EP2709771B1 - Resonator zur verteilung und teilweisen transformation longitudinaler schwingungen und verfahren zur behandlung wenigstens eines fluides mittels eines erfindungsgemässen resonators - Google Patents

Resonator zur verteilung und teilweisen transformation longitudinaler schwingungen und verfahren zur behandlung wenigstens eines fluides mittels eines erfindungsgemässen resonators Download PDF

Info

Publication number
EP2709771B1
EP2709771B1 EP12727610.3A EP12727610A EP2709771B1 EP 2709771 B1 EP2709771 B1 EP 2709771B1 EP 12727610 A EP12727610 A EP 12727610A EP 2709771 B1 EP2709771 B1 EP 2709771B1
Authority
EP
European Patent Office
Prior art keywords
resonator
opening
vibrations
lambda
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12727610.3A
Other languages
English (en)
French (fr)
Other versions
EP2709771A2 (de
Inventor
Harald Hielscher
Holger Hielscher
Thomas Hielscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Hielscher GmbH
Original Assignee
Dr Hielscher GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Hielscher GmbH filed Critical Dr Hielscher GmbH
Publication of EP2709771A2 publication Critical patent/EP2709771A2/de
Application granted granted Critical
Publication of EP2709771B1 publication Critical patent/EP2709771B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency

Definitions

  • the invention is thus directed to an apparatus and method for transforming low frequency power ultrasonic vibrations (NFLUS vibrations) using a novel vibrational geometry.
  • This geometry allows a transformation and distribution of longitudinal vibrations in a resonator in longitudinal vibrations, which are superimposed with further oscillations.
  • Low-frequency power ultrasound is ultrasound with an operating frequency of 15 to 100 kHz, preferably 15 to 60 kHz, eg 30 kHz and a sound power of more than 5 W, preferably 10 W to 1000 W, eg 200 W.
  • For generating the ultrasound become
  • piezoelectric or magnetostrictive systems used. There are known linear transducers and flat or curved plate vibrators, bending oscillators or tubular resonators.
  • Low frequency power ultrasound is finding great use in the treatment of fluids such as food, cosmetics, paints and nanomaterials.
  • ultrasound is transmitted directly or indirectly into liquids via a resonator with amplitudes of 1 to 350 ⁇ m, preferably 5 to 50 ⁇ m, for example 15 ⁇ m.
  • Lambda is the wavelength which results from the NFLUS frequency and the sound propagation velocity in the resonator.
  • a resonator may consist of one or more lambda / 2 elements.
  • this reactor vessel may be under a pressure lower or higher than the ambient pressure.
  • a lower pressure (negative pressure) is present between vacuum (0 bar absolute) and ambient pressure (eg 1 bar absolute), eg at 0.5 bar.
  • a higher pressure (overpressure) is present when the pressure is above the ambient pressure.
  • Some systems use an internal vessel pressure between 1.5 bar absolute to 1000 bar absolute, eg 3 bar absolute.
  • the vessel wall can be vibrated by an externally mounted NFLUS system, or an NFLUS transducer can be completely installed in the pressurized vessel interior.
  • the sound transducer for example, a piezoelectric linear transducer located outside the vessel and the vibrations are guided via one or more resonators in the vessel interior.
  • the invention has for its object to provide a resonator and a method for treating at least one fluid with which fluids can be treated in a simple and efficient manner with vibrations.
  • the object for the resonator is achieved by a resonator according to claim 1, wherein lambda / 2 elements are separated from each other by slits penetrating the resonator along part of their longitudinal extent.
  • the resonator is the resonator according to the invention.
  • Advantageous embodiments of the resonator are the subject of the dependent claims 2 to 13.
  • a resonator is provided which is capable of distributing and partially transforming longitudinal vibrations into longitudinal vibrations superimposed on the center of gravity or approximately the centroid of a cross-sectional area of at least one aperture included by the resonator.
  • the resonator comprises a natural number of parallel elements of at least lambda / 2 or a natural multiple thereof, wherein at least one of the lambda / 2 elements has at least one aperture adapted to transmit the transformed vibrations to a fluid located within the aperture , Lambda is the wavelength.
  • Lambda is the wavelength.
  • an element of at least lambda / 2 or a natural multiple thereof is referred to as a lambda / 2 element.
  • the transformed vibration is directed radially or at least approximately radially to the center of the bore.
  • the transformed oscillation is directed exactly to the centroid of the opening or exactly radially to the center of the bore.
  • the opening may be arranged penetrating as a through-hole or a slot and consequently the resonator, or the opening is merely a recess or a concavity in the resonator, such.
  • B is a blind hole or a gutter-shaped depression.
  • the resonator may comprise a total of 2n lambda / 2 elements (or an integer multiple thereof) or else 2n + 1 lambda / 2 elements (or an integer multiple thereof). Where n is an element of natural numbers.
  • each lambda / 2 element should have at least two openings.
  • the lambda / 2 elements may be separated by slots along part of their longitudinal extent.
  • the resonator has at least one lambda / 2 element which is suitable for reducing or increasing the amplitude of the oscillations present at the other lambda / 2 elements.
  • the cross section of at least one opening may be a polygon.
  • the oscillation directed toward the centroid or approximately to the centroid of a cross-sectional area of at least one opening has at least two oscillation nodes on the inside of the opening.
  • the resonator may have at least one opening on one end face, which is suitable for influencing at least one of the resonant frequencies of the resonator.
  • the end face is a side surface of the resonator which extends substantially or exactly perpendicular to the propagation direction of the longitudinal oscillations.
  • the resonator is preferably made of a steel alloy, an aluminum alloy, a titanium alloy, ceramic or a glass.
  • the resonator should be designed for the distribution and partial transformation of ultrasound with a frequency between 15 kHz and 40 kHz, in particular with a frequency between 16 kHz and 22 kHz.
  • the maximum diagonal of the opening arranged to transmit the vibrations to the fluid is between 1 mm and 100 mm.
  • the maximum amplitude of the vibrations in the longitudinal direction should be less than 30 ⁇ m (peak-peak) and greater than 1 ⁇ m (peak-peak), preferably greater than 5 ⁇ m (peak-peak).
  • the resonator is particularly advantageous if it comprises a vessel in at least one opening, wherein the opening holds the vessel essentially in a form-fitting manner.
  • the opening holds the vessel completely positive fit.
  • at least one opening inner surface can at least partially lie positively against a vessel wall.
  • a method for treating at least one fluid by means of a resonator according to the invention in which longitudinal oscillations are distributed and partially transformed into center of gravity or approximately the centroid of a cross-sectional area of at least one cavity-containing opening directed vibrations associated with longitudinal vibrations are superimposed, wherein the transformed vibrations are transmitted to a fluid located within the opening, and wherein the volume of the fluid in the Opening is limited by a vessel, or the volume of the fluid in the opening is limited by the wall of the opening.
  • the longitudinal vibrations superimposed on the fluid by the vibrations directed at approximately the centroid of a cross-sectional area of at least one opening encompassed by the resonator are also transmitted to the fluid.
  • the vibrations are distributed to one or more openings or vessels arranged there and transferred to the fluid located there.
  • the fluid may be a gas as well as a liquid or a 2-phase mixture thereof.
  • a resonator consisting of several lambda / 2 elements can be made of a piece of material of appropriate length or of several elements of length m * lambda / 2 (n ⁇ N), e.g. be assembled by screwing, welding, gluing or pressing.
  • Lambda / 2 elements may have different material cross-sectional geometries, e.g. have circular, oval or rectangular cross sections. The cross-sectional geometry and area may vary along the longitudinal axis of a lambda / 2 element.
  • Lambda / 2 elements may be made, inter alia, of metallic or ceramic materials or of glass, in particular of titanium, titanium alloys, steel or steel alloys, aluminum or aluminum alloys, e.g. made of titanium grade 5.
  • vibrations can be transmitted via the vessel wall to the vessel contents.
  • the vibration transmission to the vessel wall can be done on all sides and enclosing the entire vessel wall or only over part of the vessel wall. This part can eg enclose the cross-section of the vessel.
  • the vibrations can act at different angles, for example almost or completely perpendicularly from the resonator to the vessel wall.
  • the vibrations can act radially on the vessel cross section.
  • the vibrations may be directed radially to a point within the vessel cross-section, preferably to the centroid of the cross-sectional area of the vessel.
  • the resonator In order for the resonator to be able to surround a vessel, it must have an opening cross-section adapted to the vessel cross-section, which has at least one contact point, preferably at least two points of contact with the vessel cross-section. At least one of these points of contact should preferably be located outside a vibration minimum of the resonator.
  • the resonator which preferably comprises a plurality of mutually connected to the maxima of the longitudinal vibrations Lamda / 2 elements and having openings in the lambda / 2 elements, it is possible to one or more of these lambda / 2 elements acting longitudinal vibrations to transform vibrations directed towards the centroid or approximately the centroid of a cross-sectional area of at least one aperture included by the resonator, which are superimposed with longitudinal vibrations.
  • Characteristic of the inventive design of the resonator are in at least one, preferably all of the lambda / 2 elements introduced openings, eg holes, millings or slots or unilaterally or multiply introduced recesses.
  • one or more openings or depressions can be introduced into one or more lambda / 2 elements.
  • the resonant frequencies of the resonator and the amplitude distribution along the opening cross-section lines are dependent inter alia on the outer geometry and the opening cross-sectional geometry. By introducing the openings or depressions into the resonator according to the invention, the resonance frequencies of the resonator and the amplitude distribution along the opening cross-section line are additionally influenced.
  • the individual lambda / 2 elements 11 are separated from one another by slots 15. On the side of the Shaft 16 and on the front side 13, however, they are connected to each other.
  • each lambda / 2 element 11 at least one opening 12 is provided, wherein in the in FIG. 1 illustrated embodiment, two openings 12 are arranged.
  • these openings 12 is the fluid to be treated 21 in not shown here vessels or even without a vessel, in which case the fluid 21 is received in the opening 12.
  • the openings 12 can penetrate the respective lambda / 2 element 11 or can also be present as a recess in the respective lambda / 2 element 11.
  • the in FIG. 1 resonator shown is not shown to scale in the oscillating state.
  • the illustrated openings 12 are executed in the idle state, ie in the unloaded state of the resonator 10, much more compact, as for example from the FIGS. 3 to 5 is apparent.
  • m represents the integer number of lambda / 2 of the respective element in the propagation direction of the longitudinal vibrations.
  • two openings 12 are arranged in each lambda / 2 element 11.
  • FIG. 2 shows a diagram representing the distribution of the amplitude A along the expansion s of two lambda / 2 elements 11. It can be seen that extreme values occur in the end regions of the respective lambda / 2 elements 11.
  • FIGS. 3 and 4 Two different embodiments of a resonator 10 according to the invention are shown.
  • the in FIG. 3 resonator 10 shown in the shaft 16 additionally comprises a resonance influencing element 14 in the form of a further opening, and extending across the parallel Lambda / 2 elements 11 extending a groove-shaped depression as another resonance influencing element 14.
  • This Resonance influencing elements 14 serve to adjust the resonance behavior of the resonator 10.
  • the in FIG. 4 resonator 10 shown has to influence the resonance behavior on a side surface of a lambda / 2 element 11, a further resonance influencing element 14 in the form of an opening and at the end face 13 each lambda / 2 element 11 associated with a resonance influencing element 14 in the form of a bore.
  • the resonator according to the invention can also be carried out without shaft 16. It can also be seen that the elements arranged in parallel and separated by slits 15 have a length of 2 * lambda / 2, wherein in the individual lambda / 2 elements 11 2 openings 12 are arranged in each case.
  • the slots 15 between the lambda / 2 elements 11 preferably extend in the regions of the longitudinal extension 20 in which the openings 12 are arranged in parallel.
  • FIG. 5 A similar inventive resonator, as in FIG. 5 is shown in the FIGS. 6 and 7 shown in operational situations, but in the FIGS. 6 and 7 shown resonator 10 has only Lamda / 2 elements which are arranged in parallel and each having two openings 12.
  • FIG. 6 a resonator 10 stretched in length extension 20 on account of its resonance behavior can be seen, which can be seen in particular from the deformation of the openings 12 into an elliptical shape extending in longitudinal extension 20.
  • the contours of the openings 12, as they are present in the non-oscillating state, are indicated by the dashed lines.
  • the shades shown represent in which regions of the resonator 10 minima and maxima of the amplitude distribution occur.
  • FIG. 7 is the in FIG. 6 shown resonator in a further vibrational state, in which case the resonator 10 is present in a compressed in longitudinal extension 20 state, as can be seen from the perpendicular to the longitudinal extension 20 extending elliptical shape of the openings 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Resonator zur Verteilung und teilweisen Transformation longitudinaler Schwingungen, die mit zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator umfassten Öffnung gerichteten Schwingungen überlagert sind, wobei der Resonator eine natürliche Zahl parallel angeordneter Elemente von wenigstens Lambda/2 oder einem natürlichem Vielfachen davon umfasst und mindestens eines der Lambda/2-Elemente mindestens eine Öffnung aufweist, welche geeignet ist, die transformierten Schwingungen an ein innerhalb der Öffnung befindliches Fluid zu übertragen. Ferner betrifft die Erfindung ein Verfahren zur Behandlung wenigstens eines Fluides mittels eines Resonators, bei dem longitudinale Schwingungen verteilt und teilweise in zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator umfassten Öffnung gerichteten Schwingungen transformiert werden, die mit longitudinalen Schwingungen überlagert werden, wobei die transformierten Schwingungen an ein innerhalb der Öffnung befindliches Fluid zu übertragen werden, und wobei
    1. i) das Volumen des Fluides in der Öffnung durch ein Gefäß begrenzt wird, oder
    2. ii) das Volumen des Fluides in der Öffnung durch die Wandung der Öffnung begrenzt wird.
  • Derartige Vorrichtungen und Verfahren sind aus US 5,384,508 , US 5,945,642 , DE 33 28 614 A1 und US 2009/0079300 A1 bekannt. Die Erfindung ist somit auf eine Vorrichtung und ein Verfahren zur Transformation von Niederfrequenz-Leistungs-Ultraschall-Schwingungen (NFLUS-Schwingungen) unter Verwendung einer neuartigen Schwingungsgeometrie gerichtet. Diese Geometrie erlaubt eine Transformation und Verteilung von Longitudinalschwingungen in einem Resonator in longitudinale Schwingungen, welche mit weiteren Schwingungen überlagert sind.
  • Niederfrequenz-Leistungs-Ultraschall (NFLUS) ist Ultraschall mit einer Arbeitsfrequenz von 15 bis 100 kHz, vorzugsweise 15 bis 60 kHz, z.B. 30 kHz und einer Schallleistung über 5 W, vorzugsweise 10 W bis 1.000 W, z.B. 200 W. Zur Erzeugung des Ultraschalls werden beispielsweise piezoelektrische oder magnetostriktive Systeme verwendet. Es sind lineare Schallwandler und flächige oder gewölbte Plattenschwinger, Biegeschwinger oder Rohrresonatoren bekannt. Niederfrequenz-Leistungs-Ultraschall findet eine große Anwendung in der Behandlung von Flüssigkeiten, wie z.B. Nahrungsmitteln, Kosmetika, Farben und Nanomaterialien. Dafür wird Ultraschall über einen Resonator mit Amplituden von 1 bis 350 µm, vorzugsweise 5 bis 50 µm, z.B. 15 µm direkt oder indirekt in Flüssigkeiten übertragen. Lambda ist dabei die Wellenlänge welche sich aus der NFLUS-Frequenz und der Schallausbreitungsgeschwindigkeit im Resonator ergibt.
    Ein Resonator kann aus einem oder mehreren Lambda/2-Elementen bestehen.
    Neben der Behandlung von Proben in offenen Systemen, z.B. im Becherglas erfordern viele Anwendungen das Einbringen von NFLUS in Reaktorgefäße. Entsprechend der Anwendung kann dieses Reaktorgefäß unter einem geringeren oder einem höheren Druck als dem Umgebungsdruck stehen. Ein geringerer Druck (Unterdruck) liegt zwischen Vakuum (0 bar absolut) und Umgebungsdruck (z.B. 1 bar absolut), z.B. bei 0,5 bar vor. Ein höherer Druck (Überdruck) liegt vor, wenn der Druck über dem Umgebungsdruck liegt. Einige Systeme verwenden einen Gefäßinnendruck zwischen 1,5 bar absolut bis 1000 bar absolut, z.B. 3 bar absolut.
    Um NFLUS in ein solches Gefäß einzubringen, kann entweder die Gefäßwand durch ein außen angebrachtes NFLUS-System in Schwingungen versetzt werden, oder ein NFLUS-Schallwandler vollständig im unter Druck stehenden Gefäßinnenraum eingebaut werden. Alternativ kann sich der Schallwandler, z.B. ein piezoelektrischer linearer Schallwandler außerhalb des Gefäßes befinden und die Schwingungen über ein oder mehrere Resonatoren in den Gefäßinnenraum geführt werden.
    Der Erfindung liegt die Aufgabe zugrunde, einen Resonator und ein Verfahren zur Behandlung wenigstens eines Fluides anzugeben, mit denen Fluide in einfacher und effizienter Weise mit Schwingungen behandelt werden können.
  • Erfindungsgemäß wird die Aufgabe für den Resonator durch einen Resonator gemäß Anspruch 1 gelöst, wobei Lambda/2-Elemente durch den Resonator durchdringende Schlitze entlang eines Teils ihrer Längenausdehnung voneinander getrennt sind. Für das Verfahren zur Behandlung wenigstens eines Fluides wird die Aufgabe dadurch gelöst, dass der Resonator der erfindungsgemäße Resonator ist. Zweck-mäßige Ausgestaltungen des Resonators sind Gegenstand der Unteransprüche 2 bis 13.
    Es wird ein Resonator zur Verfügung gestellt, der zur Verteilung und teilweisen Transformation longitudinaler Schwingungen in longitudinale Schwingungen, die mit zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator umfassten Öffnung gerichteten Schwingungen überlagert sind, geeignet ist. Der Resonator umfasst eine natürliche Zahl parallel angeordneter Elemente von wenigstens Lambda/2 oder einem natürlichem Vielfachen davon, wobei mindestens eines der Lambda/2-Elemente mindestens eine Öffnung aufweist, welche geeignet ist, die transformierten Schwingungen an ein innerhalb der Öffnung befindliches Fluid zu übertragen.
    Lambda ist dabei die Wellenlänge.
    Im Folgenden wird zur Vereinfachung der Kenntnisnahme der Erfindung ein Element von wenigstens Lambda/2 oder einem natürlichem Vielfachen davon als Lambda/2-Element bezeichnet.
    Das heißt, dass der Resonator n parallel angeordnete Lambda/2-Elemente umfassen kann, wobei statt der parallelen Anordnung von jeweils nur einem Lambda/2-Element auch eine ganz-zahliges Vielfaches m an Lambda/2-Elementen parallel angeordnet sein kann, wie z.B. bei m=2, wobei n Elemente mit einer Länge von 2 * Lambda/2 parallel angeordnet sind.
  • Mit dem annähernden Verlauf zum Flachenschwerpunkt ist vorzugsweise gemeint, dass eine Abweichung von bis zu 30°, vorzugsweise bis zu 15° und insbesondere bis zu 10° zum direkten Verlauf der Schwingung zum Flächenschwerpunkt zulässig ist.
    Bei einer Bohrung als Öffnung ist demzufolge die transformierte Schwingung radial oder zumindest annähernd radial zum Zentrum der Bohrung gerichtet.
    Vorzugsweise ist die transformierte Schwingung genau zum Flächenschwerpunkt der Öffnung bzw. genau radial zum Zentrum der Bohrung gerichtet.
  • Die Öffnung kann als eine Durchgangsbohrung oder ein Schlitz und demzufolge den Resonator durchdringend angeordnet sein, oder die Öffnung ist lediglich eine Aussparung bzw. eine Konkavität im Resonator, wie z. B eine Sacklochbohrung oder eine rinnenförmige Vertiefung.
  • Der Resonator kann insgesamt 2n Lambda/2-Elemente (oder ein ganzzahlig Vielfaches davon) oder auch 2n+1 Lambda/2-Elementen (oder ein ganzzahlig Vielfaches davon) umfassen.
    Dabei ist n ein Element der natürlichen Zahlen.
  • Vorzugsweise sollte jedes Lambda/2-Element mindestens zwei Öffnungen aufweisen.
  • Die Lambda/2-Elemente können durch Schlitze entlang eines Teils ihrer Längenausdehnung voneinander getrennt sein.
  • In einer vorteilhaften Variante weist der Resonator wenigstens ein Lambda/2-Element auf, welches zur Reduktion oder Erhöhung der Amplitude der an den übrigen Lambda/2-Elementen anliegenden Schwingungen geeignet ist.
  • Der Querschnitt wenigstens einer Öffnung kann ein Polygon sein.
  • In bevorzugter Ausgestaltung des Resonators ist vorgesehen, dass die zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer Öffnung gerichtete Schwingung an der Innenseite der Öffnung mindestens zwei Schwingungsknoten aufweist.
  • Weitherin kann der Resonator an einer Stirnseite mindestens eine Öffnung aufweisen, welche geeignet ist, mindestens eine der Resonanzfrequenzen des Resonators zu beeinflussen.
  • Die Stirnseite ist dabei eine im Wesentlichen oder genau senkrecht zur Ausbreitungsrichtung der longitudinalen Schwingungen verlaufende Seitenfläche des Resonators.
  • Der Resonator ist vorzugsweise aus einer Stahllegierung, einer Aluminiumlegierung, einer Titanlegierung, aus Keramik oder aus einem Glas gefertigt.
  • Der Resonator sollte für die Verteilung und teilweisen Transformation von Ultraschall mit einer Frequenz zwischen 15 kHz und 40 kHz, insbesondere mit einer Frequenz zwischen 16 kHz und 22 kHz ausgelegt sein.
  • Er sollte außerdem für die Verteilung und teilweisen Transformation von Ultraschall mit einer Leistung zwischen 10 W und 20000 W, insbesondere mit einer Leistung zwischen 50 W und 1000 W ausgelegt sein.
  • Vorzugsweise beträgt die maximale Diagonale der zur Übertragung der Schwingungen auf das Fluid angeordneten Öffnung zwischen 1 mm und 100 mm.
  • Die maximale Amplitude der Schwingungen in longitudinaler Richtung sollte kleiner als 30µm (peak-peak) und größer als 1 µm (peak-peak), vorzugsweise größer als 5 µm (peak-peak) sein.
  • Der Resonator ist insbesondere dann vorteilhaft ausgestaltet, wenn er in wenigstens einer Öffnung ein Gefäß umfasst, wobei die Öffnung das Gefäß im Wesentlichen formschlüssig hält.
    Vorzugsweise hält die Öffnung das Gefäß vollständig formschlüssig.
    Alternativ kann mindestens eine Öffnungsinnenfläche zumindest teilweise formschlüssig an einer Gefäßwand anliegen.
  • Es wird außerdem erfindungsgemäß ein Verfahren zur Behandlung wenigstens eines Fluides mittels eines erfindungsgemäßen Resonators zur Verfügung gestellt, bei dem longitudinale Schwingungen verteilt und teilweise in zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator umfassten Öffnung gerichteten Schwingungen transformiert werden, die mit longitudinalen Schwingungen überlagert werden, wobei die transformierten Schwingungen an ein innerhalb der Öffnung befindliches Fluid zu übertragen werden, und wobei das Volumen des Fluides in der Öffnung durch ein Gefäß begrenzt wird, oder das Volumen des Fluides in der Öffnung durch die Wandung der Öffnung begrenzt wird.
  • Vorzugsweise werden auch die von den annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator umfassten Öffnung gerichteten Schwingungen überlagerten longitudinalen Schwingungen auf das Fluid übertragen.
  • Die Schwingungen werden auf eine oder mehrere Öffnungen bzw. dort angeordnete Gefäße verteilt und auf das dort befindliche Fluid übertragen.
  • Das Fluid kann ein Gas als auch eine Flüssigkeit oder ein 2-Phasen-Gemisch daraus sein.
  • Ein aus mehreren Lamda/2-Elementen bestehender Resonator kann aus einem Materialstück entsprechender Länge gefertigt werden oder aus mehreren Elementen der Länge m*Lambda/2 (n ∈ N), z.B. durch Verschrauben, Verschweißen, Verkleben oder Verpressen zusammengesetzt werden. Lambda/2-Elemente können verschiedene Materialquerschnittsgeometrien, z.B. kreisförmige, ovale oder rechteckige Querschnitte aufweisen. Die Querschnittsgeometrie und -fläche kann entlang der Längsachse eines Lambda/2-Elements variieren. Lambda/2-Elemente können unter anderem aus metallischen oder keramischen Materialien oder aus Glas, insbesondere aus Titan, Titanlegierungen, Stahl oder Stahllegierungen, Aluminium oder Aluminiumlegierungen, z.B. aus Titan grade 5 gefertigt sein.
  • Um NFLUS von außen in ein Gefäß einzubringen, können Schwingungen über die Gefäßwand auf den Gefäßinhalt übertragen werden. Die Schwingungsübertragung auf die Gefäßwand kann allseitig und umschließend über die gesamte Gefäßwand oder lediglich über einen Teil der Gefäßwand erfolgen. Dieser Teil kann z.B. den Querschnitt des Gefäßes umschließen. Die Schwingungen können in verschiedenem Winkel z.B. nahezu oder vollständig senkrecht vom Resonator auf die Gefäßwand wirken. Im Falle eines runden oder elliptischen Querschnitts können die Schwingungen radial auf den Gefäßquerschnitt wirken. Im Falle vieleckiger, polygoner Querschnitte, können die Schwingungen radial auf einen Punkt innerhalb des Gefäßquerschnitts, vorzugsweise auf den Flächenschwerpunkt der Querschnittsfläche des Gefäßes, gerichtet sein.
    Damit der Resonator ein Gefäß umschließen kann, muss dieser einen dem Gefäßquerschnitt angepassten Öffnungsquerschnitt aufweisen, welcher mindestens einen Berührungspunkt, vorzugsweise mindestens zwei Berührungspunkte mit dem Gefäßquerschnitt hat. Mindestens einer dieser Berührungspunkte sollte sich vorzugsweise außerhalb eines Schwingungsminimums des Resonators befinden.
  • Durch die erfindungsgemäße Gestaltung des Resonators, welcher vorzugsweise mehrere miteinander an den Maxima der Longitudinalschwingungen verbundene Lamda/2-Elementen umfasst und in den Lambda/2-Elementen Öffnungen aufweist, ist es möglich, auf ein oder mehrere dieser Lambda/2-Elemente einwirkende Longitudinalschwingungen in zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator umfassten Öffnung gerichtete Schwingungen zu transformieren, die mit longitudinalen Schwingungen überlagert werden.
  • Kennzeichnend für die erfindungsgemäße Gestaltung des Resonators sind die in mindestens einem, vorzugsweise alle der Lambda/2-Elemente eingebrachte Öffnungen, z.B. Bohrungen, Fräsungen oder Schlitze oder einseitig oder mehrseitig eingebrachte Vertiefungen. Dabei können in einem oder mehreren Lambda/2-Elementen eine oder mehrere Öffnungen oder Vertiefungen eingebracht sein.
    Die Resonanzfrequenzen des Resonators und die Amplitudenverteilung entlang der Öffnungsquerschnittslinien sind unter anderem von der Außengeometrie und der Öffnungsquerschnittgeometrie abhängig. Durch das erfindungsgemäße Einbringen der Öffnungen oder Vertiefungen in den Resonator werden die Resonanzfrequenzen des Resonators und die Amplitudenverteilung entlang der Öffnungsquerschnittslinie zusätzlich beeinflusst.
  • Die Erfindung wird im Folgenden anhand der in den beiliegenden Zeichnungen dargestellten Ausführungsbeispiele näher erläutert.
    Es zeigt:
  • Figur 1:
    einen erfindungsgemäßen Resonator im Betriebszustand mit Verdeutlichung der Amplitudenverteilung,
    Figur 2:
    ein Amplituden-Änderungsdiagramm der Schwingungen,
    Figur 3:
    einen erfindungsgemäßen Resonator in einer ersten Ausführungsvariante,
    Figur 4:
    einen erfindungsgemäßen Resonator in einer zweiten Ausführungsvariante,
    Figur 5:
    einen erfindungsgemäßen Resonator einer dritten Ausführungsvariante,
    Figur 6:
    eine Darstellung des Resonators aus Figur 5 in einem ersten Schwingungszustand,
    Figur 7:
    eine Darstellung des Resonators aus Figur 5 in einem zweiten Schwingungszustand.
  • Der erfindungsgemäße Resonator 10, wie er in Figur 1 dargestellt ist, umfasst n Lambda/2-Elemente, wobei bei dem in Figur 1 dargestellten Resonator 10 n = 5 ist. Die einzelnen Lambda/2-Elemente 11 sind durch Schlitze 15 voneinander getrennt. Auf der Seite des Schaftes 16 sowie auf der Stirnseite 13 sind sie jedoch miteinander verbunden. In jedem Lambda/2-Element 11 ist wenigstens eine Öffnung 12 vorgesehen, wobei in der in Figur 1 dargestellten Ausführungsvariante zwei Öffnungen 12 angeordnet sind. In diesen Öffnungen 12 befindet sich das zu behandelnde Fluid 21 in hier nicht näher dargestellten Gefäßen oder auch ohne Gefäß, wobei dann das Fluid 21 in der Öffnung 12 aufgenommen ist. Die Öffnungen 12 können das jeweilige Lambda/2-Element 11 durchdringen oder auch als Ausnehmung in dem jeweiligen Lambda/2-Element 11 vorhanden sein.
    Der in Figur 1 dargestellte Resonator ist nicht maßstäblich im schwingenden Zustand gezeigt. Die dargestellten Öffnungen 12 sind im Ruhezustand, also im unbelasteten Zustand des Resonators 10, wesentlich kompakter ausgeführt, wie es zum Beispiel aus den Figuren 3 bis 5 ersichtlich ist.
  • Der Resonator 10 ist nicht auf die in den Figuren 1, 3 und 4 dargestellten Ausführungsformen mit lediglich Lambda/2-Elementen 11 mit je zwei Öffnungen 12 eingeschränkt, sondern es können auch m Lambda/2-Elemente jeweils parallel angeordnet sein, wie es zum Beispiel in Figur 5 dargestellt ist, wobei m=2 ist. Das heißt, dass m die ganzzahlige Anzahl von Lambda/2 des jeweiligen Elementes in Ausbreitungsrichtung der Longitudinalschwingungen darstellt.
    Vorzugsweise sind in jedem Lambda/2-Element 11 zwei Öffnungen 12 angeordnet.
  • Aus der in Figur 1 ersichtlichen Schattierung sowie der entsprechenden Schattierung in der rechts neben dem Resonator 10 dargestellten Skala, die die Amplitudenverteilung URES in mm darstellt, ist ersichtlich, in welchen Bereichen der Lambda/2-Elemente 11 extreme Amplituden auftreten.
  • Figur 2 zeigt ein Diagramm, welches die Verteilung der Amplitude A entlang der Ausdehnung s von zwei Lambda/2-Elementen 11 darstellt. Ersichtlich ist, dass Extremwerte in den Endbereichen der jeweiligen Lambda/2-Elemente 11 auftreten.
  • In den Figuren 3 und 4 sind zwei unterschiedliche Ausführungsformen eines erfindungsgemäßen Resonators 10 dargestellt. Der in Figur 3 dargestellte Resonator 10 umfasst im Schaft 16 zusätzlich ein Resonanzbeeinflussungselement 14 in Form einer weiteren Öffnung, sowie sich quer über die parallel angeordneten Lambda/2-Elemente 11 erstreckend eine rillenförmige Vertiefung als weiteres Resonanzbeeinflussungselement 14. Diese Resonanzbeeinflussungselemente 14 dienen zur Einstellung des Resonanzverhaltens des Resonators 10.
  • Der in Figur 4 dargestellte Resonator 10 weist zur Beeinflussung des Resonanzverhaltens an einer Seitenfläche eines Lambda/2-Elementes 11 ein weiteres Resonanzbeeinflussungselement 14 in Form einer Öffnung sowie an der Stirnseite 13 jedem Lambda/2-Element 11 zugeordnet ein Resonanzbeeinflussungselement 14 in Form einer Bohrung auf.
  • Wie aus Figur 5 ersichtlich ist, kann der erfindungsgemäße Resonator auch ohne Schaft 16 ausgeführt sein. Ersichtlich ist weiterhin, dass die parallel angeordneten und durch Schlitze 15 voneinander getrennte Elemente eine Länge von 2*Lambda/2 aufweisen, wobei in den einzelnen Lambda/2-Elementen 11 jeweils 2 Öffnungen 12 angeordnet sind. Die Schlitze 15 zwischen den Lambda/2-Elementen 11 erstrecken sich vorzugsweise in den Bereichen der Längenausdehnung 20, in denen parallel die Öffnungen 12 angeordnet sind.
  • Ein ähnlicher erfindungsgemäßer Resonator, wie in Figur 5 dargestellt, ist in den Figuren 6 und 7 in Betriebssituationen gezeigt, wobei jedoch der in den Figuren 6 und 7 dargestellte Resonator 10 lediglich Lamda/2-Elemente aufweist, die parallel angeordnet sind und jeweils zwei Öffnungen 12 aufweisen.
  • In Figur 6 ist ein aufgrund seines Resonanzverhaltens in Längenausdehnung 20 gestreckter Resonator 10 ersichtlich, was insbesondere aus der Verformung der Öffnungen 12 in eine in Längenausdehnung 20 sich erstreckende elliptische Form ersichtlich ist. Die Konturen der Öffnungen 12, wie sie im nicht-schwingenden Zustand vorhanden sind, sind mit den gestrichelten Linien angedeutet. Auch hier stellen die gezeigten Schattierungen dar, in welchen Bereichen des Resonators 10 Minima und Maxima der Amplitudenverteilung auftreten.
  • In Figur 7 ist der in Figur 6 dargestellte Resonator in einem weiteren Schwingungszustand ersichtlich, wobei hier der Resonator 10 in einem in Längenausdehnung 20 gestauchten Zustand vorliegt, wie es aus der senkrecht zur Längenausdehnung 20 verlaufenden elliptischen Form der Öffnungen 12 ersichtlich ist.
  • Wie insbesondere aus den Figuren 6 und 7 erkannt werden kann, werden longitudinal in den Resonator 10 eingeleitete Schwingungen in Schwingungen transformiert, die radial vom Rand der Öffnungen 12 auf deren Zentrum wirken. Dadurch lassen sich Fluide 21 in den Öffnungen 12 derartigen Schwingungen aussetzen.

Claims (14)

  1. Resonator (10) zur Verteilung und teilweisen Transformation longitudinaler Schwingungen in longitudinale Schwingungen die mit zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator (10) umfassten Öffnung (12) gerichteten Schwingungen überlagert sind, wobei der Resonator (10) eine natürliche Zahl parallel angeordneter Elemente (11) von wenigstens Lambda/2 oder einem natürlichem Vielfachen davon umfasst und mindestens eines der Lambda/2-Elemente (11) mindestens eine Öffnung (12) aufweist, welche dazu angepasst ist, die transformierten Schwingungen an ein innerhalb der Öffnung (12) befindliches Fluid (21) zu übertragen, dadurch gekennzeichnet, dass die Lambda/2-Elemente (11) durch den Resonator (11) durchdringende Schlitze (15) entlang eines Teils ihrer Längenausdehnung (20) voneinander getrennt sind.
  2. Resonator (10) nach Anspruch 1, wobei der Resonator (10) insgesamt 2n Lambda/2-Elemente (11) umfasst.
  3. Resonator (10) nach Anspruch 1, wobei der Resonator (10) insgesamt 2n+1 Lambda/2-Elemente (11) umfasst.
  4. Resonator (10) nach einem der vorhergehenden Ansprüche, wobei jedes Lambda/2-Element (11) mindestens zwei Öffnungen (12) aufweist.
  5. Resonator (10) nach einem der vorhergehenden Ansprüche, wobei der Resonator (10) wenigstens ein Lambda/2-Element (11) aufweist, welches zur Reduktion oder Erhöhung der Amplitude (A) der an den übrigen Lambda/2-Elementen (11) anliegenden Schwingungen geeignet ist.
  6. Resonator (10) nach einem der vorhergehenden Ansprüche, wobei der Querschnitt wenigstens einer Öffnung (12) ein Polygon ist.
  7. Resonator (10) nach einem der vorhergehenden Ansprüche, der derart ausgestaltet ist, dass die zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer Öffnung (12) gerichtete Schwingung an der Innenseite der Öffnung (12) mindestens zwei Schwingungsknoten aufweist.
  8. Resonator (10) nach einem der vorhergehenden Ansprüche, der an einer Stirnseite (13) mindestens eine Öffnung (14) aufweist, welche geeignet ist, mindestens eine der Resonanzfrequenzen des Resonators (10) zu beeinflussen.
  9. Resonator (10) nach einem der vorhergehenden Ansprüche, der für die Verteilung und teilweisen Transformation von Ultraschall mit einer Frequenz zwischen 15 kHz und 40 kHz ausgelegt ist.
  10. Resonator (10) nach einem der vorhergehenden Ansprüche, der für die Verteilung und teilweisen Transformation von Ultraschall mit einer Leistung zwischen 10 W und 20000 W ausgelegt ist.
  11. Resonator (10) nach einem der vorhergehenden Ansprüche, wobei die maximale Diagonale der zur Übertragung der Schwingungen auf das Fluid (21) angeordneten Öffnung (12) zwischen 1 mm und 100 mm beträgt.
  12. Resonator (10) nach einem der vorhergehenden Ansprüche, der derart ausgelegt ist, dass die maximale Amplitude (A) der Schwingungen in longitudinaler Richtung kleiner als 30µm (peak-peak) ist.
  13. Resonator (10) nach einem der vorhergehenden Ansprüche, der derart ausgelegt ist, dass die maximale Amplitude (A) der Schwingungen in longitudinaler Richtung größer als 5 µm (peak-peak) ist.
  14. Verfahren zur Behandlung wenigstens eines Fluides (21) mittels eines Resonators (10) gemäß einem der Ansprüche 1 bis 13, bei dem longitudinale Schwingungen verteilt und teilweise in zum Flächenschwerpunkt oder annähernd zum Flächenschwerpunkt einer Querschnittsfläche wenigstens einer vom Resonator (10) umfassten Öffnung (12) gerichteten Schwingungen transformiert werden, die mit longitudinalen Schwingungen überlagert werden,
    wobei die transformierten Schwingungen an ein innerhalb der Öffnung (12) befindliches Fluid (21) zu übertragen werden, und wobei
    i) das Volumen des Fluides (21) in der Öffnung (12) durch ein Gefäß begrenzt wird, oder
    ii) das Volumen des Fluides (21) in der Öffnung (12) durch die Wandung der Öffnung begrenzt wird.
EP12727610.3A 2011-05-17 2012-05-16 Resonator zur verteilung und teilweisen transformation longitudinaler schwingungen und verfahren zur behandlung wenigstens eines fluides mittels eines erfindungsgemässen resonators Active EP2709771B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161486823P 2011-05-17 2011-05-17
PCT/EP2012/059188 WO2012156475A2 (de) 2011-05-17 2012-05-16 Resonator zur verteilung und teilweisen transformation longitudinaler schwingungen und verfahren zur behandlung wenigstens eines fluides mittels eines erfindungsgemässen resonators

Publications (2)

Publication Number Publication Date
EP2709771A2 EP2709771A2 (de) 2014-03-26
EP2709771B1 true EP2709771B1 (de) 2019-01-16

Family

ID=46298370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12727610.3A Active EP2709771B1 (de) 2011-05-17 2012-05-16 Resonator zur verteilung und teilweisen transformation longitudinaler schwingungen und verfahren zur behandlung wenigstens eines fluides mittels eines erfindungsgemässen resonators

Country Status (3)

Country Link
US (1) US9502632B2 (de)
EP (1) EP2709771B1 (de)
WO (1) WO2012156475A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813642B2 (en) * 2017-07-26 2023-11-14 Purdue Research Foundation Phononic system and method of making the same
US20210062823A1 (en) * 2019-09-03 2021-03-04 Garrett Transportation I Inc. Compressor with ported shroud for flow recirculation and with noise attenuator for blade passing frequency noise attenuation, and turbocharger incorporating same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514080A (en) * 1945-01-10 1950-07-04 Bell Telephone Labor Inc Method of obtaining high velocity with crystals
US2490452A (en) * 1946-08-16 1949-12-06 Bell Telephone Labor Inc Generation of transverse vibrations in liquids
US3029766A (en) * 1956-05-02 1962-04-17 Aeroprojects Inc Ultrasonic tool
US3584327A (en) * 1969-04-04 1971-06-15 Fibra Sonics Ultrasonic transmission system
FR2547225A1 (fr) * 1983-06-09 1984-12-14 Mecasonic Sa Perfectionnements apportes a la fabrication des sonotrodes ultrasoniques
FR2671737A1 (fr) * 1991-01-17 1992-07-24 Vaxelaire Philippe Unite modulaire de reacteur ultra-sonique tubulaire.
DE19648986C1 (de) * 1996-11-26 1998-04-09 Raida Hans Joachim Gerichteter Stabstrahler
US5945642A (en) * 1998-03-13 1999-08-31 Minnesota Mining And Manufacturing Company Acoustic horn
CA2238951A1 (fr) * 1998-05-26 1999-11-26 Les Technologies Sonomax Inc. Reacteur a cavitation acoustique pour le traitement des materiaux
GB0222421D0 (en) * 2002-09-27 2002-11-06 Ratcliff Henry K Advanced ultrasonic processor
US7872400B2 (en) * 2007-09-24 2011-01-18 Dr. Hielscher Gmbh Ultrasonic device with a disk-shaped resonator
DE102008010617B4 (de) * 2008-02-22 2012-10-18 Bsonic Gmbh Hochleistungs-Ultraschallwandler und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2012156475A2 (de) 2012-11-22
EP2709771A2 (de) 2014-03-26
WO2012156475A3 (de) 2013-04-11
US20140184025A1 (en) 2014-07-03
US9502632B2 (en) 2016-11-22

Similar Documents

Publication Publication Date Title
EP3096893B1 (de) Konvertereinheit
EP2288450B1 (de) Sonotrode für eine ultraschallschwingeinheit
EP0857088A1 (de) Gerät zur einkopplung von ultraschall in ein flüssiges oder pastöses medium
DE3785384T2 (de) Unterwasserwandler.
DE10145145A1 (de) Anordnung zur Schwingungsdämpfung
EP2709771B1 (de) Resonator zur verteilung und teilweisen transformation longitudinaler schwingungen und verfahren zur behandlung wenigstens eines fluides mittels eines erfindungsgemässen resonators
EP3213041B1 (de) Vibronischer sensor
DE2047883C3 (de) Schwingungsübertrager für eine Ultraschallvorrichtung
DE102006037638B4 (de) Verfahren und Vorrichtung zum Sieben, Klassieren, Filtern oder Sortieren trockener fester Stoffe oder fester Stoffe in Flüssigkeiten
EP2847464B1 (de) Vorrichtung und anordnung zum erzeugen eines luftstroms
DE102005022179B4 (de) Ultraschallsonotrode
WO2018224325A1 (de) Ultraschallsensor
DE202015103011U1 (de) Ultraschall-Konverter
DE2414474C2 (de)
EP3713682B1 (de) Ultraschallschwingeinheit mit dämpfung
EP3268954B1 (de) Anordnung und feldgerät der prozessmesstechnik
WO2018171864A1 (de) Torsionale ultraschallbearbeitungssysteme
DE102012110033A1 (de) Vorrichtung zur Erzeugung radialer Ultraschallschwingungen
DE202018101069U1 (de) Vorrichtung zur Beaufschlagung eines mit einem heißen Medium befüllbaren Rohrabschnittinnenraums mit Ultraschall
DE102006047591B4 (de) Vorrichtung und Verfahren zum Sieben, Klassieren, Filtern oder Sortieren trockener fester Stoffe oder fester Stoffe in Flüssigkeiten
DE10204923C1 (de) Sonotroden-Dispergier-Vorrichtung
EP3663008A1 (de) Ultraschallschwinger, ultraschallschwingsystem und verfahren zum betreiben eines ultraschallschwingers
DE102011008576A1 (de) Verfahren und Vorrichtung zur Erzeugung einer schwingenden Bewegung einer Masse
EP1810747A1 (de) Kavitationsreaktor
WO2023135068A1 (de) Sonotrode mit optimierter schlitz-geometrie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131212

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151204

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012014181

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1089306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012014181

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

26N No opposition filed

Effective date: 20191017

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1089306

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200522

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120516

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240527

Year of fee payment: 13