measuring points of the first measuring element, which at the same time may have different temperatures at a current-related heating of the first measuring element.
  • the evaluation unit can consequently calculate a temperature difference value ( ⁇ T n ) of the first measuring element.
  • ⁇ T n a temperature difference value of the first measuring element.
  • the advantage of the evaluation with the temperature difference value is in particular that external temperature influences can be largely compensated, so that the main current-induced heating of the first measuring member can be considered. Consequently, an exact analysis of a current-related heating of the first measuring element can take place, so that an improved determination of an imminent overload of the load can take place.
  • a temperature of the first measuring element is simultaneously detected by means of the first and second temperature sensor and provided to the evaluation unit.
  • the evaluation unit can thus determine and evaluate a temperature difference value ( ⁇ T n ) per cycle (interval in which temperatures are determined at the same time by the first temperature measurement unit). It can thus preferably per cycle check whether a current-related heating behavior of the first measuring element, which characterizes a pending overload of the consumer, has taken place or not.
  • the first sensing element is preferably a resistor (e.g., shunt) with a constant power dissipation.
  • the evaluation of the temperature difference value ( ⁇ T n ) by the evaluation unit for determining a pending overload of the load can be done differently.
  • a reference value in the evaluation unit is stored, which with a temperature difference value (.DELTA.T n) or more temperature difference values (.DELTA.T n) or a value formed therefrom can be compared so that a pending overload can be determined by the consumer.
  • the reference value thus preferably characterizes the current-related heating behavior of the first measuring element.
  • An advantage achieved by the invention is, in particular, that both AC and DC currents can be detected by means of such a device or by means of such a method.
  • a pending overload for AC and DC consumers can be determined.
  • an improved adjustment range over a bimetal measuring method can be achieved.
  • a thermal memory can be realized, since with a pending overload, the first measuring element is heated strongly, so that on the basis of the temperature and thus cooling of the first measuring element, a cooling behavior of the consumer can be reconstructed.
  • Such an evaluation can also be realized, for example, by the evaluation unit.
  • the first temperature measuring unit further comprises a third temperature sensor, which can detect a temperature of the first measuring element simultaneously with the first and second temperature sensor of the first temperature measuring unit.
  • a third temperature sensor T n3
  • a temperature detection takes place at a measuring point of the first measuring unit, which is not detected by the first and second temperature sensor of the first temperature measuring unit.
  • the measuring point of the third temperature sensor on the first measuring element preferably has a different temperature than the measuring point of the second temperature sensor on the first measuring element in at least one current-carrying state of the first measuring element.
  • the first, second and third temperature sensor preferably the same side surface of the first measuring element is monitored. In this way, an extremely precise determination of the heating behavior of the first measuring element can take place.
  • the first, second and third temperature sensor is arranged to the first measuring element, that the first temperature sensor can detect a temperature at a first measuring point of the first measuring element, the second temperature sensor detect a temperature at a second measuring point of the first measuring element and the third temperature sensor may detect a temperature at a third measuring point of the first measuring element, wherein with respect to a first side surface of the first measuring element, the second measuring point lies between the first and third measuring point on the first side surface.
  • a higher temperature is present in at least one current-carrying state of the first measuring element at the second measuring point in comparison to the first and third measuring point.
  • the first measuring point is located here in particular in the initial region of an axis of the side surface of the first measuring element, the third measuring point in the end region of the axis and the second measuring point in the central region of the axis of the side surface of the first measuring element.
  • the axis of the side surface of the first measuring element is preferably the longitudinal axis of the side surface.
  • the temperature difference value can be determined by the evaluation unit per cycle of a simultaneous determination of the individual temperatures of the temperature sensor. By a corresponding evaluation of the temperature difference value in the evaluation unit can finally be recognized whether a proper operation of the consumer is present or whether an overload on the consumer is pending or already exists.
  • the respective temperature sensor is spaced at most 2 mm from the first measuring element. In this way, an accurate detection of the temperature of the corresponding measuring point on the first measuring element can be carried out by the corresponding temperature sensor.
  • an electrically insulating insulating layer is arranged between the temperature sensors of the first temperature measuring unit and the measuring element. In this way, a secure electrical isolation of the first temperature monitoring device to the first measuring element can be ensured.
  • the electrically insulating insulating layer is preferably a good thermal coupling of the temperature sensor with the provided corresponding measuring element.
  • the electrically insulating insulating layer is preferably used as a support for the temperature sensors, so that the temperature sensors are mounted on the carrier.
  • the electrically insulating insulating layer is for example FR4 or a ceramic.
  • the evaluation unit can determine a temperature difference value ( ⁇ T n ) of the first measuring element on the basis of the temperatures of the first measuring element determined simultaneously by the temperature sensors. If there is an overload on the load, there is an increased current flow and thus an increased current-related heating on the first measuring element in comparison to normal operation / nominal operation.
  • the first measuring element consequently has a characteristic thermal behavior which can be detected by means of the temperature difference value.
  • the reference value stored preferably in the evaluation unit particularly characterizes the heating behavior of the first measuring element as a function of the current flow and the current flow time through the first measuring element.
  • the temperature difference value (.DELTA.T n) of the first measurement member with the reference value can thus be made between a current caused by the normal operation, heating performance and a current induced by a pending overload heating behavior of the first measuring element.
  • the comparison with the reference value can take place here with a single temperature difference value ( ⁇ T n ) but also with a plurality of temperature difference values ( ⁇ T n ).
  • the evaluation unit can output a warning signal, in particular an electrical warning signal, at a detected pending overload on the consumer.
  • the warning signal preferably controls a switching position of a switching element of the device.
  • the switching element is either an auxiliary circuit or a main circuit (supply of the Energy supply of the electrical consumer) directly controlled.
  • the switching element controls the auxiliary circuit
  • the switching element is opened or closed so that a switching device switching on the main circuit (for example a contactor) is actuated.
  • This switching the main circuit switching device then opens the main circuit, so that the flow of current is interrupted to the consumer and thus the overload on the load is avoided.
  • the switching element controls the main circuit, the switching element is opened, so that the flow of current to the consumer is interrupted and thus the overload on the load is avoided.
  • a multiphase consumer it is preferable to open all phases of the consumer by determining a pending overload on only one current path of the device (and thus of only one phase of the consumer) so that the flow of current to the consumer is completely prevented.
  • the device further comprises a second flow path, which comprises two lines
  • the monitoring device further comprises a second temperature measuring unit and a second measuring element, which establishes an electrically conductive connection between the two lines of the second flow path
  • the second temperature measuring unit of the second measuring element is electrically isolated and comprises a first and a second temperature sensor, wherein the first and second temperature sensor of the second temperature measuring unit can simultaneously detect a temperature of the second measuring element and the evaluation based on the detected temperatures of the second temperature measuring unit a pending overload on Consumers can determine.
  • the first and second temperature sensor is in particular so to the second Arranged measuring element that a current-dependent characteristic heating behavior of the second measuring element can be determined by a simultaneous detection of the temperature by the evaluation.
  • a reference value is preferably stored, which characterizes the heating behavior of the second measuring element.
  • the evaluation unit can thus determine a pending overload on the consumer by comparing the determined current-related heating behavior of the second measuring element with the reference value stored in the evaluation unit. On the basis of the current-conditioned characteristic heating behavior of the second measuring element, the evaluation unit can thus differentiate between normal operation and a pending overload.
  • the second temperature measuring unit further comprises a third temperature sensor, which can detect a temperature of the second measuring element simultaneously with the first and second temperature sensor of the second temperature measuring unit.
  • a temperature detection takes place at a measuring point of the second measuring unit, which is not detected by the first and second temperature sensor of the second temperature measuring unit.
  • the arrangement of the temperature sensor of the second temperature measuring unit relative to the second measuring element may be formed according to the arrangement of the first temperature measuring unit relative to the first measuring element.
  • the evaluation of the detected temperatures of the second temperature measuring unit by the evaluation unit can be carried out equivalent to the evaluation of the temperatures of the first temperature measuring unit by the evaluation unit.
  • an electrically insulating insulating layer (as between the first measuring element and the first temperature measuring unit) may be arranged between the temperature sensors of the second temperature measuring unit and the second measuring element.
  • the device comprises a third flow path, which comprises two lines
  • the monitoring device further comprises a third temperature measuring unit and a third measuring element, which establishes an electrically conductive connection between the two lines of the third current path
  • the third Temperature measuring unit of the third measuring element is electrically isolated and comprises a first and a second temperature sensor, wherein the first and second temperature sensor of the third temperature measuring unit can simultaneously detect a temperature of the third measuring element and the evaluation based on the detected temperatures of the third temperature measuring unit pending overload on the consumer can determine.
  • the first and second temperature sensor is arranged in particular in such a way to the third measuring element, that a current-related heating behavior of the third measuring element can be determined by a simultaneous detection of the temperature by the evaluation.
  • the evaluation unit can preferably determine a pending overload on the consumer by comparing the determined heating behavior of the third measuring element with a reference value stored in the evaluation unit.
  • a reference value of the evaluation unit in particular the heating behavior of the third measuring element is known, so that a pending overload of the consumer can be determined.
  • the third temperature measuring unit further comprises a third temperature sensor, which can detect a temperature of the first measuring element simultaneously with the first and second temperature sensor of the third temperature measuring unit.
  • a temperature detection takes place at a measuring point of the third measuring unit, which is not detected by the first and second temperature sensor of the third temperature measuring unit.
  • the arrangement of the temperature sensor of the third temperature measuring unit relative to the third measuring element may be formed according to the arrangement of the first temperature measuring unit relative to the first measuring element.
  • the evaluation of the detected temperatures of the third temperature measuring unit by the evaluation unit can be carried out equivalent to the evaluation of the temperatures of the first temperature measuring unit by the evaluation unit.
  • an electrically insulating insulating layer (as between the first measuring element and the first temperature measuring unit) may be arranged between the temperature sensors of the third temperature measuring unit and the third measuring element.
  • the electrically insulating insulating layer is preferably a carrier material for the corresponding temperature sensor.
  • the temperature sensors of the first, second and third temperature measuring units are preferably placed on the same insulating layer.
  • first and / or second and / or third temperature measuring unit comprises further temperature sensors, so that a more accurate determination of the current-related heating behavior of the associated measuring element can take place.
  • the respective temperature sensor is designed such that it assumes a characteristic state as a function of the present temperature.
  • the temperature sensor is in particular a thermocouple, thermo-wire or temperature-dependent semiconductor (eg diode). If, for example, a diode is used as the temperature sensor, a conclusion about the present temperature can be obtained by measuring the voltage across the diode. A temperature change of the first measuring element would consequently lead to a temperature change at the diode, which leads to a voltage change.
  • the first measuring element and if present second and / or third measuring element is in each case an electrical resistance, in particular a shunt.
  • the measuring element has a constant power loss and a current-conditioned characteristic heating behavior.
  • the evaluation unit preferably has a part of the heating behavior of the respective measuring element as a reference value, so that it can detect a pending overload by comparing the determined current-induced heating behavior of the measuring element with the reference value. If the measuring elements and the associated temperature sensors of the temperature measuring unit are identical, the reference value for the measuring elements is the same.
  • the device is a switching device, in particular an overload relay or a circuit breaker.
  • the device is preferably arranged decentrally by the consumer, i. it is not part of the consumer (e.g., electric motor).
  • the temperature sensors of the first, second and / or third temperature measuring unit can preferably detect temperature differences of approximately 4 Kelvin.
  • the first, second and / or third measuring element preferably has a nominal temperature of about 60-100 ° C.
  • a temperature of 600-700 ° C can be present at the corresponding measuring element.
  • FIG. 1 shows a schematic representation of a first flow path, which has a monitoring device.
  • the illustrated flow path is part of a device for protecting a downstream consumer.
  • the monitoring device By means of the monitoring device, a pending overload of the consumer can be determined.
  • the device is integrated into the current path of the consumer. If, for example, the consumer is a three-phase three-phase motor, then at least one supply line (phase) of the three-phase motor has the imaged current path and monitoring device.
  • the first current path comprises a first line 101 and a second line 102.
  • the monitoring device comprises a first temperature measuring unit, an evaluation unit 4 and a first measuring element 10.
  • the first temperature measuring unit comprises a first temperature sensor 11, a second temperature sensor 12 and a third temperature sensor 13.
  • the first measuring element 10 is arranged between the first line 101 and the second line 102 of the first current path, so that a current can flow from the first line 101 via the first measuring element 10 to the second line 102. Since the power supply of the downstream consumer takes place via the first and second line 101, 102, the current flows via the first measuring element 10 during the operation of the downstream consumer. Depending on the present operating state of the downstream consumer, there is a current level at the first measuring element 10. Depending on this current level and the current flow time at the first measuring element 10 is a characteristic heating behavior of the first Measuring element 10 before. By means of the temperature sensors 11, 12, 13, the characteristic heating behavior of the first measuring element 10 can be detected and provided to the evaluation unit 4.
  • a reference value is stored in the evaluation unit, which characterizes the heating behavior of the first measuring element 10 at a pending overload of the downstream consumer. In nominal operation is usually a temperature of about 60 to 100 ° C on the first measuring element 10 before. If, however, there is an overload on the consumer, then the temperature at the first measuring element 10 can be up to 700 ° C. due to the increased current flow.
  • the temperature measuring unit 18 for this purpose comprises three temperature sensors 11,12,13.
  • An embodiment with only two temperature sensors or more than three temperature sensors per temperature measuring unit is also conceivable.
  • the first, second and third temperature sensors 11, 12, 13 are at a maximum distance of 2 mm from the first measuring element 10 and can each detect a temperature of a specific measuring point of the first measuring element 10. In this case, the same measuring points on the first measuring element 10 are not detected by the three temperature sensors 11, 12, 13.
  • an electrically insulating insulating layer 51 is arranged, so that a galvanic isolation between the first measuring element and the three temperature sensors 11,12,13 is ensured.
  • the three temperature sensors 11, 12, 13 are hereby jointly fastened on the electrically insulating insulation layer 51.
  • the first, second and third temperature sensors 11, 12, 13 are arranged opposite to the first measuring element 10 such that temperatures of three different measuring points of a first side surface 6 of the first measuring element 10 can be detected. These measuring points are each distributed over the first side surface 6 such that a current-determined characteristic heating behavior of the first measuring element 10 can be determined by simultaneously determining the temperatures of the three measuring points by means of the three temperature sensors 11, 12, 13.
  • the measuring point of the first and third temperature sensors 11, 13 is arranged in particular in the edge region of the longitudinal axis of the side surface 6 of the first measuring element 10, whereas the measuring point of the second temperature sensor 12 lies in the center of the longitudinal axis of the side surface 6 of the first measuring element 10.
  • a current flow is present at the first measuring element 10.
  • the first measuring element 10 has a characteristic heating behavior dependent on the current.
  • the temperature of the central measuring point determined by the second temperature sensor on the side surface 6 is increased relative to the temperatures of the two measuring points in the edge region.
  • the first measuring element 10 thus assumes a characteristic temperature, which may be formed differently over the total body of the first measuring element 10.
  • the side surface 6 of the first measuring element 10 has in particular a size of less than 10 cm 2 .
  • the first, second and third temperature sensors 11, 12, 13 are each a semiconductor, in particular a diode, so that a conclusion about the present temperature of the corresponding measuring point on the first measuring element can be obtained via a measurement whose voltage.
  • the determined temperatures of the first, second and third temperature sensors 11, 12, 13 are provided to the evaluation unit 4 so that they can determine the present heating behavior of the first measuring element 10.
  • the temperature sensors 11,12,13 can be determined in particular in each case a temperature difference of about 4 Kelvin in Beriech of -10 ° C to 200 ° C.
  • the first measuring element 10 is a metallic electrical resistance (shunt), which has a characteristic heating behavior.
  • the evaluation unit 4 has the characteristic heating behavior of the first measuring element 10 as a reference value, so that it can draw a conclusion to the present invention based on a comparison of the determined present temperature of the first measuring element 10 and thus of the heating behavior of the first measuring element 10 with the reference value stored in the evaluation unit 4 Utilization status (normal operation / pending overload) of the consumer can win.
  • the evaluation unit 4 can consequently continuously characterize the current level and current flow time Monitor value, so that on the basis of the present heating behavior of the first measuring element 10 and thus based on the thermal state of a motor or line protection can be derived. It can thus be monitored whether an overload is present at the downstream consumer or not.
  • each phase or at least two phases each comprise a temperature measuring unit.
  • the temperature sensors 11,12 can measure the temperature differences with a high resolution, for example about 4 Kelvin. In this way it is possible to work with small temperature differences and thus with low electrical resistance values of the first measuring element 10. As a result, the measuring range with respect to the lower current limit I U can be increased considerably downwards, so that the adjustment range can be considerably extended, for example, with respect to the bimetallic solution.
  • a typical value for the necessary temperature for bimetallic solutions is, for example, 60 Kelvin overtemperature. Meanwhile, in a solution by means of a first measuring element 10, a current-related heating of already 4 Kelvin can be determined. This allows setting range greater than 1 to 4 to be realized.
  • the heating of the first measuring element 10 is largely independent of frequency and thus suitable for AC and DC applications.
  • FIG. 2 shows a schematic representation of a device 1 for the protection of an electrical load 2.
  • the device 1 is in this embodiment, an overload relay 1, with which a consumer 2, namely a three-phase electric motor, can be monitored.
  • the overload relay 1 is interposed in the supply line of the consumer 2, so that by means of the overload relay 1, the three phases of the consumer 2 can be monitored.
  • the overload relay 1 can be integrated in the supply line of the electrical load 2, it has input-side connection devices 106, 206, 306 and output-side connection devices 107, 57, 307.
  • the individual phases of the consumer 2 are performed galvanically isolated.
  • the first, second and third flow path and its monitoring device is in each case according to the in the FIG. 1 formed and described embodiment. Only the evaluation unit 4 has been summarized. However, it is also conceivable for each flow path to have a separate evaluation unit 4.
  • the overload relay 1 has a monitoring device with which a pending overload of the electrical load 2 can be detected.
  • the first current path as already in FIG. 1 shown, a first line 101 and a second line 102.
  • a first measuring element 10 is arranged, which establish an electrical connection between the two lines 101 and 102.
  • the first measuring element 10 is in particular a metallic, electrical resistance. Depending on the present current level and current flow time in the first current path 100, a defined heating behavior of the first measuring element 10 is present.
  • the temperature of the first measuring element 10 can be detected simultaneously by means of a first, second and third temperature sensor 11, 12, 13 of a first temperature measuring unit.
  • the simultaneously detected temperature of the temperature sensors 11, 12, 13 of the first temperature measuring unit is provided to the evaluation unit 4.
  • An electrically insulating layer 51 between The first measuring element 10 and the temperature sensors 11,12,13 establishes a galvanic separation between the temperature sensors 11,12,13 and the first measuring element 10 and serves as a carrier material of the temperature sensor 11,12,13.
  • the power supply of the second phase of the consumer 2 is guided via the second current path.
  • the second flow path has a first line 201 and a second line 202. Between the first and second lines 201 and 202, a second measuring element 20 is arranged, which ensures an electrical connection between the first line 201 and the second line 202.
  • the second measuring element 20, like the first measuring element 10 of the first current path, is a defined resistance, which assumes a characteristic thermal state as a function of the present current flow and the present current flow time.
  • the temperature distribution at the second measuring element 20 can be determined by means of a second temperature measuring unit.
  • the second temperature measuring unit comprises a first, second and third temperature sensor 21, 22, 23.
  • the temperature sensors 21, 22, 23 of the second temperature measuring unit are likewise galvanically separated from the second measuring element 20 by means of an electrically insulating insulation layer 52.
  • the evaluation unit 4 can determine the present thermal condition of the thermal sensor determine second measuring element and thus detect a pending overload on the consumer.
  • the power supply of the third phase of the consumer 2 is passed through the third current path, so that the third phase can be monitored for overload.
  • the third flow path has a first line 301 and a second line 302.
  • Between the first and second lines 301, 302 is a arranged third measuring element 30, which connects the first and second line 301,302 electrically conductive. Consequently, a current flowing via the third current path flows via the third measuring element 30.
  • the temperature of the third measuring element 30 is detected simultaneously at three measuring points by means of three temperature sensors 31, 32, 33. The detected temperature is provided to the evaluation unit 4 for further analysis.
  • An electrically insulating layer 53 is arranged between the temperature sensors 31, 32, 33 and the third measuring element 30, so that the third temperature measuring unit is electrically isolated from the third measuring element 30.
  • the individual current paths therefore each have a measuring element 10, 20, 30, which carries out a characteristic current-induced heating as a function of the applied current level and the current flow time. Based on a monitoring of the current-related thermal behavior of the respective measuring elements 10,20,30 and a comparison with the stored reference value, a conclusion on the current flow in the corresponding current path and thus a conclusion to the present operating state of the consumer 2 can be obtained, so that a Pending overload on the consumer 2 are derived by the evaluation unit 4.
  • the first, second and third measuring element 10, 20, 30 as well as the first, second and third temperature measuring units are of identical construction.
  • the evaluation of the determined temperatures of the first, second and third temperature measuring unit can consequently be carried out uniformly.
  • the evaluation unit 4 is the heating characteristic of the first, second and third measuring element 10,20,30 known and deposited as a reference value, so that the evaluation unit 4 by a comparison of the determined temperatures of the first, second and / or third temperature measuring unit with the reference value can determine a pending overload of the electrical load 2.
  • the evaluation unit 4 issues a warning signal, so that switching elements of the load 2 which are not shown are switched and thus the flow of energy to the load 2 is prevented. In this way, a thermal damage of the load 2 with respect to an overload by the device 1 can be avoided.
  • a thermal overload of the load 2 is determined by heating of the measuring element 10, 20, 30, there is likewise a thermal memory through the measuring element 10, 20, 30, so that it is not accidentally switched on shortly after a thermal overload of the consumer can come. Only after the measuring element 10,20,30 has experienced a defined cooling, the consumer 2 can be switched to the supply network again, so that it is supplied with power again.
  • the determination of the necessary cooling of the consumer is carried out by an analysis of the temperatures of the measuring elements 10,20,30.
  • the temperature of the affected measuring element 10,20,30 is determined by the respective temperature measuring unit and evaluated by the evaluation unit 4.
  • the evaluation unit 4 also has cooling reference values.
  • the device 1 for monitoring a thermal overload of a consumer 2 was in FIG. 2 described by way of example with reference to an overload relay 1.
  • the device 1 may be, for example, a circuit breaker (eg motor protection switch, system protection switch).
  • the temperature sensors 11,12,13,21,22,23,31,32,33 are each semiconductor, in particular diodes, so that by means of an analysis whose voltage is the temperature at the temperature sensor and thus at the associated measuring point of the corresponding measuring element 10,20,30 can be determined. To increase the measuring accuracy, several temperature sensors can also be used on the measuring elements 10,20,30 are placed. It is also conceivable that only two temperature sensors are placed per measuring element 10,20,30.
  • a great advantage of the device 1 and in particular the monitoring device is that the electrical isolation between the individual phases and the respective temperature sensor 11,12,13,21,22,23,31,32,33 to the corresponding current paths is easy to implement ,
  • FIG. 3 shows a schematic representation of a device for protecting an electrical load, wherein a monitoring device is mounted on a printed circuit board 5.
  • a monitoring device is mounted on a printed circuit board 5.
  • the first, second and third temperature measuring unit and the evaluation unit 4 mounted on an upper surface of a single circuit board 5 and the measuring units 10,20,30 mounted on the underside of the circuit board 5.
  • the first measuring element 10 is mounted on the underside of the printed circuit board 5 and is connected on the input side to a line 101 and on the output side to a line 102. This first current path is used to supply energy to a downstream consumer (first phase).
  • the second measuring element 20 is also mounted on the underside of the circuit board 5 and the input side is connected to a line 201 and the output side to a line 202. This second current path is used to supply energy to the downstream consumer (second phase).
  • the third measuring element 30 is also mounted on the underside of the circuit board 5 and the input side is connected to a line 301 and the output side to a line 302.
  • This third current path is used to supply energy to the downstream consumer (third phase).
  • the first, second and third temperature measuring unit and the evaluation unit 4 are mounted on the upper side (the side facing away from the measuring elements 10, 20, 30) of the printed circuit board 5, the first, second and third temperature measuring unit and the evaluation unit 4 are mounted. A galvanic separation takes place through the printed circuit board between the first, second and third temperature measuring unit and the evaluation unit 4 with respect to the measuring elements 10, 20, 30.
  • the first temperature measuring unit comprises three temperature sensors 11, 12, 13, wherein two temperature sensors 11, 13 are arranged in the edge region (beginning and end) of the longitudinal axis of a side surface of the first measuring element 10 and a temperature sensor 12 is arranged in the center of the longitudinal axis of the side surface of the first measuring element 10 is. In this way, a temperature difference value ( ⁇ T n ) of the first measuring element 10 can be determined.
  • the second temperature measuring unit comprises three temperature sensors 21, 22, 23, wherein two temperature sensors 21, 23 are arranged in the edge region (beginning and end) of the longitudinal axis of a side surface of the second measuring element 20 and a temperature sensor 22 is arranged in the center of the longitudinal axis of the side surface of the second measuring element 20 is. In this way, a temperature difference value ( ⁇ T n ) of the second measuring element 20 can be determined.
  • the temperature sensors 31, 32, 33 of the third temperature measuring unit are equivalent to the third measuring element 30, as are the temperature sensors of the first temperature measuring unit relative to the first measuring element 10.
  • the heating behavior of the respective measuring element 10, 20, 30 is determined by the calculated temperature difference value ⁇ T n of the respective temperature measuring unit, so that a conclusion can be drawn about a current-related heating of the respective measuring element.
  • the calculated temperature difference value of the respective temperature measuring unit can now be compared with a reference value (nominal value) stored in the evaluation unit so that a thermal state of the respective measuring element 10, 20, 30 characterizing an overload on the load can be detected.
  • a comparison of the determined temperature difference value ⁇ T n (actual value) with the reference value (desired value) can thus be made at each evaluation time. If the determined temperature difference value ⁇ T n is greater than the reference value (DESIRED value), there is a pending overload at the load.
  • the evaluation unit 4 may also have a threshold be deposited so that a present overload is detected at the consumer.
  • the temperature difference values ⁇ T n of a respective temperature measuring unit are summed up within an integration interval, so that Sum is formed as the total sum ⁇ T.
  • ⁇ T Sum is thus the summation of the temperature difference values ⁇ T n over the period of the integration interval.
  • the total sum ⁇ T Sum thus reflects the heat input that the corresponding measuring element 10, 20, 30 has undergone during the integration interval t integr .
  • target values are stored in the evaluation unit 4, which characterize a normal operation or a pending overload on the load as a function of the integration interval t integr .
  • ⁇ T Sum the determined actual value
  • target value reference value
  • the corresponding setpoint value is stored, for example, in the form of a table or as a polynomial formula in the evaluation unit, so that a specific setpoint value is present as the reference value for each evaluation time (points in time of the setpoint actual comparison).
  • the nominal value may in this case be different in particular as a function of the present current flow time and current flow level at the corresponding measuring element 10, 20, 30.
  • the integration interval may vary.
  • corresponding target values are stored in the evaluation unit. By means of the nominal values, the current / time tripping characteristic of today's thermomechanical solutions is preferably reproduced.
  • the evaluation unit is a reference value stored as a reference value, which indicates the time (triggering time), in which an overload on the consumer is pending.
  • the expected value in this case characterizes a typical rate of rise of temperature difference value .DELTA.T n above which an overload on consumers is pending.
  • the corresponding setpoint value is stored, for example, in the form of a table or as a polynomial formula in the evaluation unit, so that a specific setpoint value is present as the reference value for each evaluation time (points in time of the setpoint actual comparison).
  • the formation of the temperature difference value ⁇ T n of a multi-point temperature detection system naturally offers the advantage of being insensitive to many temperature influences. Strong external temperature influences can under certain circumstances no longer be compensated by this multipoint measurement. Therefore, it may be useful to supplement the evaluation methods by an evaluation of the absolute temperature of the measuring elements 10,20,30. This can, for example strong, external temperature influences are recognized and, if necessary, taken into account in addition to the already described evaluation methods in the evaluation unit 4.
  • Fast and severe cooling of the supply line (s) 101, 201, 301, 102, 202, 322 may result in the temperature drop of one or more temperature measurement points of a multi-point temperature sensing system.
  • the measuring points are affected, which are the least spaced apart from the lines 101, 201, 301, 102, 202, 302 of the current paths.
  • the evaluation unit 4 could increase the temperature difference value ⁇ T n .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Control Of Resistance Heating (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Schutz eines Verbrauchers vor einer Überlast, insbesondere einer thermischen Überlast.
  • Als Verbraucher wird hierbei insbesondere ein Elektromotor (z.B. Asynchronmotor) gesehen. Eine thermische Überlast am Verbraucher wird beispielsweise durch eine mechanische Überlast an einem Elektromotor oder durch einen Ausfall eines Strompfades (Phase) des Elektromotors hervorgerufen. Hierbei kommt es zu einer unerwünschten Temperaturentwicklung am Verbraucher, was letztendlich zu einer Beschädigung des Verbrauchers führen kann.
  • Zur Ermittlung einer anstehenden thermischen Überlast eines elektrischen Verbrauchers werden meist Vorrichtungen in den Strompfad, über welchen der Verbraucher mit elektrischer Energie versorgt wird, integriert, so dass mittels dieser Vorrichtungen eine anstehende thermische Überlast des Verbrauchers detektiert werden kann. Hierbei kann eine einphasige aber auch eine mehrphasige Überwachung erfolgen, d.h. es kann ein einzelner Strompfad (eine Phase) aber auch mehrere Strompfade (mehrere Phasen) des Verbrauchers überwacht werden.
  • Die entsprechenden Vorrichtungen weisen je zu überwachenden Strompfad eine Strombahn auf, über welche die über den Strompfad erfolgende Energieversorgung geführt wird. Die elektrische Energie des Verbrauchers wird somit mittels der Strombahn durch die Vorrichtung geleitet. Mittels einer Überwachungseinrichtung der Vorrichtung wird der Stromfluss der Strombahn überwacht, so dass eine anstehende Überlast des Verbrauchers detektiert werden kann. Derartige Vorrichtungen sind beispielsweise Überlastrelais oder Leistungsschalter. Ein Leistungsschalter weist für einen nachgeschalteten Verbraucher neben einem Schütz vor einer thermischen Überlast durch einen A-Auslöser ferner einen Kurzschlussschutz durch einen N-Auslöser auf.
  • In der vorliegenden Anmeldung soll insbesondere ein Überlastschutz für einen Verbraucher (z.B. Motoren, Leitungen, Transformatoren und Generatoren) bereitgestellt werden.
  • An eine Vorrichtung zur Ermittlung einer thermischen Überlast eines Verbrauchers werden unterschiedliche Anforderungen gestellt:
    • Die Vorrichtung soll möglichst sowohl AC- als auch DC-Ströme überwachen können, so dass sowohl AC- als auch DC-Verbraucher auf Überlast überwacht werden können.
    • Die Vorrichtung soll einen möglichst großen Einstellbereich aufweisen. Der Einstellbereich ist der Bereich, in welchen eine Überwachung des Betriebsstromes des elektrischen Verbrauchers erfolgen kann. Er wird durch die Betriebsstromobergrenze IO und Betriebsstromuntergrenze IU begrenzt (IO zu IU). Mittels eines Einstellmittels (z.B. Einstellschraube) an der Vorrichtung kann der thermische Überlastauslöser auf den jeweiligen Anlagestrom eingestellt werden, so dass eine gezielte Überwachung des nachgeschalteten zu überwachenden Verbrauchers erfolgen kann.
    • Die Vorrichtung soll eine möglichst geringe Verlustleistung erzeugen.
    • Die Vorrichtung soll eine möglichst einfache galvanische Trennung zwischen der zu überwachenden Strombahn und der Überwachungseinrichtung, welche die Überlast detektiert, aufweisen.
    • Die Vorrichtung soll ein thermisches Gedächtnis besitzen. D.h. wird eine anstehende thermische Überlast eines Verbrauchers ermittelt, so sollte die Stromzufuhr zum Verbraucher solange unterbrochen werden, bis ein Abkühlen des Verbrauchers sichergestellt ist. Es sollte somit kein sofortiges Zuschalten eines Verbrauchers nach einer ermittelten thermischen Überlast ermöglicht werden.
  • Bei einer anstehenden thermischen Überlast eines Verbrauchers kommt es in den einzelnen Strompfaden (Phasen) des Verbrauchers zu einem erhöhten Stromanstieg. Eine dem Verbraucher vorgeschaltete Einrichtung zur Überwachung einer thermischen Überlast des Verbrauchers kann folglich durch eine Überwachung seiner Strombahn diesen erhöhten Stromanstieg detektieren und auswerten. Hierfür können unterschiedliche Messprinzipien angewandt werden. Die Ermittlung einer anstehenden Überlast kann somit mittels unterschiedlicher Überwachungseinrichtungen der Vorrichtung erfolgen. Überwachungseinrichtungen zur Detektion einer Überlast eines Verbrauchers umfassen insbesondere je zu überwachende Phase des Verbrauchers an der entsprechenden Strombahn einen Bimetallauslöser, einen Stromwandler oder einen Shunt.
  • Bei einer Überwachung mittels eines Bimetallauslösers wird die zu überwachende Strombahn mit einem Bimetallauslöser derart gekoppelt, dass es durch den Stromanstieg zu einer Erwärmung des Bimetallauslösers und letztendlich zu einer räumlichen Auslenkung eines Teils des Bimetallauslösers kommt. Diese Auslenkung wird detektiert und weiter ausgewertet. Mittels eines Bimetallauslösers können sowohl Gleichströme als auch Wechselströme erfasst werden. Der typische Einstellbereich des Bimetallauslösers liegt bei 1 zu 1,6. Nachteilig am Bimetallauslöser ist, dass er eine hohe Verlustleistung generiert. Das thermische Gedächtnis und die galvanische Trennung zwischen den einzelnen Strompfaden (Phasen) sind bei dem Bimetallauslöser mit geringem Aufwand zu realisieren.
  • Bei einer Überwachung mittels eines Stromwandlers ermittelt der jeweilige Stromwandler den Stromfluss seiner Strombahn, so dass eine Auswerteeinheit eine weiterführende Analyse des Stromflusses durchführen kann, und letztendlich eine anstehende Überlast detektieren kann. Nachteilig dieser Messmethode ist, dass keine DC-Ströme erfasst werden können. Der Einstellbereich liegt bei 1 zu 10 und die Verlustleistung ist niedrig. Ein thermisches Gedächtnis kann jedoch durch die Stromwandler selbst nicht nachgebildet werden.
  • Bei einer Überwachung mittels eines Shunts ist der Shunt in der Strombahn integriert, so dass über diesen ein den Stromfluss charakterisierender Spannungsabgriff erfolgen kann. Durch eine nachgeschaltete Analyse der am Shunt anliegenden Spannung kann eine anstehende thermische Überlast ermittelt werden. Mittels eines Shunt-Messverfahren ist eine Erfassung von AC/DC-Strömen möglich. Der Einstellbereich liegt üblicherweise bei 1 zu 4. Nachteilig an dem Messverfahren mittels eines Shunts ist, dass durch den Spannungsabgriff am Shunt kein thermisches Gedächtnis nachgebildet wird und die galvanische Trennung der einzelnen Phasen nur mit großem Aufwand möglich ist.
  • Eine Aufgabe der vorliegenden Erfindung ist es eine Vorrichtung sowie ein Verfahren bereitzustellen, mit welcher eine Ermittlung einer anstehenden Überlast eines Verbrauchers erfolgen kann. Insbesondere sollen mittels der Vorrichtung sowohl Gleichströme als auch Wechselströme überwacht werden können. Ferner soll vorzugsweise eine einfache galvanische Trennung der Überwachungseinrichtung von der zu überwachenden Strombahn ermöglicht werden.
  • Diese Aufgabe wird gelöst durch eine Vorrichtung gemäß Anspruch 1, d.h. durch eine Vorrichtung, zum Schutz eines Verbrauchers, mit einer ersten Strombahn, welche zwei Leitungen umfasst, und einer Überwachungseinrichtung, zur Ermittlung einer anstehenden Überlast des Verbrauchers, wobei die Überwachungseinrichtung eine erste Temperaturmesseinheit, eine Auswerteeinheit und ein erstes Messelement, welches eine elektrisch leitende Verbindung zwischen den zwei Leitungen der ersten Strombahn herstellt, umfasst, wobei die erste Temperaturmesseinheit von dem ersten Messelement galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler umfasst, wobei der erste und zweite Temperaturfühler der ersten Temperaturmesseinheit gleichzeitig jeweils eine Temperatur des ersten Messelements erfassen kann und die Auswerteeinheit anhand der erfassten Temperaturen der ersten Temperaturmesseinheit eine anstehende Überlast am Verbraucher ermitteln kann, und einem Verfahren gemäß Anspruch 12, d.h. durch ein Verfahren zum Schutz eines Verbrauchers, wobei eine Vorrichtung eine erste Strombahn, welche zwei Leitungen umfasst, und eine Überwachungseinrichtung, zur Ermittlung einer anstehenden Überlast des Verbrauchers, umfasst, wobei die Überwachungseinrichtung eine erste Temperaturmesseinheit, eine Auswerteeinheit und ein erstes Messelement, welches eine elektrisch leitende Verbindung zwischen den zwei Leitungen der ersten Strombahn herstellt, umfasst, wobei die erste Temperaturmesseinheit von dem ersten Messelement galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler umfasst, wobei der erste und zweite Temperaturfühler jeweils eine Temperatur des ersten Messelements erfasst und die Auswerteeinheit anhand der erfassten Temperaturen der ersten Temperaturmesseinheit eine anstehende Überlast am Verbraucher ermittelt.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen 2 bis 11 und 13 angegeben.
  • Die Strombahn ist insbesondere ein Teil einer Zuleitung der Energieversorgung des Verbrauchers. Die Zuleitung wird ebenso Hauptstrombahn oder Phase genannt. Im aktiven Betrieb des Verbrauchers (z.B. Elektromotor) fließt durch die Strombahn und somit durch das erste Messelement ein zeitabhängiger Motorstrom, welcher im ersten Messelement in Abhängigkeit der Stromhöhe und der Stromflusszeit zu einer definierten Erwärmung des ersten Messelements (strombedingte Erwärmung) führt. Das erste Messelement weist hierbei in Abhängigkeit der vorliegenden Stromhöhe und Stromflusszeit ein charakteristisches Erwärmungsverhalten auf.
  • Bei einer anstehenden Überlast des Verbrauchers ist der thermische Zustand des ersten Messelements gegenüber dem Zustand im Standardbetrieb des Verbrauchers unterschiedlich. Insbesondere liegt bei einer anstehenden Überlast am ersten Messelement eine erhöhte Temperatur und folglich eine charakteristisches Erwärmungsverhalten des ersten Messelements vor.
  • Bei einer strombedingten Erwärmung des ersten Messelements ist die Temperatur am ersten Messelement nicht über den gesamten Körper des ersten Messelements einheitlich. Es gibt am ersten Messelement Bereiche, welche zum selben Zeitpunkt eine höhere oder niedrige Temperatur aufweisen, als ein anderer Bereich des ersten Messelements. Weist beispielsweise das erste Messelement eine einheitliche geschlossene rechteckige Form auf, so ist die Temperatur üblicherweise im mittleren Bereich der Längsachse des ersten Messelements höher als im Anfangs- und Endbereich der Längsachse des ersten Messelements. In Abhängigkeit des Stromflusses durch das erste Messelement liegt folglich ein charakteristisches Erwärmungsverhalten des ersten Messelements vor. Mittels der ersten Messeinheit wird dieses strombedingte charakteristische Erwärmungsverhalten des ersten Messelements erfasst, so dass die Auswerteeinheit einen Rückschluss auf den Zustand Stromfluss am ersten Messelement und letztendlich auf den aktuellen Zustand des Verbrauchers gewinnen kann. Es kann somit ermittelt werden ob ein ordnungsgemäßer Betrieb am Verbraucher vorliegt oder eine Überlast ansteht.
  • Ein Anstieg der Umgebungstemperatur (externer Temperatureinfluss) kann beispielsweise ebenso zu einem Temperaturanstieg am ersten Messelement führen, so dass eine Ermittlung einer Anstehenden Überlast anhand einer Ermittlung lediglich einer Temperatur am ersten Messelement zu einer verfälschten Analyse führen würde.
  • Um bei der Ermittlung einer anstehenden Überlast derartige externe Temperatureinflüsse zu minimieren, werden durch die erste Temperaturmesseinheit zeitgleich insbesondere zwei Temperaturen des ersten Messelements erfasst. Die Messung der Temperaturen des ersten Messelements erfolgt hierbei an zwei Messpunkten des ersten Messelements, welche bei einer strombedingten Erwärmung des ersten Messelements zeitgleich unterschiedliche Temperaturen aufweisen können.
  • Mittels der zeitgleich erfassten Temperaturen des ersten Messelements kann die Auswerteeinheit folglich einen Temperaturdifferenzwert (ΔTn) des ersten Messelements berechnen. Mittels des berechneten Temperaturdifferenzwerts (ΔTn) kann nun durch die Auswerteeinheit ein Rückschluss auf die strombedingte Erwärmung des ersten Messelements gewonnen werden. Hierfür wird beispielsweise die Temperatur des zweiten Temperaturfühlers (Tn2) von der zeitgleich erfassten Temperatur des ersten Temperaturfühlers (Tn1) subtrahiert; (ΔTn = Tn2 - Tn1). Bei einer gleichzeitigen Ermittlung mehrerer Temperaturen des ersten Messelements mittels mehrer Temperaturfühler können äquivalente Berechnungen erfolgen, um einen Temperaturdifferenzwert (ΔTn) des ersten Messelements zu ermitteln. Die Berechung des Temperaturdifferenzwerts (ΔTn) erfolgt insbesondere mittels der Auswerteeinheit.
  • Der Vorteil der Auswertung mit dem Temperaturdifferenzwert (ΔTn) ist insbesondere, dass äußere Temperatureinflüsse weitestgehend kompensiert werden können, so dass hauptsächliche die strombedingte Erwärmung am ersten Messelement betrachtet werden kann. Es kann folglich eine exakte Analyse einer strombedingten Erwärmung des ersten Messelements erfolgen, so dass eine verbesserte Ermittlung einer anstehenden Überlast des Verbrauchers erfolgen kann.
  • Mittels des ersten und zweiten Temperaturfühlers wird folglich jeweils eine Temperatur des ersten Messelements zeitgleich erfasst und der Auswerteeinheit bereitgestellt. Die Auswerteeinheit kann somit je Zyklus (Intervall, in welchem durch die erste Temperaturmesseinheit Temperaturen zeitgleich ermittelt werden) einen Temperaturdifferenzwert (ΔTn) ermitteln und auswerten. Sie kann somit vorzugsweise je Zyklus kontrollieren, ob ein strombedingtes Erwärmungsverhalten des ersten Messelements, welches eine anstehende Überlast des Verbrauchers charakterisiert, stattgefunden hat oder nicht.
  • Das erste Messelement ist vorzugsweise ein Widerstand (z.B. Shunt) mit einer konstanten Verlustleistung.
  • Die Auswertung des Temperaturdifferenzwerts (ΔTn) durch die Auswerteeinheit zur Ermittlung einer anstehenden Überlast des Verbrauchers kann unterschiedlich erfolgen. Hierfür ist vorzugsweise ein Referenzwert in der Auswerteeinheit hinterlegt, welcher mit einem Temperaturdifferenzwert (ΔTn) oder mehreren Temperaturdifferenzwerten (ΔTn) oder einem hieraus gebildeten Wert verglichen werden kann, so dass eine anstehende Überlast am Verbraucher ermittelt werden kann. Durch den Referenzwert wird somit vorzugsweise das strombedingte Erwärmungsverhalten des ersten Messelements charakterisiert.
  • Ein mit der Erfindung erzielte Vorteil besteht insbesondere darin, dass mittels einer derartigen Vorrichtung bzw. mittels eines derartigen Verfahrens sowohl AC- als auch DC-Ströme erfasst werden können. Es kann somit eine anstehende Überlast bei AC- und DC-Verbrauchern ermittelt werden. Ferner kann ein gegenüber einem Bimetall-Messverfahren verbesserter Einstellbereich erzielt werden. Ebenso kann ein thermisches Gedächtnis realisiert werden, da bei einer anstehenden Überlast das erste Messelement stark erhitzt wird, so dass anhand der Temperatur und somit Abkühlung des ersten Messelements ein Abkühlverhalten des Verbrauchers nachvollzogen werden kann. Eine derartige Auswertung kann beispielsweise ferner durch die Auswerteeinheit realisiert werden.
  • In einer vorteilhaften Ausführungsform der Erfindung umfasst die erste Temperaturmesseinheit ferner einen dritten Temperaturfühler, welcher gleichzeitig mit dem ersten und zweiten Temperaturfühler der ersten Temperaturmesseinheit eine Temperatur des ersten Messelements erfassen kann. Durch den dritten Temperaturfühler (Tn3) erfolgt insbesondere eine Temperaturerfassung an einem Messpunkt der ersten Messeinheit, welche durch den ersten und zweiten Temperaturfühler der ersten Temperaturmesseinheit nicht erfasst wird. Der Messpunkt des dritten Temperaturfühlers am ersten Messelement weist in mindestens einem stromdurchflossenen Zustand des ersten Messelements vorzugsweise eine andere Temperatur auf als der Messpunkt des zweiten Temperaturfühlers am ersten Messelement.
  • Mit dem ersten, zweiten und dritten Temperaturfühler wird vorzugsweise die gleiche Seitenfläche des ersten Messelements überwacht. Auf diese Weise kann eine äußerst präzise Ermittlung des Erwärmungsverhaltens des ersten Messelements erfolgen.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist der erste, zweite und dritte Temperaturfühler derart zum ersten Messelement angeordnet, dass der erste Temperaturfühler eine Temperatur an einem ersten Messpunkt des ersten Messelements erfassen kann, der zweite Temperaturfühler eine Temperatur an einem zweiten Messpunkt des ersten Messelements erfassen kann und der dritte Temperaturfühler eine Temperatur an einem dritten Messpunkt des ersten Messelements erfassen kann, wobei in Bezug zu einer ersten Seitenfläche des ersten Messelements der zweite Messpunkt zwischen dem ersten und dritten Messpunkt auf der ersten Seitenfläche liegt.
  • Vorzugsweise liegt in mindestens einem stromdurchflossenen Zustand des ersten Messelements am zweiten Messpunkt im Vergleich zum ersten und dritten Messpunkt eine höhere Temperatur vor. Der erste Messpunkt Befindet sich hierbei insbesondere im Anfangsbereich einer Achse der Seitenfläche des ersten Messelements, der dritte Messpunkt im Endbereich der Achse und der zweite Messpunkt im mittleren Bereich der Achse der Seitenfläche des ersten Messelements. Die Achse der Seitenfläche des ersten Messelements ist vorzugsweise die Längsachse der Seitenfläche.
  • Zur Ermittlung des Temperaturdifferenzwerts (ΔTn) kann nun beispielsweise folgende Formel angewandt werden: ΔT n = T n 2 - T n 1 + T n 2 - T n 3 2 = T n 2 - T n 1 + T n 3 2
    Figure imgb0001
    • ΔTn: Temperaturdifferenzwert
    • Tn1 Ermittelte Temperatur des ersten Temperaturfühlers am ersten Messpunkt
    • Tn2: Ermittelte Temperatur des zweiten Temperaturfühlers am zweiten Messpunkt
    • Tn3: Ermittelte Temperatur des dritten Temperaturfühlers am dritten Messpunkt
    • n: Betrachtetes Messelement und somit betrachtete Strombahn.
  • Der Temperaturdifferenzwert kann durch die Auswerteeinheit je Zyklus einer zeitgleichen Ermittlung der einzelnen Temperaturen der Temperaturfühler ermittelt werden. Durch eine entsprechende Auswertung des Temperaturdifferenzwerts in der Auswerteeinheit kann letztendlich erkannt werden ob ein ordnungsgemäßer Betrieb des Verbrauchers vorliegt oder ob eine Überlast am Verbraucher ansteht oder bereits vorliegt.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist der jeweilige Temperaturfühler maximal 2 mm von dem ersten Messelement beabstandet. Hierdurch kann eine genaue Erfassung der Temperatur des entsprechenden Messpunkts am ersten Messelement durch den entsprechenden Temperaturfühler erfolgen.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist zwischen den Temperaturfühlern der ersten Temperaturmesseinheit und dem Messelement eine elektrisch isolierende Isolationsschicht angeordnet. Hierdurch kann eine sichere galvanische Trennung der ersten Temperaturüberwachungseinrichtung zum ersten Messeelement sichergestellt werden. Durch die elektrisch isolierende Isolationsschicht wird vorzugsweise eine gute thermische Kopplung der Temperaturfühler mit dem entsprechenden Messelement bereitgestellt. Die elektrisch isolierende Isolationsschicht wird vorzugsweise als Träger für die Temperaturfühler verwendet, so dass die Temperaturfühler auf dem Träger befestigt sind. Die elektrisch isolierende Isolationsschicht ist beispielsweise FR4 oder eine Keramik.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung kann die Auswerteeinheit anhand der durch die Temperaturfühler zeitgleich ermittelten Temperaturen des ersten Messelements einen Temperaturdifferenzwert (ΔTn) des ersten Messelements ermitteln. Steht eine Überlast am Verbraucher an, so liegt im Vergleich zum Normalbetrieb/Nennbetrieb ein erhöhter Stromfluss und somit eine erhöhte strombedingte Erwärmung am ersten Messelement vor. Das erste Messelement weist folglich ein charakteristisches thermisches Verhalten auf, welches mittels des Temperaturdifferenzwertes erfasst werden kann. Durch den vorzugsweise in der Auswerteeinheit hinterlegten Referenzwert wird insbesondere das Erwärmungsverhalten des ersten Messelements in Abhängigkeit des Stromflusses und der Stromflusszeit durch das erste Messelement charakterisiert. Durch einen Vergleich des Temperaturdifferenzwerts (ΔTn) des ersten Messelements mit dem Referenzwert kann somit zwischen einem durch den Normalbetrieb strombedingten Erwärmungsverhalten und einem durch eine anstehende Überlast strombedingten Erwärmungsverhalten des ersten Messelements unterschieden werden. Der Vergleich mit dem Referenzwert kann hierbei mit einem einzigen Temperaturdifferenzwert (ΔTn) aber auch mit mehreren Temperaturdifferenzwerten (ΔTn) erfolgen.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung kann die Auswerteeinheit bei einer ermittelten anstehenden Überlast am Verbraucher ein Warnsignal, insbesondere ein elektrisches Warnsignal, ausgeben. Durch das Warnsignal wird vorzugsweise eine Schaltstellung eines Schaltelements der Vorrichtung gesteuert. Durch das Schaltelement wird entweder ein Hilfsstromkreis oder ein Hauptstromkreis (Zuleitung der Energieversorgung des elektrischen Verbrauchers) direkt gesteuert.
  • Steuert das Schaltelement den Hilfsstromkreis, so wird das Schalelement geöffnet oder geschlossen, so dass ein den Hauptstromkreis schaltendes Schaltgerät (z.B. Schütz) angesteuert wird. Dieses den Hauptstromkreis schaltende Schaltgerät öffnet daraufhin den Hauptstromkreis, so dass der Stromfluss zum Verbraucher unterbrochen wird und somit die Überlast am Verbraucher vermieden wird.
  • Steuert das Schaltelement den Hauptstromkreis, so wird das Schalelement geöffnet, so dass der Stromfluss zum Verbraucher unterbrochen wird und somit die Überlast am Verbraucher vermieden wird.
  • Liegt ein mehrphasiger Verbraucher vor, so werden vorzugsweise durch eine Ermittlung einer anstehenden Überlast an lediglich einer Strombahn der Vorrichtung (und somit an lediglich einer Phase des Verbrauchers) alle Phasen des Verbrauchers geöffnet, so dass der Stromfluss zum Verbraucher vollständig unterbunden wird.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst die Vorrichtung ferner eine zweite Strombahn, welche zwei Leitungen umfasst, wobei die Überwachungseinrichtung ferner eine zweite Temperaturmesseinheit und ein zweites Messelement, welches eine elektrisch leitende Verbindung zwischen den zwei Leitungen der zweiten Strombahn herstellt, umfasst, wobei die zweite Temperaturmesseinheit von dem zweiten Messelement galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler umfasst, wobei der erste und zweite Temperaturfühler der zweiten Temperaturmesseinheit gleichzeitig jeweils eine Temperatur des zweiten Messelements erfassen kann und die Auswerteeinheit anhand der erfassten Temperaturen der zweiten Temperaturmesseinheit eine anstehende Überlast am Verbraucher ermitteln kann. Der erste und zweite Temperaturfühler ist insbesondere derart zum zweiten Messelement angeordnet, dass durch eine zeitgleiche Erfassung der Temperatur durch die Auswerteeinheit ein strombedingtes charakteristisches Erwärmungsverhalten des zweiten Messelements ermittelbar ist.
  • In der Auswerteeinheit ist vorzugsweise ein Referenzwert hinterlegt, welcher das Erwärmungsverhalten des zweiten Messelements charakterisiert. Die Auswerteeinheit kann somit durch einen Vergleich des ermittelten strombedingten Erwärmungsverhaltens des zweiten Messelements mit dem in der Auswerteeinheit hinterlegten Referenzwert eine anstehende Überlast am Verbraucher ermitteln. Anhand des strombedingten charakteristischen Erwärmungsverhaltens des zweiten Messelements kann somit die Auswerteeinheit zwischen dem Normalbetrieb und einer anstehenden Überlast unterscheiden.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst die zweite Temperaturmesseinheit ferner einen dritten Temperaturfühler, welcher gleichzeitig mit dem ersten und zweiten Temperaturfühler der zweiten Temperaturmesseinheit eine Temperatur des zweiten Messelements erfassen kann. Hierbei erfolgt insbesondere eine Temperaturerfassung an einem Messpunkt der zweiten Messeinheit, welche durch den ersten und zweiten Temperaturfühler der zweiten Temperaturmesseinheit nicht erfasst wird.
  • Die Anordnung der Temperaturfühler der zweiten Temperaturmesseinheit gegenüber dem zweiten Messelement kann entsprechend der Anordnung der ersten Temperaturmesseinheit gegenüber dem ersten Messelement ausgebildet sein. Ebenso kann die Auswertung der erfassten Temperaturen der zweiten Temperaturmesseinheit durch die Auswerteeinheit äquivalent zur Auswertung der Temperaturen der ersten Temperaturmesseinheit durch die Auswerteeinheit erfolgen. Ferner kann eine elektrisch isolierende Isolationsschicht (wie zwischen dem ersten Messelement und der ersten Temperaturmesseinheit) zwischen den Temperaturfühlern der zweiten Temperaturmesseinheit und dem zweiten Messelement angeordnet sein.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst die Vorrichtung eine dritte Strombahn, welche zwei Leitungen umfasst, wobei die Überwachungseinrichtung ferner eine dritte Temperaturmesseinheit und ein drittes Messelement, welches eine elektrisch leitende Verbindung zwischen den beiden Leitungen der dritten Strombahn herstellt, umfasst, wobei die dritte Temperaturmesseinheit von dem dritten Messelement galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler umfasst, wobei der erste und zweite Temperaturfühler der dritten Temperaturmesseinheit gleichzeitig jeweils eine Temperatur des dritten Messelements erfassen kann und die Auswerteeinheit anhand der erfassten Temperaturen der dritten Temperaturmesseinheit eine anstehende Überlast am Verbraucher ermitteln kann. Der erste und zweite Temperaturfühler ist insbesondere derart zum dritten Messelement angeordnet, dass durch eine zeitgleiche Erfassung der Temperatur durch die Auswerteeinheit ein strombedingtes Erwärmungsverhalten des dritten Messelements ermittelbar ist.
  • Die Auswerteeinheit kann vorzugsweise durch einen Vergleich des ermittelten Erwärmungsverhaltens des dritten Messelements mit einem in der Auswerteeinheit hinterlegten Referenzwert eine anstehende Überlast am Verbraucher ermitteln. Durch den Referenzwert ist der Auswerteeinheit insbesondere das Erwärmungsverhalten des dritten Messelements bekannt, so dass eine anstehende Überlast des Verbrauchers ermittelt werden kann.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst die dritte Temperaturmesseinheit ferner einen dritten Temperaturfühler, welcher gleichzeitig mit dem ersten und zweiten Temperaturfühler der dritten Temperaturmesseinheit eine Temperatur des ersten Messelements erfassen kann. Hierbei erfolgt insbesondere eine Temperaturerfassung an einem Messpunkt der dritten Messeinheit, welche durch den ersten und zweiten Temperaturfühler der dritten Temperaturmesseinheit nicht erfasst wird.
  • Die Anordnung der Temperaturfühler der dritten Temperaturmesseinheit gegenüber dem dritten Messelement kann entsprechend der Anordnung der ersten Temperaturmesseinheit gegenüber dem ersten Messelement ausgebildet sein. Ebenso kann die Auswertung der erfassten Temperaturen der dritten Temperaturmesseinheit durch die Auswerteeinheit äquivalent zur Auswertung der Temperaturen der ersten Temperaturmesseinheit durch die Auswerteeinheit erfolgen. Ferner kann eine elektrisch isolierende Isolationsschicht (wie zwischen dem ersten Messelement und der ersten Temperaturmesseinheit) zwischen den Temperaturfühlern der dritten Temperaturmesseinheit und dem dritten Messelement angeordnet sein.
  • Die elektrisch isolierende Isolationsschicht ist vorzugsweise ein Trägermaterial für die entsprechenden Temperaturfühler. Hierbei sind vorzugsweise die Temperaturfühler der ersten, zweiten und dritten Temperaturmesseinheit auf derselben Isolationsschicht platziert.
  • Es ist ebenso denkbar, dass die erste und/oder zweite und/oder dritte Temperaturmesseinheit weitere Temperaturfühler umfasst, so dass eine genauere Ermittlung des strombedingten Erwärmungsverhaltens des zugehörigen Messelements erfolgen kann.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist der jeweilige Temperaturfühler derart ausgebildet, dass er in Abhängigkeit der vorliegenden Temperatur einen charakteristischen Zustand einnimmt. Der Temperaturfühler ist insbesondere ein Thermocouble, Thermodraht oder temperaturabhängiger Halbleiter (z.B. Diode). Wird beispielsweise eine Diode als Temperaturfühler verwendet, so kann anhand einer Messung der Spannung an der Diode ein Rückschluss auf die vorliegende Temperatur gewonnen werden. Eine Temperaturänderung des ersten Messelements würde folglich zu einer Temperaturänderung an der Diode führen, welche zu einer Spannungsänderung führt.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist das erste Messelement und sofern vorhanden zweite und/oder dritte Messelement jeweils ein elektrischer Widerstand, insbesondere ein Shunt. Vorzugsweise weist das Messelement eine konstante Verlustleistung und eine strombedingtes charakteristisches Erwärmungsverhalten auf.
  • Der Auswerteeinheit liegt vorzugsweise ein Teil des Erwärmungsverhaltens des jeweiligen Messelements als Referenzwert vor, so dass sie durch einen Vergleich des ermittelten strombedingten Erwärmungsverhaltens des Messelements mit dem Referenzwert eine anstehende Überlast erkennen kann. Sind die Messelemente und die zugehörigen Temperaturfühler der Temperaturmesseinheit gleich ausgebildet, so ist der Referenzwert für die Messelemente gleich.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Vorrichtung ein Schaltgerät, insbesondere ein Überlastrelais oder ein Leistungsschalter. Die Vorrichtung ist vorzugsweise dezentral vom Verbraucher angeordnet, d.h. sie ist kein Bestandteil des Verbrauchers (z.B. Elektromotor).
  • Die Temperaturfühler der ersten, zweiten und/oder dritten Temperaturmesseinheit können vorzugsweise Temperaturunterschiede von ca. 4 Kelvin erfassen.
  • Das erste, zweite und/oder dritte Messelement weist vorzugsweise im Nennbetrieb eine Temperatur von ca. 60-100°C auf. Bei einer maximalen Überlast am Verbrauche kann hingegen eine Temperatur von 600-700°C am entsprechenden Messelement vorliegen.
  • Im Folgenden werden die Erfindung und Ausgestaltungen der Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen:
  • FIG 1
    eine schematische Darstellung einer ersten Strombahn, welche eine Überwachungseinrichtung aufweist,
    FIG 2
    eine schematische Darstellung einer Vorrichtung zum Schutz eines elektrischen Verbrauchers, und
    FIG 3
    eine schematische Darstellung einer Vorrichtung zum Schutz eines elektrischen Verbrauchers, wobei eine Überwachungseinrichtung auf einer Leiterplatte aufgebracht ist.
  • FIG 1 zeigt eine schematische Darstellung einer ersten Strombahn, welche eine Überwachungseinrichtung aufweist. Die abgebildete Strombahn ist Bestandteil einer Vorrichtung zum Schutz eines nachgeschalteten Verbrauchers. Mittels der Überwachungseinrichtung kann eine anstehende Überlast des Verbrauchers ermittelt werden. Hierfür wird die Vorrichtung in den Strompfad des Verbrauchers integriert. Ist beispielsweise der Verbraucher ein dreiphasiger Drehstrommotor so weist mindestens eine Zuleitung (Phase) des Drehstrommotors die abgebildete Strombahn und Überwachungseinrichtung auf.
  • Die erste Strombahn umfasst eine erste Leitung 101 und eine zweite Leitung 102. Die Überwachungseinrichtung umfasst eine erste Temperaturmesseinheit, eine Auswerteeinheit 4 und ein erstes Messelement 10. Die erste Temperaturmesseinheit umfasst einen ersten Temperaturfühler 11, einen zweiten Temperaturfühler 12 und einen dritten Temperaturfühler 13.
  • Das erste Messelement 10 ist zwischen der ersten Leitung 101 und der zweiten Leitung 102 der ersten Strombahn angeordnet, so dass ein Strom von der ersten Leitung 101 über das erste Messelement 10 zur zweiten Leitung 102 fließen kann. Da über die erste und zweite Leitung 101,102 die Energieversorgung des nachgeschalteten Verbrauchers erfolgt, fließt während des Betriebs des nachgeschalteten Verbrauchers der Strom über das erste Messelement 10. In Abhängigkeit des vorliegenden Betriebszustandes des nachgeschalteten Verbrauchers liegt eine Stromhöhe am ersten Messelement 10 vor. In Abhängigkeit dieser Stromhöhe und der Stromflusszeit am ersten Messelement 10 liegt ein charakteristisches Erwärmungsverhalten des ersten Messelementes 10 vor. Mittels der Temperaturfühler 11,12,13 kann das charakteristische Erwärmungsverhalten des ersten Messelements 10 erfasst und der Auswerteeinheit 4 bereitgestellt werden. Befindet sich der Verbraucher kurz vor einer thermischen Überlast, so liegt eine erhöhte Stromhöhe am ersten Messelement 10 vor. Durch eine Analyse der charakteristischen Erwärmung des ersten Messelementes 10 durch die Auswerteeinheit 4 kann somit ein Rückschluss auf den vorliegenden Zustand des nachgeschalteten Verbrauchers erfolgen. Hierfür ist in der Auswerteeinheit ein Referenzwert hinterlegt, welcher das Erwärmungsverhalten des ersten Messelements 10 bei einer anstehenden Überlast des nachgeschalteten Verbrauchers charakterisiert. Im Nennbetrieb liegt üblicherweise eine Temperatur von ca. 60 bis 100°C am ersten Messelement 10 vor. Kommt es jedoch zu einer Überlast am Verbraucher, so kann durch den erhöhten Stromfluss eine Temperatur am ersten Messelement 10 von bis zu 700°C vorliegen.
  • Durch eine Überwachung der Temperatur des ersten Messelementes 10 kann somit eine anstehende Überlast des Verbrauchers detektiert werden. In diesem Ausführungsbeispiel umfasst die Temperaturmesseinheit 18 hierfür drei Temperaturfühler 11,12,13. Eine Ausführungsform mit lediglich zwei Temperaturfühlern oder mehr als drei Temperaturfühlern je Temperaturmesseinheit ist ebenso denkbar. Der erste, zweite und dritte Temperaturfühler 11,12,13 ist maximal 2 mm von dem ersten Messelement 10 beabstandet und kann jeweils eine Temperatur eines spezifischen Messpunkts des ersten Messelements 10 erfassen. Hierbei werden durch die drei Temperaturfühler 11, 12,13 nicht die gleichen Messpunkte am ersten Messelement 10 detektiert. Zwischen den drei Temperaturfühlern 11,12,13 und dem ersten Messelement 10 ist eine elektrisch isolierende Isolationsschicht 51 angeordnet, so dass eine galvanische Trennung zwischen dem ersten Messelement und den drei Temperaturfühlern 11,12,13 sichergestellt ist. Die drei Temperaturfühler 11,12,13 sind hierbei gemeinsam auf der elektrisch isolierenden Isolationsschicht 51 befestigt.
  • Zur Ermittlung des vorliegenden Erwärmungsverhaltens des ersten Messelements 10 ist der erste, zweite und dritte Temperaturfühler 11,12,13 derart gegenüber dem ersten Messelement 10 angeordnet, dass Temperaturen von drei unterschiedlichen Messpunkten einer ersten Seitenfläche 6 des ersten Messelements 10 erfasst werden können. Diese Messpunkte sind jeweils derart über die erste Seitenfläche 6 verteilt, dass durch eine gleichzeitige Ermittlung der Temperaturen der drei Messpunkte mittels der drei Temperaturfühler 11,12,13 ein strombedingtes charakteristisches Erwärmungsverhalten des ersten Messelements 10 ermittelbar ist.
  • Der Messpunkt des ersten und dritten Temperaturfühlers 11,13 ist insbesondere im Randbereich der Längsachse der Seitenfläche 6 des ersten Messelements 10 angeordnet, wohingegen der Messpunkt des zweiten Temperaturfühlers 12 im Zentrum Längsachse der Seitenfläche 6 des ersten Messelements 10 liegt.
  • Im aktiven Betrieb des Verbrauchers liegt am ersten Messelement 10 ein Stromfluss vor. In Abhängigkeit des Stromflusses und der Stromflusszeit weist das erste Messelement 10 ein strombedingtes charakteristisches Erwärmungsverhalten auf. Im bestromten Zustand des ersten Messelements 10 ist insbesondere die durch den zweiten Temperaturfühler ermittelte Temperatur des zentralen Messpunkts an der Seitenfläche 6 gegenüber den Temperaturen der beiden Messpunkte im Randbereich erhöht. In Abhängigkeit der Stromhöhe und der Stromflusszeit nimmt das erste Messelement 10 folglich eine charakteristische Temperatur ein, welche über den Gesamtkörper des ersten Messelements 10 unterschiedlich ausgebildet sein kann. Es liegt somit in Abhängigkeit der Stromhöhe und der Stromflusszeit am ersten Messelement 10 ein charakteristisches Erwärmungsverhalten des erste Messelements 10 vor. Durch die gleichzeitige Ermittlung der Temperaturen der drei Messpunkte am ersten Messelement 10 und einem Abgleich der ermittelten Temperaturen in der Auswerteeinheit mit einem Referenzwert kann somit ein Rückschluss auf den Betriebszustand des nachgeschalteten Verbrauchers erfolgen, so dass eine anstehende Überlast ermittelt werden kann.
  • Dadurch, dass insbesondere das strombedingte Erwärmungsverhalten des ersten Messelements 10 durch die Temperaturmesseinheit erfasst wird, können insbesondere externe Störgrößen (innere und äußere Fremdheizquellen) weitestgehend kompensiert werden.
  • Die Seitenfläche 6 des ersten Messelements 10 weist insbesondere eine Größe von unter 10 cm2 auf.
  • Der erste, zweite und dritte Temperaturfühler 11,12,13 ist jeweils ein Halbleiter, insbesondere eine Diode, so dass über eine Messung deren Spannung ein Rückschluss auf die vorliegende Temperatur des entsprechenden Messpunktes am ersten Messelement gewonnen werden kann.
  • Die ermittelten Temperaturen des ersten, zweiten und dritten Temperaturfühlers 11,12,13 werden der Auswerteeinheit 4 bereitgestellt, so dass diese das vorliegende Erwärmungsverhalten des ersten Messelements 10 ermitteln kann. Mittels der Temperaturfühler 11,12,13 kann insbesondere jeweils ein Temperaturunterschied von ca. 4 Kelvin im Beriech von -10°C bis 200°C ermittelt werden.
  • Das erste Messelement 10 ist ein metallischer elektrischer Widerstand (Shunt), welcher ein charakteristisches Erwärmungsverhalten aufweist. Der Auswerteeinheit 4 liegt das charakteristische Erwärmungsverhalten des ersten Messelementes 10 als Referenzwert vor, so dass sie anhand eines Vergleichs der ermittelten vorliegenden Temperatur des ersten Messelements 10 und somit des Erwärmungsverhaltens des ersten Messelements 10 mit dem in der Auswerteeinheit 4 hinterlegten Referenzwert einen Rückschluss auf den vorliegenden Auslastungszustand (Normalbetrieb / anstehende Überlast) des Verbrauchers gewinnen kann. Die Auswerteeinheit 4 kann folglich fortlaufend einen die Stromhöhe und Stromflusszeit charakterisierenden Wert überwachen, so dass anhand des vorliegenden Erwärmungsverhaltens des ersten Messelementes 10 und somit anhand dessen thermischen Zustandes ein Motor bzw. Leitungsschutz abgeleitet werden kann. Es kann somit überwacht werden, ob eine Überlast am nachgeschalteten Verbraucher ansteht oder nicht.
  • In der FIG 1 wird lediglich eine Phase durch die Überwachungseinrichtung überwacht. Es ist jedoch ebenso denkbar, dass bei mehrphasigen Verbrauchern jede Phase oder zumindest zwei Phasen jeweils eine Temperaturmesseinheit umfasst/-en.
  • Die Temperaturfühler 11,12 können die Temperaturunterschiede mit einer hohen Auflösung, beispielsweise ca. 4 Kelvin, messen. Auf diese Weise kann mit geringen Temperaturunterschieden und somit mit geringen elektrischen Widerstandswerten des erstens Messelements 10 gearbeitet werden. Hierdurch kann der Messbereich hinsichtlich der Stromuntergrenze IU erheblich nach unten vergrößert werden, so dass der Einstellbereich beispielsweise gegenüber der Bimetalllösung erheblich erweitert werden kann. Ein typischer Wert für die notwendige Temperatur bei Bimetalllösungen ist beispielsweise 60 Kelvin Übertemperatur. Währenddessen bei einer Lösung mittels eines ersten Messelementes 10 eine strombedingte Erwärmungen von bereits 4 Kelvin ermittelbar ist. Hiermit lassen sich Einstellbereich größer 1 zu 4 realisieren.
  • Die Erwärmung des ersten Messelements 10 ist weitgehend frequenzunabhängig und somit für AC- und DC-Anwendungen tauglich.
  • FIG 2 zeigt eine schematische Darstellung einer Vorrichtung 1 zum Schutz eines elektrischen Verbrauchers 2. Die Vorrichtung 1 ist in diesem Ausführungsbeispiel ein Überlastrelais 1, mit welchem ein Verbraucher 2, nämlich ein dreiphasiger elektrischer Motor, überwacht werden kann. Das Überlastrelais 1 ist hierfür in den Versorgungsstrang des Verbrauchers 2 zwischengeschaltet, so dass mittels des Überlastrelais 1 die drei Phasen des Verbrauchers 2 überwacht werden können.
  • Damit das Überlastrelais 1 in den Versorgungsstrang des elektrischen Verbrauchers 2 integriert werden kann, weist es eingangsseitige Anschlussvorrichtungen 106,206,306 und ausgangsseitige Anschlussvorrichtungen 107,207,307 auf. In dem Überlastrelais 1 werden die einzelnen Phasen des Verbrauchers 2 galvanisch getrennt geführt. Über die erste Strombahn wird die erste Phase, über die zweite Strombahn wird die zweite Phase und über die dritte Strombahn wird die dritte Phase des Verbrauchers 2 geführt. Die erste, zweite und dritte Strombahn sowie dessen Überwachungseinrichtung ist jeweils entsprechend der in der Figur 1 dargestellten und beschriebenen Ausführungsform ausgebildet. Lediglich die Auswerteeinheit 4 wurde zusammengefasst. Es ist aber ebenso denkbar, dass je Strombahn eine separate Auswerteeinheit 4 vorliegt.
  • Das Überlastrelais 1 weist eine Überwachungseinrichtung auf, mit welcher eine anstehende Überlast des elektrischen Verbrauchers 2 detektiert werden kann. Hierfür umfasst die erste Strombahn, wie bereits in FIG 1 gezeigt, eine erste Leitung 101 und eine zweite Leitung 102. Zwischen der ersten Leitung 101 und der zweiten Leitung 102 ist ein erstes Messelement 10 angeordnet, welches eine elektrische Verbindung zwischen den beiden Leitungen 101 und 102 herstellen. Das erste Messelement 10 ist insbesondere ein metallischer, elektrischer Widerstand. In Abhängigkeit der vorliegenden Stromhöhe und Stromflusszeit in der ersten Strombahn 100 liegt ein definiertes Erwärmungsverhalten des ersten Messelementes 10 vor.
  • Die Temperatur des ersten Messelementes 10 kann mittels eines ersten, zweiten und dritten Temperaturfühlers 11,12,13 einer ersten Temperaturmesseinheit gleichzeitig erfasst werden. Die gleichzeitig erfasste Temperatur der Temperaturfühler 11,12, 13 der ersten Temperaturmesseinheit wird der Auswerteeinheit 4 bereitgestellt. Eine elektrisch isolierende Schicht 51 zwischen dem ersten Messelement 10 und den Temperaturfühlern 11,12,13 stellt eine galvanische Trennung zwischen den Temperaturfühlern 11,12,13 und dem ersten Messelement 10 her und dient als Trägermaterial der Temperaturfühler 11,12,13.
  • Die Energieversorgung der zweiten Phase des Verbrauchers 2 wird über die zweite Strombahn geführt. Die zweite Strombahn weist eine erste Leitung 201 und eine zweite Leitung 202 auf. Zwischen der ersten und zweiten Leitung 201 und 202 ist ein zweites Messelement 20 angeordnet, welches eine elektrische Verbindung zwischen der ersten Leitung 201 und der zweiten Leitung 202 sicherstellt. Das zweite Messelement 20 ist ebenso wie das erste Messelement 10 der ersten Strombahn ein definierter Widerstand, welcher in Abhängigkeit des vorliegenden Stromflusses und der vorliegenden Stromflusszeit einen charakteristischen thermischen Zustand einnimmt. Die Temperaturverteilung am zweiten Messelement 20 kann mittels einer zweiten Temperaturmesseinheit ermittelt werden. Die zweite Temperaturmesseinheit umfasst hierfür einen ersten, zweiten und dritten Temperaturfühler 21,22,23. Die Temperaturfühler 21,22,23 der zweiten Temperaturmesseinheit sind ebenso mittels einer elektrisch isolierenden Isolationsschicht 52 galvanisch von dem zweiten Messelement 20 getrennt. Durch eine Abgleich der zeitgleich erfassten Temperaturen der Temperaturfühler 21,22,23 der zweiten Temperaturmesseinheit mit einem in der Auswerteeinheit 4 hinterlegten Referenzwert, welcher eine Anstehende eine Überlast charakterisierendes thermisches Verhalten des zweiten Messelements 20 charakterisiert, kann die Auswerteeinheit 4 den vorliegenden strombedingten thermischen Zustand des zweiten Messelements ermitteln und somit eine anstehende Überlast am Verbraucher detektieren.
  • Die Energieversorgung der dritten Phase des Verbrauchers 2 wird über die dritte Strombahn geführt, so dass die dritte Phase auf Überlast überwacht werden kann. Die dritte Strombahn weist eine erste Leitung 301 und eine zweite Leitung 302 auf. Zwischen der ersten und zweiten Leitung 301,302 ist ein drittes Messelement 30 angeordnet, welches die erste und zweite Leitung 301,302 elektrisch leitend verbindet. Ein über die dritte Strombahn fließender Strom fließt folglich über das dritte Messelement 30. In Abhängigkeit der Stromhöhe und der Stromflusszeit an der dritten Phase liegt ein charakteristisches strombedingtes Erwärmungsverhalten am dritten Messelement 30 vor. Zur Ermittlung des strombedingten Erwärmungsverhaltens wird die Temperatur des dritten Messelements 30 an drei Messpunkten mittels drei Temperaturfühler 31,32,33 gleichzeitig erfasst. Die erfasste Temperatur wird der Auswerteeinheit 4 zur weiteren Analyse bereitgestellt. Zwischen den Temperaturfühlern 31,32,33 und dem dritten Messelements 30 ist eine elektrisch isolierende Schicht 53 angeordnet, so dass eine galvanische Trennung der dritten Temperaturmesseinheit von dem dritten Messelement 30 erfolgt.
  • Die einzelnen Strombahnen weisen folglich jeweils ein Messelement 10,20,30 auf, welches in Abhängigkeit der anliegenden Stromhöhe und der Stromflusszeit eine charakteristische strombedingte Erwärmung vollzieht. Anhand einer Überwachung des strombedingten thermischen Verhaltens der jeweiligen Messelemente 10,20,30 und eines Vergleichs mit dem hinterlegten Referenzwert kann ein Rückschluss auf den vorliegenden Stromfluss in der entsprechenden Strombahn und somit ein Rückschluss auf den vorliegenden Betriebszustand des Verbrauchers 2 gewonnen werden, so dass eine anstehende Überlast am Verbraucher 2 durch die Auswerteeinheit 4 abgeleitet werden.
  • Das erste, zweite und dritte Messelement 10,20,30 sowie die erste, zweite und dritten Temperaturmesseinheit ist jeweils baugleich ausgebildet. Die Auswertung der ermittelten Temperaturen der ersten, zweiten und dritten Temperaturmesseinheit kann folglich einheitlich erfolgen.
  • Der Auswerteeinheit 4 ist die Erwärmungscharakteristik des ersten, zweiten und dritten Messelementes 10,20,30 bekannt und als Referenzwert hinterlegt, so dass die Auswerteeinheit 4 durch einen Abgleich der ermittelten Temperaturen der ersten, zweiten und/oder dritten Temperaturmesseinheit mit dem Referenzwert eine anstehende Überlast des elektrischen Verbrauchers 2 ermitteln kann. Bei einer ermittelten anstehenden Überlast des Verbrauchers 2 gibt die Auswerteeinheit 4 ein Warnsignal aus, so dass nicht abgebildete Schaltelemente des Verbrauchers 2 geschaltet werden und somit der Energiefluss zum Verbraucher 2 unterbunden wird. Auf diese Weise kann eine thermische Beschädigung des Verbrauchers 2 hinsichtlich einer Überlast durch die Vorrichtung 1 vermieden werden.
  • Dadurch, dass eine thermische Überlast des Verbrauchers 2 durch eine Erwärmung des Messelements 10,20,30 ermittelt wird, liegt ebenso ein thermisches Gedächtnis durch das Messelement 10,20,30 vor, so dass es kurz nach einer thermischen Überlast nicht versehentlich zu einem Zuschalten des Verbrauchers kommen kann. Erst nachdem das Messelement 10,20,30 eine definierte Abkühlung erfahren hat, kann der Verbraucher 2 erneut an das Versorgungsnetz geschaltet werden, so dass dieser wieder mit Strom versorgt wird. Die Ermittlung der notwendigen Abkühlung des Verbrauchers erfolgt durch eine Analyse der Temperaturen der Messelemente 10,20,30. Hierfür wird seitens der jeweiligen Temperaturmesseinheit die Temperatur des betroffenen Messelements 10,20,30 ermittelt und seitens der Auswerteeinheit 4 ausgewertet. Hierfür liegend der Auswerteeinheit 4 ebenso Abkühlungsreferenzwerte vor.
  • Die Vorrichtung 1 zur Überwachung einer thermischen Überlast eines Verbrauchers 2 wurde in FIG 2 beispielhaft anhand eines Überlastrelais 1 beschrieben. Ebenso kann die Vorrichtung 1 beispielsweise ein Leistungsschalter (z.B. Motorschutzschalter, Anlagenschutzschalter) sein.
  • Die Temperaturfühler 11,12,13,21,22,23,31,32,33 sind jeweils Halbleiter, insbesondere Dioden, so dass mittels einer Analyse deren Spannung die Temperatur am Temperaturfühler und somit am zugehörigen Messpunkt des entsprechenden Messelements 10,20,30 ermittelt werden kann. Zur Steigerung der Messgenauigkeit können ebenso mehrere Temperaturfühler an den Messelementen 10,20,30 platziert werden. Ebenso ist es denkbar, dass je Messelement 10,20,30 lediglich zwei Temperaturfühler platziert sind.
  • Als Verbraucher 2 kann ebenso eine Leitung gesehen werden, bei welcher ein Schutz vor einer thermischen Überlast sichergestellt werden muss.
  • Ein großer Vorteil der Vorrichtung 1 und insbesondere der Überwachungseinrichtung besteht darin, dass die galvanische Trennung zwischen den einzelnen Phasen sowie der jeweiligen Temperaturfühler 11,12,13,21,22,23,31,32,33 zu den entsprechenden Strombahnen leicht zu realisieren ist.
  • FIG 3 zeigt eine schematische Darstellung einer Vorrichtung zum Schutz eines elektrischen Verbrauchers, wobei eine Überwachungseinrichtung auf einer Leiterplatte 5 aufgebracht ist. Im Unterschied zur Überwachungseinrichtung gemäß Figur 2 sind hierbei die erste, zweite und dritte Temperaturmesseinheit sowie die Auswerteeinheit 4 auf einer Oberseite einer einzigen Leiterplatte 5 montiert und die Messeinheiten 10,20,30 auf der Unterseite der Leiterplatte 5 montiert.
  • Das erste Messelement 10 ist auf der Unterseite der Leiterplatte 5 montiert und ist eingangsseitig mit einer Leitung 101 und ausgangsseitig mit einer Leitung 102 verbunden. Über diese erste Strombahn erfolgt die Energieversorgung eines nachgeschalteten Verbrauchers (erste Phase).
  • Das zweite Messelement 20 ist ebenso auf der Unterseite der Leiterplatte 5 montiert und ist eingangsseitig mit einer Leitung 201 und ausgangsseitig mit einer Leitung 202 verbunden. Über diese zweite Strombahn erfolgt die Energieversorgung des nachgeschalteten Verbrauchers (zweite Phase).
  • Das dritte Messelement 30 ist ebenso auf der Unterseite der Leiterplatte 5 montiert und ist eingangsseitig mit einer Leitung 301 und ausgangsseitig mit einer Leitung 302 verbunden.
  • Über diese dritte Strombahn erfolgt die Energieversorgung des nachgeschalteten Verbrauchers (dritte Phase).
  • Auf der Oberseite (die den Messelementen 10,20,30 abgewandte Seite) der Leiterplatte 5 ist die erste, zweite und dritte Temperaturmesseinheit und die Auswerteeinheit 4 montiert. Durch die Leiterplatte erfolgt eine galvanische Trennung zwischen der ersten, zweiten und dritten Temperaturmesseinheit und der Auswerteeinheit 4 gegenüber den Messelementen 10,20,30.
  • Die erste Temperaturmesseinheit umfasst drei Temperaturfühler 11,12,13, wobei zwei Temperaturfühler 11,13 im Randbereich (Anfang und Ende) der Längsachse einer Seitenfläche des ersten Messelements 10 angeordnet sind und ein Temperaturfühler 12 im Zentrum der Längsachse der Seitenfläche des ersten Messelements 10 angeordnet ist. Auf diese Weise kann eine Temperaturdifferenzwert (ΔTn) des ersten Messelements 10 ermittelt werden.
  • Die zweite Temperaturmesseinheit umfasst drei Temperaturfühler 21,22,23, wobei zwei Temperaturfühler 21,23 im Randbereich (Anfang und Ende) der Längsachse einer Seitenfläche des zweiten Messelements 20 angeordnet sind und ein Temperaturfühler 22 im Zentrum der Längsachse der Seitenfläche des zweiten Messelements 20 angeordnet ist. Auf diese Weise kann eine Temperaturdifferenzwert (ΔTn) des zweiten Messelements 20 ermittelt werden.
  • Die Temperaturfühler 31,32,33 der dritten Temperaturmesseinheit sind gegenüber dem dritten Messelement 30 äquivalent wie die Temperaturfühler der ersten Temperaturmesseinheit gegenüber dem ersten Messelements 10 angeordnet.
  • Dadurch, dass die Temperaturfühler 11,12,13,21,22,23,31,32,33 bezüglich der Messelemente 10,20,30 an der gegenüberliegenden Seitenfläche der Leiterplatte 5 angeordnet sind, wird erreicht, dass ein gute thermisch Kopplung zwischen den Temperaturfühlern 11,12,13,21,22,23,31,32,33 und den Messelementen 10,20,30 bei gleichzeitiger galvanischer Trennung vorliegt.
  • Je Temperaturmesseinheit kann somit anhand einer gleichzeitigen Ermittlung der Temperaturen der Temperaturfühler 11,12, 13,21,22,23,31,32,33 ein Temperaturdifferenzwert (ΔTn) berechnet werden. Dieser Temperaturdifferenzwert (ΔTn) wird vorzugsweise wie folgt berechnet: ΔT n = T n 2 - T n 1 + T n 2 - T n 3 2 = T n 2 - T n 1 + T n 3 2
    Figure imgb0002
  • ΔTn:
    Temperaturdifferenzwert
    Tn1
    Ermittelte Temperatur des ersten Temperaturfühlers 11,21,31 am ersten Messpunkt
    Tn2:
    Ermittelte Temperatur des zweiten Temperaturfühlers 12,22,32 am zweiten Messpunkt
    Tn3:
    Ermittelte Temperatur des dritten Temperaturfühlers 13,23,33 am dritten Messpunkt
    n:
    Betrachtetes Messelement 10,20,30 und somit betrachtete Strombahn
  • Durch den berechneten Temperaturdifferenzwert ΔTn der jeweiligen Temperaturmesseinheit wird das Erwärmungsverhalten des jeweiligen Messelements 10,20,30 ermittelt, so dass ein Rückschluss auf eine strombedingte Erwärmung des jeweiligen Messelements erfolgen kann. Der berechnete Temperaturdifferenzwert der jeweiligen Temperaturmesseinheit kann nun mit einem in der Auswerteeinheit hinterlegten Referenzwert (SOLL-Wert) verglichen werden, so dass ein eine Überlast am Verbraucher charakterisierender thermischer Zustand des jeweiligen Messelements 10,20,30 detektiert werden kann. Durch die Auswerteeinheit 4 kann somit zu jedem Auswertezeitpunkt ein Vergleich des ermittelten Temperaturdifferenzwerts ΔTn (IST-Wert) mit dem Referenzwert (SOLL-Wert) erfolgen. Ist der ermittelte Temperaturdifferenzwerts ΔTn größer als der Referenzwert (SOLL-Wert), so liegt eine anstehende Überlast am Verbraucher vor. In der Auswerteeinheit 4 kann ferner ein Schwellwert hinterlegt sein, so dass eine vorliegende Überlast am Verbraucher detektiert wird.
  • Alternativ hierzu kann ebenso zur Ermittlung einer anstehenden Überlast am Verbraucher eine Auswertung des Temperaturdifferenzwerts ΔTn mittels eines Integrationsverfahrens erfolgen. Hierbei werden innerhalb eines Integrationsintervalls die Temperaturdifferenzwerte ΔTn einer jeweiligen Temperaturmesseinheit aufsummiert, so dass als Gesamtsumme ΔTSum gebildet wird. ΔTSum ist folglich die Summenbildung des Temperaturdifferenzwerte ΔTn über den Zeitraum des Integrationsintervalls. Die Gesamtsumme ΔTSum bildet folglich denjenigen Wärmeeintrag ab, den das entsprechende Messelement 10,20,30 während des Integrationsintervalls tintegr erfahren hat.
  • Nach folgender Formel wird hierbei der Temperaturdifferenzwert ΔTn zu den jeweiligen Auswertezeitpunkten in der Auswerteeinheit zur Gesamtsumme ΔTSum aussummiert. Δ T Sum = t = t Integer , Start t integer , Ende Δ T n dt
    Figure imgb0003
  • ΔTn:
    Ist der Temperaturdifferenzwerts des entsprechenden Messelements "n" 10,20,30 zum jeweiligen Auswertezeitpunkt, in welchem durch die entsprechende Temperaturmesseinheit gleichzeitig die Temperaturen erfasst werden.
    n:
    Betrachtetes Messelement 10,20,30 und somit betrachtete Strombahn
    t=tintegr,Start:
    Start des Integrationsintervalls
    t=tintegr,Ende:
    Ende des Integrationsintervalls
  • Als Referenzwert sind bezüglich obigen Auswerteprinzips SOLL-Werte in der Auswerteeinheit 4 hinterlegt, welche in Abhängigkeit des Integrationsintervalls tintegr einen Normalbetrieb oder eine anstehende Überlast am Verbraucher charakterisieren. Je Integrationsintervall kann somit ein Vergleich des ermittelten IST-Wertes (ΔTSum) mit dem SOLL-Wert (Referenzwert) erfolgen. Wird der SOLL-Wert (Referenzwert) durch den ermittelten IST-Wert überschritten so liegt eine anstehende Überlast am Verbraucher vor.
  • Der entsprechende SOLL-Wert ist beispielsweise in Tabellenform oder als Polynom-Formel in der Auswerteeinheit hinterlegt, so dass je Auswertezeitpunkt (Zeitpunkte des SOLL-IST-Vergleichs) ein spezifischer SOLL-Wert als Referenzwert vorliegt. Der SOLL-Wert kann hierbei insbesondere in Abhängigkeit der vorliegenden Stromflusszeit und Stromflusshöhe am entsprechenden Messelement 10,20,30 unterschiedlich sein. Ebenso kann vorzugsweise während der Analyse der Integrationsintervall variieren. In Abhängigkeit des vorliegenden Integrationsintervalls sind in der Auswerteeinheit entsprechende SOLL-Werte hinterlegt. Durch die SOLL-Werte wird vorzugsweise die Strom/Zeit-Auslösecharakteristik heutiger thermomechanischer Lösungen nachgebildet.
  • Eine weitere Auswertemethode kann durch eine Auswertung der Anstiegsgeschwindigkeit des Temperaturdifferenzwerts ΔTn erfolgen. Hierbei wird der IST-Wert nach folgender Formel berechnet: d Δ T n dt x = Δ T n x - Δ T n x - 1 t x - t x - 1
    Figure imgb0004
  • ΔTn:
    Ist der Temperaturdifferenzwert des entsprechenden Messelements "n" 10,20,30 zum jeweiligen Auswertezeitpunkt, in welchem durch die entsprechende Temperaturmesseinheit gleichzeitig die Temperaturen erfasst werden.
    n:
    Betrachtetes Messelement 10,20,30 und somit betrachtete Strombahn
    x:
    Auswertezeitpunkt (aktueller Zeitpunkt der Messauswertung)
  • In der Auswerteeinheit ist als Referenzwert ein SOLL-Wert hinterlegt, welcher den Zeitpunkt (Auslösezeitpunkt) angibt, in welchem eine Überlast am Verbraucher ansteht. Der SOLL-Wert charakterisiert hierbei eine charakteristische Anstiegsgeschwindigkeit des Temperaturdifferenzwerts ΔTn, bei dessen Überschreitung eine Überlast am Verbraucher ansteht. Der entsprechende SOLL-Wert ist beispielsweise in Tabellenform oder als Polynom-Formel in der Auswerteeinheit hinterlegt, so dass je Auswertezeitpunkt (Zeitpunkte des SOLL-IST-Vergleichs) ein spezifischer SOLL-Wert als Referenzwert vorliegt.
  • Ebenso ist es denkbar, oben beschriebene Auswertemethoden (Auswertung des Temperaturdifferenzwerts, Auswertung nach dem Integrationsverfahren des Temperaturdifferenzwerts und Auswertung der Anstiegsgeschwindigkeit des Temperaturdifferenzwerts) als Auslösekriterium zu kombinieren.
  • So ist es denkbar, dass bei kleineren Auslösezeiten und höheren Motorströmen die "Auswertung der Anstiegsgeschwindigkeit des Temperaturdifferenzwerts" erfolgt und bei längeren Auslösezeiten und kleineren Motorströmen die "Auswertung des Temperaturdifferenzwerts" erfolgt.
  • Denkbar ist auch, das Integrationsintervall der "Auswertung nach dem Integrationsverfahren des Temperaturdifferenzwerts" in Abhängigkeit zur aktuellen "Anstiegsgeschwindigkeit des Temperaturdifferenzwerts" zu verändern.
  • Ferner ist es denkbar zusätzlich zu den beschriebenen Auswertemethoden eine Auswertung der absoluten Temperatur des jeweiligen Messelements 10,20,30 durchzuführen.
  • Die Bildung des Temperaturdifferenzwerts ΔTn eines Mehrpunkt-Temperaturerfassungs-Systems bietet naturgemäß den Vorteil, gegenüber vielen Temperatureinflüssen unempfindlich zu sein. Starke, äußere Temperatureinflüsse können unter gewissen Umständen durch diese Mehrpunktmessung nicht mehr kompensiert werden. Deshalb kann es sinnvoll sein, die Auswertungs-Methoden durch eine Auswertung der absoluten Temperatur der Messelemente 10,20,30 zu ergänzen. Dadurch können beispielsweise starke, äußere Temperatureinflusse erkannt und bei Bedarf ergänzend zu den bereits beschriebenen Auswertungs-Methoden in der Auswerteeinheit 4 berücksichtigt werden.
  • Eine schnelle und starke Abkühlung der Zuleitung(en) 101,201, 301,102,202,302kann zum Temperaturabfall eines oder mehrerer Temperatur-Messpunkte eines Mehrpunkt-Temperaturerfassungs-Systems führen. Hierbei sind insbesondere die Messpunkte betroffen, welche am geringsten zu den Leitungen 101,201,301, 102,202,302 der Strombahnen beabstandet sind. Bei einer alleinigen Auswertung des Temperaturdifferenzwerts ΔTn wurde dies als Stromfluss durch das entsprechende Messelement 10, 20,30 interpretiert werden. Als Gegenmaßnahme könnte durch die Auswerteeinheit 4 eine Erhöhung des Temperaturdifferenzwerts ΔTn durchgeführt werden.
  • Eine schnelle und starke Erwärmung der Zuleitung(en) 101,201, 301,102,202,302 kann zum Temperaturanstieg eines oder mehrerer Temperatur-Messpunkte eines Mehrpunkt-Temperaturerfassungs-Systems führen. Bei einer alleinigen Auswertung des Temperaturdifferenzwerts ΔTn wurde dies als Abschalten des Stromflusses durch das entsprechende Messelement 10,20,30 interpretiert werden. Als Gegenmaßnahme könnte durch die Auswerteeinheit 4 eine Verkleinerung des Temperaturdifferenzwerts ΔTn durchgeführt werden.

Claims (13)

  1. Vorrichtung (1), zum Schutz eines Verbrauchers (2), mit einer ersten Strombahn, welche zwei Leitungen (101,102) umfasst, und einer Überwachungseinrichtung, zur Ermittlung einer anstehenden Überlast des Verbrauchers (2), dadurch gekennzeichnet, dass die Überwachungseinrichtung eine erste Temperaturmesseinheit, eine Auswerteeinheit (4) und ein erstes Messelement (10), welches eine elektrisch leitende Verbindung zwischen den zwei Leitungen (101,102) der ersten Strombahn herstellt, umfasst, wobei die erste Temperaturmesseinheit von dem ersten Messelement (10) galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler (11,12) umfasst, wobei der erste und zweite Temperaturfühler (11,12) der ersten Temperaturmesseinheit gleichzeitig jeweils eine Temperatur des ersten Messelements (10) erfassen kann und die Auswerteeinheit (4) anhand der erfassten Temperaturen der ersten Temperaturmesseinheit eine anstehende Überlast am Verbraucher (2) ermitteln kann.
  2. Vorrichtung (1) nach Anspruch 1, wobei die erste Temperaturmesseinheit ferner einen dritten Temperaturfühler (13) umfasst, welcher gleichzeitig mit dem ersten und zweiten Temperaturfühler (11,12) der ersten Temperaturmesseinheit eine Temperatur des ersten Messelements erfassen kann.
  3. Vorrichtung (1) nach Anspruch 2, wobei der erste, zweite und dritte Temperaturfühler (11,12,13) derart zum ersten Messelement (10) angeordnet ist, dass der erste Temperaturfühler (11) eine Temperatur an einem ersten Messpunkt des ersten Messelements (10) erfassen kann, der zweite Temperaturfühler (12) eine Temperatur an einem zweiten Messpunkt des ersten Messelements (10) erfassen kann und der dritte Temperaturfühler (13) eine Temperatur an einem dritten Messpunkt des ersten Messelements (10) erfassen kann, wobei im Bezug zu einer ersten Seitenfläche (6) des ersten Messelements (10) der zweite Messpunkt zwischen dem ersten und dritten Messpunkt auf der ersten Seitenfläche (6) liegt.
  4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der jeweilige Temperaturfühler (11,12,13) maximal 2 mm von dem ersten Messelement (10) beabstandet ist.
  5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei zwischen den Temperaturfühlern (11,12,13) der ersten Temperaturmesseinheit und dem Messelement (10) eine elektrisch isolierende Isolationsschicht (5,51) angeordnet ist.
  6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, mit einer zweiten Strombahn, welche zwei Leitungen (201,202) umfasst, wobei die Überwachungseinrichtung ferner eine zweite Temperaturmesseinheit und ein zweites Messelement (20), welches eine elektrisch leitende Verbindung zwischen den zwei Leitungen (201,202) der zweiten Strombahn herstellt, umfasst, wobei die zweite Temperaturmesseinheit von dem zweiten Messelement (20) galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler (21,22) umfasst, wobei der erste und zweite Temperaturfühler (21,22) der zweiten Temperaturmesseinheit gleichzeitig jeweils eine Temperatur des zweiten Messelements (20) erfassen kann und die Auswerteeinheit (4) anhand der erfassten Temperaturen der zweiten Temperaturmesseinheit eine anstehende Überlast am Verbraucher (2) ermitteln kann.
  7. Vorrichtung (1) nach Anspruch 6, wobei die zweite Temperaturmesseinheit ferner einen dritten Temperaturfühler (23) umfasst, welcher gleichzeitig mit dem ersten und zweiten Temperaturfühler (21,22) der zweiten Temperaturmesseinheit eine Temperatur des zweiten Messelements erfassen kann.
  8. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, mit einer dritten Strombahn, welche zwei Leitungen (301,302) umfasst, wobei die Überwachungseinrichtung ferner eine dritte Temperaturmesseinheit und ein drittes Messelement (30), welches eine elektrisch leitende Verbindung zwischen den beiden Leitungen (301,302) der dritten Strombahn herstellt, umfasst, wobei die dritte Temperaturmesseinheit von dem dritten Messelement (30) galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler (31,32) umfasst, wobei der erste und zweite Temperaturfühler (31,32) der dritten Temperaturmesseinheit gleichzeitig jeweils eine Temperatur des dritten Messelements (30) erfassen kann und die Auswerteeinheit (4) anhand der erfassten Temperaturen der dritten Temperaturmesseinheit eine anstehende Überlast am Verbraucher (2) ermitteln kann.
  9. Vorrichtung (1) nach Anspruch 8, wobei die dritte Temperaturmesseinheit ferner einen dritten Temperaturfühler (33) umfasst, welcher gleichzeitig mit dem ersten und zweiten Temperaturfühler (31,32) der dritten Temperaturmesseinheit eine Temperatur des ersten Messelements erfassen kann.
  10. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der jeweilige Temperaturfühler (11,12,13,21,22,23,31,32,33) ein Halbleiter, insbesondere eine Diode, ist.
  11. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung (1) ein Schaltgerät, insbesondere ein Überlastrelais oder ein Leistungsschalter, ist.
  12. Verfahren zum Schutz eines Verbrauchers (2), wobei eine Vorrichtung (1) eine erste Strombahn, welche zwei Leitungen (101,102) umfasst, und eine Überwachungseinrichtung, zur Ermittlung einer anstehenden Überlast des Verbrauchers (2), umfasst,
    dadurch gekennzeichnet, dass die Überwachungseinrichtung eine erste Temperaturmesseinheit, eine Auswerteeinheit (4) und ein erstes Messelement (10), welches eine elektrisch leitende Verbindung zwischen den zwei Leitungen (101,102) der ersten Strombahn herstellt, umfasst, wobei die erste Temperaturmesseinheit von dem ersten Messelement (10) galvanisch getrennt ist und einen ersten und einen zweiten Temperaturfühler (11,12) umfasst, wobei der erste und zweite Temperaturfühler (11,12) gleichzeitig jeweils eine Temperatur des ersten Messelements (10) erfasst und die Auswerteeinheit (4) anhand der erfassten Temperaturen der ersten Temperaturmesseinheit eine anstehende Überlast am Verbraucher (2) ermittelt.
  13. Verfahren nach Anspruch 12, wobei die Auswerteeinheit (4) anhand der gleichzeitig erfassten Temperaturen der ersten Temperaturmesseinheit eine strombedingte Erwärmung des ersten Messelements (10) ermittelt.
EP11757860.9A 2011-09-16 2011-09-16 Vorrichtung und verfahren zum schutz eines verbrauchers Not-in-force EP2735066B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/066092 WO2013037417A1 (de) 2011-09-16 2011-09-16 Vorrichtung und verfahren zum schutz eines verbrauchers

Publications (2)

Publication Number Publication Date
EP2735066A1 EP2735066A1 (de) 2014-05-28
EP2735066B1 true EP2735066B1 (de) 2015-10-28

Family

ID=44653325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11757860.9A Not-in-force EP2735066B1 (de) 2011-09-16 2011-09-16 Vorrichtung und verfahren zum schutz eines verbrauchers

Country Status (6)

Country Link
US (1) US9325165B2 (de)
EP (1) EP2735066B1 (de)
KR (1) KR101460952B1 (de)
CN (1) CN103797675B (de)
BR (1) BR112014006191B1 (de)
WO (1) WO2013037417A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103797674B (zh) * 2011-09-16 2016-10-26 西门子公司 用于保护用电器的装置和方法
CN105911314A (zh) * 2016-05-30 2016-08-31 国网青海省电力公司西宁供电公司 一种10kV-110kV绝缘臂交流耐压试验支架
US9948401B1 (en) * 2016-10-04 2018-04-17 Finisar Corporation Individual DC and AC current shunting in optical receivers
US11211851B2 (en) * 2019-05-10 2021-12-28 Rockwell Automation Technologies, Inc. System and method for providing safe limited force producing power in a motor
US20240053425A1 (en) * 2022-08-09 2024-02-15 Cirrus Logic International Semiconductor Ltd. Integrated thin-film resistive sensor with integrated heater and metal layer thermal equalizer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4731241Y1 (de) 1969-12-16 1972-09-19
JPH0731241Y2 (ja) * 1990-01-16 1995-07-19 大日本スクリーン製造株式会社 立型製版カメラの反射照明支持装置
JPH05276643A (ja) 1992-03-19 1993-10-22 Yamatake Honeywell Co Ltd 過負荷検出装置
DE19821834A1 (de) 1998-05-15 1999-11-25 Fahrzeugklimaregelung Gmbh Power-Mos-Transistor
DE19832558B4 (de) * 1998-07-20 2005-10-06 Infineon Technologies Ag Halbleiteranordnung mit mindestens einem Halbleiterchip
US6340878B1 (en) 1999-10-22 2002-01-22 Motorola, Inc. Silicon equivalent PTC circuit
US7056477B1 (en) * 2000-02-03 2006-06-06 Cellular Process Chemistry, Inc. Modular chemical production system incorporating a microreactor
DE10213617A1 (de) 2002-03-27 2003-06-12 Zf Sachs Ag Leistungshalbleiterschalteranordnung und Verfahren zum Betreiben einer Leistungshalbleiterschalteranordnung, insbesondere zum Schutz eines Leistungshalbleiters vor einer thermischen Überlastung
JP4096945B2 (ja) 2002-11-26 2008-06-04 三菱電機株式会社 モータの速度制御装置
US20050146824A1 (en) * 2003-12-29 2005-07-07 Lear Corporation Active Safety Circuit with Loads Protected by Solid State Relays
JP3963175B2 (ja) * 2004-03-19 2007-08-22 日産自動車株式会社 温度検出装置および温度検出用プログラム
JP5396617B2 (ja) * 2006-05-24 2014-01-22 学校法人立命館 赤外線アレイセンサ
GB2462421A (en) 2008-08-04 2010-02-10 Deepstream Technologies Ltd Power supply unit for overload relay
US8044674B2 (en) 2009-11-06 2011-10-25 Infineon Technologies Ag Semiconductor device with thermal fault detection
CN101834558A (zh) 2009-12-28 2010-09-15 南昌大学 交流异步电机矢量控制器
US8848330B2 (en) * 2011-07-29 2014-09-30 Infineon Technologies Austria Ag Circuit with a temperature protected electronic switch

Also Published As

Publication number Publication date
BR112014006191B1 (pt) 2020-10-20
KR101460952B1 (ko) 2014-11-13
EP2735066A1 (de) 2014-05-28
WO2013037417A1 (de) 2013-03-21
KR20140053413A (ko) 2014-05-07
US9325165B2 (en) 2016-04-26
BR112014006191A2 (pt) 2017-04-11
CN103797675A (zh) 2014-05-14
CN103797675B (zh) 2016-11-09
US20140375301A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
EP2756572B1 (de) Vorrichtung und verfahren zum schutz eines verbrauchers
DE3114547C2 (de) Trennschalter mit Übertemperatur-Auslöseeinrichtung
EP2449642B1 (de) Vorrichtung und verfahren zum absichern einer elektrischen leitung mit einem steuerbaren schaltelement
EP2735066B1 (de) Vorrichtung und verfahren zum schutz eines verbrauchers
EP3510617B1 (de) Schutzschaltgerät
DE102014200946C5 (de) Überlast-Überwachungsvorrichtung und Verfahren zur Überlast-Überwachung
DE102006033044A1 (de) Vorrichtung zum Überlastschutz eines Versorgungsstrangs für eine elektrische Last in einem Kraftfahrzeug
EP2187494B1 (de) Schutzeinrichtung für elektrische Motoren
DE112015001177T5 (de) Einschaltzustandsstörungs-Erfassungsvorrichtung und Verfahren dafür
EP3108554B1 (de) Differentialschutzverfahren und differentialschutzeinrichtung
DE102006019467A1 (de) Verfahren und Vorrichtung zur Kurzschlussfrüherkennung in einem elektrischen Netz
DE102007006564A1 (de) Leitungsschutzschalter oder Leistungsschalter
DE10132452B4 (de) Vorrichtung und Verfahren zum Messen von Betriebstemperaturen eines elektrischen Bauteils
EP2826117B1 (de) Vorrichtung zum schutz eines verbrauchers
DE4111831A1 (de) Verfahren zur ausloesung eines elektrischen schalters sowie vorrichtung zur durchfuehrung des verfahrens
AT516121B1 (de) Überprüfen eines mehrpoligen elektrischen Leistungsschalters
DE19733268C2 (de) Verfahren und Einrichtung zum Detektieren von Überströmen in einer Schaltanlage
EP2115759B1 (de) Schutzeinrichtung und verfahren zu deren betrieb
DE102022201962B3 (de) Verfahren zum Betreiben eines elektronischen Schutzschalters, elektronischer Schutzschalter sowie elektrische Anlage mit einem elektronischen Schutzschalter
EP2839497B1 (de) Überstromschutzeinrichtung
EP2837075B1 (de) Vorrichtung zum schutz eines verbrauchers
DE102021203218B4 (de) Verfahren zur Überwachung der Funktionsfähigkeit eines Hochspannungsschalters, Hochspannungsschalter, Computerprogrammprodukt und computerlesbares Medium
EP2853013B1 (de) Vorrichtung zum schutz eines verbrauchers
DE202004014580U1 (de) Elektronischer Schutzschalter mit einstellbarer Auslöse-Charakteristik
DE102022201960A1 (de) Verfahren und Schutzschalter zur Bestimmung von sich auf eine Last beziehenden Informationen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011008235

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H02H0007080000

Ipc: H02H0007085000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H02H 3/08 20060101ALI20150325BHEP

Ipc: H02H 7/085 20060101AFI20150325BHEP

Ipc: H02H 5/04 20060101ALI20150325BHEP

INTG Intention to grant announced

Effective date: 20150414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 758394

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008235

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160128

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008235

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160916

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160916

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 758394

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160916

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110916

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210920

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211119

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011008235

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401